1
|
Charlet de Sauvage J, Saurer M, Treydte K, Lévesque M. Decoupling of Tree-Ring Cellulose δ 18O and δ 2H Highlighted by Their Contrasting Relationships to Climate and Tree Intrinsic Variables. PLANT, CELL & ENVIRONMENT 2025; 48:1903-1918. [PMID: 39511983 PMCID: PMC11788974 DOI: 10.1111/pce.15252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Oxygen (δ18O) and hydrogen (δ2H) stable isotope ratios are tightly coupled in precipitation and, albeit damped, in leaf water, but are often decoupled in tree-ring cellulose. The environmental and physiological conditions in which this decoupling occurs are not yet well understood. We investigated the relationships between δ18O and δ2H and tree-ring width (TRW), tree crown volume, tree age and climate in silver fir and Douglas-fir and found substantial differences between δ18O and δ2H. Overall, δ18O-δ2H correlations were weak to absent but became significantly negative under high summer vapour pressure deficit (VPD). δ18O and δ2H had positive and negative nonlinear relationships with TRW, respectively, with clear relationships at the site and tree levels for silver fir and, to a lesser extent, for Douglas-fir. Age trends for silver fir were weakly negative in δ18O but positive in δ2H. Tree crown volume and δ18O or δ2H had no significant relationships. Most strikingly, δ18O strongly depended on spring climate (precipitation and VPD), whereas δ2H depended on summer climate (temperature and VPD) for both species. Our study shows that the δ18O-δ2H decoupling in tree-ring cellulose in two temperate conifer species could be highlighted by their contrasting relationships to climate and tree intrinsic variables (TRW, age).
Collapse
Affiliation(s)
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
| | - Mathieu Lévesque
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH ZurichZurichSwitzerland
| |
Collapse
|
2
|
Holloway-Phillips M, Tcherkez G, Wieloch T, Lehmann MM, Werner RA. Is Photosynthesis-Derived NADPH Really a Source of 2H-Depleted Hydrogen in Plant Compounds? PLANT, CELL & ENVIRONMENT 2025. [PMID: 39887744 DOI: 10.1111/pce.15403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/05/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
Summary statementWe provide evidence that photosynthetically produced NADPH is not the major source of 2H‐depletion in carbohydrates.
Collapse
Affiliation(s)
- Meisha Holloway-Phillips
- Research Unit of Forest Soils and Biogeochemistry, Research Group of Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmendsorf, Switzerland
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia
- Institut de Recherche en Horticulture et Semences, Université d'Angers, Beaucouzé, France
| | - Thomas Wieloch
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, USA
| | - Marco M Lehmann
- Research Unit of Forest Soils and Biogeochemistry, Research Group of Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmendsorf, Switzerland
| | - Roland A Werner
- D-USYS-Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Schuler P, Rehmann O, Vitali V, Saurer M, Oettli M, Cernusak LA, Gessler A, Buchmann N, Lehmann MM. Hydrogen isotope fractionation in plants with C 3, C 4, and CAM CO 2 fixation. THE NEW PHYTOLOGIST 2024; 244:477-495. [PMID: 39169823 DOI: 10.1111/nph.20057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Measurements of stable isotope ratios in organic compounds are widely used tools for plant ecophysiological studies. However, the complexity of the processes involved in shaping hydrogen isotope values (δ2H) in plant carbohydrates has limited its broader application. To investigate the underlying biochemical processes responsible for 2H fractionation among water, sugars, and cellulose in leaves, we studied the three main CO2 fixation pathways (C3, C4, and CAM) and their response to changes in temperature and vapor pressure deficit (VPD). We show significant differences in autotrophic 2H fractionation (εA) from water to sugar among the pathways and their response to changes in air temperature and VPD. The strong 2H depleting εA in C3 plants is likely driven by the photosynthetic H+ production within the thylakoids, a reaction that is spatially separated in C4 and strongly reduced in CAM plants, leading to the absence of 2H depletion in the latter two types. By contrast, we found that the heterotrophic 2H-fractionation (εH) from sugar to cellulose was very similar among the three pathways and is likely driven by the plant's metabolism, rather than by isotopic exchange with leaf water. Our study offers new insights into the biochemical drivers of 2H fractionation in plant carbohydrates.
