1
|
Casazza W, Inkster AM, Del Gobbo GF, Yuan V, Delahaye F, Marsit C, Park YP, Robinson WP, Mostafavi S, Dennis JK. Sex-dependent placental methylation quantitative trait loci provide insight into the prenatal origins of childhood onset traits and conditions. iScience 2024; 27:109047. [PMID: 38357671 PMCID: PMC10865402 DOI: 10.1016/j.isci.2024.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/19/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Molecular quantitative trait loci (QTLs) allow us to understand the biology captured in genome-wide association studies (GWASs). The placenta regulates fetal development and shows sex differences in DNA methylation. We therefore hypothesized that placental methylation QTL (mQTL) explain variation in genetic risk for childhood onset traits, and that effects differ by sex. We analyzed 411 term placentas from two studies and found 49,252 methylation (CpG) sites with mQTL and 2,489 CpG sites with sex-dependent mQTL. All mQTL were enriched in regions that typically affect gene expression in prenatal tissues. All mQTL were also enriched in GWAS results for growth- and immune-related traits, but male- and female-specific mQTL were more enriched than cross-sex mQTL. mQTL colocalized with trait loci at 777 CpG sites, with 216 (28%) specific to males or females. Overall, mQTL specific to male and female placenta capture otherwise overlooked variation in childhood traits.
Collapse
Affiliation(s)
- William Casazza
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital, Vancouver, BC, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Amy M. Inkster
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Giulia F. Del Gobbo
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Victor Yuan
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Carmen Marsit
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yongjin P. Park
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sara Mostafavi
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital, Vancouver, BC, Canada
- Paul Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jessica K. Dennis
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital, Vancouver, BC, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Camerota M, McGowan EC, Aschner J, Stroustrup A, Karagas MR, Conradt E, Crowell SE, Brennan PA, Carter BS, Check J, Dansereau LM, DellaGrotta SA, Everson TM, Helderman JB, Hofheimer JA, Kuiper JR, Loncar CM, Marsit CJ, Neal CR, O'Shea TM, Pastyrnak SL, Sheinkopf SJ, Smith LM, Zhang X, Lester BM. Prenatal and perinatal factors associated with neonatal neurobehavioral profiles in the ECHO Program. Pediatr Res 2023; 94:762-770. [PMID: 36841884 PMCID: PMC10440230 DOI: 10.1038/s41390-023-02540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Single-cohort studies have identified distinct neurobehavioral profiles that are associated with prenatal and neonatal factors based on the NICU Network Neurobehavioral Scale (NNNS). We examined socioeconomic, medical, and substance use variables as predictors of NNNS profiles in a multi-cohort study of preterm and term-born infants with different perinatal exposures. METHODS We studied 1112 infants with a neonatal NNNS exam from the Environmental influences on Child Health Outcomes (ECHO) consortium. We used latent profile analysis to characterize infant neurobehavioral profiles and generalized estimating equations to determine predictors of NNNS profiles. RESULTS Six distinct neonatal neurobehavioral profiles were identified, including two dysregulated profiles: a hypo-aroused profile (16%) characterized by lethargy, hypotonicity, and nonoptimal reflexes; and a hyper-aroused profile (6%) characterized by high arousal, excitability, and stress, with low regulation and poor movement quality. Infants in the hypo-aroused profile were more likely to be male, have younger mothers, and have mothers who were depressed prenatally. Infants in the hyper-aroused profile were more likely to be Hispanic/Latino and have mothers who were depressed or used tobacco prenatally. CONCLUSIONS We identified two dysregulated neurobehavioral profiles with distinct perinatal antecedents. Further understanding of their etiology could inform targeted interventions to promote positive developmental outcomes. IMPACT Prior research on predictors of neonatal neurobehavior have included single-cohort studies, which limits generalizability of findings. In a multi-cohort study of preterm and term-born infants, we found six distinct neonatal neurobehavioral profiles, with two profiles being identified as dysregulated. Hypo- and hyper-aroused neurobehavioral profiles had distinct perinatal antecedents. Understanding perinatal factors associated with dysregulated neurobehavior could help promote positive developmental outcomes.
Collapse
Affiliation(s)
- Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA.
| | - Elisabeth C McGowan
- Department of Pediatrics, Alpert Medical School of Brown University, Providence, RI, USA
| | - Judy Aschner
- Departments of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Annemarie Stroustrup
- Division of Neonatology, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Elisabeth Conradt
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
| | - Sheila E Crowell
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | | | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lynne M Dansereau
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | | | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jennifer B Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina and Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jordan R Kuiper
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cynthia M Loncar
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pediatrics, Alpert Medical School of Brown University, Providence, RI, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Thomas Michael O'Shea
- Department of Pediatrics, University of North Carolina and Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen DeVos Hospital, Grand Rapids, MI, USA
| | - Stephen J Sheinkopf
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO, USA
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barry M Lester
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
- Department of Pediatrics, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Cilleros-Portet A, Lesseur C, Marí S, Cosin-Tomas M, Lozano M, Irizar A, Burt A, García-Santisteban I, Martín DG, Escaramís G, Hernangomez-Laderas A, Soler-Blasco R, Breeze CE, Gonzalez-Garcia BP, Santa-Marina L, Chen J, Llop S, Fernández MF, Vrijhed M, Ibarluzea J, Guxens M, Marsit C, Bustamante M, Bilbao JR, Fernandez-Jimenez N. Potentially causal associations between placental DNA methylation and schizophrenia and other neuropsychiatric disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286905. [PMID: 36945560 PMCID: PMC10029044 DOI: 10.1101/2023.03.07.23286905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Increasing evidence supports the role of placenta in neurodevelopment and potentially, in the later onset of neuropsychiatric disorders. Recently, methylation quantitative trait loci (mQTL) and interaction QTL (iQTL) maps have proven useful to understand SNP-genome wide association study (GWAS) relationships, otherwise missed by conventional expression QTLs. In this context, we propose that part of the genetic predisposition to complex neuropsychiatric disorders acts through placental DNA methylation (DNAm). We constructed the first public placental cis-mQTL database including nearly eight million mQTLs calculated in 368 fetal placenta DNA samples from the INMA project, ran cell type- and gestational age-imQTL models and combined those data with the summary statistics of the largest GWAS on 10 neuropsychiatric disorders using Summary-based Mendelian Randomization (SMR) and colocalization. Finally, we evaluated the influence of the DNAm sites identified on placental gene expression in the RICHS cohort. We found that placental cis-mQTLs are highly enriched in placenta-specific active chromatin regions, and useful to map the etiology of neuropsychiatric disorders at prenatal stages. Specifically, part of the genetic burden for schizophrenia, bipolar disorder and major depressive disorder confers risk through placental DNAm. The potential causality of several of the observed associations is reinforced by secondary association signals identified in conditional analyses, regional pleiotropic methylation signals associated to the same disorder, and cell type-imQTLs, additionally associated to the expression levels of relevant immune genes in placenta. In conclusion, the genetic risk of several neuropsychiatric disorders could operate, at least in part, through DNAm and associated gene expression in placenta.
