1
|
Souza TOD, Assis LDSD, Marques DDS, Coelho ALDF, Cecon PR, Borges AC. High-loaded tidal flow constructed wetlands coupled with microbial fuel cells: effects of the vegetation and filling material size. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66445-66462. [PMID: 39630389 DOI: 10.1007/s11356-024-35622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
The sanitation resource recovery is a contemporary strategy fully in line with the concept of the circular economy. The by-products from constructed wetlands technology include treated water, nutrients, biomass and energy. The aim of the present study was to evaluate the sewage treatment and resources recovery in constructed wetlands operating in a tidal flow configuration, coupled with microbial fuel cells (MFC). The following factors were evaluated: two types of filling material (gravel #0 and #1) and two cultivated species, Pennisetum purpureum sp. (BRS capiaçu elephant grass) and Musa spp. (dwarf cavendish banana). The treatment cycle in each CW lasted a total of 8 h. An increase in the levels of dissolved oxygen was seen due to the tidal flow configuration, enabling the biochemical processes to remove contaminants and produce an electric current. Acceptable removal efficiency was seen for most monitored parameters. The mean values for the COD output concentration were 119, 109, 117 and 98 mg L-1; removal efficiency 80%, 83%, 80% and 82%; and for wetlands with banana in gravel #1 (BG1), banana in gravel #0 (BG0), capiaçu in gravel #1 (CG1) and capiaçu in gravel #0 (CG0), respectively. The plant and type of filling material affected the performance of the CW, with the CG0 system being the most efficient in COD removal, and standing out for productivity. The plant and filling material affected energy production in the MFC, where the CG0 CW was again the most efficient, with maximum values of up to 970 mV. The results show that tidal flow CW can function with reduced cycle times and, if coupled with MFC, are able to produce energy. This study integrates high-load tidal flow CW with MFC at a pilot scale, offering combined benefits of wastewater treatment and energy generation. By using locally adapted species, the research provides valuable insights into optimising system performance and understanding the impact of tidal flow cycles, enhancing the practical application of CW with MFC in tropical regions.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Roberto Cecon
- Federal University of Viçosa, Ave PH Rolfs Sn, Viçosa, Minas Gerais, 36570900, Brazil
| | | |
Collapse
|
2
|
Lu Q, Xu J, Zhang R, Liu H, Wang M, Liu X, Yue Z, Gao Y. RiceSNP-ABST: a deep learning approach to identify abiotic stress-associated single nucleotide polymorphisms in rice. Brief Bioinform 2024; 26:bbae702. [PMID: 39757606 DOI: 10.1093/bib/bbae702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025] Open
Abstract
Given the adverse effects faced by rice due to abiotic stresses, the precise and rapid identification of single nucleotide polymorphisms (SNPs) associated with abiotic stress traits (ABST-SNPs) in rice is crucial for developing resistant rice varieties. The scarcity of high-quality data related to abiotic stress in rice has hindered the development of computational models and constrained research efforts aimed at rice improvement and breeding. Genome-wide association studies provide a better statistical power to consider ABST-SNPs in rice. Meanwhile, deep learning methods have shown their capability in predicting disease- or phenotype-associated loci, but have primarily focused on human species. Therefore, developing predictive models for identifying ABST-SNPs in rice is both urgent and valuable. In this paper, a model called RiceSNP-ABST is proposed for predicting ABST-SNPs in rice. Firstly, six training datasets were generated using a novel strategy for negative sample construction. Secondly, four feature encoding methods were proposed based on DNA sequence fragments, followed by feature selection. Finally, convolutional neural networks with residual connections were used to determine whether the sequences contained rice ABST-SNPs. RiceSNP-ABST outperformed traditional machine learning and state-of-the-art methods on the benchmark dataset and demonstrated consistent generalization on an independent dataset and cross-species datasets. Notably, multi-granularity causal structure learning was employed to elucidate the relationships among DNA structural features, aiming to identify key genetic variants more effectively. The web-based tool for the RiceSNP-ABST can be accessed at http://rice-snp-abst.aielab.cc.
