1
|
Mohi-Ud-Din M, Hossain MA, Rohman MM, Uddin MN, Haque MS, Tahery MH, Hasanuzzaman M. Multi-Trait Index-Based Selection of Drought Tolerant Wheat: Physiological and Biochemical Profiling. PLANTS (BASEL, SWITZERLAND) 2024; 14:35. [PMID: 39795295 PMCID: PMC11723105 DOI: 10.3390/plants14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Drought is a detrimental abiotic stress that severely limits wheat growth and productivity worldwide by altering several physiological processes. Thus, understanding the mechanisms of drought tolerance is essential for the selection of drought-resilient features and drought-tolerant cultivars for wheat breeding programs. This exploratory study evaluated 14 wheat genotypes (13 relatively tolerant, one susceptible) for drought endurance based on flag leaf physiological and biochemical traits during the critical grain-filling stage in the field conditions. Measurements included six physiological, seven gas exchange, six photosystem II, six stomatal, three reactive species, seven metabolomic solutes, and two biomass traits. All parameters were significantly influenced by drought, with varying genotypic responses. Hierarchical cluster analysis (HCA) categorized genotypes into three drought tolerance groups based on trait performance. Seven genotypes in Cluster 2 (BARI Gom 26, BARI Gom 33, BD-631, BD-600, BD-9910, BD-9889, BD-637) exhibited superior drought tolerance, characterized by minimal changes in physiological traits and biomass accumulation, reduced oxidative stress markers, and increased accumulation of osmoprotectants. The innovative multi-trait genotype-ideotype distance index (MGIDI) further ranked wheat genotypes in regard to drought tolerance, identifying BARI Gom 33, BARI Gom 26, BD-9889, and BD-600 as top performers. Notably, all these top-ranking genotypes belonged to Cluster 2, previously identified as the highest-performing group in the HCA. The identified genotypes with superior drought tolerance offer valuable genetic resources for enhancing wheat productivity in water-limiting environments. Traits related to photosynthetic activity, biomass gain, leaf conductance, water stress, and osmoprotection showed high selection differentials and heritability in MGIDI analysis, indicating their potential as selection targets for drought-tolerant wheat. Overall, the strategic approaches have yielded novel insights into genotype screening that can be directly applied to deepen our understanding of drought tolerance mechanisms in wheat.
Collapse
Affiliation(s)
- Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.-U.-D.)
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Md. Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahmudul Hasan Tahery
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.-U.-D.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
2
|
Chen J, Luo Y, Zhao X, Li Y, Mu J. Effect of Drought and Rehydration on Physiological Characteristics of Agriophyllum squarrosum (L.) Moq. in Different Habitats. PLANTS (BASEL, SWITZERLAND) 2024; 13:2601. [PMID: 39339577 PMCID: PMC11434847 DOI: 10.3390/plants13182601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Agriophyllum squarrosum (L.) Moq. is a highly prevalent xerophytic species found throughout northern China. It is suitable for cultivation in semi-arid sandy environments and may establish roots in arid desert locations. This species plays a pioneering and exploratory role in the colonization of desert plants. In this study, we selected A. squarrosum from the Urat desert steppe (UD) and Horqin sandy land (HS) to explore their adaptation mechanisms to drought and rehydration environments by using the pot weighing control method to simulate an arid environment. The findings showed that the control (watering to 60-65% of field capacity) exceeded its required amount and the leaves turned yellow. The chlorophyll content was lower than those under moderate and severe drought, and rehydration caused a decrease. However, the contents of malondialdehyde, soluble sugar, and proline in the drought treatment were higher than those in the control. Under moderate and severe drought, the chlorophyll content and the quantum efficiency of photosystem II (Fv/Fm) of A. squarrosum from UD were higher than those from HS. During drought and rehydration processes, the proline content was relatively lower, while the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) and the content of soluble sugar and soluble protein were higher. However, antioxidant enzymes and osmoregulators from UD were higher than those from HS. The results suggest that the stronger ability of A. squarrosum to endure drought environments in UD is due to the high level of antioxidant enzymes and osmoregulators, which are conducive to relieving cell membrane damage when subjected to drought and rehydration.
Collapse
Affiliation(s)
- Juanli Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (J.C.); (Y.L.); (Y.L.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yongqing Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (J.C.); (Y.L.); (Y.L.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Xueyong Zhao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Yan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (J.C.); (Y.L.); (Y.L.)
| | - Junpeng Mu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, China; (J.C.); (Y.L.); (Y.L.)
| |
Collapse
|
3
|
Baker CR, Patel‐Tupper D, Cole BJ, Ching LG, Dautermann O, Kelikian AC, Allison C, Pedraza J, Sievert J, Bilbao A, Lee J, Kim Y, Kyle JE, Bloodsworth KJ, Paurus V, Hixson KK, Hutmacher R, Dahlberg J, Lemaux PG, Niyogi KK. Metabolomic, photoprotective, and photosynthetic acclimatory responses to post-flowering drought in sorghum. PLANT DIRECT 2023; 7:e545. [PMID: 37965197 PMCID: PMC10641490 DOI: 10.1002/pld3.545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. Sorghum bicolor is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks. To obtain molecular insights into these characteristics, two drought-tolerant genotypes, BTx642 and RTx430, were grown in replicated control and terminal post-flowering drought field plots in California's Central Valley. Photosynthetic, photoprotective, and water dynamics traits were quantified and correlated with metabolomic data collected from leaves, stems, and roots at multiple timepoints during control and drought conditions. Physiological and metabolomic data were then compared to longitudinal RNA sequencing data collected from these two genotypes. The unique metabolic and transcriptomic response to post-flowering drought in sorghum supports a role for the metabolite galactinol in controlling photosynthetic activity through regulating stomatal closure in post-flowering drought. Additionally, in the functional stay-green genotype BTx642, photoprotective responses were specifically induced in post-flowering drought, supporting a role for photoprotection in the molecular response associated with the functional stay-green trait. From these insights, new pathways are identified that can be targeted to maximize yields under growth conditions with limited water.
Collapse
Affiliation(s)
- Christopher R. Baker
- Howard Hughes Medical Institute, Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Dhruv Patel‐Tupper
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Benjamin J. Cole
- DOE‐Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Lindsey G. Ching
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Oliver Dautermann
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Armen C. Kelikian
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Cayci Allison
- UC‐ANR Kearney Agricultural Research and Extension (KARE) CenterParlierCaliforniaUSA
| | - Julie Pedraza
- UC‐ANR Kearney Agricultural Research and Extension (KARE) CenterParlierCaliforniaUSA
| | - Julie Sievert
- UC‐ANR Kearney Agricultural Research and Extension (KARE) CenterParlierCaliforniaUSA
| | - Aivett Bilbao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Joon‐Yong Lee
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Young‐Mo Kim
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Kent J. Bloodsworth
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Vanessa Paurus
- Biological Sciences Division, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Kim K. Hixson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Robert Hutmacher
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Jeffery Dahlberg
- UC‐ANR Kearney Agricultural Research and Extension (KARE) CenterParlierCaliforniaUSA
| | - Peggy G. Lemaux
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
4
|
Shohani F, Hosseinin Sarghein S, Fazeli A. Simultaneous application of salicylic acid and silicon in aerial parts of Scrophularia striata L. in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107936. [PMID: 37647821 DOI: 10.1016/j.plaphy.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Plants respond to water shortage by regulating biochemical pathways which result in the biosynthesis of osmotic compounds. Active metabolites and compatible osmolytes control the inhibition of oxygen free radicals and dehydration. The physiological response of scrophularia striata to drought stress, a factorial completely randomized design (FCRD) experiment was conducted in three replication. Drought stress was induced at two levels (100% and 50% field capacity), and salicylic acid (SA) and silicon (Si) and Ecotype were also used at two levels of (0 and 100 PPM), (0 and 1 g/L) and (Ilam and Abdanan) respectively. Data analysis results indicated that the H2O2 content, Malondialdehyde (MDA), glycine betaine (GB) and the activity of the enzyme glutathione reductase (GR; EC 1.6.4.2) of aerial parts increased during the entire stress exposure period. Although the SA + Si + stress + ecotype interaction increased the content of soluble carbohydrate s and the GR activity in aerial parts of Ilam and Abdanan ecotypes, this interaction led to a decrease in MDA, H2O2 in Ilam ecotypes. The interaction between the stress + SA + Si + ecotype led to an increase in the phenylalanine ammonialyase (PAL; EC 4.3.1.5) activity in the Abdanan ecotype, but no important difference was observed. As compared to the control treatment, the content of Polyphenol increased, The interaction between ecotype + stress + Si caused to increased the of proline content in the Abadanan ecotype. The results showed that the increase in antioxidant defense and compatible osmolytes due to the use of SA and Si can improve the drought tolerance in S.striata.