Collapse
Affiliation(s)
- Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergi Marí
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valéncia, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
- Biodonostia Health Research Institute, 20013, San Sebastian, Spain
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Diego Garrido Martín
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Geòrgia Escaramís
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Casanova 143, Barcelona, Spain
| | - Alba Hernangomez-Laderas
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raquel Soler-Blasco
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valéncia, Valencia, Spain
- Department of Nursing, Universitat de València, Valencia, Spain
| | - Charles E. Breeze
- UCL Cancer Institute, University College London, 72 Huntley St, London WC1E 6DD, United Kingdom
| | - Bárbara P. Gonzalez-Garcia
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Loreto Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biodonostia Health Research Institute, 20013, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Avenida Navarra 4, 20013, San Sebastian, Spain
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valéncia, Valencia, Spain
| | - Mariana F. Fernández
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biomedical Research Center (CIBM) & Department of Radiology and Physical Medicine, School of Medicine University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Martine Vrijhed
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Biodonostia Health Research Institute, 20013, San Sebastian, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, Avenida Navarra 4, 20013, San Sebastian, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
4
|
Lodefalk M, Chelslín F, Patriksson Karlsson J, Hansson SR. Placental Changes and Neuropsychological Development in Children-A Systematic Review. Cells 2023; 12:cells12030435. [PMID: 36766778 PMCID: PMC9913696 DOI: 10.3390/cells12030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Placental dysfunction may increase the offspring's later-life disease risk. The objective of this systematic review was to describe associations between pathological placental changes and neuropsychological outcomes in children after the neonatal period. The inclusion criteria were human studies; original research; direct placental variables; neuropsychological outcomes; and analysis between their associations. The exclusion criterion was the offspring's age-0-28 days or >19 years. The MEDLINE and EMBASE databases were last searched in May 2022. We utilized the ROBINS-I for the risk of bias assessment and performed a narrative synthesis. In total, 3252 studies were identified, out of which 16 were included (i.e., a total of 15,862 participants). Half of the studies were performed on children with neonatal complications, and 75% of the studies reported an association between a placental change and an outcome; however, following the completion of the funnel plots, a risk of publication bias was indicated. The largest study described a small association between placental size and a risk of psychiatric symptoms in boys only. Inconsistency between the studies limited the evidence in this review. In general, no strong evidence was found for an association between pathological placental changes and childhood neuropsychological outcomes after the neonatal period. However, the association between placental size and mental health in boys indicates a placental sexual dimorphism, thereby suggesting an increased vulnerability for male fetuses.
Collapse
Affiliation(s)
- Maria Lodefalk
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
- Correspondence:
| | - Felix Chelslín
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Johanna Patriksson Karlsson
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, 221 00 Lund, Sweden
- Department of Obstetrics and Gynecology, Skåne University Hospital, 214 28 Malmö, Sweden
| |
Collapse
|
5
|
Fernandez-Jimenez N, Fore R, Cilleros-Portet A, Lepeule J, Perron P, Kvist T, Tian FY, Lesseur C, Binder AM, Lozano M, Martorell-Marugán J, Loke YJ, Bakulski KM, Zhu Y, Forhan A, Sammallahti S, Everson TM, Chen J, Michels KB, Belmonte T, Carmona-Sáez P, Halliday J, Daniele Fallin M, LaSalle JM, Tost J, Czamara D, Fernández MF, Gómez-Martín A, Craig JM, Gonzalez-Alzaga B, Schmidt RJ, Dou JF, Muggli E, Lacasaña M, Vrijheid M, Marsit CJ, Karagas MR, Räikkönen K, Bouchard L, Heude B, Santa-Marina L, Bustamante M, Hivert MF, Bilbao JR. A meta-analysis of pre-pregnancy maternal body mass index and placental DNA methylation identifies 27 CpG sites with implications for mother-child health. Commun Biol 2022; 5:1313. [PMID: 36446949 PMCID: PMC9709064 DOI: 10.1038/s42003-022-04267-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Higher maternal pre-pregnancy body mass index (ppBMI) is associated with increased neonatal morbidity, as well as with pregnancy complications and metabolic outcomes in offspring later in life. The placenta is a key organ in fetal development and has been proposed to act as a mediator between the mother and different health outcomes in children. The overall aim of the present work is to investigate the association of ppBMI with epigenome-wide placental DNA methylation (DNAm) in 10 studies from the PACE consortium, amounting to 2631 mother-child pairs. We identify 27 CpG sites at which we observe placental DNAm variations of up to 2.0% per 10 ppBMI-unit. The CpGs that are differentially methylated in placenta do not overlap with CpGs identified in previous studies in cord blood DNAm related to ppBMI. Many of the identified CpGs are located in open sea regions, are often close to obesity-related genes such as GPX1 and LGR4 and altogether, are enriched in cancer and oxidative stress pathways. Our findings suggest that placental DNAm could be one of the mechanisms by which maternal obesity is associated with metabolic health outcomes in newborns and children, although further studies will be needed in order to corroborate these findings.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, Spain
| | - Ruby Fore
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, Spain
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Tuomas Kvist
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Fu-Ying Tian
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra M Binder
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Jordi Martorell-Marugán
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
- Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Yuk J Loke
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA, USA
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Sara Sammallahti
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Thalia Belmonte
- Health Research Institute of Asturias, ISPA and Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Pedro Carmona-Sáez
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
- Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Jane Halliday
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA, USA
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Darina Czamara
- Max-Planck-Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Antonio Gómez-Martín
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
| | - Jeffrey M Craig
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Beatriz Gonzalez-Alzaga
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, CA, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Evelyne Muggli
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Marina Lacasaña
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Margaret R Karagas
- Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, QC, Canada
- Department of Laboratory Medicine, CIUSSS du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Chicoutimi, QC, Canada
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Loreto Santa-Marina
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Basque Country, Spain
- Health Department of Basque Government, Sub-directorate of Public Health of Gipuzkoa, San Sebastian, Basque Country, Spain
| | - Mariona Bustamante
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, Spain.
- CIBER of diabetes and associated metabolic disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
6
|
Parikh AN, Triplett RL, Wu TJ, Arora J, Lukas K, Smyser TA, Miller JP, Luby JL, Rogers CE, Barch DM, Warner BB, Smyser CD. Neonatal Intensive Care Unit Network Neurobehavioral Scale Profiles in Full-Term Infants: Associations with Maternal Adversity, Medical Risk, and Neonatal Outcomes. J Pediatr 2022; 246:71-79.e3. [PMID: 35430247 PMCID: PMC10030163 DOI: 10.1016/j.jpeds.2022.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To examine healthy, full-term neonatal behavior using the Neonatal Intensive Care Unit Network Neurobehavioral Scale (NNNS) in relation to measures of maternal adversity, maternal medical risk, and infant brain volumes. STUDY DESIGN This was a prospective, longitudinal, observational cohort study of pregnant mothers followed from the first trimester and their healthy, full-term infants. Infants underwent an NNNS assessment and high-quality magnetic resonance imaging 2-5 weeks after birth. A latent profile analysis of NNNS scores categorized infants into neurobehavioral profiles. Univariate and multivariate analyses compared differences in maternal factors (social advantage, psychosocial stress, and medical risk) and neonatal characteristics between profiles. RESULTS The latent profile analysis of NNNS summary scales of 296 infants generated 3 profiles: regulated (46.6%), hypotonic (16.6%), and fussy (36.8%). Infants with a hypotonic profile were more likely to be male (χ2 = 8.601; P = .014). Fussy infants had smaller head circumferences (F = 3.871; P = .022) and smaller total brain (F = 3.522; P = .031) and cerebral white matter (F = 3.986; P = .020) volumes compared with infants with a hypotonic profile. There were no differences between profiles in prenatal maternal health, social advantage, or psychosocial stress. CONCLUSIONS Three distinct neurobehavioral profiles were identified in healthy, full-term infants with hypotonic and fussy neurobehavioral features related to neonatal brain volumes and head circumference, but not prenatal exposure to socioeconomic or psychosocial adversity. Follow-up beyond the neonatal period will determine if identified profiles at birth are associated with subsequent clinical or developmental outcomes.
