1
|
Sun M, Pu M, Zheng G, Tian Z, Zhang M, He X, Zhao Y, Zhao X, Zhang X, Yang X, Liu H, Zhou C. Enhanced antioxidant activity improves deep-sowing tolerance in maize. BMC PLANT BIOLOGY 2024; 24:1229. [PMID: 39709339 DOI: 10.1186/s12870-024-05994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Deep sowing has emerged as a vital agricultural strategy, particularly in arid and semi-arid regions, as it allows seeds to access water stored in deeper soil layers. This approach facilitates successful germination and establishment of crops, even in challenging environmental conditions. Previous studies have shown that the length of the maize mesocotyl is an important trait influencing deep-sowing tolerance. Several factors play a crucial role in regulating mesocotyl elongation, primarily including light, hormones, metabolites, and reactive oxygen species (ROS). Therefore, further understanding the regulatory mechanisms of mesocotyl elongation is essential for enhancing maize germination and growth under deep sowing conditions. RESULTS In this study, we identified a deep sowing-tolerant inbred line, DH65232, which showed significantly increased mesocotyl length compared to B73 under deep sowing conditions. Transcriptome analysis revealed that differentially expressed genes in the mesocotyl of the two inbred lines were mainly enriched in three pathways: hormone regulation, intermediate metabolites, and redox enzymes. Measurements of hormone content and phenotypic analysis following GA3 treatment indicated that GA3 plays a positive role in promoting mesocotyl elongation under deep-sowing stress in the inbred line DH65232. Additionally, untargeted metabolomics revealed that DH65232 exhibited a higher number of differential metabolites related to antioxidant pathway under deep-sowing stress compared to normal sowing. In deep sowing conditions, the determination of POD, CAT, SOD activities, and MDA content in the mesocotyl of B73 and DH65232 shows that DH65232 has a stronger ability to scavenge ROS. CONCLUSIONS Above all, the inbred line DH65232 exhibits a greater tolerance to deep sowing due to its stronger antioxidant activity. Our study has contributed to a deeper understanding of the complex tolerance mechanisms in maize and provided new insights for the development of new maize varieties under deep sowing conditions.
Collapse
Affiliation(s)
- Mingfei Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Menglin Pu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guangming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ziang Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiaofei He
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yajie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Hongjun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
2
|
Grubb LE, Scandola S, Mehta D, Khodabocus I, Uhrig RG. Quantitative Proteomic Analysis of Brassica Napus Reveals Intersections Between Nutrient Deficiency Responses. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39449274 DOI: 10.1111/pce.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Macronutrients such as nitrogen (N), phosphorus (P), potassium (K) and sulphur (S) are critical for plant growth and development. Field-grown canola (Brassica napus L.) is supplemented with fertilizers to maximize plant productivity, while deficiency in these nutrients can cause significant yield loss. A holistic understanding of the interplay between these nutrient deficiency responses in a single study and canola cultivar is thus far lacking, hindering efforts to increase the nutrient use efficiency of this important oil seed crop. To address this, we performed a comparative quantitative proteomic analysis of both shoot and root tissue harvested from soil-grown canola plants experiencing either nitrogen, phosphorus, potassium or sulphur deficiency. Our data provide critically needed insights into the shared and distinct molecular responses to macronutrient deficiencies in canola. Importantly, we find more conserved responses to the four different nutrient deficiencies in canola roots, with more distinct proteome changes in aboveground tissue. Our results establish a foundation for a more comprehensive understanding of the shared and distinct nutrient deficiency response mechanisms of canola plants and pave the way for future breeding efforts.