Collapse
Affiliation(s)
- Fariba Shohani
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran.
| | | | - Arash Fazeli
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, 6939177111, Iran.
| |
Collapse
|
5
|
Shumaila, Ullah S, Shah W, Hafeez A, Ali B, Khan S, Ercisli S, Al-Ghamdi AA, Elshikh MS. Biochar and Seed Priming Technique with Gallic Acid: An Approach toward Improving Morpho-Anatomical and Physiological Features of Solanum melongena L. under Induced NaCl and Boron Stresses. ACS OMEGA 2023; 8:28207-28232. [PMID: 38173954 PMCID: PMC10763624 DOI: 10.1021/acsomega.3c01720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024]
Abstract
Dynamic shifts in climatic patterns increase soil salinity and boron levels, which are the major abiotic factors that affect plant growth and secondary metabolism. The present study assessed the role of growth regulators, including biochar (5 g kg-1) and gallic acid (GA, 2 mM), in altering leaf morpho-anatomical and physiological responses of Solanum melongena L. exposed to boron (25 mg kg-1) and salinity stresses (150 mM NaCl). These growth regulators enhanced leaf fresh weight (LFW) (70%), leaf dry weight (LDW) (20%), leaf area (LA), leaf area index (LAI) (85%), leaf moisture content (LMC) (98%), and relative water content (RWC) (115%) under salinity and boron stresses. Physiological attributes were analyzed to determine the stress levels and antioxidant protection. Photosynthetic pigments were negatively affected by salinity and boron stresses along with a nonsignificant reduction in trehalose, GA, osmoprotectant, and catalase (CAT) and ascorbate peroxidase (APX) activity. These parameters were improved by biochar application to soil and presoaking seeds in GA (p < 0.05) in both varieties of S. melongena L. Scanning electron microscopy (SEM) and light microscopy revealed that application of biochar and GA improved the stomatal regulation, trichome density, epidermal vigor, stomata size (SS) (13 381 μm), stomata index (SI) (354 mm2), upper epidermis thickness (UET) (123 μm), lower epidermis thickness (LET) (153 μm), cuticle thickness (CT) (11.4 μm), trichome density (TD) (23 per mm2), vein islet number (VIN) (14 per mm2), vein termination number (VTN) (19 per mm2), midrib thickness (MT) (5546 μm), and TD (27.4 mm2) under salinity and boron stresses. These results indicate that the use of inexpensive and easily available biochar and seed priming with GA can improve morpho-anatomical and physiological responses of S. melongena L. under oxidative stress conditions.
Collapse
Affiliation(s)
- Shumaila
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Sami Ullah
- Department
of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Wadood Shah
- Biological
Sciences Research Division, Pakistan Forest
Institute, Peshawar 25120, Pakistan
| | - Aqsa Hafeez
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahid Khan
- Crops,
Environment and Land Use Programme, Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Sezai Ercisli
- Department
of Horticulture, Agricultural Faculty, Ataturk
Universitesi, 25240 Erzurum, Turkey
- HGF
Agro, Ata Teknokent, 25240 Erzurum, Turkey
| | - Abdullah Ahmed Al-Ghamdi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S. Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Soufi HR, Roosta HR, Stępień P, Malekzadeh K, Hamidpour M. Manipulation of light spectrum is an effective tool to regulate biochemical traits and gene expression in lettuce under different replacement methods of nutrient solution. Sci Rep 2023; 13:8600. [PMID: 37237093 PMCID: PMC10219983 DOI: 10.1038/s41598-023-35326-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The use of light-emitting diode (LED) technology represents a promising approach to improve plant growth and metabolic activities. The aim of this study was to investigate the effect of different light spectra: red (656 nm), blue (450 nm), red/blue (3:1), and white (peak at 449 nm) on biochemical properties, photosynthesis and gene expression in two lettuce cultivars (Lollo Rossa and Lollo Bionda) grown under different methods of nutrient solution replacement in hydroponics. Complete replacement and EC-based replacement of nutrient solution increased content of proline and soluble sugars and activity of antioxidant enzymes (CAT, GPX and SOD) under the red/blue LED and red LED light treatments in both cultivars. In addition, the red/blue and the monochromatic red light increased the soluble protein content and the antioxidant activity in the Lollo Rosa cultivar under the replacement method according to the needs of the plant. An increase in flavonoid content in the EC-based method in the Lollo Rosa variety treated with a combination of red and blue light was also observed. The red/blue light had the greatest induction effect on anthocyanin content, expression of the UFGT, CHS, and Rubisco small subunit genes, and the net photosynthetic rate. Data presented here will directly contribute to the development of nutrient solution and LED spectrum management strategies to significantly improve plant growth and metabolism, while avoiding water and nutrient waste, and environmental pollution.
Collapse
Affiliation(s)
- Hamid Reza Soufi
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arāk, Iran.
| | - Piotr Stępień
- Department of Plant Nutrition, Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Khalil Malekzadeh
- Department of Genetics and Plant Production, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mohsen Hamidpour
- Department of Soil Science and Engineering, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
7
|
Wang Y, Wang J, Guo H, Wu X, Hao M, Zhang R. Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107723. [PMID: 37163805 DOI: 10.1016/j.plaphy.2023.107723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Melatonin (MT) is essential for plant development and drought adaptation. However, the molecular and metabolic mechanisms underlying MT-induced drought tolerance in maize roots remain largely unclear. Herein, we investigated the effects of MT on drought tolerance in maize roots using integrated transcriptomic and metabolomic analyses, and identified MT-induced genes and metabolites associated with drought resistance. Compared with the untreated control plants, MT application alleviated the deleterious effects of drought on roots, by decreasing the malondialdehyde level and increasing the solute potential, eventually promoting root growth. Transcriptome and metabolome analysis demonstrated that MT significantly upregulates the expression of genes related to flavonoid biosynthesis (PAL, C4H, 4CL, HCT, CHS, CHI, F3'5'H, and DFR), activates drought-responsive transcription factors (ERFs, NACs, MYBs, and bHLHs), and regulates hormone signaling-related genes, especially ethylene response factors (ERF4, ERF81, and ERF110). Moreover, MT increased the accumulation of flavonoid metabolites, particularly apigenin, luteolin, and quercetin, under drought-stress conditions. These findings were further supported by quantitative real-time polymerase chain reaction analysis and total flavonoid measurements. Altogether, our findings suggest that MT promotes maize root growth during drought by regulating flavonoid synthesis pathways, transcription factors, and plant hormone signals. This study provides new insights into the complex mechanisms by which MT enhances crop resistance to drought damage.
Collapse
Affiliation(s)
- Yifan Wang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Jiarui Wang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Haoxue Guo
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Xi Wu
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Miaoyi Hao
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Renhe Zhang
- College of Agronomy, Northwest A&F University, Shaanxi, Yangling, 712100, China.
| |
Collapse
|
8
|
Ghorbanzadeh Z, Hamid R, Jacob F, Zeinalabedini M, Salekdeh GH, Ghaffari MR. Comparative metabolomics of root-tips reveals distinct metabolic pathways conferring drought tolerance in contrasting genotypes of rice. BMC Genomics 2023; 24:152. [PMID: 36973662 PMCID: PMC10044761 DOI: 10.1186/s12864-023-09246-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Abstract
Background
The mechanisms underlying rice root responses to drought during the early developmental stages are yet unknown.
Results
This study aimed to determine metabolic differences in IR64, a shallow-rooting, drought-susceptible genotype, and Azucena, a drought-tolerant and deep-rooting genotype under drought stress. The morphological evaluation revealed that Azucena might evade water stress by increasing the lateral root system growth, the root surface area, and length to access water. At the same time, IR64 may rely mainly on cell wall thickening to tolerate stress. Furthermore, significant differences were observed in 49 metabolites in IR64 and 80 metabolites in Azucena, for which most metabolites were implicated in secondary metabolism, amino acid metabolism, nucleotide acid metabolism and sugar and sugar alcohol metabolism. Among these metabolites, a significant positive correlation was found between allantoin, galactaric acid, gluconic acid, glucose, and drought tolerance. These metabolites may serve as markers of drought tolerance in genotype screening programs. Based on corresponding biological pathways analysis of the differentially abundant metabolites (DAMs), biosynthesis of alkaloid-derivatives of the shikimate pathway, fatty acid biosynthesis, purine metabolism, TCA cycle and amino acid biosynthesis were the most statistically enriched biological pathway in Azucena in drought response. However, in IR64, the differentially abundant metabolites of starch and sucrose metabolism were the most statistically enriched biological pathways.
Conclusion
Metabolic marker candidates for drought tolerance were identified in both genotypes. Thus, these markers that were experimentally determined in distinct metabolic pathways can be used for the development or selection of drought-tolerant rice genotypes.
Collapse
|
9
|
Takanashi H. Genetic control of morphological traits useful for improving sorghum. BREEDING SCIENCE 2023; 73:57-69. [PMID: 37168813 PMCID: PMC10165342 DOI: 10.1270/jsbbs.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2023]
Abstract
Global climate change and global warming, coupled with the growing population, have raised concerns about sustainable food supply and bioenergy demand. Sorghum [Sorghum bicolor (L.) Moench] ranks fifth among cereals produced worldwide; it is a C4 crop with a higher stress tolerance than other major cereals and has a wide range of uses, such as grains, forage, and biomass. Therefore, sorghum has attracted attention as a promising crop for achieving sustainable development goals (SDGs). In addition, sorghum is a suitable genetic model for C4 grasses because of its high morphological diversity and relatively small genome size compared to other C4 grasses. Although sorghum breeding and genetic studies have lagged compared to other crops such as rice and maize, recent advances in research have identified several genes and many quantitative trait loci (QTLs) that control important agronomic traits in sorghum. This review outlines traits and genetic information with a focus on morphogenetic aspects that may be useful in sorghum breeding for grain and biomass utilization.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
10
|
Nutritional value and agronomic traits of forage sorghum under drought stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
PopW improves salt stress tolerance of red clover (Trifolium pratense L.) via activating phytohormones and salinity related genes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Mohi-Ud-Din M, Hossain MA, Rohman MM, Uddin MN, Haque MS, Ahmed JU, Abdullah HM, Hossain MA, Pessarakli M. Canopy spectral reflectance indices correlate with yield traits variability in bread wheat genotypes under drought stress. PeerJ 2022; 10:e14421. [PMID: 36452074 PMCID: PMC9703988 DOI: 10.7717/peerj.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
Drought stress is a major issue impacting wheat growth and yield worldwide, and it is getting worse as the world's climate changes. Thus, selection for drought-adaptive traits and drought-tolerant genotypes are essential components in wheat breeding programs. The goal of this study was to explore how spectral reflectance indices (SRIs) and yield traits in wheat genotypes changed in irrigated and water-limited environments. In two wheat-growing seasons, we evaluated 56 preselected wheat genotypes for SRIs, stay green (SG), canopy temperature depression (CTD), biological yield (BY), grain yield (GY), and yield contributing traits under control and drought stress, and the SRIs and yield traits exhibited higher heritability (H2) across the growing years. Diverse SRIs associated with SG, pigment content, hydration status, and aboveground biomass demonstrated a consistent response to drought and a strong association with GY. Under drought stress, GY had stronger phenotypic correlations with SG, CTD, and yield components than in control conditions. Three primary clusters emerged from the hierarchical cluster analysis, with cluster I (15 genotypes) showing minimal changes in SRIs and yield traits, indicating a relatively higher level of drought tolerance than clusters II (26 genotypes) and III (15 genotypes). The genotypes were appropriately assigned to distinct clusters, and linear discriminant analysis (LDA) demonstrated that the clusters differed significantly. It was found that the top five components explained 73% of the variation in traits in the principal component analysis, and that vegetation and water-based indices, as well as yield traits, were the most important factors in explaining genotypic drought tolerance variation. Based on the current study's findings, it can be concluded that proximal canopy reflectance sensing could be used to screen wheat genotypes for drought tolerance in water-starved environments.