Collapse
Affiliation(s)
- Philipp Schuler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Oliver Rehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Valentina Vitali
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Manuela Oettli
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Smithield, New South Wales, 4878, Australia
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
4
|
Yagi R, Haraguchi TF, Tayasu I, Suetsugu K. Do exchangeable hydrogens affect the evaluation of partial mycoheterotrophy in orchids? Insights from δ 2H analysis in bulk, α-cellulose, and cellulose nitrate samples. THE NEW PHYTOLOGIST 2024; 243:2430-2441. [PMID: 39081019 DOI: 10.1111/nph.19998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
To evaluate the nutritional modes of orchids associated with 'rhizoctonia' fungi, analyses of hydrogen (δ2H), carbon (δ13C), and nitrogen (δ15N) stable isotope ratios are usually adopted. However, previous studies have not fully accounted for exchangeable hydrogens, which could affect these evaluations. Here, we performed standard δ13C, δ15N, and δ2H analyses on bulk samples. Additionally, we conducted δ2H analysis on α-cellulose and cellulose nitrate samples to investigate whether the heterogeneity of exchangeable hydrogens among plant species influences the assessment of nutritional modes. The δ2H of orchids were consistently higher than those of surrounding autotrophic plants, irrespective of the three pretreatments. Although the rhizoctonia-associated orchid exhibited lower δ13C, its δ2H was higher than those of the autotrophs. Notably, among all response variables, δ15N and δ2H exhibited high abilities for discriminating the nutritional modes of rhizoctonia-associated orchids. These results indicate that a time-efficient bulk sample analysis is an effective method for evaluating plant nutritional modes, as the heterogeneity of exchangeable hydrogens does not significantly impact the estimation. Using δ15N and δ2H benefits the assessment of partial mycoheterotrophy among rhizoctonia-associated orchids.
Collapse
Affiliation(s)
- Ryuta Yagi
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Takashi F Haraguchi
- Biodiversity Research Center, Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 10-4 Koyamotomachi, Neyagawa, Osaka, 572-0088, Japan
| | - Ichiro Tayasu
- Research Institute of Humanity and Nature, 457-4, Motoyama, Kamigamo, Kyoto, 603-8047, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
5
|
Lehmann MM, Schuler P, Werner RA, Saurer M, Wiesenberg GLB, Cormier MA. Biochemical and biophysical drivers of the hydrogen isotopic composition of carbohydrates and acetogenic lipids. SCIENCE ADVANCES 2024; 10:eadl3591. [PMID: 38985863 PMCID: PMC11235168 DOI: 10.1126/sciadv.adl3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.
Collapse
Affiliation(s)
- Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Philipp Schuler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roland A Werner
- D-USYS-Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Guido L B Wiesenberg
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marc-André Cormier
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| |
Collapse
|
6
|
Charlet de Sauvage J, Treydte K, Saurer M, Lévesque M. Triple-isotope analysis in tree-ring cellulose suggests only moderate effects of tree species mixture on the climate sensitivity of silver fir and Douglas-fir. TREE PHYSIOLOGY 2024; 44:tpae067. [PMID: 38874315 PMCID: PMC11247184 DOI: 10.1093/treephys/tpae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Disentangling the factors influencing the climate sensitivity of trees is crucial to understanding the susceptibility of forests to climate change. Reducing tree-to-tree competition and mixing tree species are two strategies often promoted to reduce the drought sensitivity of trees, but it is unclear how effective these measures are in different ecosystems. Here, we studied the growth and physiological responses to climate and severe droughts of silver fir and Douglas-fir growing in pure and mixed conditions at three sites in Switzerland. We used tree-ring width data and carbon (δ13C), oxygen (δ18O) and hydrogen (δ2H) stable isotope ratios from tree-ring cellulose to gain novel information on water relations and the physiology of trees in response to drought and how tree species mixture and competition modulate these responses. We found significant differences in isotope ratios between trees growing in pure and mixed conditions for the two species, although these differences varied between sites, e.g. trees growing in mixed conditions had higher δ13C values and tree-ring width than trees growing in pure conditions for two of the sites. For both species, differences between trees in pure and mixed conditions regarding their sensitivity to temperature, precipitation, climatic water balance and vapor pressure deficit were minor. Furthermore, trees growing in pure and mixed conditions showed similar responses of tree-ring width and isotope ratios to the past severe droughts of 2003, 2015 and 2018. Competition had only a significantly negative effect on δ13C of silver fir, which may suggest a decrease in photosynthesis due to higher competition for light and nutrients. Our study highlights that tree species mixture may have only moderate effects on the radial growth and physiological responses of silver fir and Douglas-fir to climatic conditions and that site condition effects may dominate over mixture effects.