Collapse
Affiliation(s)
- L E Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - S Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - D Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biosystems, KU Leuven, Leuven, Belgium
- Leuven Plant Institute, KU Leuven, Leuven, Belgium
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - I Khodabocus
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Reis RS, Clúa J, Jaskolowski A, Deforges J, Jacques-Vuarambon D, Guex N, Poirier Y. Phosphate deficiency alters transcript isoforms via alternative transcription start sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:218-233. [PMID: 39164918 DOI: 10.1111/tpj.16982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/24/2024] [Accepted: 07/13/2024] [Indexed: 08/22/2024]
Abstract
Alternative transcription start sites (TSS) are widespread in eukaryotes and can alter the 5' UTR length and coding potential of transcripts. Here we show that inorganic phosphate (Pi) availability regulates the usage of several alternative TSS in Arabidopsis (Arabidopsis thaliana). In comparison to phytohormone treatment, Pi had a pronounced and specific effect on the usage of many alternative TSS. By combining short-read RNA sequencing with long-read sequencing of full-length mRNAs, we identified a set of 45 genes showing alternative TSS under Pi deficiency. Alternative TSS affected several processes, such as translation via the exclusion of upstream open reading frames present in the 5' UTR of RETICULAN LIKE PROTEIN B1 mRNA, and subcellular localization via removal of the plastid transit peptide coding region from the mRNAs of HEME OXYGENASE 1 and SULFOQUINOVOSYLDIACYLGLYCEROL 2. Several alternative TSS also generated shorter transcripts lacking the coding potential for important domains. For example, the EVOLUTIONARILY CONSERVED C-TERMINAL REGION 4 (ECT4) locus, which encodes an N6-methyladenosine (m6A) reader, strongly expressed under Pi deficiency a short noncoding transcript (named ALTECT4) ~550 nt long with a TSS in the penultimate intron. The specific and robust induction of ALTECT4 production by Pi deficiency led to the identification of a role for m6A readers in primary root growth in response to low phosphate that is dependent on iron and is involved in modulating cell division in the root meristem. Our results identify alternative TSS usage as an important process in the plant response to Pi deficiency.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, CH-3013, Switzerland
| | - Joaquín Clúa
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Aime Jaskolowski
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Jules Deforges
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Dominique Jacques-Vuarambon
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, CH-3013, Switzerland
| | - Nicolas Guex
- Bioinfomatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
4
|
Yao XL, Wang YZ, Meng HX, Zhang MH, Zhou X, Kang XT, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Identification of systemic nitrogen signaling in foxtail millet (Setaria italica) roots based on split-root system and transcriptome analysis. PLANT CELL REPORTS 2024; 43:243. [PMID: 39340664 DOI: 10.1007/s00299-024-03338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO3 of the split-root System (Sp.KNO3) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.
Collapse
Affiliation(s)
- Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Ming-Hua Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zhou
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xue-Ting Kang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
5
|
Castro B, Baik S, Tran M, Zhu J, Li T, Tang A, Aoun N, Blundell AC, Gomez M, Zhang E, Cho MJ, Lowe-Power T, Siddique S, Staskawicz B, Coaker G. Gene editing of the E3 ligase PIRE1 fine-tunes ROS production for enhanced bacterial disease resistance in tomato. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606097. [PMID: 39131268 PMCID: PMC11312566 DOI: 10.1101/2024.07.31.606097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Reactive oxygen species (ROS) accumulation is required for effective plant defense. Accumulation of the Arabidopsis NADPH oxidase RBOHD is regulated by phosphorylation of a conserved C-terminal residue (T912) leading to ubiquitination by the RING E3 ligase PIRE. Arabidopsis PIRE knockouts exhibit enhanced ROS production and resistance to the foliar pathogen Pseudomonas syringae. Here, we identified 170 PIRE homologs, which emerged in Tracheophytes and expanded in Angiosperms. We investigated the role of Solanum lycopersicum (tomato) PIRE homologs in regulating ROS production, RBOH stability, and disease resistance. Mutational analyses of residues corresponding to T912 in the tomato RBOHD ortholog, SlRBOHB, affected protein accumulation and ROS production in a PIRE-dependent manner. Using CRISPR-cas9, we generated mutants in two S. lycopersicum PIRE homologs (SlPIRE). SlPIRE1 edited lines (Slpire1) in the tomato cultivar M82 displayed enhanced ROS production upon treatment with flg22, an immunogenic epitope of flagellin. Furthermore, Slpire1 exhibited decreased disease symptoms and bacterial accumulation when inoculated with foliar bacterial pathogens Pseudomonas syringae and Xanthomonas campestris. However, Slpire1 exhibited similar levels of colonization as wild type upon inoculation with diverse soilborne pathogens. These results indicate that phosphorylation and ubiquitination crosstalk regulate RBOHs in multiple plant species, and PIRE is a promising target for foliar disease control. This study also highlights the pathogen-specific role of PIRE, indicating its potential for targeted manipulation to enhance foliar disease resistance without affecting root-associated interactions, positioning PIRE as a promising target for improving overall plant health.