Collapse
Affiliation(s)
- Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, Bangladesh,Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Md. Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jalal Uddin Ahmed
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hasan Muhammad Abdullah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | | |
Collapse
|
13
|
Wang Y, Guo H, Wu X, Wang J, Li H, Zhang R. Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:928897. [PMID: 35991451 PMCID: PMC9381927 DOI: 10.3389/fpls.2022.928897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 05/27/2023]
Abstract
Drought is a significant environmental stress factor that adversely affects maize productivity. However, many details regarding the molecular mechanisms of maize against drought are still unclear. In this study, leaf transcriptomics and physiological traits of two maize genotypes with differing drought resistance were analyzed. Transcriptome sequencing identified 8985 and 7305 differentially expressed genes (DEGs) in SD902 and SD609, respectively. Functional analysis suggested that numerous genes are highly involved in oxidative defense, protein modification, photosynthesis, phytohormone response, MAPK signaling, and transcription factors (TFs). Compared to SD902, SD609 had a higher expression of DEGs related to antioxidant enzymes, photosynthetic electron transport, heat shock proteins, and indole-3-acetic acid (IAA) signaling under drought conditions, which might contribute to its tolerance mechanisms to drought. Stress-induced TFs may play a crucial regulatory role in genotypic differences. Moreover, the physiological changes and gene expression abundance determined using quantitative reverse transcription polymerase chain reaction were consistent with the RNA sequencing data. The study results suggest that the higher drought tolerance of SD609 than SD902 can be attributed to stronger stress defense capabilities, IAA signal transduction, and more stable photosynthesis. Our findings provide new insights into the molecular mechanisms of maize against drought stress, and the candidate genes identified may be used in breeding drought-tolerant maize cultivars.
Collapse
|
14
|
Wu W, Qu J, Blennow A, Herburger K, Hebelstrup KH, Guo K, Xue J, Xu R, Zhu C, Zhong Y, Guo D. The effects of drought treatments on biosynthesis and structure of maize starches with different amylose content. Carbohydr Polym 2022; 297:120045. [DOI: 10.1016/j.carbpol.2022.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
|
15
|
Takanashi H, Kajiya-Kanegae H, Nishimura A, Yamada J, Ishimori M, Kobayashi M, Yano K, Iwata H, Tsutsumi N, Sakamoto W. DOMINANT AWN INHIBITOR Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum. PLANT & CELL PHYSIOLOGY 2022; 63:901-918. [PMID: 35640621 DOI: 10.1093/pcp/pcac057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The awn, a needle-like structure extending from the tip of the lemma in grass species, plays a role in environmental adaptation and fitness. In some crops, awns appear to have been eliminated during domestication. Although numerous genes involved in awn development have been identified, several dominant genes that eliminate awns are also known to exist. For example, in sorghum (Sorghum bicolor), the dominant awn-inhibiting gene has been known since 1921; however, its molecular features remain uncharacterized. In this study, we conducted quantitative trait locus analysis and a genome-wide association study of awn-related traits in sorghum and identified DOMINANT AWN INHIBITOR (DAI), which encodes the ALOG family protein on chromosome 3. DAI appeared to be present in most awnless sorghum cultivars, likely because of its effectiveness. Detailed analysis of the ALOG protein family in cereals revealed that DAI originated from a duplication of its twin paralog (DAIori) on chromosome 10. Observations of immature awns in near-isogenic lines revealed that DAI inhibits awn elongation by suppressing both cell proliferation and elongation. We also found that only DAI gained a novel function to inhibit awn elongation through an awn-specific expression pattern distinct from that of DAIori. Interestingly, heterologous expression of DAI with its own promoter in rice inhibited awn elongation in the awned cultivar Kasalath. We found that DAI originated from gene duplication, providing an interesting example of gain-of-function that occurs only in sorghum but shares its functionality with rice and sorghum.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Kouwa Nishi-Shimbashi Bldg. 5f, 2-14-1 Nishi-Shimbashi, Minato-ku, Tokyo 105-0003, Japan
| | - Asuka Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Junko Yamada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
16
|
Foliar Application of Nano-Silicon Improves the Physiological and Biochemical Characteristics of ‘Kalamata’ Olive Subjected to Deficit Irrigation in a Semi-Arid Climate. PLANTS 2022; 11:plants11121561. [PMID: 35736712 PMCID: PMC9229156 DOI: 10.3390/plants11121561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023]
Abstract
In Egypt’s arid and semi-arid lands where the main olive production zone is located, evapotranspiration is higher than rainfall during winter. Limited research has used nanomaterials, especially nano-silicon (nSi) to improve the growth, development, and productivity of drought-stressed fruit trees, amid the global water scarcity problem. To assess the role of nSi on drought-sensitive ‘Kalamata’ olive tree growth, and biochemical and physiological changes under drought conditions, a split-plot experiment was conducted in a randomized complete block design. The trees were foliar sprayed with nSi in the field using nine treatments (three replicates each) of 0, 150, and 200 mg·L−1 under different irrigation regimes (100, 90, and 80% irrigation water requirements ‘IWR’) during the 2020 and 2021 seasons. Drought negatively affected the trees, but both concentrations of nSi alleviated drought effects at reduced irrigation levels, compared to the non-stressed trees. Foliar spray of both concentrations of nSi at a moderate level (90% IWR) of drought resulted in improved yield and fruit weight and reduced fruit drop percentage, compared to 80% IWR. In addition, there were reduced levels of osmoprotectants such as proline, soluble sugars, and abscisic acid (ABA) with less membrane damage expressed as reduced levels of malondialdehyde (MDA), H2O2 and electrolyte leakage at 90% compared to 80% IWR. These results suggest that ‘Kalamata’ olive trees were severely stressed at 80% compared to 90% IWR, which was not surprising as it is classified as drought sensitive. Overall, the application of 200 mg·L−1 nSi was beneficial for the improvement of the mechanical resistance, growth, and productivity of moderately-stressed (90% IWR) ‘Kalamata’ olive trees under the Egyptian semi-arid conditions.
Collapse
|
17
|
Roy R, Núñez-Delgado A, Wang J, Kader MA, Sarker T, Hasan AK, Dindaroglu T. Cattle manure compost and biochar supplementation improve growth of Onobrychis viciifolia in coal-mined spoils under water stress conditions. ENVIRONMENTAL RESEARCH 2022; 205:112440. [PMID: 34843727 DOI: 10.1016/j.envres.2021.112440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Surface mining is a critical anthropogenic activity that significantly alters the ecosystem, while the use of appropriate revegetation techniques can be considered an important and feasible strategy in the way to improve the ecosystem services of degraded land. In the present study, we carried out a pot experiment to investigate the effects of three different variables on morpho-physiological and biochemical parameters of Onobrychis viciifolia to assess the capability of this species to be used for restoration purposes. Specifically, the variables studied were: (a) water (W) regime, working at five values as regards field capacity (FC) (i.e., 80% FC = highest, 72% FC = high, 60% FC = moderate, 48% FC = low, and 40% FC = very-low dose); and (b) rates of cattle manure compost (CMC) and wood biochar (BC) (weight/weight ratio), working at five rates (i.e., 4.0% = highest, 3.2% = high, 2.0% = moderate, 0.8% = low, and 0% = either no-CMC or no-BC dose). In addition, soil physical-chemical properties and enzyme activities were also investigated at the end of the experimental period. It was found that morphological growth attributes such as plant height, maximum root length, and dry biomass significantly increased with W, CMC and BC applications. Compared to control, moderate-to-high W, CMC and BC doses (W80CMC2BC2) increased net photosynthesis rate (by 42%), stomatal conductance (by 50%), transpiration rate (by 29%), water use efficiency (by 10%), chlorophyll contents (by 73%), carotenoid content (by 81%), leaf relative water content (by 33%) and leaf membrane stability index (by 30%). Under low-W content, the application of CMC and BC enhanced osmotic adjustments by increasing the content of soluble sugar and the activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, decreasing the oxidative stress, as verified by low levels of hydrogen peroxide, superoxide anion, malondialdehyde and proline contents in leaf tissues. Moreover, application of W, CMC and BC significantly improved soil water holding capacity, available nitrogen, phosphorus and potassium, urease and catalase activities, which facilitate plant growth. These results would aid in designing an appropriate strategy for achieving a successful revegetation of O. viciifolia, providing optimum doses of W (64% field capacity), CMC (2.4%) and BC (1.7%), with the final aim of reaching ecological restoration in arid degraded lands.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ., 27002, Lugo, University of Santiago de Compostela, Spain.