Collapse
Affiliation(s)
- Quan Lu
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
| | - Jiajun Xu
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
| | - Renyi Zhang
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
| | - Hangcheng Liu
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
| | - Meng Wang
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
| | - Xiaoshuang Liu
- Research Center for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
- Research Center for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
| | - Yujia Gao
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
- Research Center for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui Province 230036, China
| |
Collapse
|
3
|
Wang W, Man Z, Li X, Zhao Y, Chen R, Pan T, Wang L, Dai X, Xiao H, Liu F. Multi-phenotype response and cadmium detection of rice stem under toxic cadmium exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170585. [PMID: 38301779 DOI: 10.1016/j.scitotenv.2024.170585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Rice stem is the sole conduit for cadmium translocation from underground to aboveground. The presence of cadmium can trigger responses of rice stem multi-phenotype, affecting metabolism, reducing yield, and altering composition, which is related to crop growth, food safety, and new energy utilization. Exploring the adversity response of plant phenotypes can provide a reliable assessment of growth status. However, the phytotoxicity and mechanism of cadmium stress on rice stem remain unclear. Here, we systematically revealed the response mechanisms of cadmium accumulation, adversity physiology, and morphological characteristic in rice stem under cadmium stress for the first time with concentration gradients of CK, 5, 25, 50, and 100 μM, and duration gradients of Day 5, Day 10, Day 15, and Day 20. The results indicated that cadmium stress led to a significant increase in cadmium accumulation, accompanied by the adversity response in stem phenotypes. Specifically, cadmium can cause fluctuations in soluble protein and disturbance of malondialdehyde (MDA), which reflects lipid peroxidation induced by cadmium accumulation. Lipid peroxidation inhibited rice growth by causing (1) a reduction in stem length, diameter, and weight, (2) suppression of air cavity, vascular bundle, parenchyma, and epidermal hair, and (3) disruption of cell structure. Furthermore, rapid detection of cadmium was realized based on the combination of laser-induced breakdown spectroscopy (LIBS) and machine learning, which took less than 3 min. The established qualitative model realized the precise discrimination of cadmium stress degrees with a prediction accuracy exceeding 92 %, and the quantitative model achieved the outstanding prediction effect of cadmium, with Rp of 0.9944. This work systematically revealed the phytotoxicity of cadmium on rice stem multi-phenotype from a novel perspective of lipid peroxidation and realized the rapid detection of cadmium in rice stem, which provided the technical tool and theoretical foundation for accurate prevention and efficient control of heavy metal risks in crops.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zun Man
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaolong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiying Zhao
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tiantian Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Leiping Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiaorong Dai
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Renziehausen T, Frings S, Schmidt-Schippers R. 'Against all floods': plant adaptation to flooding stress and combined abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1836-1855. [PMID: 38217848 DOI: 10.1111/tpj.16614] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024]
Abstract
Current climate change brings with it a higher frequency of environmental stresses, which occur in combination rather than individually leading to massive crop losses worldwide. In addition to, for example, drought stress (low water availability), also flooding (excessive water) can threaten the plant, causing, among others, an energy crisis due to hypoxia, which is responded to by extensive transcriptional, metabolic and growth-related adaptations. While signalling during flooding is relatively well understood, at least in model plants, the molecular mechanisms of combinatorial flooding stress responses, for example, flooding simultaneously with salinity, temperature stress and heavy metal stress or sequentially with drought stress, remain elusive. This represents a significant gap in knowledge due to the fact that dually stressed plants often show unique responses at multiple levels not observed under single stress. In this review, we (i) consider possible effects of stress combinations from a theoretical point of view, (ii) summarize the current state of knowledge on signal transduction under single flooding stress, (iii) describe plant adaptation responses to flooding stress combined with four other abiotic stresses and (iv) propose molecular components of combinatorial flooding (hypoxia) stress adaptation based on their reported dual roles in multiple stresses. This way, more future emphasis may be placed on deciphering molecular mechanisms of combinatorial flooding stress adaptation, thereby potentially stimulating development of molecular tools to improve plant resilience towards multi-stress scenarios.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| |
Collapse
|
5
|
Menon-Martínez FE, Grimoldi AA, Striker GG, Di Bella CE. Changes in morphological traits associated with waterlogging, salinity and saline waterlogging in Festuca arundinacea. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 38035377 DOI: 10.1071/fp23140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Rising incidences of waterlogging and salinity, particularly in extensive livestock farming areas, pose increasing challenges to plant growth. This study investigated the morphological growth responses and tolerance of 39 Festuca arundinacea accessions to these stresses, with tolerance quantified by the relative growth rate under stress versus control conditions. Notably, more productive accessions under normal conditions also showed greater stress tolerance. Waterlogging was generally well-tolerated (89-113% of control relative growth rate), without significantly altering growth morphological components as increases in specific leaf area were offset by reductions in leaf weight ratio, maintaining stable leaf area ratios. Conversely, salinity and combined saline waterlogging significantly reduced relative growth rate (56-94% of control), with a substantial variation among accessions. A decrease in specific leaf area, suggestive of thicker leaves, correlated with higher tolerance to salinity and saline waterlogging (r =0.63). In summary, F. arundinacea displays diverse tolerance to these stresses, warranting further study into the adaptive mechanisms. Specific leaf area emerges as a potential selection marker for breeding programs targeting saline and waterlogging tolerance.