Collapse
Affiliation(s)
- Bardo Castro
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Suji Baik
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Megann Tran
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Jie Zhu
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Tianrun Li
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Andrea Tang
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Nathalie Aoun
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Alison C Blundell
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Michael Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Elaine Zhang
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Tiffany Lowe-Power
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Marques I, Fernandes I, Paulo OS, Batista D, Lidon FC, Rodrigues AP, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Transcriptomic Analyses Reveal That Coffea arabica and Coffea canephora Have More Complex Responses under Combined Heat and Drought than under Individual Stressors. Int J Mol Sci 2024; 25:7995. [PMID: 39063237 PMCID: PMC11277005 DOI: 10.3390/ijms25147995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing exposure to unfavorable temperatures and water deficit imposes major constraints on most crops worldwide. Despite several studies regarding coffee responses to abiotic stresses, transcriptome modulation due to simultaneous stresses remains poorly understood. This study unravels transcriptomic responses under the combined action of drought and temperature in leaves from the two most traded species: Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Substantial transcriptomic changes were found, especially in response to the combination of stresses that cannot be explained by an additive effect. A large number of genes were involved in stress responses, with photosynthesis and other physiologically related genes usually being negatively affected. In both genotypes, genes encoding for protective proteins, such as dehydrins and heat shock proteins, were positively regulated. Transcription factors (TFs), including MADS-box genes, were down-regulated, although responses were genotype-dependent. In contrast to Icatu, only a few drought- and heat-responsive DEGs were recorded in CL153, which also reacted more significantly in terms of the number of DEGs and enriched GO terms, suggesting a high ability to cope with stresses. This research provides novel insights into the molecular mechanisms underlying leaf Coffea responses to drought and heat, revealing their influence on gene expression.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Isabel Fernandes
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Octávio S. Paulo
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Dora Batista
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Ana P. Rodrigues
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Fábio L. Partelli
- Centro Universitário do Norte do Espírito Santo (CEUNES), Departmento Ciências Agrárias e Biológicas (DCAB), Universidade Federal Espírito Santo (UFES), São Mateus 29932-540, ES, Brazil;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| |
Collapse
|
7
|
Li A, Wang Y, Li X, Yin J, Li Y, Hu Y, Zou J, Liu J, Sun Z. Integrated physiological, transcriptomic and metabolomic analyses provide insights into phosphorus-mediated cadmium detoxification in Salix caprea roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108677. [PMID: 38703499 DOI: 10.1016/j.plaphy.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Phosphorus (P) plays a crucial role in facilitating plant adaptation to cadmium (Cd) stress. However, the molecular mechanisms underlying P-mediated responses to Cd stress in roots remain elusive. This study investigates the effects of P on the growth, physiology, transcriptome, and metabolome of Salix caprea under Cd stress. The results indicate that Cd significantly inhibits plant growth, while sufficient P alleviates this inhibition. Under Cd exposure, P sufficiency resulted in increased Cd accumulation in roots, along with reduced oxidative stress levels (superoxide anion and hydrogen peroxide contents were reduced by 16.8% and 30.1%, respectively). This phenomenon can be attributed to the enhanced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), as well as increased levels of antioxidants including ascorbic acid (AsA) and flavonoids under sufficient P conditions. A total of 4208 differentially expressed genes (DEGs) and 552 differentially accumulated metabolites (DAMs) were identified in the transcriptomic and metabolomic analyses, with 2596 DEGs and 113 DAMs identified among treatments with different P levels under Cd stress, respectively. Further combined analyses reveal the potential roles of several pathways in P-mediated Cd detoxification, including flavonoid biosynthesis, ascorbate biosynthesis, and plant hormone signal transduction pathways. Notably, sufficient P upregulates the expression of genes including HMA, ZIP, NRAMP and CAX, all predicted to localize to the cell membrane. This may elucidate the heightened Cd accumulation under sufficient P conditions. These findings provide insights into the roles of P in enhancing plant resistance to Cd stress and improving of phytoremediation.