Collapse
Affiliation(s)
- Justine Charlet de Sauvage
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Mathieu Lévesque
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| |
Collapse
|
7
|
Lehmann MM, Diao H, Ouyang S, Gessler A. Different responses of oxygen and hydrogen isotopes in leaf and tree-ring organic matter to lethal soil drought. TREE PHYSIOLOGY 2024; 44:tpae043. [PMID: 38618738 DOI: 10.1093/treephys/tpae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/02/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
The oxygen and hydrogen isotopic composition (δ18O, δ2H) of plant tissues are key tools for the reconstruction of hydrological and plant physiological processes and may therefore be used to disentangle the reasons for tree mortality. However, how both elements respond to soil drought conditions before death has rarely been investigated. To test this, we performed a greenhouse study and determined predisposing fertilization and lethal soil drought effects on δ18O and δ2H values of organic matter in leaves and tree rings of living and dead saplings of five European tree species. For mechanistic insights, we additionally measured isotopic (i.e. δ18O and δ2H values of leaf and twig water), physiological (i.e. leaf water potential and gas-exchange) and metabolic traits (i.e. leaf and stem non-structural carbohydrate concentration, carbon-to-nitrogen ratios). Across all species, lethal soil drought generally caused a homogenous 2H-enrichment in leaf and tree-ring organic matter, but a low and heterogenous δ18O response in the same tissues. Unlike δ18O values, δ2H values of tree-ring organic matter were correlated with those of leaf and twig water and with plant physiological traits across treatments and species. The 2H-enrichment in plant organic matter also went along with a decrease in stem starch concentrations under soil drought compared with well-watered conditions. In contrast, the predisposing fertilization had generally no significant effect on any tested isotopic, physiological and metabolic traits. We propose that the 2H-enrichment in the dead trees is related to (i) the plant water isotopic composition, (ii) metabolic processes shaping leaf non-structural carbohydrates, (iii) the use of carbon reserves for growth and (iv) species-specific physiological adjustments. The homogenous stress imprint on δ2H but not on δ18O suggests that the former could be used as a proxy to reconstruct soil droughts and underlying processes of tree mortality.
Collapse
Affiliation(s)
- Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Haoyu Diao
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Shengnan Ouyang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Jiaxiu South Road, Huaxi District, Guiyang 550025, China
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Vitali V, Schuler P, Holloway-Phillips M, D'Odorico P, Guidi C, Klesse S, Lehmann MM, Meusburger K, Schaub M, Zweifel R, Gessler A, Saurer M. Finding balance: Tree-ring isotopes differentiate between acclimation and stress-induced imbalance in a long-term irrigation experiment. GLOBAL CHANGE BIOLOGY 2024; 30:e17237. [PMID: 38488024 DOI: 10.1111/gcb.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.
Collapse
Affiliation(s)
- Valentina Vitali
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Philipp Schuler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Claudia Guidi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
9
|
Holloway-Phillips M, Cernusak LA, Nelson DB, Lehmann MM, Tcherkez G, Kahmen A. Covariation between oxygen and hydrogen stable isotopes declines along the path from xylem water to wood cellulose across an aridity gradient. THE NEW PHYTOLOGIST 2023; 240:1758-1773. [PMID: 37680025 DOI: 10.1111/nph.19248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Oxygen and hydrogen isotopes of cellulose in plant biology are commonly used to infer environmental conditions, often from time series measurements of tree rings. However, the covariation (or the lack thereof) between δ18 O and δ2 H in plant cellulose is still poorly understood. We compared plant water, and leaf and branch cellulose from dominant tree species across an aridity gradient in Northern Australia, to examine how δ18 O and δ2 H relate to each other and to mean annual precipitation (MAP). We identified a decline in covariation from xylem to leaf water, and onwards from leaf to branch wood cellulose. Covariation in leaf water isotopic enrichment (Δ) was partially preserved in leaf cellulose but not branch wood cellulose. Furthermore, whilst δ2 H was well-correlated between leaf and branch, there was an offset in δ18 O between organs that increased with decreasing MAP. Our findings strongly suggest that postphotosynthetic isotope exchange with water is more apparent for oxygen isotopes, whereas variable kinetic and nonequilibrium isotope effects add complexity to interpreting metabolic-induced δ2 H patterns. Varying oxygen isotope exchange in wood and leaf cellulose must be accounted for when δ18 O is used to reconstruct climatic scenarios. Conversely, comparing δ2 H and δ18 O patterns may reveal environmentally induced shifts in metabolism.