Collapse
Affiliation(s)
- Amisha N Parikh
- School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Regina L Triplett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO.
| | - Tiffany J Wu
- School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Jyoti Arora
- Division of Biostatistics, Washington University in St. Louis, St. Louis, MO
| | - Karen Lukas
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Tara A Smyser
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - J Philip Miller
- Division of Biostatistics, Washington University in St. Louis, St. Louis, MO
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO; Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO; Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Barbara B Warner
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO; Department of Pediatrics, Washington University in St. Louis, St. Louis, MO; Department of Radiology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
7
|
Associations between maternal pre-pregnancy body mass index and neonatal neurobehavior in infants born before 30 weeks gestation. J Perinatol 2022; 42:483-490. [PMID: 35132152 PMCID: PMC9007858 DOI: 10.1038/s41372-021-01308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the relationship between maternal pre-pregnancy body mass index (BMI) and neonatal neurobehavior in very premature infants. STUDY DESIGN Multi-center prospective observational study of 664 very preterm infants with 227 born to obese mothers. The NICU Network Neurobehavioral Scale (NNNS) assessed neurobehavior at NICU discharge. RESULTS Elevated BMI combined with infection increased the odds of having the most poorly regulated NNNS profile by 1.9 times per BMI SD. Infants born to mothers with elevated BMI in combination with: infection had poorer self-regulation, chorioamnionitis had increased asymmetrical reflexes, diabetes had poorer attention, and low SES required more handling. CONCLUSION Maternal pre-pregnancy BMI alone did not affect short-term neonatal neurobehavior in infants born before 30 weeks gestation. Infants born to mothers with elevated pre-pregnancy weight in addition to infections, diabetes, or socioeconomic adversity demonstrated increased risk of having the most poorly regulated NNNS profile and deficits in multiple domains.
Collapse
|
8
|
Tung PW, Burt A, Karagas M, Jackson BP, Punshon T, Lester B, Marsit CJ. Prenatal exposure to metal mixtures and newborn neurobehavior in the Rhode Island Child Health Study. Environ Epidemiol 2022; 6:e194. [PMID: 35169672 PMCID: PMC8835549 DOI: 10.1097/ee9.0000000000000194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Prenatal exposure to metals can affect the developing fetus and negatively impact neurobehavior. The associations between individual metals and neurodevelopment have been examined, but little work has explored the potentially detrimental neurodevelopmental outcomes associated with the combined impact of coexisting metals. The objective of this study is to evaluate prenatal metal exposure mixtures in the placenta to elucidate the link between their combined effects on newborn neurobehavior. METHOD This study included 192 infants with available placental metal and NICU Network Neurobehavioral Scale data at 24 hours-72 hours age. Eight essential and nonessential metals (cadmium, cobalt, copper, iron, manganese, molybdenum, selenium, zinc) detected in more than 80% of samples were tested for associations with atypical neurobehavior indicated by NICU Network Neurobehavioral Scale using logistic regression and in a quantile g-computation analysis to evaluate the joint association between placental metal mixture and neurobehavioral profiles. RESULTS Individually, a doubling of placental cadmium concentrations was associated with an increased likelihood of being in the atypical neurobehavioral profile (OR = 2.39; 95% CI = 1.05 to 5.71). In the mixture analysis, joint effects of a quartile increase in exposure to all metals was associated with 3-fold increased odds of newborns being assigned to the atypical profile (OR = 3.23; 95% CI = 0.92 to 11.36), with cadmium having the largest weight in the mixture effect. CONCLUSIONS Prenatal exposure to relatively low levels of a mixture of placental metals was associated with adverse newborn neurobehavior. Examining prenatal metal exposures as a mixture is important for understanding the harmful effects of concomitant exposures in the vulnerable populations.
Collapse
Affiliation(s)
- Pei Wen Tung
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Barry Lester
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI
- The Brown Center of the Study of Children at Risk, Brown University, Providence, RI
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| |
Collapse
|
9
|
Everson TM, Vives-Usano M, Seyve E, Cardenas A, Lacasaña M, Craig JM, Lesseur C, Baker ER, Fernandez-Jimenez N, Heude B, Perron P, Gónzalez-Alzaga B, Halliday J, Deyssenroth MA, Karagas MR, Íñiguez C, Bouchard L, Carmona-Sáez P, Loke YJ, Hao K, Belmonte T, Charles MA, Martorell-Marugán J, Muggli E, Chen J, Fernández MF, Tost J, Gómez-Martín A, London SJ, Sunyer J, Marsit CJ, Lepeule J, Hivert MF, Bustamante M. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun 2021; 12:5095. [PMID: 34429407 PMCID: PMC8384884 DOI: 10.1038/s41467-021-24558-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal smoking during pregnancy (MSDP) contributes to poor birth outcomes, in part through disrupted placental functions, which may be reflected in the placental epigenome. Here we present a meta-analysis of the associations between MSDP and placental DNA methylation (DNAm) and between DNAm and birth outcomes within the Pregnancy And Childhood Epigenetics (PACE) consortium (N = 1700, 344 with MSDP). We identify 443 CpGs that are associated with MSDP, of which 142 associated with birth outcomes, 40 associated with gene expression, and 13 CpGs are associated with all three. Only two CpGs have consistent associations from a prior meta-analysis of cord blood DNAm, demonstrating substantial tissue-specific responses to MSDP. The placental MSDP-associated CpGs are enriched for environmental response genes, growth-factor signaling, and inflammation, which play important roles in placental function. We demonstrate links between placental DNAm, MSDP and poor birth outcomes, which may better inform the mechanisms through which MSDP impacts placental function and fetal growth.
Collapse
Affiliation(s)
- Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA.
| | - Marta Vives-Usano
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Emie Seyve
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Andres Cardenas
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marina Lacasaña
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jeffrey M Craig
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily R Baker
- Department of Obstetrics & Gynecology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Nora Fernandez-Jimenez
- University of the Basque Country (UPV/EHU), Leioa, Spain
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Barbara Heude
- Université de Paris, CRESS, INSERM, INRAE, Paris, France
| | - Patrice Perron
- Department of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Beatriz Gónzalez-Alzaga
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Carmen Íñiguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Statistics and Computational Research, Universitat de València, València, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Carmona-Sáez
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Statistics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Yuk J Loke
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jordi Martorell-Marugán
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Atrys Health S.A., Barcelona, Spain
| | - Evelyne Muggli
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
- Biomedical Research Centre (CIBM) and School of Medicine, University of Granada, Granada, Spain
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | - Antonio Gómez-Martín
- Genomics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, USA
| | - Jordi Sunyer
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mariona Bustamante
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
| |
Collapse
|
10
|
Wachman EM, Wang A, Isley BC, Boateng J, Beierle JA, Hansbury A, Shrestha H, Bryant C, Zhang H. Placental OPRM1 DNA methylation and associations with neonatal opioid withdrawal syndrome, a pilot study. EXPLORATION OF MEDICINE 2021; 1:124-135. [PMID: 33763662 PMCID: PMC7985727 DOI: 10.37349/emed.2020.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aims: Epigenetic variation of DNA methylation of the mu-opioid receptor gene (OPRM1) has been identified in the blood and saliva of individuals with opioid use disorder (OUD) and infants with neonatal opioid withdrawal syndrome (NOWS). It is unknown whether epigenetic variation in OPRM1 exists within placental tissue in women with OUD and whether it is associated with NOWS outcomes. In this pilot study, the authors aimed to 1) examine the association between placental OPRM1 DNA methylation levels and NOWS outcomes, and 2) compare OPRM1 methylation levels in opioid-exposed versus non-exposed control placentas. Methods: Placental tissue was collected from eligible opioid (n = 64) and control (n = 29) women after delivery. Placental DNA was isolated and methylation levels at six cytosine-phosphate-guanine (CpG) sites within the OPRM1 promoter were quantified. Methylation levels were evaluated for associations with infant NOWS outcome measures: need for pharmacologic treatment, length of hospital stay (LOS), morphine treatment days, and treatment with two medications. Regression models were created and adjusted for clinical co-variates. Methylation levels between opioid and controls placentas were also compared. Results: The primary opioid exposures were methadone and buprenorphine. Forty-nine (76.6%) of the opioid-exposed infants required pharmacologic treatment, 10 (15.6%) two medications, and average LOS for all opioid-exposed infants was 16.5 (standard deviation 9.7) days. There were no significant associations between OPRM1 DNA methylation levels in the six CpG sites and any NOWS outcome measures. No significant differences were found in methylation levels between the opioid and control samples. Conclusions: No significant associations were found between OPRM1 placental DNA methylation levels and NOWS severity in this pilot cohort. In addition, no significant differences were seen in OPRM1 methylation in opioid versus control placentas. Future association studies examining methylation levels on a genome-wide level are warranted.