Collapse
Affiliation(s)
- Ao Li
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuancheng Wang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274000, China
| | - Jiahui Yin
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; College of Horticulture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yadong Li
- Shandong Seed Industry Group Yellow River Delta Co., Jinan, Shandong, 250000, China
| | - Yaofang Hu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junzhu Zou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junxiang Liu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhenyuan Sun
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
8
|
Yang R, Li K, Wang M, Sun M, Li Q, Chen L, Xiao F, Zhang Z, Zhang H, Jiao F, Chen J. ZmNAC17 Regulates Mesocotyl Elongation by Mediating Auxin and ROS Biosynthetic Pathways in Maize. Int J Mol Sci 2024; 25:4585. [PMID: 38731804 PMCID: PMC11083593 DOI: 10.3390/ijms25094585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The mesocotyl is of great significance in seedling emergence and in responding to biotic and abiotic stress in maize. The NAM, ATAF, and CUC2 (NAC) transcription factor family plays an important role in maize growth and development; however, its function in the elongation of the maize mesocotyl is still unclear. In this study, we found that the mesocotyl length in zmnac17 loss-of-function mutants was lower than that in the B73 wild type. By using transcriptomic sequencing technology, we identified 444 differentially expressed genes (DEGs) between zmnac17-1 and B73, which were mainly enriched in the "tryptophan metabolism" and "antioxidant activity" pathways. Compared with the control, the zmnac17-1 mutants exhibited a decrease in the content of indole acetic acid (IAA) and an increase in the content of reactive oxygen species (ROS). Our results provide preliminary evidence that ZmNAC17 regulates the elongation of the maize mesocotyl.
Collapse
Affiliation(s)
- Ran Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Kangshi Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiuhua Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Liping Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng Xiao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenlong Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Tarkowski ŁP, Clochard T, Blein-Nicolas M, Zivy M, Baillau T, Abadie C, Morère-Le Paven MC, Limami AM, Tcherkez G, Montrichard F. The nitrate transporter-sensor MtNPF6.8 regulates the branched chain amino acid/pantothenate metabolic pathway in barrel medic (Medicago truncatula Gaertn.) root tip. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108213. [PMID: 38043253 DOI: 10.1016/j.plaphy.2023.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Nitrogen is the most limiting nutrient for plants, and it is preferentially absorbed in the form of nitrate by roots, which adapt to nitrate fluctuations by remodelling their architecture. Although core mechanisms of the response to nitrate availability are relatively well-known, signalling events controlling root growth and architecture have not all been identified, in particular in Legumes. However, the developmental effect of nitrate in Legumes is critical since external nitrate not only regulates root architecture but also N2-fixing nodule development. We have previously shown that in barrel medic (Medicago truncatula), the nitrate transporter MtNPF6.8 is required for nitrate sensitivity in root tip. However, uncertainty remains as to whether nitrogen metabolism itself is involved in the MtNPF6.8-mediated response. Here, we examine the metabolic effects of MtNPF6.8-dependent nitrate signalling using metabolomics and proteomics in WT and mtnpf6.8 root tips in presence or absence of nitrate. We found a reorchestration of metabolism due to the mutation, in favour of the branched chain amino acids/pantothenate metabolic pathway, and lipid catabolism via glyoxylate. That is, the mtnpf6.8 mutation was likely associated with a specific rerouting of acetyl-CoA production (glyoxylic cycle) and utilisation (pantothenate and branched chain amino acid synthesis). In agreement with our previous findings, class III peroxidases were confirmed as the main protein class responsive to nitrate, although in an MtNPF6.8-independent fashion. Our data rather suggest the involvement of other pathways within mtnpf6.8 root tips, such as Ca2+ signalling or cell wall methylation.