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Md Abdul Kader
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, 1168, Fiji; Department of Soil Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Ahmed Khairul Hasan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Turgay Dindaroglu
- Department of Forest Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46100, Turkey.
| |
Collapse
|
18
|
Drought Tolerance and Application of Marker-Assisted Selection in Sorghum. BIOLOGY 2021; 10:biology10121249. [PMID: 34943164 PMCID: PMC8699005 DOI: 10.3390/biology10121249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Sorghum is a climate-resilient crop grown in limited rainfall areas globally. However, climate change has increased temperature and shortened rainfall durations, which has constrained crop yield. We reviewed mechanisms of drought tolerance and application of marker-assisted selection in sorghum. Marker-assisted selection uses DNA molecular markers to map quantitative trait loci (QTL) associated with stay-green. Stg1, Stg2, Stg3, Stg4, Stg3A, and Stg3B QTLs associated with stay-green and high yield, have been mapped in sorghum. These QTLs are used for introgression into the senescent sorghum varieties through marker-assisted backcrossing. Abstract Sorghum is an important staple food crop in drought prone areas of Sub-Saharan Africa, which is characterized by erratic rainfall with poor distribution. Sorghum is a drought-tolerant crop by nature with reasonable yield compared to other cereal crops, but such abiotic stress adversely affects the productivity. Some sorghum varieties maintain green functional leaves under post-anthesis drought stress referred to as stay-green, which makes it an important crop for food and nutritional security. Notwithstanding, it is difficult to maintain consistency of tolerance over time due to climate change, which is caused by human activities. Drought in sorghum is addressed by several approaches, for instance, breeding drought-tolerant sorghum using conventional and molecular technologies. The challenge with conventional methods is that they depend on phenotyping stay-green, which is complex in sorghum, as it is constituted by multiple genes and environmental effects. Marker assisted selection, which involves the use of DNA molecular markers to map QTL associated with stay-green, has been useful to supplement stay-green improvement in sorghum. It involves QTL mapping associated with the stay-green trait for introgression into the senescent sorghum varieties through marker-assisted backcrossing by comparing with phenotypic field data. Therefore, this review discusses mechanisms of drought tolerance in sorghum focusing on physiological, morphological, and biochemical traits. In addition, the review discusses the application of marker-assisted selection techniques, including marker-assisted backcrossing, QTL mapping, and QTL pyramiding for addressing post-flowering drought in sorghum.
Collapse
|
19
|
Zhu L, Wen W, Thorpe MR, Hocart CH, Song X. Combining Heat Stress with Pre-Existing Drought Exacerbated the Effects on Chlorophyll Fluorescence Rise Kinetics in Four Contrasting Plant Species. Int J Mol Sci 2021; 22:ijms221910682. [PMID: 34639023 PMCID: PMC8508795 DOI: 10.3390/ijms221910682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Although drought and high temperature are two main factors affecting crop productivity and forest vegetation dynamics in many areas worldwide, little work has been done to describe the effects of heat combined with pre-existing drought on photochemical function in diverse plant species. This study investigated the biophysical status of photosystem II (PSII) and its dynamic responses under 2-day heat stress during a 2-week drought by measuring the polyphasic chlorophyll fluorescence rise (OJIP) kinetics. This study examined four contrasting species: a C3 crop/grass (wheat), a C4 crop/grass (sorghum), a temperate tree species (Fraxinus chinensis) and a tropical tree species (Radermachera sinica). Principal component analysis showed that the combination of heat and drought deviated from the effect of heat or drought alone. For all four species, a linear mixed-effects model analysis of variance of the OJIP parameters showed that the deviation arose from decreased quantum yield and increased heat dissipation of PSII. The results confirmed, in four contrasting plant species, that heat stress, when combined with pre-existing drought, exacerbated the effects on PSII photochemistry. These findings provide direction to future research and applications of chlorophyll fluorescence rise OJIP kinetics in agriculture and forestry, for facing increasingly more severe intensity and duration of both heat and drought events under climate change.
Collapse
Affiliation(s)
- Lingling Zhu
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.Z.); (W.W.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Wen
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.Z.); (W.W.)
| | - Michael R. Thorpe
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (M.R.T.); (C.H.H.)
| | - Charles H. Hocart
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; (M.R.T.); (C.H.H.)
- Isotopomics in Chemical Biology, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xin Song
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (L.Z.); (W.W.)
- Correspondence:
| |
Collapse
|
20
|
Roy R, Núñez-Delgado A, Sultana S, Wang J, Munir A, Battaglia ML, Sarker T, Seleiman MF, Barmon M, Zhang R. Additions of optimum water, spent mushroom compost and wood biochar to improve the growth performance of Althaea rosea in drought-prone coal-mined spoils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113076. [PMID: 34153587 DOI: 10.1016/j.jenvman.2021.113076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 05/14/2023]
Abstract
Ecosystem degradation as a result of coal mining is a common phenomenon in various regions of the world, especially in arid and semi-arid zones. The implementation of appropriate revegetation techniques can be considered crucial to restore these degraded areas. In this regard, the additions of spent mushroom compost (SMC) and wood biochar (WB) to infertile and degraded soils have been reported to enhance soil fertility and plant growth under water (W) deficit conditions. However, the combined application of W, SMC and WB to coal mine degraded soils, to promote Althaea rosea growth and facilitate subsequent restoration, has not been explored yet. Hence, in the current study a pot experiment was carried out by growing A. rosea on coal mine spoils to assess the influence of different doses of W, SMC and WB on its morpho-physiological and biochemical growth responses. The results indicated that several plant growth traits like plant height, root length and dry biomass significantly improved with moderate W-SMC-WB doses. In addition, the simultaneous application of W-SMC-WB caused a significant decrease in hydrogen peroxide (H2O2) (by 7-56%), superoxide anion (O2●‒) (by 14-51%), malondialdehyde (MDA) (by 23-46%) and proline (Pro) contents (by 23-66%), as well as an increase in relative water content (by 10-27%), membrane stability index (by 2-24%), net photosynthesis rate (by 40-99%), total chlorophylls (by 43-113%) and carotenoids (by 31-115%), as compared to the control treatment. The addition of SMC and WB under low-W regime enhanced leaf water use efficiency, and soluble sugar content, also boosting the activity of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase in leaf tissues, thus reducing the oxidative stress, as proved by low levels of H2O2, O2●‒, MDA and Pro contents. Finest growth performance under optimum doses of W (60% field capacity), SMC (1.4%) and WB (0.8%) suggest that revegetation of A. rosea with the recommended W-SMC-WB doses would be a suitable and eco-friendly approach for ecological restoration in arid degraded areas.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, campus univ., 27002, Lugo, University of Santiago de Compostela, Spain.
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, 1705, Dhaka, Bangladesh.
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Ammara Munir
- Department of Biotechnology, Virtual University of Pakistan, Lahore, 54000, Pakistan.
| | - Martin L Battaglia
- Cornell University, Department of Animal Sciences, Ithaca, NY, 14850, USA.
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-kom, 32514, Egypt.
| | - Milon Barmon
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Ruiqi Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
21
|
Exogenous Application of Methyl Jasmonate and Salicylic Acid Mitigates Drought-Induced Oxidative Damages in French Bean ( Phaseolus vulgaris L.). PLANTS 2021; 10:plants10102066. [PMID: 34685876 PMCID: PMC8538183 DOI: 10.3390/plants10102066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022]
Abstract
Drought stress impairs the normal growth and development of plants through various mechanisms including the induction of cellular oxidative stresses. The aim of this study was to evaluate the effect of the exogenous application of methyl jasmonate (MeJA) and salicylic acid (SA) on the growth, physiology, and antioxidant defense system of drought-stressed French bean plants. Application of MeJA (20 μM) or SA (2 mM) alone caused modest reductions in the harmful effects of drought. However, combined application substantially enhanced drought tolerance by improving the physiological activities and antioxidant defense system. The drought-induced generation of O2●− and H2O2, the MDA content, and the LOX activity were significantly lower in leaves when seeds or leaves were pre-treated with a combination of MeJA (10 μM) and SA (1 mM) than with either hormone alone. The combined application of MeJA and SA to drought-stressed plants also significantly increased the activities of the major antioxidant enzymes superoxide dismutase, catalase, peroxidase, glutathione peroxidase, and glutathione-S-transferase as well as the enzymes of the ascorbate–glutathione cycle. Taken together, our results suggest that seed or foliar application of a combination of MeJA and SA restore growth and normal physiological processes by triggering the antioxidant defense system in drought-stressed plants.
Collapse
|
22
|
Sorghum's Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life (Basel) 2021; 11:life11070704. [PMID: 34357076 PMCID: PMC8305457 DOI: 10.3390/life11070704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022] Open
Abstract
Sorghum is a cereal crop with key agronomic traits of drought and heat stress tolerance, making it an ideal food and industrial commodity for hotter and more arid climates. These stress tolerances also present a useful scientific resource for studying the molecular basis for environmental resilience. Here we provide an extensive review of current transcriptome and proteome works conducted with laboratory, greenhouse, or field-grown sorghum plants exposed to drought, osmotic stress, or treated with the drought stress-regulatory phytohormone, abscisic acid. Large datasets from these studies reveal changes in gene/protein expression across diverse signaling and metabolic pathways. Together, the emerging patterns from these datasets reveal that the overall functional classes of stress-responsive genes/proteins within sorghum are similar to those observed in equivalent studies of other drought-sensitive model species. This highlights a monumental challenge of distinguishing key regulatory genes/proteins, with a primary role in sorghum adaptation to drought, from genes/proteins that change in expression because of stress. Finally, we discuss possible options for taking the research forward. Successful exploitation of sorghum research for implementation in other crops may be critical in establishing climate-resilient agriculture for future food security.