Collapse
Affiliation(s)
- Meisha Holloway-Phillips
- Department of Environmental Sciences-Botany, University of Basel, 4056, Basel, Switzerland
- Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Stable Isotope Research Centre, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmendsorf, Switzerland
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4878, Australia
| | - Daniel B Nelson
- Department of Environmental Sciences-Botany, University of Basel, 4056, Basel, Switzerland
| | - Marco M Lehmann
- Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Stable Isotope Research Centre, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmendsorf, Switzerland
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, ACT, 2601, Australia
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, 42 rue Georges Morel, 49070, Beaucouzé, France
| | - Ansgar Kahmen
- Department of Environmental Sciences-Botany, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
10
|
Pandey U, Nakatsuka T, Mehrotra N, Zhen L, Kato Y, Sano M, Shah SK. Tree-rings stable isotope (δ 18O and δ 2H) based 368 years long term precipitation reconstruction of South Eastern Kashmir Himalaya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164640. [PMID: 37286008 DOI: 10.1016/j.scitotenv.2023.164640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
The hydroclimatic variability in Kashmir Himalaya is influenced by the western disturbances and the Indian Summer Monsoon. To investigate long-term hydroclimatic variability, 368 years tree-ring oxygen and hydrogen isotope ratios (δ18O and δ2H) extending from 1648 to 2015 CE were analysed. These isotopic ratios are calculated using five core samples of Himalayan silver fir (Abies pindrow) collected from the south-eastern region of Kashmir valley. The relationship between the long and short periodicity components of δ18O and δ2H suggested that physiological processes had a minimum effect on the tree-ring stable isotopes in Kashmir Himalaya. The δ18O chronology was developed based on the average of five-individual tree-ring δ18O time series covering the time span of 1648-2015 CE. The climate response analysis revealed the strongest and most significant negative correlation between tree ring δ18O and precipitation amount from the previous year's December to current year's August (D2Apre). The reconstructed D2Apre (D2Arec) explains precipitation variability from 1671 to 2015 CE and is supported by historical and other proxy-based hydroclimatic records. The reconstruction has two distinguishing features: first, it is characterized by stable wet conditions during the last phase of Little Ice Age (LIA) i.e., from 1682 to 1841 CE; and second, the southeast Kashmir Himalaya had experienced drier conditions as compared to recent and historical period with intense pluvial events since 1850. The present reconstruction shows, there have been more extreme dry events than extreme wet events since 1921. A tele-connection is observed between D2Arec and Sea Surface Temperature (SST) of the Westerly region.
Collapse
Affiliation(s)
- Uttam Pandey
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan; Birbal Shani Institute of Palaeosciences, 53-University Road, Lucknow 226 007, India; Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India.
