1
|
Liang Y, Wei J, Shen J, Liang Z, Ma X, Du Y, Qian W, Dong H, Huang P, Chen A, Yi C. Immunological pathogenesis and treatment progress of adenovirus pneumonia in children. Ital J Pediatr 2025; 51:4. [PMID: 39789604 PMCID: PMC11715079 DOI: 10.1186/s13052-024-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Human adenovirus is an infectious agent that causes respiratory infections in adults and children. It has been found that immunocompromised children are highly susceptible to this pathogen, as it can swiftly evolve into severe pneumonia with multiple sequelae. Due to the lack of immunity in children, the body's response mechanisms to innate and acquired immunity are specialized. We first examined the infection classification and clinical characteristics associated with adenovirus in children. Subsequently, we explored the in-depth understanding of the pathogenic mechanism of adenovirus pneumonia in children, focusing on immunological and cellular biological aspects. Adenovirus infection in children can disrupt the balance of the innate immune response, inducing immune cells to secrete an abundance of pro-inflammatory cytokines. This cascade results in a cytokine storm, which triggers an inflammatory response and causes lung tissue damage. As a result, the infection may progress to a severe state, potentially leading to multi-organ failure. Immunocompromised children exhibit impaired immune cell numbers and functions, which affects both the secretion of antibodies to humoral immunity and the immune response of cellular immunity to adenovirus. Lastly, we reviewed the progress in treating adenovirus pneumonia in children. There are many treatments for adenovirus pneumonia in children, which must be personalized based on a thorough assessment to optimize treatment outcomes. Recent advancements in pharmaceutical development have provided new treatment options for children. Immunomodulatory therapy can reduce inflammation in children, while adjuvant therapy can improve respiratory function; however, it can also lead to complications. Further, co-infections increased the complexity of diagnosis and treatment, necessitating dynamic adjustments to treatment regimens. This review could serve as the basis for identifying potential therapeutic approaches to alleviate the symptoms associated with adenovirus infections in children.
Collapse
Affiliation(s)
- Yaowen Liang
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Wei
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjun Shen
- Department of Chinese Medicine, The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihao Liang
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiuchang Ma
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuchen Du
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxian Qian
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Dong
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Huang
- Department of Hepatology, The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China.
| | - Apeng Chen
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Changhua Yi
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Schild H, Bopp T. [Immunological foundations of neurological diseases]. DER NERVENARZT 2024; 95:894-908. [PMID: 38953921 DOI: 10.1007/s00115-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Neurodegenerative diseases represent an increasing challenge in ageing societies, as only limited treatment options are currently available. OBJECTIVE New research methods and interdisciplinary interaction of different disciplines have changed the way neurological disorders are viewed and paved the way for the comparatively new field of neuroimmunology, which was established in the early 1980s. Starting from neurological autoimmune diseases, such as multiple sclerosis, knowledge about the involvement of immunological processes in other contexts, such as stroke or traumatic brain injury, has been significantly expanded in recent years. MATERIAL AND METHODS This review article provides an overview of the role of the immune system and the resulting potential for novel treatment approaches. RESULTS The immune system plays a central role in fighting infections but is also able to react to the body's own signals under sterile conditions and cause inflammation and subsequent adaptive immune responses through the release of immune mediators and the recruitment and differentiation of certain immune cell types. This can be beneficial in initiating healing processes; however, chronic inflammatory conditions usually have destructive consequences for the tissue and the organism and must be interrupted. CONCLUSION It is now known that different cells of the immune system play an important role in neurological diseases. Regulatory mechanisms, which are mediated by regulatory T cells or Th2 cells, are usually associated with a good prognosis, whereas inflammatory processes and polarization towards Th1 or Th17 have a destructive character. Novel immunomodulators, which are also increasingly being used in cancer treatment, can now be used in a tissue-specific manner and therefore offer great potential for use in neurological diseases.