Collapse
Affiliation(s)
- Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Alice Wang
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Breanna C Isley
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Jeffery Boateng
- Boston University School of Public Health, Boston, MA 02118, USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aaron Hansbury
- Boston University School of Public Health, Boston, MA 02118, USA
| | - Hira Shrestha
- Department of Pediatrics, Boston Medical Center, Boston, MA 02119, USA
| | - Camron Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
11
|
Clarkson-Townsend DA, Kennedy E, Everson TM, Deyssenroth MA, Burt AA, Hao K, Chen J, Pardue MT, Marsit CJ. Seasonally variant gene expression in full-term human placenta. FASEB J 2020; 34:10431-10442. [PMID: 32574425 DOI: 10.1096/fj.202000291r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023]
Abstract
Seasonal exposures influence human health and development. The placenta, as a mediator of the maternal and fetal systems and a regulator of development, is an ideal tissue to understand the biological pathways underlying relationships between season of birth and later life health outcomes. Here, we conducted a differential expression (DE) analysis of season of birth in full-term human placental tissue to evaluate whether the placenta may be influenced by seasonal cues. Of the analyzed transcripts, 583 displayed DE between summer and winter births (False Discovery Rate [FDR] q < .05); among these, BHLHE40, MIR210HG, and HILPDA had increased expression among winter births (Bonferroni P < .05). Enrichment analyses of the seasonally variant genes between summer and winter births indicated overrepresentation of transcription factors HIF1A, VDR, and CLOCK, among others, and of GO term pathways related to ribosomal activity and infection. Additionally, a cosinor analysis found rhythmic expression for approximately 11.9% of all 17 664 analyzed placental transcripts. These results suggest that the placenta responds to seasonal cues and add to the growing body of evidence that the placenta acts as a peripheral clock, which may provide a molecular explanation for the extensive associations between season of birth and health outcomes.
Collapse
Affiliation(s)
- Danielle A Clarkson-Townsend
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amber A Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA, USA.,Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Zhang X, Spear E, Gennings C, Curtin PC, Just AC, Bragg JB, Stroustrup A. The association of prenatal exposure to intensive traffic with early preterm infant neurobehavioral development as reflected by the NICU Network Neurobehavioral Scale (NNNS). ENVIRONMENTAL RESEARCH 2020; 183:109204. [PMID: 32311904 PMCID: PMC7325861 DOI: 10.1016/j.envres.2020.109204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 05/14/2023]
Abstract
INTRODUCTION Traffic-related air pollution has been shown to be neurotoxic to the developing fetus and in term-born infants during early childhood. It is unknown whether there is an increased risk of adverse neurobehavioral outcome in preterm infants exposed to higher levels of air pollution during the fetal period. OBJECTIVE To assess the association between prenatal exposure to traffic-related air pollution on early preterm infant neurobehavior. METHODS Air pollution exposure was estimated by two methods: density of major roads and density of vehicle-miles traveled (VMT), each at multiple buffering areas around residential addresses. We examined the association between prenatal exposure to traffic-related air pollution and performance on the Neonate Intensive Care Unit (NICU) Network Behavioral Scale (NNNS), a measure of neurobehavioral outcome in infancy for 240 preterm neonates enrolled in the NICU-Hospital Exposures and Long-Term Health cohort. Linear regression analysis was conducted for exposure and individual NNNS subscales. Latent profile analysis (LPA) was applied to classify infants into distinct NNNS phenotypes. Multinomial logistic regression analysis was conducted between exposure and LPA groups. Covariates included gestational age, birth weight z-score, post-menstrual age at NNNS assessment, socioeconomic status, race, delivery type, maternal smoking status, and medical morbidities during the NICU stay. RESULTS Among all 13 NNNS subscales, hypotonia was significantly associated with VMT (104 vehicle-mile/km2) in 150 m (β = 0.01, P-value<0.001), 300 m (β = 0.01, P-value = 0.003), and 500 m (β = 0.01, P-value = 0.002) buffering areas, as well as with road density in a 500 m buffering area (β = 0.03, P-value = 0.03). We identified three NNNS phenotypes by LPA. Among them, high density of major roads within 150 m, 300 m, and 500 m buffers of the residential address was significantly associated with the same phenotype (P < 0.05). CONCLUSION Prenatal exposure to intensive air pollution emitted from major roads may impact early neurodevelopment of preterm infants. Motor development may be particularly sensitive to air pollution-related toxicity.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| | - Emily Spear
- Division of Newborn Medicine, Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paul C Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jennifer B Bragg
- Division of Newborn Medicine, Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Annemarie Stroustrup
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Division of Newborn Medicine, Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
13
|
Everson TM, Marable C, Deyssenroth MA, Punshon T, Jackson BP, Lambertini L, Karagas MR, Chen J, Marsit CJ. Placental Expression of Imprinted Genes, Overall and in Sex-Specific Patterns, Associated with Placental Cadmium Concentrations and Birth Size. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57005. [PMID: 31082282 PMCID: PMC6791491 DOI: 10.1289/ehp4264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Prenatal cadmium (Cd) exposure has been recognized to restrict growth, and male and female fetuses may have differential susceptibility to the developmental toxicity of Cd. Imprinted genes, which exhibit monoallelic expression based on parent of origin, are highly expressed in placental tissues. The function of these genes is particularly critical to fetal growth and development, and some are expressed in sex-specific patterns. OBJECTIVES We aimed to examine whether prenatal Cd associates with the expression of imprinted placental genes, overall or in fetal sex-specific patterns, across two independent epidemiologic studies. METHODS We tested for Cd–sex interactions in association with gene expression, then regressed the placental expression levels of 74 putative imprinted genes on placental log-Cd concentrations while adjusting for maternal age, sex, smoking history, and educational attainment. These models were performed within study- and sex-specific strata in the New Hampshire Birth Cohort Study (NHBCS; [Formula: see text]) and the Rhode Island Child Health Study (RICHS; [Formula: see text]). We then used fixed-effects models to estimate the sex-specific and overall associations across strata and then examine heterogeneity in the associations by fetal sex. RESULTS We observed that higher Cd concentrations were associated with higher expression of distal-less homeobox 5 (DLX5) ([Formula: see text]), and lower expression of h19 imprinted maternally expressed transcript (H19) ([Formula: see text]) and necdin, MAGE family member (NDN) ([Formula: see text]) across study and sex-specific strata, while three other genes [carboxypeptidase A4 (CPA4), growth factor receptor bound protein 10 (GRB10), and integrin-linked kinase (ILK)] were significantly associated with Cd concentrations, but only among female placenta ([Formula: see text]). Additionally, the expression of DLX5, H19, and NDN, the most statistically significant Cd-associated genes, were also associated with standardized birth weight z-scores. DISCUSSION The differential regulation of a set of imprinted genes, particularly DLX5, H19, and NDN, in association with prenatal Cd exposure may be involved in overall developmental toxicity, and some imprinted genes may respond to Cd exposure in a manner that is specific to infant gender. https://doi.org/10.1289/EHP4264.