Collapse
|
23
|
Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum. Sci Rep 2021; 11:9398. [PMID: 33931706 PMCID: PMC8087780 DOI: 10.1038/s41598-021-88917-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Although spikelet-related traits such as size of anther, spikelet, style, and stigma are associated with sexual reproduction in grasses, no QTLs have been reported in sorghum. Additionally, there are only a few reports on sorghum QTLs related to grain size, such as grain length, width, and thickness. In this study, we performed QTL analyses of nine spikelet-related traits (length of sessile spikelet, pedicellate spikelet, pedicel, anther, style, and stigma; width of sessile spikelet and stigma; and stigma pigmentation) and six grain-related traits (length, width, thickness, length/width ratio, length/thickness ratio, and width/thickness ratio) using sorghum recombinant inbred lines. We identified 36 and 7 QTLs for spikelet-related traits and grain-related traits, respectively, and found that most sorghum spikelet organ length- and width-related traits were partially controlled by the dwarf genes Dw1 and Dw3. Conversely, we found that these Dw genes were not strongly involved in the regulation of grain size. The QTLs identified in this study aid in understanding the genetic basis of spikelet- and grain-related traits in sorghum.
Collapse
|
24
|
Ziotti ABS, Ottoni CA, Correa CN, de Almeida OJG, de Souza AO, Neto MCL. Differential physiological responses of a biogenic silver nanoparticle and its production matrix silver nitrate in Sorghum bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13069-4. [PMID: 33625697 DOI: 10.1007/s11356-021-13069-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNP) have been extensively applied in different industrial areas, mainly due to their antibiotic properties. One of the environmental concerns with AgNP is its incorrect disposal, which might lead to severe environmental pollution. The interplay between AgNP and plants is receiving increasing attention. However, little is known regarding the phytotoxic effects of biogenic AgNP on terrestrial plants. This study aimed to compare the effects of a biogenic AgNP and AgNO3 in Sorghum bicolor seedlings. Seeds were germinated in increasing concentrations of a biogenic AgNP and AgNO3 (0, 10, 100, 500, and 1000 μM) in a growth chamber with controlled conditions. The establishment and development of the seedlings were evaluated for 15 days. Physiological and morpho-anatomical indicators of stress, enzymatic, and non-enzymatic antioxidants and photosynthetic yields were assessed. The results showed that both AgNP and AgNO3 disturbed germination and the establishment of sorghum seedlings. AgNO3 released more free Ag+ spontaneously compared to AgNP, promoting increased Ag+ toxicity. Furthermore, plants exposed to AgNP triggered more efficient protective mechanisms compared with plants exposed to AgNO3. Also, the topology and connectivity of the correlation-based networks were more impacted by the exposure of AgNO3 than AgNP. In conclusion, it is plausible to say that the biogenic AgNP is less toxic to sorghum than its matrix AgNO3.
Collapse
Affiliation(s)
- Ana Beatriz Sicchieri Ziotti
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cristiane Angélica Ottoni
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
- Instituto de Estudos Avançados do Mar (IEAMar), São Paulo State University, São Vicente, SP, Brazil
| | - Cláudia Neves Correa
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
| | - Odair José Garcia de Almeida
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
| | - Ana Olivia de Souza
- Innovation and Development Laboratory, Instituto Butantan, São Paulo, SP, Brazil
| | - Milton Costa Lima Neto
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Morphological and biochemical responses of Sorghum bicolor (L.) Moench under drought stress. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-03977-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractSorghum is an important forage crop, and both quantity and quality of this crop are affected by drought stress. Accordingly, in order to investigate the effect of drought stress on quantity and quality of morpho-physiological traits, a split-plot experiment was conducted based on randomized complete block design with four replicates in Isfahan, Iran, during 2017 and 2018 crop seasons. Treatments were irrigation regimes with four levels (control, preventing irrigation at pollination, seed milky, and seed doughy stages) and three varieties of sorghum (Sepideh, Kimia, and Payam). The results showed that drought stress negatively influenced morphological and yield-related traits of sorghum, while its effect was positive on some quality-related traits such as total soluble carbohydrate, crude protein, and proline contents. According to the results, drought stress based on prevention of irrigation at doughy stage (representing moderate drought stress) caused inconsiderable reduction in sorghum yield. In addition, drought stress has effect on relationships between morpho-physiological traits in sorghum. Considering morphological and yield-related traits together with susceptibility (stress susceptibility index) and tolerance (geometric mean product) indices indicated that Payam variety is more proper to be used in both drought stress and non-stress conditions. Furthermore, both Kimia and Payam varieties were shown to be suitable varieties based on quality-related traits, but because of having low NDF Payam variety might be more suitable.
Collapse
|
26
|
Rocha V, Duarte MC, Catarino S, Duarte I, Romeiras MM. Cabo Verde's Poaceae Flora: A Reservoir of Crop Wild Relatives Diversity for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:630217. [PMID: 33633769 PMCID: PMC7901987 DOI: 10.3389/fpls.2021.630217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
Africa is home to important centers of origin and diversity of crop wild relatives (CWR), including many species adapted to adverse agroecological conditions, namely drought and poor soils. Plant genetic resources from Cabo Verde Islands have been poorly explored for their potential to supplement the genetic pool of cultivated species. In this paper we identify Cabo Verde's CWR from the Poaceae family and provide a checklist of priority CWR taxa, highlighting those of particular conservation concern and the areas which should be the focus of the most intensive conservation efforts in these islands. Our results revealed that Cabo Verde archipelago is an important center of CWR diversity of West African crop millets, namely fonio (e.g., white fonio, Digitaria exilis, and black fonio, Digitaria iburua) and other African millets [e.g., pearl millet (Cenchrus americanus = Pennisetum glaucum), teff millet (Eragrostis tef), finger millet (Eleusine coracana), barnyard millet (Echinochloa colona), proso millet (Panicum miliaceum), and foxtail millet (Setaria italica)], which represent a diverse group of cereal crops, and important components in agriculture and food security of this country. Also, hotspot areas of diversity for in situ conservation were identified in Cabo Verde, as well as several populations occurring under extreme habitats conditions that are well adapted to drylands and poor soils. The evaluation of their potential for new ecologically important adaptive characteristics associated with tolerance to abiotic stresses is discussed. The survey of international Germplasm Banks revealed that very few accessions from Cabo Verde are conserved, contributing to the loss of genetic diversity of plant genetic resources in this archipelago. Particularly, the diversity of millets and the associated indigenous knowledge are critical for the food security and cultural identity of many poor farmers in Cabo Verde.
Collapse
Affiliation(s)
- Vanézia Rocha
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Maria C. Duarte
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Silvia Catarino
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
- Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
| | - Ivani Duarte
- Parque Natural do Monte Gordo, Ministério da Agricultura e Ambiente, Praia, Cabo Verde
| | - Maria M. Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Maria M. Romeiras,
| |
Collapse
|
27
|
Zhao C, Guo H, Wang J, Wang Y, Zhang R. Melatonin Enhances Drought Tolerance by Regulating Leaf Stomatal Behavior, Carbon and Nitrogen Metabolism, and Related Gene Expression in Maize Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:779382. [PMID: 34966404 PMCID: PMC8710518 DOI: 10.3389/fpls.2021.779382] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 05/07/2023]
Abstract
It is commonly known that exogenously applied melatonin can alleviate the impact of drought stress, but the mechanism used by melatonin to regulate stomatal behavior and carbon (C) and nitrogen (N) metabolism to increase drought resistance remains elusive. Herein, our aim was to investigate the influence of exogenous melatonin on the regulation of C and N metabolism in maize plants under water deficit. In this study, we analyzed stomatal behavior, the key components of C and N metabolism, and the gene expression and activity of enzymes involved in the C and N metabolism in maize plants. The results showed that the application of melatonin (100 μM) significantly increased maize growth and sustained the opening of stomata, and secondarily increased the photosynthetic capacity in maize. Under drought stress, foliar application of melatonin induced the gene transcription and activities of sucrose phosphate synthetase, ADP-glucose pyrophosphorylase, phosphoenolpyruvate carboxylase, and citrate synthase, resulting in the enhancement of sucrose and starch synthesis and the tricarboxylic acid (TCA) cycle. This enhancement in sugar biosynthesis and the TCA cycle might lead to stronger N assimilation. As anticipated, NO3 - reduction and NH4 + assimilation were also strengthened after melatonin treatment under drought stress. An increase was observed in some key enzymatic activities and transcription involved in nitrogen metabolism, such as that of nitrate reductase, nitrite reductase, glutamate synthase, and glutamine synthetase, in melatonin-treated, drought-stressed maize. Moreover, melatonin attenuated the drought-induced damage by reducing protein degradation and increasing the level of proline. Conclusively, our results indicate that exogenous melatonin enhances drought tolerance in maize via promoting stomatal opening and regulating C and N metabolism and related gene expression.