Collapse
Affiliation(s)
| | | | - Mélisande Blein-Nicolas
- GQE - Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Michel Zivy
- GQE - Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Thierry Baillau
- GQE - Le Moulon, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Cyril Abadie
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Anis M Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Guillaume Tcherkez
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France; Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australia
| | | |
Collapse
|
10
|
Houmani H, Corpas FJ. Can nutrients act as signals under abiotic stress? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108313. [PMID: 38171136 DOI: 10.1016/j.plaphy.2023.108313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plant cells are in constant communication to coordinate development processes and environmental reactions. Under stressful conditions, such communication allows the plant cells to adjust their activities and development. This is due to intercellular signaling events which involve several components. In plant development, cell-to-cell signaling is ensured by mobile signals hormones, hydrogen peroxide (H2O2), nitric oxide (NO), or hydrogen sulfide (H2S), as well as several transcription factors and small RNAs. Mineral nutrients, including macro and microelements, are determinant factors for plant growth and development and are, currently, recognized as potential signal molecules. This review aims to highlight the role of nutrients, particularly calcium, potassium, magnesium, nitrogen, phosphorus, and iron as signaling components with special attention to the mechanism of response against stress conditions.
Collapse
Affiliation(s)
- Hayet Houmani
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain; Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, PO Box 901, 2050, Hammam-Lif, Tunisia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|
11
|
Scharte J, Hassa S, Herrfurth C, Feussner I, Forlani G, Weis E, von Schaewen A. Metabolic priming in G6PDH isoenzyme-replaced tobacco lines improves stress tolerance and seed yields via altering assimilate partitioning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1696-1716. [PMID: 37713307 DOI: 10.1111/tpj.16460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
We investigated the basis for better performance of transgenic Nicotiana tabacum plants with G6PDH-isoenzyme replacement in the cytosol (Xanthi::cP2::cytRNAi, Scharte et al., 2009). After six generations of selfing, infiltration of Phytophthora nicotianae zoospores into source leaves confirmed that defence responses (ROS, callose) are accelerated, showing as fast cell death of the infected tissue. Yet, stress-related hormone profiles resembled susceptible Xanthi and not resistant cultivar SNN, hinting at mainly metabolic adjustments in the transgenic lines. Leaves of non-stressed plants contained twofold elevated fructose-2,6-bisphosphate (F2,6P2 ) levels, leading to partial sugar retention (soluble sugars, starch) and elevated hexose-to-sucrose ratios, but also more lipids. Above-ground biomass lay in between susceptible Xanthi and resistant SNN, with photo-assimilates preferentially allocated to inflorescences. Seeds were heavier with higher lipid-to-carbohydrate ratios, resulting in increased harvest yields - also under water limitation. Abiotic stress tolerance (salt, drought) was improved during germination, and in floated leaf disks of non-stressed plants. In leaves of salt-watered plants, proline accumulated to higher levels during illumination, concomitant with efficient NADP(H) use and recycling. Non-stressed plants showed enhanced PSII-induction kinetics (upon dark-light transition) with little differences at the stationary phase. Leaf exudates contained 10% less sucrose, similar amino acids, but more fatty acids - especially in the light. Export of specific fatty acids via the phloem may contribute to both, earlier flowering and higher seed yields of the Xanthi-cP2 lines. Apparently, metabolic priming by F2,6P2 -combined with sustained NADP(H) turnover-bypasses the genetically fixed growth-defence trade-off, rendering tobacco plants more stress-resilient and productive.
Collapse
Affiliation(s)
- Judith Scharte
- Institut für Biologie und Biotechnologie der Pflanzen, Fachbereich Biologie, Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Sebastian Hassa
- Institut für Biologie und Biotechnologie der Pflanzen, Fachbereich Biologie, Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften and Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Abteilung Biochemie der Pflanze, Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften and Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Abteilung Biochemie der Pflanze, Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Giuseppe Forlani
- Laboratorio di Fisiologia e Biochimica Vegetale, Dipartimento di Scienze della Vita e Biotecnologie, Universitá degli Studi di Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Engelbert Weis
- Institut für Biologie und Biotechnologie der Pflanzen, Fachbereich Biologie, Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Antje von Schaewen
- Institut für Biologie und Biotechnologie der Pflanzen, Fachbereich Biologie, Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| |
Collapse
|