Collapse
Affiliation(s)
- Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Carmen Marable
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Clarkson-Townsend DA, Everson TM, Deyssenroth MA, Burt AA, Hermetz KE, Hao K, Chen J, Marsit CJ. Maternal circadian disruption is associated with variation in placental DNA methylation. PLoS One 2019; 14:e0215745. [PMID: 31026301 PMCID: PMC6485638 DOI: 10.1371/journal.pone.0215745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption is a common environmental and occupational exposure with public health consequences, but not much is known about whether circadian disruption affects in utero development. We investigated whether maternal circadian disruption, using night shift work as a proxy, is associated with variations in DNA methylation patterns of placental tissue in an epigenome-wide association study (EWAS) of night shift work. Here, we compared cytosine-guanosine dinucleotide (CpG) specific methylation genome-wide of placental tissue (measured with the Illumina 450K array) from participants (n = 237) in the Rhode Island Child Health Study (RICHS) who did (n = 53) and did not (n = 184) report working the night shift, using robust linear modeling and adjusting for maternal age, pre-pregnancy smoking, infant sex, maternal adversity, and putative cell mixture. Statistical analyses were adjusted for multiple comparisons and results presented with Bonferroni or Benjamini and Hochberg (BH) adjustment for false discovery rate. Night shift work was associated with differential methylation in placental tissue, including CpG sites in the genes NAV1, SMPD1, TAPBP, CLEC16A, DIP2C, FAM172A, and PLEKHG6 (Bonferroni-adjusted p<0.05). CpG sites within NAV1, MXRA8, GABRG1, PRDM16, WNT5A, and FOXG1 exhibited the most hypomethylation, while CpG sites within TDO2, ADAMTSL3, DLX2, and SERPINA1 exhibited the most hypermethylation (BH q<0.10). Functional analysis indicated GO-terms associated with cell-cell adhesion and enriched GWAS results for psoriasis. Night shift work was associated with differential methylation of the placenta, which may have implications for fetal health and development. This is the first study to examine the epigenetic impacts of night shift exposure, as a proxy for circadian disruption, on placental methylation in humans, and, while results should be interpreted with caution, suggests circadian disruption may have epigenetic impacts.
Collapse
Affiliation(s)
- Danielle A. Clarkson-Townsend
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Amber A. Burt
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Karen E. Hermetz
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Tuhkanen H, Pajulo M, Jussila H, Ekholm E. Infants born to women with substance use: Exploring early neurobehavior with the Dubowitz neurological examination. Early Hum Dev 2019; 130:51-56. [PMID: 30677638 DOI: 10.1016/j.earlhumdev.2018.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND There is a special concern regarding substance using pregnant women due to the possible adverse effects on the infant. While the immediate effects of prenatal substance exposure are well known, the long-term data on the infants' neurodevelopment is inconclusive. AIMS The purpose of this study was to assess early neurobehavior of infants of mothers with substance use using the Dubowitz examination and to follow their neuromotor development until one year of age. STUDY DESIGN AND SUBJECTS Ninety-five pregnant women with a recent history of substance use were recruited and followed up at the maternity outpatient clinic. Follow-up data was collected from hospital records and maternal interviews. The Dubowitz neurological examination was performed to the 54 clinically healthy term infants. The results were converted into optimality scores and compared to normative values from clinically healthy term infants derived from a separate normative population. The infant's neuromotor development was followed up to one year of age. RESULTS Only 7% of the infants born to women with recent or current substance use reached optimal scores (<30.5) in the Dubowitz neurological examination compared to 95% reported in normative population. Sixty-three percent of the newborns needed follow-up based on physiotherapeutic assessment of neurobehavior. By 12 months of age, the neuromotor status of 88% (n = 30) of these infants was found normal. CONCLUSIONS A high percentage of infants of mothers who were referred prenatally to hospital due to substance use showed suboptimal neurological findings during their first days of life.
Collapse
Affiliation(s)
- H Tuhkanen
- Department of Obstetrics and Gynecology, University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| | - M Pajulo
- Department of Child Psychiatry and Finn Brain, Institute of Clinical Medicine, University of Turku, Kiinamyllynkatu 4-8, 20521 Turku, Finland.
| | - H Jussila
- Department of Child Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland.
| | - E Ekholm
- Department of Obstetrics and Gynecology, University of Turku, Kiinamyllynkatu 4-8, PL 52, 20521 Turku, Finland.
| |
Collapse
|
16
|
Lewicka I, Kocyłowski R, Grzesiak M, Gaj Z, Sajnóg A, Barałkiewicz D, von Kaisenberg C, Suliburska J. Relationship between pre-pregnancy body mass index and mineral concentrations in serum and amniotic fluid in pregnant women during labor. J Trace Elem Med Biol 2019; 52:136-142. [PMID: 30732874 DOI: 10.1016/j.jtemb.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/10/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
The aim of the study was to determine the correlations between body mass index (BMI) values before pregnancy and the concentrations of selected elements (Mg, Co, Cu, Zn, Sr, Cd, Ba, Pb, U, Ca, Cr, Al, Mn, V, Fe) in blood serum and amniotic fluid (AF) in pregnant women. Elemental analysis of serum and amniotic fluid in 225 Polish women (Caucasian/white) showed a relationship between the concentration of minerals in the above-mentioned samples and the pre-pregnancy BMI. Analysis of blood serum was performed by using ICP-MS and it demonstrated that iron concentration was significantly lower in overweight and obese women. Being underweight in pregnant women was associated with a significantly lower concentration of magnesium and cobalt in the blood serum. Both underweight and overweight women were associated with significantly lower concentrations of calcium and strontium in the blood serum. The concentration of cobalt was significantly higher in underweight women. The concentration of lead in the blood serum of overweight and obese women was significantly higher than in other groups. Analysis of the AF showed that the concentration of copper was significantly lower in overweight and obese women, and the concentration of manganese and vanadium significantly higher than in other groups of women. A deficiency in essential minerals and an excess of heavy metals in women may be associated with abnormal body weight and this is important in the etiopathogenesis of pregnancy and fetal development disorders.
Collapse
Affiliation(s)
- Iwona Lewicka
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - Rafał Kocyłowski
- Department of Obstetric, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska281/289, 93-338 Łódz, Poland; PreMediCare New Med Medical Centre, ul. Drużbickiego 13, 61-693 Poznań, Poland.
| | - Mariusz Grzesiak
- Department of Obstetric, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska281/289, 93-338 Łódz, Poland.
| | - Zuzanna Gaj
- Department of Obstetric, Perinatology and Gynecology, Polish Mother's Memorial Hospital Research Institute, ul. Rzgowska281/289, 93-338 Łódz, Poland; Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother's Memorial Hospital-Research Institute, ul. Rzgowska281/289, Łódz, 93-338, Poland.
| | - Adam Sajnóg
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska89b, 61-614 Poznan, Poland.
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska89b, 61-614 Poznan, Poland.
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| |
Collapse
|
17
|
Dorner RA, Soares BP, Robinson S, Allen MC, Perin J, Burton VJ. The Relationship Between Clinical Imaging and Neurobehavioral Assessment in Posthemorrhagic Ventricular Dilation of Prematurity. Front Physiol 2019; 10:64. [PMID: 30804803 PMCID: PMC6378306 DOI: 10.3389/fphys.2019.00064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: Neonatal intraventricular hemorrhage (IVH) and subsequent posthemorrhagic ventricular dilation and hydrocephalus of prematurity are associated with brain injury and neurodevelopmental impairment in the preterm population. Neuroimaging assesses cerebral injury and guides neurosurgical intervention; however, the relationship of head ultrasound (HUS) and magnetic resonance imaging (MRI) parameters to neonatal exams in this group has not been well described. The NICU Network Neurobehavioral Scale (NNNS) is a reproducible, highly reliable battery with motor and cognitive domain scores. Objective: To evaluate the relationship between neonatal neurobehavioral findings on the NNNS and measures of ventricular dilation and associated brain injury on HUS and MRI. Materials and Methods: Neonates with IVH and ventricular dilatation with and without posthemorrhagic hydrocephalus were enrolled. NNNS exams were performed at approximately term age equivalent. HUS indices were measured on the last HUS before initial neurosurgical procedure or that with worst ventriculomegaly if no intervention. The posterior fossa was assessed with MRI at term. Descriptive statistics including medians, interquartile ranges, means, and percentages were performed. Correlations were estimated using Pearson's method. Results: 28 patients had NNNS and HUS, and 18 patients also had an MRI. Ventricle size measures for the cohort were significantly above normal. Motor and cognitive subscores on the NNNS exam varied from established baseline scores for postmenstrual age. Children who required neurosurgical intervention had higher ventricle/brain ratios and worse NNNS habituation scores. Ventricle sizes were modestly correlated with motor abnormalities (0.24-0.59); larger anterior horn width correlated with nonoptimal reflexes, hypertonicity and hypotonicity. Ventricle sizes were modestly correlated with cognitive scores (-0.44 to 0.27); larger ventricular index correlated with worse attention. Periventricular hemorrhagic infarction correlated with worse habituation. Conclusion: For this cohort of preterm infants with IVH, surgical intervention for posthemorrhagic hydrocephalus correlated with both larger degrees of ventriculomegaly and worse NNNS exams. Findings on both HUS and MRI correlated with motor and cognitive abnormalities on neonatal neurobehavioral exam, suggesting that larger neonatal ventricle sizes and white matter injury have detectable correlates on exam. The NNNS exam provides important additional information when assessing posthemorrhagic ventricular dilation and hydrocephalus of prematurity.