| | - Takeshi Nakatsuka
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Nivedita Mehrotra
- Birbal Shani Institute of Palaeosciences, 53-University Road, Lucknow 226 007, India
| | - Li Zhen
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Yoshikazu Kato
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Masaki Sano
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Santosh K Shah
- Birbal Shani Institute of Palaeosciences, 53-University Road, Lucknow 226 007, India
| |
Collapse
|
11
|
Vitali V, Peters RL, Lehmann MM, Leuenberger M, Treydte K, Büntgen U, Schuler P, Saurer M. Tree-ring isotopes from the Swiss Alps reveal non-climatic fingerprints of cyclic insect population outbreaks over the past 700 years. TREE PHYSIOLOGY 2023; 43:706-721. [PMID: 36738262 PMCID: PMC10177004 DOI: 10.1093/treephys/tpad014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/31/2023] [Indexed: 05/13/2023]
Abstract
Recent experiments have underlined the potential of δ2H in tree-ring cellulose as a physiological indicator of shifts in autotrophic versus heterotrophic processes (i.e., the use of fresh versus stored non-structural carbohydrates). However, the impact of these processes has not yet been quantified under natural conditions. Defoliator outbreaks disrupt tree functioning and carbon assimilation, stimulating remobilization, therefore providing a unique opportunity to improve our understanding of changes in δ2H. By exploring a 700-year tree-ring isotope chronology from Switzerland, we assessed the impact of 79 larch budmoth (LBM, Zeiraphera griseana [Hübner]) outbreaks on the growth of its host tree species, Larix decidua [Mill]. The LBM outbreaks significantly altered the tree-ring isotopic signature, creating a 2H-enrichment and an 18O- and 13C-depletion. Changes in tree physiological functioning in outbreak years are shown by the decoupling of δ2H and δ18O (O-H relationship), in contrast to the positive correlation in non-outbreak years. Across the centuries, the O-H relationship in outbreak years was not significantly affected by temperature, indicating that non-climatic physiological processes dominate over climate in determining δ2H. We conclude that the combination of these isotopic parameters can serve as a metric for assessing changes in physiological mechanisms over time.
Collapse
Affiliation(s)
- Valentina Vitali
- Stable Isotope Research Centre (SIRC), Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | - Richard L Peters
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, Basel CH-4056, Switzerland
| | - Marco M Lehmann
- Stable Isotope Research Centre (SIRC), Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | - Markus Leuenberger
- Climate and Environmental Physics Division and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, Bern CH-3012, Switzerland
| | - Kerstin Treydte
- Department of Dendrosciences, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | - Ulf Büntgen
- Department of Dendrosciences, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
- Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
- Global Change Research Institute (CzechGlobe), Czech Academy of Sciences, Brno 603 00, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| | - Philipp Schuler
- Stable Isotope Research Centre (SIRC), Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| | - Matthias Saurer
- Stable Isotope Research Centre (SIRC), Ecosystem Ecology, Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
12
|
Churakova Sidorova OV, Porter TJ, Zharkov MS, Fonti MV, Barinov VV, Taynik AV, Kirdyanov AV, Knorre AA, Wegmann M, Trushkina TV, Koshurnikova NN, Vaganov EA, Myglan VS, Siegwolf RTW, Saurer M. Climate impacts on tree-ring stable isotopes across the Northern Hemispheric boreal zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161644. [PMID: 36707005 DOI: 10.1016/j.scitotenv.2023.161644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Boreal regions are changing rapidly with anthropogenic global warming. In order to assess risks and impacts of this process, it is crucial to put these observed changes into a long-term perspective. Summer air temperature variability can be well reconstructed from conifer tree rings. While the application of stable isotopes can potentially provide complementary climatic information over different seasons. In this study, we developed new triple stable isotope chronologies in tree-ring cellulose (δ13Ctrc, δ18Otrc, δ2Htrc) from a study site in Canada. Additionally, we performed regional aggregated analysis of available stable isotope chronologies from 6 conifers' tree species across high-latitudinal (HL) and - altitudinal (HA) as well as Siberian (SIB) transects of the Northern Hemispheric boreal zone. Our results show that summer air temperature still plays an important role in determining tree-ring isotope variability at 11 out of 24 sites for δ13Ctrc, 6 out of 18 sites for δ18Otrc and 1 out of 6 sites for δ2Htrc. Precipitation, relative humidity and vapor pressure deficit are significantly and consistently recorded in both δ13Ctrc and δ18Otrc along HL. Summer sunshine duration is captured by all isotopes, mainly for HL and HA transects, indicating an indirect link with an increase in air and leaf temperature. A mixed temperature-precipitation signal is preserved in δ13Ctrc and δ18Otrc along SIB transect. The δ2Htrc data obtained for HL-transect provide information not only about growing seasonal moisture and temperature, but also capture autumn, winter and spring sunshine duration signals. We conclude that a combination of triple stable isotopes in tree-ring studies can provide a comprehensive description of climate variability across the boreal forest zone and improve ecohydrological reconstructions.