Collapse
|
28
|
Sarker U, Oba S. The Response of Salinity Stress-Induced A. tricolor to Growth, Anatomy, Physiology, Non-Enzymatic and Enzymatic Antioxidants. FRONTIERS IN PLANT SCIENCE 2020; 11:559876. [PMID: 33178233 PMCID: PMC7596248 DOI: 10.3389/fpls.2020.559876] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
An investigation was carried out to elucidate growth, anatomical, physiological, and major ROS detoxification pathways involved in the tolerance of A. tricolor under salinity stress. Both VA14 and VA3 varieties exhibited the reduction in relative water content (RWC), photosynthetic pigments, growth, increased electrolyte leakage (EL), and leaf anatomy adaptation under salinity stress, whereas VA14 was well adapted and performed better compared to VA3. Higher ROS accumulation was demonstrated in the sensitive variety (VA3) in comparison to the tolerant variety (VA14). Salinity stress changed the cellular antioxidant pool by increasing total carotenoids, ascorbate, proline, total polyphenol content (TPC), total flavonoid content (TFC), and total antioxidant capacity (TAC) in both varieties. Although a higher increment was demonstrated in the tolerant variety, the proline increment was much more pronounced in the sensitive variety. Non-enzymatic antioxidant, ascorbate, carotenoids, TPC, TFC, TAC, and antioxidant enzymes SOD and APX were noted to be a major H2O2 detoxifier in the tolerant A. tricolor variety, where there is a comparatively lower H2O2 load. It was complemented by GPOX and CAT activity at a comparatively higher H2O2 load (in the sensitive variety). SOD contributed to the dismutation of superoxide radical (SOR) both in the tolerant and sensitive varieties; however, it greatly contributed to the dismutation of SOR in the tolerant variety. The increase in SOD, ascorbate, and APX makes it predominantly evident that SOD and the AsA-GSH cycle had greatly contributed to quench reactive oxygen species (ROS) of the tolerant variety of A. tricolor.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Shinya Oba
- Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
29
|
Li Q, Zhao M, Wang N, Liu S, Wang J, Zhang W, Yang N, Fan P, Wang R, Wang H, Du N. Water use strategies and drought intensity define the relative contributions of hydraulic failure and carbohydrate depletion during seedling mortality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:106-118. [PMID: 32485615 DOI: 10.1016/j.plaphy.2020.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 05/08/2023]
Abstract
COMBINING HYDRAULIC: and carbon-related measurements can help elucidate drought-induced plant mortality. To study drought mortality mechanisms, seedlings of two woody species, including the anisohydric Robinia pseudoacacia and isohydric Quercus acutissima, were cultivated in a greenhouse and subjected to intense drought by withholding water and mild drought by adding half of the amount of daily water lost. Patterns of leaf and root gas exchange, leaf surface areas, growth, leaf and stem hydraulics, and carbohydrate dynamics were determined in drought-stressed and control seedlings. We detected a complete loss of hydraulic conductivity and partial depletion of total nonstructural carbohydrates contents (TNC) in the dead seedlings. We also found that intense drought triggered a more rapid decrease in plant water potential and a faster drop in net photosynthesis below zero, and a greater TNC loss in dead seedlings than mild drought. Additionally, anisohydric R. pseudoacacia suffered a rapider death than the isohydric Q. acutissima. Based on these findings, we propose that hydraulic conductivity loss and carbon limitation jointly contributed to drought-induced death, while the relative contributions could be altered by drought intensity. We thus believe that it is important to illustrate the mechanistic relationships between stress intensity and carbon-hydraulics coupling in the context of isohydric vs. anisohydric hydraulic strategies.
Collapse
Affiliation(s)
- Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Mingming Zhao
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Shuna Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Jingwen Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Wenxin Zhang
- Shandong Academy of Forestry, 42 Wenhuadong Road, Jinan, 250014, China
| | - Ning Yang
- Qingdao Forestry Station, 106 Yan'an'yi Road, Qingdao, 266003, China
| | - Peixian Fan
- Qingdao Forestry Station, 106 Yan'an'yi Road, Qingdao, 266003, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
30
|
Goche T, Shargie NG, Cummins I, Brown AP, Chivasa S, Ngara R. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci Rep 2020; 10:11835. [PMID: 32678202 PMCID: PMC7366710 DOI: 10.1038/s41598-020-68735-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/09/2020] [Indexed: 01/31/2023] Open
Abstract
When exposed to drought stress many plants reprogram their gene expression to activate adaptive biochemical and physiological responses for survival. However, most of the well-studied adaptive responses are common between drought-sensitive and drought-tolerant species, making it difficult to identify the key mechanisms underpinning successful drought tolerance in crops. We developed a sorghum experimental system that compares between drought-sensitive (ICSB338) and enhanced drought-tolerant (SA1441) varieties. We show that sorghum activates a swift and robust stomatal shutdown to preserve leaf water content when water stress has been sensed. Water uptake is enhanced via increasing root cell water potential through the rapid biosynthesis of predominantly glycine betaine and an increased root-to-shoot ratio to explore more soil volume for water. In addition to stomatal responses, there is a prompt accumulation of proline in leaves and effective protection of chlorophyll during periods of water limitation. Root and stomatal functions rapidly recover from water limitation (within 24 h of re-watering) in the drought-tolerant variety, but recovery is impaired in the drought-sensitive sorghum variety. Analysis of the root proteome revealed complex protein networks that possibly underpin sorghum responses to water limitation. Common and unique protein changes between the two sorghum varieties provide new targets for future use in investigating sorghum drought tolerance.
Collapse
Affiliation(s)
- Tatenda Goche
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba, South Africa
| | - Nemera G Shargie
- Agricultural Research Council-Grain Crops Institute, P. Bag X1251, Potchefstroom, 2520, South Africa
| | - Ian Cummins
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Adrian P Brown
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba, South Africa.
| |
Collapse
|
31
|
Ogbaga CC, Athar HUR, Amir M, Bano H, Chater CC, Jellason NP. Clarity on frequently asked questions about drought measurements in plant physiology. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
32
|
Zhu L, Cernusak LA, Song X. Dynamic responses of gas exchange and photochemistry to heat interference during drought in wheat and sorghum. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:611-627. [PMID: 32393434 DOI: 10.1071/fp19242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Drought and heat stress significantly affect crop growth and productivity worldwide. It is unknown how heat interference during drought affects physiological processes dynamically in crops. Here we focussed on gas exchange and photochemistry in wheat and sorghum in response to simulated heat interference via +15°C of temperature during ~2 week drought and re-watering. Results showed that drought decreased net photosynthesis (Anet), stomatal conductance (gs), maximum velocity of ribulose-1, 5-bisphosphate carboxylase/oxygenase carboxylation (Vcmax) and electron transport rate (J) in both wheat and sorghum. Heat interference did not further reduce Anet or gs. Drought increased non-photochemical quenching (Φnpq), whereas heat interference decreased Φnpq. The δ13C of leaf, stem and roots was higher in drought-treated wheat but lower in drought-treated sorghum. The results suggest that (1) even under drought conditions wheat and sorghum increased or maintained gs for transpirational cooling to alleviate negative effects by heat interference; (2) non-photochemical quenching responded differently to drought and heat stress; (3) wheat and sorghum responded in opposing patterns in δ13C. These findings point to the importance of stomatal regulation under heat crossed with drought stress and could provide useful information on development of better strategies to secure crop production for future climate change.
Collapse
Affiliation(s)
- Lingling Zhu
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Australia
| | - Xin Song
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Corresponding author.
| |
Collapse
|
33
|
Ottoni CA, Lima Neto MC, Léo P, Ortolan BD, Barbieri E, De Souza AO. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. CHEMOSPHERE 2020; 239:124698. [PMID: 31493753 DOI: 10.1016/j.chemosphere.2019.124698] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 05/02/2023]
Abstract
Synthetic silver nanoparticles (AgNPs) are being extensively used in our daily lives; however, they may also pose a risk to public health and environment. Nowadays, biological AgNPs are considered an excellent alternative, since their synthesis occurs by a green technology of low cost and easy scaling. However, studies with these biological nanomaterials (NM) are still limited. Thus, a more careful assessment of their industrial application, economic feasibility and ecotoxicological impacts is crucial. The aim of this study was to investigate the effects of different concentrations of mangrove fungus Aspergillus tubingensis AgNPs on the aerobic heterotrophs soil microorganisms, rice seeds (Oryza sativa) and zebrafish (Danio rerio). Biogenic AgNPs were less harmful for soil microbiota compared to AgNO3. On rice seeds, the AgNPs displayed a dose-dependent inhibitory effect on germination and their subsequent growth and development. The percentage of inhibition of rice seed germination was 30, 69 and 80% for 0.01, 0.1 and 0.5 mM AgNPs, respectively. After 24 h of AgNPs exposition at a limit concentration of 0.2 mM, it did not induce mortality of the zebrafish D. rerio. Overall, A. tubingensis AgNPs can be considered as a suitable alternative to synthetic nanoparticles.
Collapse
Affiliation(s)
- C A Ottoni
- Biosciences Institute, São Paulo State University (UNESP), São Vicente, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), São Paulo State University, São Vicente, SP, Brazil; Laboratório de Biotecnologia Industrial, Instituto de Pesquisa Tecnológica do Estado de São Paulo, São Paulo, SP, Brazil
| | - M C Lima Neto
- Biosciences Institute, São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - P Léo
- Laboratório de Biotecnologia Industrial, Instituto de Pesquisa Tecnológica do Estado de São Paulo, São Paulo, SP, Brazil
| | - B D Ortolan
- Biosciences Institute, São Paulo State University (UNESP), São Vicente, SP, Brazil; Instituto de Estudos Avançados do Mar (IEAMar), São Paulo State University, São Vicente, SP, Brazil
| | - E Barbieri
- Instituto de Pesca, APTA - SAASP- Governo do Estado de São Paulo, Brazil
| | - A O De Souza
- Molecular Biology Laboratory, Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
34
|
Zarezadeh S, Moheimani NR, Jenkins SN, Hülsen T, Riahi H, Mickan BS. Microalgae and Phototrophic Purple Bacteria for Nutrient Recovery From Agri-Industrial Effluents: Influences on Plant Growth, Rhizosphere Bacteria, and Putative Carbon- and Nitrogen-Cycling Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1193. [PMID: 31632425 PMCID: PMC6779020 DOI: 10.3389/fpls.2019.01193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/29/2019] [Indexed: 05/27/2023]
Abstract
Microalgae (MA) and purple phototrophic bacteria (PPB) have the ability to remove and recover nutrients from digestate (anaerobic digestion effluent) and pre-settled pig manure that can be Utilized as bio-fertilizer and organic fertilizer. The objective of this study was to compare the effectiveness of MA and PPB as organic fertilizers and soil conditioners in relation to plant growth and the soil biological processes involved in nitrogen (N) and carbon (C) cycling. To this end, a glasshouse experiment was conducted using MA and PPB as bio-fertilizers to grow a common pasture ryegrass (Lolium rigidum Gaudin) with two destructive harvests (45 and 60 days after emergence). To evaluate the rhizosphere bacterial community, we used barcoded PCR-amplified bacterial 16S rRNA genes for paired-end sequencing on the Illumina Mi-Seq. Additionally, we used phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis for the detection of putative functional genes associated with N and soil-C cycling. There was a significant increase in plant growth when the soil was amended with PPB, which almost performed as well as the chemical fertilizers. Analysis of the rhizosphere bacteria after the second harvest revealed a greater abundance of Firmicutes than in the first harvest. Members of this phylum have been identified as a biostimulant for plant growth. In contrast, the MA released nutrients more slowly and had a profound effect on N cycling by modulating N mineralization and N retention pathways. Thus, MA could be developed as a slow-release fertilizer with better N retention, which could improve crop performance and soil function, despite nutrient losses from leaching, runoff, and atmospheric emissions. These data indicate that biologically recovered nutrients from waste resources can be effective as a fertilizer, resulting in enhanced C- and N-cycling capacities in the rhizosphere.