Collapse
Affiliation(s)
- Hansjörg Schild
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - Tobias Bopp
- Institut für Immunologie, Universitätsmedizin Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| |
Collapse
|
3
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024; 96:20-41. [PMID: 39233381 PMCID: PMC11579829 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
| | - Yngvar Gundersen
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Kristian Opstad
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of PsychologyUniversity of BergenBergenNorway
| | - Anders Hugoson
- Department of Periodontology, Institute of OdontologyThe Sahlgrenska Academy at University of Gothenburg and School of Health and WelfareGothenburgSweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
4
|
Alkaff FF, Lammerts RGM, Daha MR, Berger SP, van den Born J. Apical tubular complement activation and the loss of kidney function in proteinuric kidney diseases. Clin Kidney J 2024; 17:sfae215. [PMID: 39135935 PMCID: PMC11318052 DOI: 10.1093/ckj/sfae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 08/15/2024] Open
Abstract
Many kidney diseases are associated with proteinuria. Since proteinuria is independently associated with kidney function loss, anti-proteinuric medication, often in combination with dietary salt restriction, comprises a major cornerstone in the prevention of progressive kidney failure. Nevertheless, complete remission of proteinuria is very difficult to achieve, and most patients with persistent proteinuria slowly progress toward kidney failure. It is well-recognized that proteinuria leads to kidney inflammation and fibrosis via various mechanisms. Among others, complement activation at the apical side of the proximal tubular epithelial cells is suggested to play a crucial role as a cause of progressive loss of kidney function. However, hitherto limited attention is given to the pathophysiological role of tubular complement activation relative to glomerular complement activation. This review aims to summarize the evidence for tubular epithelial complement activation in proteinuric kidney diseases in relation to loss of kidney function.
Collapse
Affiliation(s)
- Firas F Alkaff
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Rosa G M Lammerts
- Transplantation Immunology, Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Dørflinger GH, Holt CB, Thiel S, Bech JN, Østergaard JA, Bjerre M. Mannan-Binding Lectin Is Associated with Inflammation and Kidney Damage in a Mouse Model of Type 2 Diabetes. Int J Mol Sci 2024; 25:7204. [PMID: 39000309 PMCID: PMC11241296 DOI: 10.3390/ijms25137204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Autoreactivity of the complement system may escalate the development of diabetic nephropathy. We used the BTBR OB mouse model of type 2 diabetes to investigate the role of the complement factor mannan-binding lectin (MBL) in diabetic nephropathy. Female BTBR OB mice (n = 30) and BTBR non-diabetic WT mice (n = 30) were included. Plasma samples (weeks 12 and 21) and urine samples (week 19) were analyzed for MBL, C3, C3-fragments, SAA3, and markers for renal function. Renal tissue sections were analyzed for fibrosis, inflammation, and complement deposition. The renal cortex was analyzed for gene expression (complement, inflammation, and fibrosis), and isolated glomerular cells were investigated for MBL protein. Human vascular endothelial cells cultured under normo- and hyperglycemic conditions were analyzed by flow cytometry. We found that the OB mice had elevated plasma and urine concentrations of MBL-C (p < 0.0001 and p < 0.001, respectively) and higher plasma C3 levels (p < 0.001) compared to WT mice. Renal cryosections from OB mice showed increased MBL-C and C4 deposition in the glomeruli and increased macrophage infiltration (p = 0.002). Isolated glomeruli revealed significantly higher MBL protein levels (p < 0.001) compared to the OB and WT mice, and no renal MBL expression was detected. We report that chronic inflammation plays an important role in the development of DN through the binding of MBL to hyperglycemia-exposed renal cells.
Collapse
Affiliation(s)
- Gry H. Dørflinger
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (G.H.D.); (C.B.H.)
- Department of Internal Medicine, Regional Hospital Gødstrup, 7400 Herning, Denmark;
| | - Charlotte B. Holt
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (G.H.D.); (C.B.H.)