Collapse
Affiliation(s)
- Olga V Churakova Sidorova
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Kasan Federal University, Institute of Geology and Petroleum Technology, Kremlyovskaya str. 18, Kazan 420008, Russian Federation.
| | - Trevor J Porter
- Department of Geography, Geomatics and Environment, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Mikhail S Zharkov
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation
| | - Marina V Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Valentin V Barinov
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation
| | - Anna V Taynik
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation
| | - Alexander V Kirdyanov
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation; Sukachev Institute of Forest SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 660036 Krasnoyarsk, Akademgorodok, Russian Federation
| | - Anastasya A Knorre
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation; Science Department, National Park "Krasnoyarsk Stolby", 660006 Krasnoyarsk, Russian Federation
| | - Martin Wegmann
- École Polytechnique Fédérale de Lausanne EPFL, Limnology center, 1015 Lausanne, Switzerland
| | - Tatyana V Trushkina
- Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy 31, 660037 Krasnoyarsk, Russian Federation
| | | | - Eugene A Vaganov
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation; Sukachev Institute of Forest SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 660036 Krasnoyarsk, Akademgorodok, Russian Federation
| | - Vladimir S Myglan
- Siberian Federal University, 660041 Svobodny 79, Krasnoyarsk, Russian Federation
| | - Rolf T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland.
| |
Collapse
|
13
|
Wassenaar LI, Sisti L, Pilecky M, Kainz M. Reproducible measurements of the δ 2H composition of non-exchangeable hydrogen in complex organic materials using the UniPrep2 online static vapour equilibration and sample drying system. MethodsX 2023; 10:101984. [PMID: 36632600 PMCID: PMC9826938 DOI: 10.1016/j.mex.2022.101984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Non-exchangeable hydrogen-isotope (δ 2Hn) measurements of complex organic samples are used in forensics to determine sample authenticity, traceability, and provenance. However, δ 2Hn assays of organics are usually complicated by uncontrolled "exchangeable hydrogen" and residual moisture contamination; hence, δ 2Hn assays are persistently incomparable amongst laboratories. We introduce a revised technical solution (UniPrep2) to control hydrogen-isotope exchange and for robust online sample drying and vapour equilibration. The UniPrep2 device is coupled to a high-temperature thermochemical elemental analyser and continuous-flow isotope-ratio mass spectrometer. This technical solution empowers isotope analysts to:•Conduct reproducible controlled vapour equilibrations of complex organic samples and standards to determine the δ 2Hn values by controlling hydrogen-isotope exchange.•Conduct online vacuum-oven evacuation with extensive helium drying without exposure to air to reabsorb or exchange hydrogen with ambient water vapour. The protocol describes the operation of the UniPrep2 device and the step-by-step procedures needed to obtain accurate and precise δ 2Hn values for a wide range of organic sample types. Two analytical approaches are described in detail; the Dual-Vapour Equilibration (DVE) approach, intended for determining δ 2Hn for a complex organic environmental sample where matrix equivalent H isotope reference materials are not available, and the Comparative Equilibration (CE) approach, which is intended for routine high-throughput analyses of complex organic samples where at least two matrix-equivalent organic isotope reference materials with consensus δ 2Hn values are being used. These standard operating procedures are envisioned to be a sound basis for advancing hydrogen-isotope analysis for different organic environmental matrices and studies.