Collapse
Affiliation(s)
- Federico Emanuel Menon-Martínez
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Forrajicultura, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Alberto Grimoldi
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Forrajicultura, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Gabriel Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Fisiología Vegetal, Departamento Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; and School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Carla Estefania Di Bella
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Forrajicultura, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Martins TS, Da-Silva CJ, Shabala S, Striker GG, Carvalho IR, de Oliveira ACB, do Amarante L. Understanding plant responses to saline waterlogging: insights from halophytes and implications for crop tolerance. PLANTA 2023; 259:24. [PMID: 38108902 DOI: 10.1007/s00425-023-04275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
MAIN CONCLUSION Saline and wet environments stress most plants, reducing growth and yield. Halophytes adapt with ion regulation, energy maintenance, and antioxidants. Understanding these mechanisms aids in breeding resilient crops for climate change. Waterlogging and salinity are two abiotic stresses that have a major negative impact on crop growth and yield. These conditions cause osmotic, ionic, and oxidative stress, as well as energy deprivation, thus impairing plant growth and development. Although few crop species can tolerate the combination of salinity and waterlogging, halophytes are plant species that exhibit high tolerance to these conditions due to their morphological, anatomical, and metabolic adaptations. In this review, we discuss the main mechanisms employed by plants exposed to saline waterlogging, intending to understand the mechanistic basis of their ion homeostasis. We summarize the knowledge of transporters and channels involved in ion accumulation and exclusion, and how they are modulated to prevent cytosolic toxicity. In addition, we discuss how reactive oxygen species production and cell signaling enhance ion transport and aerenchyma formation, and how plants exposed to saline waterlogging can control oxidative stress. We also address the morphological and anatomical modifications that plants undergo in response to combined stress, including aerenchyma formation, root porosity, and other traits that help to mitigate stress. Furthermore, we discuss the peculiarities of halophyte plants and their features that can be leveraged to improve crop yields in areas prone to saline waterlogging. This review provides valuable insights into the mechanisms of plant adaptation to saline waterlogging thus paving the path for future research on crop breeding and management strategies.
Collapse
Affiliation(s)
- Tamires S Martins
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Cristiane J Da-Silva
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
- Department of Horticultural Science, NC State University, Raleigh, USA.
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Perth, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Gustavo G Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, Australia
| | - Ivan R Carvalho
- Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, Brazil
| | | | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| |
Collapse
|
7
|
Kuanar SR, Sarkar RK, Panigrahi R, Mohapatra PK. Introgression of SUB1 aggravates the susceptibility of the popular rice cultivars Swarna and Savitri to stagnant flooding. Sci Rep 2023; 13:9032. [PMID: 37270542 DOI: 10.1038/s41598-023-35251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Identification of the Sub1 gene for tolerance to flash flooding and its introgression into high-yielding rice cultivars are major targets in rice breeding for flood-prone rice agro-ecosystems for ensuring yield stability. However, knowledge is scant on the response of the modified genotypes under stagnant flooding (SF) to meet the challenge of finding a superior allele that may confer greater resilience to the plant under a stress-prone environment. In pursuance, we have tested the response of Sub1-introgression in two popular rice varieties, Swarna and Savitri to SF by comparing the biochemical factors in the control of flag leaf senescence and its primary production mechanisms of the parental lines' versus Sub1-introgressed lines. The activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GR), and ascorbate peroxidase (APX) increased while various parameters of primary production like total chlorophyll content, stomatal conductance (gs), normalized difference vegetation index (NDVI) and photosynthetic activity (Pn) decreased progressively with passage of time in the flag leaf of the cultivars during the post-anthesis period and SF-treatment increased the enzyme activity while depressing primary production further. Introgression of Sub1 had no influence on these activities under control conditions but widened the margin of effects under SF. It was concluded that the functional ability of flag leaf in mega rice cultivars like Swarna and Savitri decreased significantly by SF because of an ethylene-mediated promotion of senescence of the flag leaf. The enhancement of antioxidant enzyme activity by SF could not sustain the stability of primary production in the flag leaf. The introgression of the Sub1 gene made the cultivars more vulnerable to SF because the gene induced overexpression of ethylene.