Collapse
Affiliation(s)
- Rebecca A Dorner
- Neonatology, Johns Hopkins Hospital, Baltimore, MD, United States.,Neurosciences Intensive Care Nursery, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Bruno P Soares
- Neurosciences Intensive Care Nursery, Johns Hopkins Hospital, Baltimore, MD, United States.,Pediatric Radiology and Pediatric Neuroradiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Shenandoah Robinson
- Neurosciences Intensive Care Nursery, Johns Hopkins Hospital, Baltimore, MD, United States.,Pediatric Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Marilee C Allen
- Neonatology, Johns Hopkins Hospital, Baltimore, MD, United States.,Neurosciences Intensive Care Nursery, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Jamie Perin
- Biostatistics, Epidemiology, and Data Management Core, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Vera Joanna Burton
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Lester BM, Conradt E, LaGasse LL, Tronick EZ, Padbury JF, Marsit CJ. Epigenetic Programming by Maternal Behavior in the Human Infant. Pediatrics 2018; 142:peds.2017-1890. [PMID: 30257918 PMCID: PMC6192679 DOI: 10.1542/peds.2017-1890] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED : media-1vid110.1542/5804912859001PEDS-VA_2017-1890Video Abstract OBJECTIVES: We sought to determine if variations in maternal care alter DNA methylation in term, healthy, 5-month-old infants. This work was based on landmark studies in animal models demonstrating that nurturing care by dams would alter their newborns' stress responses through epigenetic mechanisms. We used breastfeeding as a proxy for animal maternal behavior. We hypothesized alterations in DNA methylation of the glucocorticoid receptor gene and less hypothalamic stress response in infants of mothers who breastfed their infants versus infants of mothers who did not breastfeed. METHODS A cohort study of term, healthy infants and their mothers who did (n = 21) or did not (n = 21) breastfeed for the first 5 months was used in this analysis. Cortisol stress reactivity was measured in infant saliva by using a mother-infant interaction procedure and DNA methylation of an important regulatory region of the glucocorticoid receptor gene. Changes in DNA methylation of this gene in humans were compared to homologous regions of the rat gene. DNA samples were prepared from cheek swabs and subjected to quantitative analysis of the extent of methylation by using sensitive sequencing techniques. RESULTS Breastfeeding was associated with decreased DNA methylation of the glucocorticoid receptor promoter and decreased cortisol reactivity in 5-month-old infants. Decreased DNA methylation occurred in the promoter region involved in regulation of the hypothalamic-pituitary-adrenal and immune system responses. CONCLUSIONS Maternal care in humans may impact the hypothalamic-pituitary-adrenal stress response through behavioral programming and manifest as offspring epigenetic change. These results explain, in part, some of the positive effects observed in children who are breastfed.
Collapse
Affiliation(s)
- Barry M. Lester
- Center for the Study of Children at Risk, Providence,
Rhode Island;,Warren Alpert Medical School, Brown University,
Providence, Rhode Island;,Women and Infants Hospital of Rhode Island,
Providence, Rhode Island
| | | | - Linda L. LaGasse
- Center for the Study of Children at Risk, Providence,
Rhode Island;,Warren Alpert Medical School, Brown University,
Providence, Rhode Island;,Women and Infants Hospital of Rhode Island,
Providence, Rhode Island
| | | | - James F. Padbury
- Warren Alpert Medical School, Brown University,
Providence, Rhode Island;,Women and Infants Hospital of Rhode Island,
Providence, Rhode Island
| | | |
Collapse
|
19
|
Stroud LR, McCallum M, Salisbury AL. Impact of maternal prenatal smoking on fetal to infant neurobehavioral development. Dev Psychopathol 2018; 30:1087-1105. [PMID: 30068428 PMCID: PMC6541397 DOI: 10.1017/s0954579418000676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite recent emphasis on the profound importance of the fetal environment in "programming" postnatal development, measurement of offspring development typically begins after birth. Using a novel coding strategy combining direct fetal observation via ultrasound and actocardiography, we investigated the impact of maternal smoking during pregnancy (MSDP) on fetal neurobehavior; we also investigated links between fetal and infant neurobehavior. Participants were 90 pregnant mothers and their infants (52 MSDP-exposed; 51% minorities; ages 18-40). Fetal neurobehavior at baseline and in response to vibro-acoustic stimulus was assessed via ultrasound and actocardiography at M = 35 weeks gestation and coded via the Fetal Neurobehavioral Assessment System (FENS). After delivery, the NICU Network Neurobehavioral Scale was administered up to seven times over the first postnatal month. MSDP was associated with increased fetal activity and fetal limb movements. Fetal activity, complex body movements, and cardiac-somatic coupling were associated with infants' ability to attend to stimuli and to self-regulate over the first postnatal month. Furthermore, differential associations emerged by MSDP group between fetal activity, complex body movements, quality of movement, and coupling, and infant attention and self-regulation. The present study adds to a growing literature establishing the validity of fetal neurobehavioral measures in elucidating fetal programming pathways.
Collapse
|
20
|
Olvera Alvarez HA, Appleton AA, Fuller CH, Belcourt A, Kubzansky LD. An Integrated Socio-Environmental Model of Health and Well-Being: a Conceptual Framework Exploring the Joint Contribution of Environmental and Social Exposures to Health and Disease Over the Life Span. Curr Environ Health Rep 2018; 5:233-243. [PMID: 29574677 DOI: 10.1007/s40572-018-0191-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF THE REVIEW Environmental and social determinants of health often co-occur, particularly among socially disadvantaged populations, yet because they are usually studied separately, their joint effects on health are likely underestimated. Building on converging bodies of literature, we delineate a conceptual framework to address these issues. RECENT FINDINGS Previous models provided a foundation for study in this area, and generated research pointing to additional important issues. These include a stronger focus on biobehavioral pathways, both positive and adverse health outcomes, and intergenerational effects. To accommodate the expanded set of issues, we put forward the Integrated Socio-Environmental Model of Health and Well-Being (ISEM), which examines how social and environmental factors combine and potentially interact, via multi-factorial pathways, to affect health and well-being over the life span. We then provide applied examples including the study of how food environments affect dietary behavior. The ISEM provides a comprehensive, theoretically informed framework to guide future research on the joint contribution of social and environmental factors to health and well-being across the life span.
Collapse
Affiliation(s)
- Hector A Olvera Alvarez
- School of Nursing, University of Texas El Paso, 500 W. University Ave, El Paso, TX, 79968, USA.
| | - Allison A Appleton
- School of Public Health, Department of Epidemiology and Biostatistics, University at Albany, 1 University Place, Rensselaer, NY, 12144, USA
| | - Christina H Fuller
- School of Public Health, Division of Environmental Health, Georgia State University, P.O. Box 3995, Atlanta, GA, 30302, USA
| | - Annie Belcourt
- School of Community and Public Health Sciences/Pharmacy Practice, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| |
Collapse
|
21
|
Litzky JF, Deyssenroth MA, Everson TM, Lester BM, Lambertini L, Chen J, Marsit CJ. Prenatal exposure to maternal depression and anxiety on imprinted gene expression in placenta and infant neurodevelopment and growth. Pediatr Res 2018; 83. [PMID: 29538358 PMCID: PMC5959758 DOI: 10.1038/pr.2018.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BackgroundDepression and/or anxiety during pregnancy have been associated with impaired fetal growth and neurodevelopment. Because placental imprinted genes play a central role in fetal development and respond to environmental stressors, we hypothesized that imprinted gene expression would be affected by prenatal depression and anxiety.MethodsPlacental gene expression was compared between mothers with prenatal depression and/or anxiety/obsessive compulsive disorder/panic and control mothers without psychiatric history (n=458) in the Rhode Island Child Health Study.ResultsTwenty-nine genes were identified as being significantly differentially expressed between placentae from infants of mothers with both depression and anxiety (n=54), with depression (n=89), or who took perinatal psychiatric medications (n=29) and control mother/infant pairs, with most genes having decreased expression in the stressed group. Among placentae from infants of mothers with depression, we found no differences in expression by medication use, indicating that our results are related to the stressor rather than the treatments. We did not find any relationship between the stress-associated gene expression and neonatal neurodevelopment, as measured using the Neonatal Intensive Care Unit Network Neurobehavioral Scale.ConclusionsThis variation in expression may be part of an adaptive mechanism by which the placenta buffers the infant from the effects of maternal stress.