Collapse
Affiliation(s)
- Somayeh Zarezadeh
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Navid R. Moheimani
- Algae R and D Centre, Murdoch University, Perth, WA, Australia
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Sasha N. Jenkins
- UWA School of Agriculture and Environment (M079), The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture (M082), The University of Western Australia, Perth, WA, Australia
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Hossein Riahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Bede S. Mickan
- UWA School of Agriculture and Environment (M079), The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture (M082), The University of Western Australia, Perth, WA, Australia
- Richgro Garden Products, Jandakot, WA, Australia
| |
Collapse
|
35
|
Pérez-Fernández M, Míguez-Montero Á, Valentine A. Phosphorus and Nitrogen Modulate Plant Performance in Shrubby Legumes from the Iberian Peninsula. PLANTS (BASEL, SWITZERLAND) 2019; 8:E334. [PMID: 31500171 PMCID: PMC6783971 DOI: 10.3390/plants8090334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022]
Abstract
We investigated the impact of phosphorus nutrition on plant growth and biological nitrogen fixation in four leguminous plants in the Tribe Genistea. The main objective of the study was to analyze Phosphorus and Nitrogen use efficiency under drought. We also tested for the effects of rhizobial inoculation on plant performance. Plants inoculated with Rhizobium strains isolated from plants of the four species growing in the wild were cropped under controlled conditions in soils with either low P (5 µM) or high P (500 µM). The experiment was replicated in the presence and absence of plant irrigation to test for the effects of drought stress of inoculated and non-inoculated plants under the two P levels of fertilization. Low-P treatments increased nodule production while plant biomass and shoot and root P and N contents where maximum at high P. Low P (5 µM) in the growing media, resulted in greater N accumulated in plants, coupled with greater phosphorus and nitrogen uptake efficiencies. Drought reduced the relative growth rate over two orders of magnitude or more, depending on the combination of plant species and treatment. Genista cinerea had the lowest tolerance to water scarcity, whereas Genista florida and Retama sphaerocarpa were the most resistant species to drought. Drought resistance was enhanced in the inoculated plants. In the four species, and particularly in Echinospartum barnadesii, the inoculation treatment clearly triggered N use efficiency, whereas P use efficiency was greater in the non-inoculated irrigated plants. Nodulation significantly increased in plants in the low P treatments, where plants showed a greater demand for N. The physiological basis for the four species being able to maintain their growth at low P levels and to respond to the greater P supply, is through balanced acquisition of P and N to meet the plants' nutritional needs.
Collapse
Affiliation(s)
- María Pérez-Fernández
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, 41013 Seville, Spain.
| | - Ángel Míguez-Montero
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, 41013 Seville, Spain.
| | - Alexandre Valentine
- Department of Botany and Zoology, Stellenbosch University, 7602 Matieland, South Africa.
| |
Collapse
|
36
|
Ohnishi N, Wacera W F, Sakamoto W. Photosynthetic Responses to High Temperature and Strong Light Suggest Potential Post-flowering Drought Tolerance of Sorghum Japanese Landrace Takakibi. PLANT & CELL PHYSIOLOGY 2019; 60:2086-2099. [PMID: 31147706 DOI: 10.1093/pcp/pcz107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/20/2019] [Indexed: 05/09/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is a C4 crop known to be adaptable to harsh environments such as those under high temperature and water deficit. In this study, we focused on a Japanese sorghum landrace Takakibi (NOG) and employed chlorophyll fluorescence measurements to assess its response to environmental stress. Comparison of photosynthetic rate evaluated using two parameters (effective quantum yield and electron transfer rate) indicated that NOG showed less activity than BTx623 in the pre-flowering stage, which was consistent with the higher susceptibility of NOG seedlings to drought than BTx623. The observed differences in photosynthetic activity between the two cultivars were detectable without drought conditions on days with high temperature and strong light. Interestingly, the photosynthetic activity of NOG leaves in stress conditions increased soon after heading, and the trend was similar to that in BTx642, a well-characterized post-flowering drought-tolerant cultivar. In contrast, BTx623 showed a gradual decline in photosynthetic rate. Thus, we inferred that Japanese Takakibi has the potential to show pre-flowering drought susceptibility and post-flowering drought tolerance, through which it adapts to local climates with high temperature and strong light at harvest.
Collapse
Affiliation(s)
- Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, Japan
| | - Fiona Wacera W
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, Japan
| |
Collapse
|
37
|
Ogbaga CC, Athar HUR. The need to incorporate fast and slow relaxation kinetic parameters into photosynthesis-measuring systems. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
38
|
Plastid terminal oxidase requires translocation to the grana stacks to act as a sink for electron transport. Proc Natl Acad Sci U S A 2018; 115:9634-9639. [PMID: 30181278 DOI: 10.1073/pnas.1719070115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The plastid terminal oxidase (PTOX) has been shown to be an important sink for photosynthetic electron transport in stress-tolerant plants. However, overexpression studies in stress-sensitive species have previously failed to induce significant activity of this protein. Here we show that overexpression of PTOX from the salt-tolerant brassica species Eutrema salsugineum does not, alone, result in activity, but that overexpressing plants show faster induction and a greater final level of PTOX activity once exposed to salt stress. This implies that an additional activation step is required before activity is induced. We show that that activation involves the translocation of the protein from the unstacked stromal lamellae to the thylakoid grana and a protection of the protein from trypsin digestion. This represents an important activation step and opens up possibilities in the search for stress-tolerant crops.
Collapse
|
39
|
Sarker U, Oba S. Drought Stress Effects on Growth, ROS Markers, Compatible Solutes, Phenolics, Flavonoids, and Antioxidant Activity in Amaranthus tricolor. Appl Biochem Biotechnol 2018; 186:999-1016. [PMID: 29804177 DOI: 10.1007/s12010-018-2784-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/13/2018] [Indexed: 01/10/2023]
Abstract
Four selected Amaranthus tricolor cultivars were grown under four irrigation regimes (25, 50, 80, and 100% field capacity) to evaluate the mechanisms of growth and physiological and biochemical responses against drought stress in randomized complete block design with three replications. Drought stress led to decrease in total biomass, specific leaf area, relative water content (RWC), photosynthetic pigments (chlorophyll a, chlorophyll b, chlorophyll ab), and soluble protein and increase in MDA, H2O2, EL, proline, total carotenoid, ascorbic acid, polyphenols, flavonoids, and antioxidant activity. However, responses of these parameters were differential in respect to cultivars and the degree of drought stresses. No significant difference was observed in control and LDS for most of the traits. The cultivars VA14 and VA16 were identified as more tolerant to drought and could be used for further evaluations in future breeding programs and new cultivar release programs. Positively significant correlations among MDA, H2O2, compatible solutes, and non-enzymatic antioxidant (proline, TPC, TFC, and TAC) suggested that compatible solutes and non-enzymatic antioxidant played vital role in detoxifying of ROS in A. tricolor cultivar. The increased content of ascorbic acid indicated the crucial role of the ASC-GSH cycle for scavenging ROS in A. tricolor.
Collapse
Affiliation(s)
- Umakanta Sarker
- The United Graduate School of Agricultural Science, Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shinya Oba
- The United Graduate School of Agricultural Science, Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
40
|
Aswathy SK, Sridar R, Sivakumar U. Mitigation of drought in rice by a phyllosphere bacterium Bacillus altitudinis FD48. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajmr2017.8610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Ogbaga CC, Stepien P, Athar HUR, Ashraf M. Engineering Rubisco activase from thermophilic cyanobacteria into high-temperature sensitive plants. Crit Rev Biotechnol 2017; 38:559-572. [DOI: 10.1080/07388551.2017.1378998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chukwuma C. Ogbaga
- Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Piotr Stepien
- Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Habib-Ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
42
|
Rivas R, Frosi G, Ramos DG, Pereira S, Benko-Iseppon AM, Santos MG. Photosynthetic limitation and mechanisms of photoprotection under drought and recovery of Calotropis procera, an evergreen C 3 from arid regions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:589-599. [PMID: 28793281 DOI: 10.1016/j.plaphy.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/23/2017] [Accepted: 07/30/2017] [Indexed: 05/18/2023]
Abstract
Calotropis procera is a C3 plant native from arid environmental zones. It is an evergreen, shrubby, non-woody plant with intense photosynthetic metabolism during the dry season. We measured photosynthetic parameters and leaf biochemical traits, such as gas exchange, photochemical parameters, A/Ci analysis, organic solutes, and antioxidant enzymes under controlled conditions in potted plants during drought stress, and following recovery conditions to obtain a better insight in the drought stress responses of C. procera. Indeed, different processes contribute to the drought stress resilience of C. procera and to the fast recovery after rehydration. The parameters analyzed showed that C. procera has a high efficiency for energy dissipation. The photosynthetic machinery is protected by a robust antioxidant system and photoprotective mechanisms such as alternative pathways for electrons (photorespiration and day respiration). Under severe drought stress, increased stomatal limitation and decreased biochemical limitation permitted C. procera to maintain maximum rate of Rubisco carboxylation (Vc,max) and photosynthetic rate (Amax). On the other hand, limitation of stomatal or mesophyll CO2 diffusion did not impair fast recovery, maintaining Vc,max, chloroplast CO2 concentration (Cc) and mesophyll conductance (gm) unchanged while electron flow used for RuBP carboxylation (Jc) and Amax increased. The ability to tolerate drought stress and the fast recovery of this evergreen C3 species was also due to leaf anti-oxidative stress enzyme activity, and photosynthetic pigments. Thus, these different drought tolerance mechanisms allowed high performance of photosynthetic metabolism by drought stressed plants during the re-watering period.