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Jesper N. Bech
- Department of Internal Medicine, Regional Hospital Gødstrup, 7400 Herning, Denmark;
- University Clinic in Nephrology and Hypertension, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Jakob A. Østergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Steno Diabetes Center Aarhus, 8200 Aarhus, Denmark
| | - Mette Bjerre
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (G.H.D.); (C.B.H.)
| |
Collapse
|
6
|
Zhou B, Zhang Y, Ni M, Bai Y, Shi Q, Zheng J, Cui Z. The involvement of VEGF and VEGFR in bacterial recognition and regulation of antimicrobial peptides in Eriocheir sinensis. Int J Biol Macromol 2024; 270:132242. [PMID: 38729487 DOI: 10.1016/j.ijbiomac.2024.132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Vascular endothelial growth factor (VEGF) and VEGF reporter (VEGFR) are essential molecules in VEGF signalling pathway. Although the functions of VEGF and VEGFR have been well reported in vertebrates, their functions are still poorly understood in invertebrates. In this study, the open reading frame sequences of EsVEGF1 and EsVEGFR4 were cloned from Eriocheir sinensis, and their corresponding proteins shared typical structure characteristics with their counterparts in other species. EsVEGF1 were predominantly expressed in hepatopancreas and muscle while EsVEGFR4 mainly expressed in hemocytes and intestine. The expression levels of EsVEGF1 in hemocytes were rapidly induced by Staphylococcus aureus and Vibrio parahaemolyticus, and it also increased rapidly in hepatopancreas after being challenged with V. parahaemolyticus. The expression levels of EsVEGFR4 only increased in hepatopancreas of crabs injected with S. aureus. The extracellular immunoglobulin domain of EsVEGFR4 could bind with Gram-negative and Gram-positive bacteria as well as lipopolysaccharide and peptidoglycan. EsVEGF1 could act as the ligand for EsVEGFR4 and Toll-like receptor and regulate the expression of crustins and lysozyme with a tissue-specific manner, while have no regulatory function on that of anti-lipopolysaccharide factors. This study will provide new insights into the immune defense mechanisms mediated by VEGF and VEGFR in crustaceans.
Collapse
Affiliation(s)
- Bin Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yi Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Mengqi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yunhui Bai
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Qiao Shi
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
7
|
Jiang D, Shao Y, Zhang S, Li C. A2M possesses anti-bacterial functions by recruiting and enhancing phagocytosis through GRP78 in an echinoderm. Int J Biol Macromol 2024; 265:131016. [PMID: 38513908 DOI: 10.1016/j.ijbiomac.2024.131016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Alpha-2-macroglobulin (A2M) is an extracellular macromolecule mainly known for its role as a broad-spectrum protease inhibitor in mammals. However, the immune recognition and regulation mechanisms of A2M in invertebrates are still not well investigated. In the current study, the role of sea cucumber Apostichopus japonicus A2M in the regulation of innate immune responses was explored. We found that AjA2M promotes phagocytosis of Vibrio splendidus in coelomocytes of sea cucumber. Then two major functional structural domains of AjA2M, the thioester domain (TED) and the receptor-binding structural domain (RBD) were cloned. It was found that the AjA2M-TED binds to pathogens while causing Vibrio splendidus aggregation; the AjA2M-RBD interacts with the Glucose Regulated Protein 78 (AjGRP78), subsequently AjGRP78 accelerates the degradation of Vibrio splendidus in lysosomes by facilitating polymerisation and rearrangement of the cytoskeleton. Collectively, the findings together suggest that A2M-GRP78 axis mediates immune signaling pathway of phagocytosis and AjA2M has been characterized to play an essential crucial role in antibacterial immune responses of invertebrates.