Collapse
Affiliation(s)
- Sandhya Rani Kuanar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Anchal College, Padampur, 768036, India
| | | | - Rashmi Panigrahi
- School of Life Science, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | | |
Collapse
|
8
|
Martins TDS, Da-Silva CJ, Shimoia EP, Posso DA, Carvalho IR, de Oliveira ACB, do Amarante L. Nitrate supply decreases fermentation and alleviates oxidative and ionic stress in nitrogen-fixing soybean exposed to saline waterlogging. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:416-433. [PMID: 37038091 DOI: 10.1071/fp22145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Nitrate (NO3 - ) nutrition is known to mitigate the damages caused by individual stresses of waterlogging and salinity. Here, we investigated the role of NO3 - in soybean plants exposed to these stresses in combination. Nodulated soybean cultivated under greenhouse conditions and daily fertilised with a nutrient solution without nitrogen were subjected to the following treatments: Water, NO3 - , NaCl, and NaCl+NO3 - . Then, plants were exposed to waterlogging (6days) and drainage (2days). Compared to plants exposed to isolated stress, the saline waterlogging resulted in higher concentrations of H2 O2 , O2 ˙- , and lipid peroxidation at the whole-plant level, mainly during drainage. Furthermore, saline waterlogging increased fermentation and the concentrations of Na+ and K+ in roots and leaves both during waterlogging and drainage. NO3 - supplementation led to augments in NO3 - and NO levels, and stimulated nitrate reductase activity in both organs. In addition, NO3 - nutrition alleviated oxidative stress and fermentation besides increasing the K+ /Na+ ratio in plants exposed to saline waterlogging. In conclusion, NO3 - supplementation is a useful strategy to help soybean plants overcome saline waterlogging stress. These findings are of high relevance for agriculture as soybean is an important commodity and has been cultivated in areas prone to saline waterlogging.
Collapse
Affiliation(s)
| | | | | | - Douglas Antônio Posso
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| | - Ivan Ricardo Carvalho
- Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí 98700-000, Brazil
| | | | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil
| |
Collapse
|
9
|
Tamura K, Bono H. Meta-Analysis of RNA Sequencing Data of Arabidopsis and Rice under Hypoxia. Life (Basel) 2022; 12:1079. [PMID: 35888167 PMCID: PMC9317734 DOI: 10.3390/life12071079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Hypoxia is an abiotic stress in plants. Flooding resulting from climate change is a major crop threat that increases the risk of hypoxic stress. The molecular mechanisms underlying hypoxia in plants were elucidated in recent years, but new genes related to this stress remain to be discovered. Thus, we aimed to perform a meta-analysis of the RNA sequencing (RNA-Seq) data of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) under hypoxia. We collected 29 (Arabidopsis) and 26 (rice) pairs of RNA-Seq data involving hypoxic (including submergence) and normoxic (control) treatments and extracted the genes that were commonly upregulated or downregulated in the majority of the experiments. The meta-analysis revealed 40 and 19 commonly upregulated and downregulated genes, respectively, in the two species. Several WRKY transcription factors and cinnamate-4-hydroxylase were commonly upregulated, but their involvement in hypoxia remains unclear. Our meta-analysis identified candidate genes for novel molecular mechanisms in plants under hypoxia.