Collapse
Affiliation(s)
- Rebeca Rivas
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Fisiologia Vegetal, 50670-901 Recife, PE, Brazil
| | - Gabriella Frosi
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Fisiologia Vegetal, 50670-901 Recife, PE, Brazil
| | - Diego G Ramos
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Fisiologia Vegetal, 50670-901 Recife, PE, Brazil
| | - Silvia Pereira
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Fisiologia Vegetal, 50670-901 Recife, PE, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Departamento de Genética, Laboratório Genética e Biotecnologia Vegetal, 50670-901 Recife, PE, Brazil
| | - Mauro G Santos
- Universidade Federal de Pernambuco, Departamento de Botânica, Laboratório de Fisiologia Vegetal, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
43
|
Lima Neto MC, Cerqueira JVA, da Cunha JR, Ribeiro RV, Silveira JAG. Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:650-659. [PMID: 28403551 DOI: 10.1111/plb.12573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 05/11/2023]
Abstract
Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water-stressed plants is scarcely addressed. This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration. Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (Vcmax ) and the maximum photosynthetic electron transport rate driving RuBP regeneration (Jmax ) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD). Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought.
Collapse
Affiliation(s)
- M C Lima Neto
- UNESP - Biosciences Institute, São Paulo State University - UNESP, Coastal Campus, Praça Infante Dom Henrique s/n, São Vicente, São Paulo, Brazil
| | - J V A Cerqueira
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - J R da Cunha
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - J A G Silveira
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
44
|
Naylor D, Coleman-Derr D. Drought Stress and Root-Associated Bacterial Communities. FRONTIERS IN PLANT SCIENCE 2017; 8:2223. [PMID: 29375600 PMCID: PMC5767233 DOI: 10.3389/fpls.2017.02223] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/18/2017] [Indexed: 05/20/2023]
Abstract
Root-associated bacterial communities play a vital role in maintaining health of the plant host. These communities exist in complex relationships, where composition and abundance of community members is dependent on a number of factors such as local soil chemistry, plant genotype and phenotype, and perturbations in the surrounding abiotic environment. One common perturbation, drought, has been shown to have drastic effects on bacterial communities, yet little is understood about the underlying causes behind observed shifts in microbial abundance. As drought may affect root bacterial communities both directly by modulating moisture availability, as well as indirectly by altering soil chemistry and plant phenotypes, we provide a synthesis of observed trends in recent studies and discuss possible directions for future research that we hope will provide for more knowledgeable predictions about community responses to future drought events.
Collapse
Affiliation(s)
- Dan Naylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- *Correspondence: Devin Coleman-Derr,
| |
Collapse
|
45
|
Nyarukowa C, Koech R, Loots T, Apostolides Z. SWAPDT: A method for Short-time Withering Assessment of Probability for Drought Tolerance in Camellia sinensis validated by targeted metabolomics. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:39-48. [PMID: 27137993 DOI: 10.1016/j.jplph.2016.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Climate change is causing droughts affecting crop production on a global scale. Classical breeding and selection strategies for drought-tolerant cultivars will help prevent crop losses. Plant breeders, for all crops, need a simple and reliable method to identify drought-tolerant cultivars, but such a method is missing. Plant metabolism is often disrupted by abiotic stress conditions. To survive drought, plants reconfigure their metabolic pathways. Studies have documented the importance of metabolic regulation, i.e. osmolyte accumulation such as polyols and sugars (mannitol, sorbitol); amino acids (proline) during drought. This study identified and quantified metabolites in drought tolerant and drought susceptible Camellia sinensis cultivars under wet and drought stress conditions. For analyses, GC-MS and LC-MS were employed for metabolomics analysis.%RWC results show how the two drought tolerant and two drought susceptible cultivars differed significantly (p≤0.05) from one another; the drought susceptible exhibited rapid water loss compared to the drought tolerant. There was a significant variation (p<0.05) in metabolite content (amino acid, sugars) between drought tolerant and drought susceptible tea cultivars after short-time withering conditions. These metabolite changes were similar to those seen in other plant species under drought conditions, thus validating this method. The Short-time Withering Assessment of Probability for Drought Tolerance (SWAPDT) method presented here provides an easy method to identify drought tolerant tea cultivars that will mitigate the effects of drought due to climate change on crop losses.
Collapse
Affiliation(s)
- Christopher Nyarukowa
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Robert Koech
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Tea Research Institute (TRI), P.O. Box 820-20200, Kericho, Kenya
| | - Theodor Loots
- Department of Statistics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Zeno Apostolides
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
46
|
Ogbaga CC, Stepien P, Dyson BC, Rattray NJW, Ellis DI, Goodacre R, Johnson GN. Biochemical Analyses of Sorghum Varieties Reveal Differential Responses to Drought. PLoS One 2016; 11:e0154423. [PMID: 27153323 PMCID: PMC4859509 DOI: 10.1371/journal.pone.0154423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/13/2016] [Indexed: 12/17/2022] Open
Abstract
We have examined the biochemical responses of two sorghum cultivars of differing drought tolerance, Samsorg 17 (more drought tolerant) and Samsorg 40 (less drought tolerant), to sustained drought. Plants were exposed to different degrees of drought and then maintained at that level for five days. Responses were examined in terms of metabolic changes and the expression of drought induced proteins-Heat Shock Proteins (HSPs) and dehydrins (DHNs). Generalised phenotypic changes were studied using Fourier transform infrared (FT-IR) Spectroscopy and non-targeted Gas Chromatography Mass Spectrometry (GC-MS) was employed to detect changes in metabolites, while changes in protein expression were examined using Western blot analysis. Different response profiles of metabolites, HSPs and DHNs were observed in the two cultivars. Metabolic changes involved variation in amino acids, polysaccharides and their derivatives. A total of 188 compounds, with 142 known metabolites and 46 unknown small molecules, were detected in the two sorghum varieties. Under water deficit conditions, Samsorg 17 accumulated sugars and sugar alcohols, while in Samsorg 40 amino acids increased in concentration. This study suggest that the two Sorghum varieties adopt distinct approaches in response to drought, with Samsorg 17 being better able to maintain leaf function under severe drought conditions.
Collapse
Affiliation(s)
- Chukwuma C. Ogbaga
- The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, United Kingdom
| | - Piotr Stepien
- The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, United Kingdom
- Wroclaw University of Environmental and Life Sciences, Department of Plant Nutrition, ul. Grunwaldzka, Wroclaw, Poland
| | - Beth C. Dyson
- The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, United Kingdom
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, United Kingdom
| | - Nicholas J. W. Rattray
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, United Kingdom
| | - David I. Ellis
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, United Kingdom
| | - Royston Goodacre
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, United Kingdom
| | - Giles N. Johnson
- The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
47
|
Sutka MR, Manzur ME, Vitali VA, Micheletto S, Amodeo G. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:13-20. [PMID: 26803215 DOI: 10.1016/j.jplph.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 05/26/2023]
Abstract
Sorghum bicolor (L.) Moench is an ancient drought-tolerant crop with potential to sustain high yields even in those environments where water is limiting. Understanding the performance of this species in early phenological stages could be a useful tool for future yield improvement programs. The aim of this work was to study the response of Sorghum seedlings under water deficit conditions in two genotypes (RedLandB2 and IS9530) that are currently employed in Argentina. Morphological and physiological traits were studied to present an integrated analysis of the shoot and root responses. Although both genotypes initially developed a conserved and indistinguishable response in terms of drought tolerance parameters (growth rate, biomass reallocation, etc.), water regulation displayed different underlying strategies. To avoid water loss, both genotypes adjusted their plant hydraulic resistance at different levels: RedLandB2 regulated shoot resistance through stomata (isohydric strategy), while IS9530 controlled root resistance (anisohydric strategy). Moreover, only in IS9530 was root hydraulic conductance restricted in the presence of HgCl2, in agreement with water movement through cell-to-cell pathways and aquaporins activity. The different responses between genotypes suggest a distinct strategy at the seedling stage and add new information that should be considered when evaluating Sorghum phenotypic plasticity in changing environments.
Collapse
Affiliation(s)
- Moira R Sutka
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Milena E Manzur
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Victoria A Vitali
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Sandra Micheletto
- CERZOS-CONICET, Camino La Carrindanga Km 7, (8000) Bahía Blanca, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina.
| |
Collapse
|
48
|
Chen D, Wang S, Xiong B, Cao B, Deng X. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor. PLoS One 2015; 10:e0137026. [PMID: 26317421 PMCID: PMC4552878 DOI: 10.1371/journal.pone.0137026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence.
Collapse
Affiliation(s)
- Daoqian Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Binglin Xiong
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Beibei Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Deng
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
49
|
Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety. PLoS One 2015; 10:e0117073. [PMID: 25692547 PMCID: PMC4333122 DOI: 10.1371/journal.pone.0117073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by drought stress in both GM and non-GM varieties to a similar extent. Though DKC6575 (GM) had a greater sensitivity in the early phase of stress response as compared with Tietar (non-GM), after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised drought stress condition showed an up-regulation of many stress-responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding heat shock proteins, late embryogenesis abundant proteins and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein) in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by drought stress, but was expressed at a constant level. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene.
Collapse
|