Collapse
Affiliation(s)
- Danni Jiang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
8
|
Cedzyński M, Świerzko AS. Collectins and ficolins in neonatal health and disease. Front Immunol 2023; 14:1328658. [PMID: 38193083 PMCID: PMC10773719 DOI: 10.3389/fimmu.2023.1328658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The immune system starts to develop early in embryogenesis. However, at birth it is still immature and associated with high susceptibility to infection. Adaptation to extrauterine conditions requires a balance between colonization with normal flora and protection from pathogens. Infections, oxidative stress and invasive therapeutic procedures may lead to transient organ dysfunction or permanent damage and perhaps even death. Newborns are primarily protected by innate immune mechanisms. Collectins (mannose-binding lectin, collectin-10, collectin-11, collectin-12, surfactant protein A, surfactant protein D) and ficolins (ficolin-1, ficolin-2, ficolin-3) are oligomeric, collagen-related defence lectins, involved in innate immune response. In this review, we discuss the structure, specificity, genetics and role of collectins and ficolins in neonatal health and disease. Their clinical associations (protective or pathogenic influence) depend on a variety of variables, including genetic polymorphisms, gestational age, method of delivery, and maternal/environmental microflora.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | | |
Collapse
|
9
|
Sudeep HV, Gouthamchandra K, Ramanaiah I, Raj A, Naveen P, Shyamprasad K. A standardized extract of Echinacea purpurea containing higher chicoric acid content enhances immune function in murine macrophages and cyclophosphamide-induced immunosuppression mice. PHARMACEUTICAL BIOLOGY 2023; 61:1211-1221. [PMID: 37585723 PMCID: PMC10416741 DOI: 10.1080/13880209.2023.2244000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/08/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
CONTEXT Preparations of Echinacea have been used by herbalists to boost the immune system. OBJECTIVE In this study, Echinacea purpurea (L.) Moench (Asteraceae) extract with enriched chicoric acid content was investigated for immunomodulation. MATERIALS AND METHODS The standardized hydroalcoholic extract (4% chicoric acid) was prepared from the aerial parts of E. purpurea (SEP). The extract was screened for in vitro antioxidant activities, and immunomodulation in RAW 264.7 cells, at 200 and 400 µg/mL. Further, the male BALB/c mice (20-25 g) were divided into 4 groups (n = 6 per group). All the groups except control, were intraperitoneally injected with 70 mg/kg/day of cyclophosphamide (CTX) for 4 consecutive days. The treatment groups received SEP extract (100 and 200 mg/kg body weight) p.o. from day 5 to 14. RESULTS The SEP extract inhibited DPPH (IC50 = 106.7 µg/mL), ABTS+ (IC50 = 19.88 µg/mL) and nitric oxide (IC50 = 120.1 µg/mL). The SEP extract's ORAC (oxygen radical absorbance capacity) value was 1931.63 µM TE/g. In RAW 264.7 cells, SEP extract increased the nitric oxide production by 30.76- and 39.07-fold at 200 and 400 µg/mL, respectively, compared to the untreated cells. SEP extract significantly increased phagocytosis and cytokine release (TNF-α, IL-6, and IL-1β) in the cells. Further, the extract improved immune organ indices, lymphocyte proliferation and serum cytokine levels in CTX-induced mice. The extract at 200 mg/kg significantly increased the natural killer cell activity (24.6%) and phagocytic index (28.03%) of CTX mice. CONCLUSION Our results strongly support SEP extract with 4% chicoric acid as a functional ingredient for immunomodulation.
Collapse
Affiliation(s)
| | | | - Illuri Ramanaiah
- R&D Center for Excellence, Vidya Herbs Pvt Ltd, Bangalore, India
| | - Amritha Raj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd, Bangalore, India
| | | | | |
Collapse
|
10
|
Athni TS, Barmettler S. Hypogammaglobulinemia, late-onset neutropenia, and infections following rituximab. Ann Allergy Asthma Immunol 2023; 130:699-712. [PMID: 36706910 PMCID: PMC10247428 DOI: 10.1016/j.anai.2023.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Rituximab is a chimeric anti-CD20 monoclonal antibody that targets CD20-expressing B lymphocytes, has a well-defined efficacy and safety profile, and is broadly used to treat a wide array of diseases. In this review, we cover the mechanism of action of rituximab and focus on hypogammaglobulinemia and late-onset neutropenia-2 immune effects secondary to rituximab-and subsequent infection. We review risk factors and highlight key considerations for immunologic monitoring and clinical management of rituximab-induced secondary immune deficiencies. In patients treated with rituximab, monitoring for hypogammaglobulinemia and infections may help to identify the subset of patients at high risk for developing poor B cell reconstitution, subsequent infections, and adverse complications. These patients may benefit from early interventions such as vaccination, antibacterial prophylaxis, and immunoglobulin replacement therapy. Systematic evaluation of immunoglobulin levels and peripheral B cell counts by flow cytometry, both at baseline and periodically after therapy, is recommended for monitoring. In addition, in those patients with prolonged hypogammaglobulinemia and increased infections after rituximab use, immunologic evaluation for inborn errors of immunity may be warranted to further risk stratification, increase monitoring, and assist in therapeutic decision-making. As the immunologic effects of rituximab are further elucidated, personalized approaches to minimize the risk of adverse reactions while maximizing benefit will allow for improved care of patients with decreased morbidity and mortality.