Collapse
Affiliation(s)
- Julia F Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health; Icahn School of Medicine at Mount Sinai; New York, NY
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Barry M. Lester
- Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Providence, RI
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health; Icahn School of Medicine at Mount Sinai; New York, NY,Department of Obstetrics, Gynecology and Reproductive Science; Icahn School of Medicine at Mount Sinai; New York; NY
| | - Jia Chen
- Department of Environmental Medicine and Public Health; Icahn School of Medicine at Mount Sinai; New York, NY,Department of Pediatrics; Icahn School of Medicine at Mount Sinai; New York, NY
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA,Corresponding Author: Carmen Marsit, 1518 Clifton Road, CNR 202, Atlanta, GA 30322, Phone: (404) 712-8912, Fax: (404) 727-8744,
| |
Collapse
|
22
|
Serati M, Barkin JL, Orsenigo G, Altamura AC, Buoli M. Research Review: The role of obstetric and neonatal complications in childhood attention deficit and hyperactivity disorder - a systematic review. J Child Psychol Psychiatry 2017; 58:1290-1300. [PMID: 28714195 DOI: 10.1111/jcpp.12779] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Attention deficit and hyperactivity disorder (ADHD) is a developmental disorder characterized by an inability to sustain attention, activity levels and impulse control, and, according to the latest studies, the prevalence is about 8% and in some countries less than 1%. Currently, it is well-known that complications during the perinatal period have significant implications on child's physical and mental health. Purpose of the present paper is to review the literature about the association between perinatal complications and future risk of an ADHD diagnosis. METHODS A research in the main database sources has been conducted to obtain a systematic review on the perinatal risk factors of ADHD. RESULTS Among perinatal complications, available data indicate low birth weight (LBW) (Cohen's d effect size range: 0.31-1.64-small effect size) and preterm birth (PB) (range d: 0.41-0.68) as the most important factors associated with a future diagnosis of ADHD. CONCLUSIONS PB and LBW children should be carefully monitored for an early diagnosis of ADHD limiting the impact of the disease in life span. A systematic review focusing on these risk factors have not been published until now, in the next future preventive strategies should be developed in order to minimize ADHD onset.
Collapse
Affiliation(s)
- Marta Serati
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jennifer L Barkin
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA, USA
| | - Giulia Orsenigo
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Carlo Altamura
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Buoli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, Bohlin J, Xu Z, Huang RC, Reese SE, Xu CJ, Baïz N, Hoyo C, Agha G, Roy R, Holloway JW, Ghantous A, Merid SK, Bakulski KM, Küpers LK, Zhang H, Richmond RC, Page CM, Duijts L, Lie RT, Melton PE, Vonk JM, Nohr EA, Williams-DeVane C, Huen K, Rifas-Shiman SL, Ruiz-Arenas C, Gonseth S, Rezwan FI, Herceg Z, Ekström S, Croen L, Falahi F, Perron P, Karagas MR, Quraishi BM, Suderman M, Magnus MC, Jaddoe VWV, Taylor JA, Anderson D, Zhao S, Smit HA, Josey MJ, Bradman A, Baccarelli AA, Bustamante M, Håberg SE, Pershagen G, Hertz-Picciotto I, Newschaffer C, Corpeleijn E, Bouchard L, Lawlor DA, Maguire RL, Barcellos LF, Davey Smith G, Eskenazi B, Karmaus W, Marsit CJ, Hivert MF, Snieder H, Fallin MD, Melén E, Munthe-Kaas MC, Arshad H, Wiemels JL, Annesi-Maesano I, Vrijheid M, Oken E, Holland N, Murphy SK, Sørensen TIA, Koppelman GH, Newnham JP, Wilcox AJ, Nystad W, London SJ, Felix JF, Relton CL. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet 2017; 26:4067-4085. [PMID: 29016858 PMCID: PMC5656174 DOI: 10.1093/hmg/ddx290] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Pre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we meta-analysed the association between pre-pregnancy maternal BMI and methylation at over 450,000 sites in newborn blood DNA, across 19 cohorts (9,340 mother-newborn pairs). We attempted to infer causality by comparing the effects of maternal versus paternal BMI and incorporating genetic variation. In four additional cohorts (1,817 mother-child pairs), we meta-analysed the association between maternal BMI at the start of pregnancy and blood methylation in adolescents. In newborns, maternal BMI was associated with small (<0.2% per BMI unit (1 kg/m2), P < 1.06 × 10-7) methylation variation at 9,044 sites throughout the genome. Adjustment for estimated cell proportions greatly attenuated the number of significant CpGs to 104, including 86 sites common to the unadjusted model. At 72/86 sites, the direction of the association was the same in newborns and adolescents, suggesting persistence of signals. However, we found evidence for acausal intrauterine effect of maternal BMI on newborn methylation at just 8/86 sites. In conclusion, this well-powered analysis identified robust associations between maternal adiposity and variations in newborn blood DNA methylation, but these small effects may be better explained by genetic or lifestyle factors than a causal intrauterine mechanism. This highlights the need for large-scale collaborative approaches and the application of causal inference techniques in epigenetic epidemiology.