Collapse
Affiliation(s)
- Leonard I. Wassenaar
- WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, Lunz am See A-3293, Austria
| | - Leonardo Sisti
- Eurovector C/O Polo Tecnologico di Pavia, Via F.lli Cuzio, 42, Pavia 27100, Italy
| | - Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, Lunz am See A-3293, Austria
- Department of Biomedical Research, Donau-Universität Krems, Dr.-Karl-Dorrek-Strasse 30, Krems an der Donau A-3500, Austria
| | - Martin Kainz
- WasserCluster Lunz - Biologische Station, Dr. Carl Kupelwieser Promenade 5, Lunz am See A-3293, Austria
- Department of Biomedical Research, Donau-Universität Krems, Dr.-Karl-Dorrek-Strasse 30, Krems an der Donau A-3500, Austria
| |
Collapse
|
14
|
Schönbeck LC, Santiago LS. Time will tell: towards high-resolution temporal tree-ring isotope analyses. TREE PHYSIOLOGY 2022; 42:2401-2403. [PMID: 36222495 DOI: 10.1093/treephys/tpac121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Leonie C Schönbeck
- Department of Botany & Plant Sciences, 2150 Batchelor Hall, University of California, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, 2150 Batchelor Hall, University of California, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panamá, Republic of Panamá
| |
Collapse
|
15
|
Holloway-Phillips M, Baan J, Nelson DB, Lehmann MM, Tcherkez G, Kahmen A. Species variation in the hydrogen isotope composition of leaf cellulose is mostly driven by isotopic variation in leaf sucrose. PLANT, CELL & ENVIRONMENT 2022; 45:2636-2651. [PMID: 35609972 DOI: 10.1111/pce.14362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Experimental approaches to isolate drivers of variation in the carbon-bound hydrogen isotope composition (δ2 H) of plant cellulose are rare and current models are limited in their application. This is in part due to a lack in understanding of how 2 H-fractionations in carbohydrates differ between species. We analysed, for the first time, the δ2 H of leaf sucrose along with the δ2 H and δ18 O of leaf cellulose and leaf and xylem water across seven herbaceous species and a starchless mutant of tobacco. The δ2 H of sucrose explained 66% of the δ2 H variation in cellulose (R2 = 0.66), which was associated with species differences in the 2 H enrichment of sucrose above leaf water ( ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0001" wiley:location="equation/pce14362-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mtext>\unicode{x003B5}</mtext><mtext>sucrose</mtext></msub></mrow></math> : -126% to -192‰) rather than by variation in leaf water δ2 H itself. ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0002" wiley:location="equation/pce14362-math-0002.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mtext>\unicode{x003B5}</mtext><mtext>sucrose</mtext></msub></mrow></math> was positively related to dark respiration (R2 = 0.27), and isotopic exchange of hydrogen in sugars was positively related to the turnover time of carbohydrates (R2 = 0.38), but only when ε sucrose <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0003" wiley:location="equation/pce14362-math-0003.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi mathvariant="normal">\unicode{x003B5}</mi><mtext>sucrose</mtext></msub></mrow></mrow></math> was fixed to the literature accepted value of - 171 <math altimg="urn:x-wiley:01407791:media:pce14362:pce14362-math-0004" wiley:location="equation/pce14362-math-0004.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo>\unicode{x02212}</mo><mn>171</mn></mrow></mrow></math> ‰. No relation was found between isotopic exchange of hydrogen and oxygen, suggesting large differences in the processes shaping post-photosynthetic fractionation between elements. Our results strongly advocate that for robust applications of the leaf cellulose hydrogen isotope model, parameterization utilizing δ2 H of sugars is needed.
Collapse
Affiliation(s)
| | - Jochem Baan
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| | - Daniel B Nelson
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| | - Marco M Lehmann
- Research Unit of Forest Dynamics, Research Group of Ecosystem Ecology, Stable Isotope Research Centre, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmendsorf, Switzerland
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia
- Institut de Recherche en Horticulture et Semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Ansgar Kahmen
- Department of Environmental Science-Botany, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Towards the Third Millennium Changes in Siberian Triple Tree-Ring Stable Isotopes. FORESTS 2022. [DOI: 10.3390/f13060934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significant air temperature and precipitation changes have occurred since the 2000s in vulnerable Siberian subarctic regions and urged updates of available chronologies towards the third millennium. It is important to better understand recent climatic changes compared to the past decades, centuries and even millennia. In this study, we present the first annually resolved triple tree-ring isotope dataset (δ13C, δ18O and δ2H) for the eastern part of the Taimyr Peninsula (TAY) and northeastern Yakutia (YAK) from 1900 to 2021. We found that the novel and largely unexplored δ2H of larch tree-ring cellulose was linked significantly with δ18O for the YAK site, which was affected by averaged April–June air temperatures and evaporation. Simulated by the Land Surface Processes and Exchanges (LPX-Bern 1.0) model, the water fraction per year for soil depths at 0–20 and 20–30 cm was significantly linked with the new eco-hydrological tree-ring δ2H data. Our results suggest increasing evapotranspiration and response of trees’ water relation to rising thaw water uptake from lower (20–30 cm) soil depth. A positive effect of July air temperature on tree-ring δ18O and a negative impact of July precipitation were found, indicating dry conditions. The δ13C in larch tree-ring cellulose for both sites showed negative correlations with July precipitation and relative humidity, confirming dry environmental conditions towards the third millennium.
Collapse
|