Collapse
Affiliation(s)
- Keita Tamura
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan;
- Laboratory of BioDX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan;
- Laboratory of BioDX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan
| |
Collapse
|
10
|
Radha B, Sunitha NC, Sah RP, T P MA, Krishna GK, Umesh DK, Thomas S, Anilkumar C, Upadhyay S, Kumar A, Ch L N M, S B, Marndi BC, Siddique KHM. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:996514. [PMID: 36714754 PMCID: PMC9874338 DOI: 10.3389/fpls.2022.996514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Abiotic stresses adversely affect rice yield and productivity, especially under the changing climatic scenario. Exposure to multiple abiotic stresses acting together aggravates these effects. The projected increase in global temperatures, rainfall variability, and salinity will increase the frequency and intensity of multiple abiotic stresses. These abiotic stresses affect paddy physiology and deteriorate grain quality, especially milling quality and cooking characteristics. Understanding the molecular and physiological mechanisms behind grain quality reduction under multiple abiotic stresses is needed to breed cultivars that can tolerate multiple abiotic stresses. This review summarizes the combined effect of various stresses on rice physiology, focusing on grain quality parameters and yield traits, and discusses strategies for improving grain quality parameters using high-throughput phenotyping with omics approaches.
Collapse
Affiliation(s)
- Beena Radha
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, Vellayani, Thiruvananthapuram, Kerala, India
| | | | - Rameswar P Sah
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Md Azharudheen T P
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - G K Krishna
- Department of Plant Physiology, Kerala Agricultural University-College of Agriculture, Thrissur, Kerala, India
| | - Deepika Kumar Umesh
- Mulberry Breeding & Genetics Section, Central Sericultural Research and Training Institute-Berhampore, Central Silk Board, Murshidabad, West Bengal, India
| | - Sini Thomas
- Department of Plant Physiology, Kerala Agricultural University-Regional Agricultural Research Station, Kumarakom, Kerala, India
| | - Chandrappa Anilkumar
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Sameer Upadhyay
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Awadhesh Kumar
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Manikanta Ch L N
- Department of Plant Physiology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Behera S
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Bishnu Charan Marndi
- Division of Crop Production, Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India
| | - Kadambot H M Siddique
- The University of Western Australia Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Kumar V, Kumar Srivastava A, Wani SH, Shriram V, Penna S. Transcriptional and post-transcriptional mechanisms regulating salt tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1291-1294. [PMID: 34842287 DOI: 10.1111/ppl.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Shabir H Wani
- Genetics and Plant Breeding, Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, J&K, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Akurdi, Pune, India
| | - Suprasanna Penna
- Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
12
|
Chattopadhyay K, Chakraborty K, Samal P, Sarkar RK. Identification of QTLs for stagnant flooding tolerance in rice employing genotyping by sequencing of a RIL population derived from Swarna × Rashpanjor. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2893-2909. [PMID: 35035143 PMCID: PMC8720131 DOI: 10.1007/s12298-021-01107-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 05/04/2023]
Abstract
UNLABELLED In lowland rice ecosystems stagnant flooding or partial submergence has a significant negative impact on important yield attributing traits resulting in substantial grain yield reduction. Genetics of this stress is not yet studied intensively. Rashpanjor (IC 575321), a landrace from India, was identified and used as the tolerant donor for stagnant flooding and was crossed with high yielding variety Swarna to develop the RIL population for the present investigation. Yield and yield attributing traits of 180 F2:8 lines in rainfed non-stressed and stressed (stagnant flooding with 45 ± 5 cm standing water) conditions were recorded in the wet season of 2018 and stress susceptibility and tolerance indices of yield component traits were deduced. Homo-polymorphic high-quality SNPs between two parents derived from genotyping by sequencing were employed and 17 putative QTLs for plant height, shoot elongation, panicle number, grain weight, panicle length in control and stagnant flooding conditions were identified. Tolerance and susceptibility indexes for these traits were detected in chromosomes 1, 3, 4, 5, 6, 10, 11, and 12 with PVE ranging from 6.53 to 57.89%. Two major QTLs clusters were found for stress susceptibility index of grain and panicle weight on chromosome 1 and plant height in non-stress condition and stress tolerance index of elongation ability on chromosome 3. Putative functional genes present either in associated non-synonymous SNPs or inside the QTL regions were also predicted. Some of them were directly associated with ethylene biosynthesis and encoding auxin responsive factors for better adaptation under stagnant flooding and also coded for different transcription factors viz. NAC domain-binding protein, WRKY gene family, and MYB class known for ROS scavenging and production of metabolites to enhance tolerance to stagnant flooding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01107-x.
Collapse
Affiliation(s)
| | - Koushik Chakraborty
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | - Prabhudatta Samal
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Ramani Kumar Sarkar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|