Collapse
Affiliation(s)
- Gemma C Sharp
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Lucas A Salas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Claire Monnereau
- The Generation R Study Group
- Department of Epidemiology
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, QC, Canada
| | - Paul Yousefi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jon Bohlin
- Department of Infection Epidemiology and Modeling, Norwegian Institute of Public Health, Oslo, Norway
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Sarah E Reese
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Cheng-Jian Xu
- Department of Pulmonology, GRIAC Research Institute
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nour Baïz
- Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Sorbonne Université, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Saint-Antoine Medical School, Paris, France
| | - Cathrine Hoyo
- Department of Biological Sciences
- Center for Human Health and the Environment, North Carolina State University, NC, USA
| | - Golareh Agha
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ritu Roy
- University of California San Francisco, CA, USA
- HDF Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Computational Biology Core
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Simon K Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, MI, USA
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| | - Christian M Page
- Department of Non-Communicable Disease, Norwegian Institute of Public Health, Oslo, Norway
| | - Liesbeth Duijts
- The Generation R Study Group
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Norway
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway
| | - Phillip E Melton
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University Health Sciences, Curtin University and Faculty of Medicine Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
- Faculty of Medicine Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, GRIAC Research Institute Groningen, The Netherlands
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Karen Huen
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Sheryl L Rifas-Shiman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
| | - Carlos Ruiz-Arenas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Semira Gonseth
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA, USA
- School of Public Health, University of California Berkeley, CA, USA
| | - Faisal I Rezwan
- Human Development & Health, Faculty of Medicine, University of Southampton, UK
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Sandra Ekström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Croen
- Division of Research, Kaiser Permanente Northern California, CA, UDA
| | - Fahimeh Falahi
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, QC, Canada
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Bilal M Quraishi
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
- Department of Non-Communicable Disease, Norwegian Institute of Public Health, Oslo, Norway
| | - Vincent W V Jaddoe
- The Generation R Study Group
- Department of Epidemiology
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Shanshan Zhao
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Henriette A Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Michele J Josey
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, USA
- Epidemiology and Biostatistics Department, University of South Carolina (Columbia), SC, USA
| | - Asa Bradman
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Siri E Håberg
- Domain of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Irva Hertz-Picciotto
- Department of Public Health, School of Medicine, University of California, Davis, CA, USA
| | - Craig Newschaffer
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, QC, Canada
- ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| | - Rachel L Maguire
- Department of Biological Sciences
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lisa F Barcellos
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - George Davey Smith
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Wilfried Karmaus
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Marie-France Hivert
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
- Department of Medicine, Université de Sherbrooke, QC, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
- Sachs’ Children’s Hospital, South General Hospital, Stockholm, Sweden
| | - Monica C Munthe-Kaas
- Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Norway
- Norwegian Institute of Public Health, Oslo Norway
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA, USA
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Sorbonne Université, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Saint-Antoine Medical School, Paris, France
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Emily Oken
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California Berkeley
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Epidemiology, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Gerard H Koppelman
- Department of Paediatric Pulmonology and Paediatric Allergy, University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, GRIAC Research Institute, Groningen, the Netherlands
| | - John P Newnham
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA 6009, Australia
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Wenche Nystad
- Department of Non-Communicable Disease, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Janine F Felix
- The Generation R Study Group
- Department of Epidemiology
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit
- School of Social and Community Medicine
| |
Collapse
|
24
|
Appleton AA, Jackson BP, Karagas M, Marsit CJ. Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation. Epigenetics 2017; 12:607-615. [PMID: 28548590 DOI: 10.1080/15592294.2017.1320637] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Epigenetic alterations related to prenatal neurotoxic metals exposure may be key in understanding the origins of cognitive and neurobehavioral problems in children. Placental glucocorticoid receptor (NR3C1) methylation has been linked to neurobehavioral risk in early life, but has not been examined in response to neurotoxic metals exposure despite parallel lines of research showing metals exposure and NR3C1 methylation each contribute to a similar set of neurobehavioral phenotypes. Thus, we conducted a study of prenatal neurotoxic metals exposure and placental NR3C1 methylation in a cohort of healthy term singleton pregnancies from Rhode Island, USA (n = 222). Concentrations of arsenic (As; median 0.02 ug/g), cadmium (Cd; median 0.03 μg/g), lead (Pb; median 0.40 μg/g), manganese (Mn; median 0.56 μg/g), mercury (Hg; median 0.02 μg/g), and zinc (Zn; 145.18 μg/g) measured in infant toenails were categorized as tertiles. Multivariable linear regression models tested the independent associations for each metal with NR3C1 methylation, as well as the cumulative risk of exposure to multiple metals simultaneously. Compared to the lowest exposure tertiles, higher levels of As, Cd, Pb, Mn, and Hg were each associated with increased placental NR3C1 methylation (all P<0.02). Coefficients for these associations corresponded with a 0.71-1.41 percent increase in NR3C1 methylation per tertile increase in metals concentrations. For Zn, the lowest exposure tertile compared with the highest tertile was associated with 1.26 percent increase in NR3C1 methylation (P=0.01). Higher cumulative metal risk scores were marginally associated with greater NR3C1 methylation. Taken together, these results indicate that prenatal exposure to neurotoxic metals may affect the offspring's NR3C1 activity, which may help explain cognitive and neurodevelopmental risk later in life.
Collapse
Affiliation(s)
- Allison A Appleton
- a Department of Epidemiology and Biostatistics , University at Albany School of Public Health , Rensselaer , NY , USA
| | - Brian P Jackson
- b Department of Earth Sciences, Dartmouth College , Hanover , NH , USA
| | - Margaret Karagas
- c Department of Epidemiology , Geisel School of Medicine at Dartmouth , One Medical Center Drive, Lebanon , NH , USA
| | - Carmen J Marsit
- d Department of Environmental Health, Rollins School of Public Health , Emory University , Atlanta , GA , USA
| |
Collapse
|
25
|
Gauthier TW, Brown LAS. In utero alcohol effects on foetal, neonatal and childhood lung disease. Paediatr Respir Rev 2017; 21:34-37. [PMID: 27613232 PMCID: PMC5303127 DOI: 10.1016/j.prrv.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Maternal alcohol use during pregnancy exposes both premature and term newborns to the toxicity of alcohol and its metabolites. Foetal alcohol exposure adversely effects the lung. In contrast to the adult "alcoholic lung" phenotype, an inability to identify the newborn exposed to alcohol in utero has limited our understanding of its effect on adverse pulmonary outcomes. This paper will review advances in biomarker development of in utero alcohol exposure. We will highlight the current understanding of in utero alcohol's toxicity to the developing lung and immune defense. Finally, we will present recent clinical evidence describing foetal alcohol's association with adverse pulmonary outcomes including bronchopulmonary dysplasia, viral infections such as respiratory syncytial virus and allergic asthma/atopy. With research to define alcohol's effect on the lung and translational studies accurately identifying the exposed offspring, the full extent of alcohol's effects on clinical respiratory outcomes of the newborn or child can be determined.
Collapse
|
26
|
Paquette AG, Houseman EA, Green BB, Lesseur C, Armstrong DA, Lester B, Marsit CJ. Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics 2016; 11:603-13. [PMID: 27366929 DOI: 10.1080/15592294.2016.1195534] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The placenta regulates the in utero environment and functionally impacts fetal development. Candidate gene studies identified variation in placental DNA methylation is associated with newborn neurologic and behavioral outcomes including movement quality, lethargic behavior, attention, and arousal. We sought to identify novel regions of variable DNA methylation associated with newborn attention, lethargy, quality of movement, and arousal by performing an epigenome-wide association study in 335 infants from a US birth cohort. Methylation status was quantified using the Illumina HumanMethylation450 BeadChip array and associations to newborn outcomes assessed by the NICU Network Neurobehavioral Scales (NNNS) were identified while incorporating established bioinformatics algorithms to control for confounding by cell type composition. Methylation of CpGs within FHIT (cg15970800) and ANKRD11 (cg16710656) demonstrated genome-wide significance (P < 1.8 × 10(-7)) in specific associations with infant attention. CpGs whose differential methylation was associated with all 4 neurobehavioral outcomes were common to 50 genes involved in biological processes relating to cellular adhesion and nervous system development. Comprehensive methylation profiling identified relationships between methylation of FHIT and ANKRD11, which have been previously linked to neurodevelopment and behavioral outcomes in genetic association studies. Subtle changes in DNA methylation of these genes within the placenta may impact normal variation of a newborn's ability to alter and track visual and auditory stimuli. Gene ontology analysis suggested that those genes with variable methylation related to these outcomes are over-represented in biological pathways involved in brain development and placental physiology, supportive of our hypothesis for a key role of the placenta in neurobehavioral outcomes.
Collapse
Affiliation(s)
- Alison G Paquette
- a Department of Pharmacology and Toxicology , Geisel School of Medicine at Dartmouth College , Hanover , NH , USA
| | - E Andres Houseman
- b School of Biological and Population Health Sciences , College of Public Health and Human Sciences, Oregon State University , Corvallis , OR , USA
| | - Benjamin B Green
- a Department of Pharmacology and Toxicology , Geisel School of Medicine at Dartmouth College , Hanover , NH , USA
| | - Corina Lesseur
- a Department of Pharmacology and Toxicology , Geisel School of Medicine at Dartmouth College , Hanover , NH , USA
| | - David A Armstrong
- a Department of Pharmacology and Toxicology , Geisel School of Medicine at Dartmouth College , Hanover , NH , USA
| | - Barry Lester
- c Department of Pediatrics , Center for the Study of Children at Risk, Women and Infants Hospital, Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Carmen J Marsit
- a Department of Pharmacology and Toxicology , Geisel School of Medicine at Dartmouth College , Hanover , NH , USA.,d Department of Epidemiology , Geisel School of Medicine at Dartmouth College , Lebanon , NH , USA
| |
Collapse
|