Collapse
Affiliation(s)
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
11
|
Gu X, Chen A, You M, Guo H, Tan S, He Q, Hu B. Extracellular vesicles: a new communication paradigm of complement in neurological diseases. Brain Res Bull 2023; 199:110667. [PMID: 37192717 DOI: 10.1016/j.brainresbull.2023.110667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/25/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
The complement system is crucial to the innate immune system. It has the function of destroying pathogens by activating the classical, alternative, and lectin pathways. The complement system is important in nervous system diseases such as cerebrovascular and neurodegenerative diseases. Activation of the complement system involves a series of intercellular signaling and cascade reactions. However, research on the source and transport mechanisms of the complement system in neurological diseases is still in its infancy. Studies have increasingly found that extracellular vesicles (EVs), a classic intercellular communication paradigm, may play a role in complement signaling disorders. Here, we systematically review the EV-mediated activation of complement pathways in different neurological diseases. We also discuss the prospect of EVs as future immunotherapy targets.
Collapse
Affiliation(s)
- Xinmei Gu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Hongxiu Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022.
| |
Collapse
|
12
|
Ding X, Qamar A, Liu H. The complement system testing in clinical laboratory. Clin Chim Acta 2023; 541:117238. [PMID: 36746263 DOI: 10.1016/j.cca.2023.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
With the advancement in research in the field of the complement system, a more comprehensive understanding developed about the complement system's role in the life process of an organism. It is a system of innate immune surveillance. This system plays a pivotal role in host defense against pathogens, inflammation, B and T cell homeostasis. Complement system analysis has a significant advantage in the assessment of the immune system status, diagnosis and prognosis of diseases, and medication guidelines. Currently, complement system testing is neither yet widely used across all clinical laboratoriesnor are the testing protocols yet systematic. Based on the current research, it is suggested that the analysis of complement activator-activated complement activity and total complement activity would be comprehensively assessed to evaluate the complement system's immunological function, and combine of the detection of its components to establish a systematic protocol for the complement system testing in the clinical laboratory. This article reviews the complement system's physiological role, disease relevance and the current testing status in clinical laboratories. Further more, some suggestions have also been provided for the preparation of complement standards i.e., the standardized preparation process for complement standards seems to be a feasible option given the easy inactivation of complement.
Collapse
Affiliation(s)
- Xuewei Ding
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Ayub Qamar
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
13
|
Jiang Q, Palombo V, Sherlock DN, Vailati-Riboni M, D’Andrea M, Yoon I, Loor JJ. Alterations in ileal transcriptomics during an intestinal barrier challenge in lactating Holstein cows fed a Saccharomyces cerevisiae fermentation product identify potential regulatory processes. J Anim Sci 2023; 101:skad277. [PMID: 37616596 PMCID: PMC10576520 DOI: 10.1093/jas/skad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Stressors such as lack of access to feed, hot temperatures, transportation, and pen changes can cause impairment of ruminal and intestinal barrier function, also known as "leaky gut". Despite the known benefits of some nutritional approaches during periods of stress, little is understood regarding the underlying mechanisms, especially in dairy cows. We evaluated the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) on the ileal transcriptome in response to feed restriction (FR), an established model to induce intestinal barrier dysfunction. Multiparous cows [97.1 ± 7.6 days in milk (DIM); n = 5/group] fed a control diet or control plus 19 g/d SCFP for 9 wk were subjected to an FR challenge for 5 d during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR, and ileal scrapping RNA was used for RNAseq (NovaSeq 6000, 100 bp read length). Statistical analysis was performed in R and bioinformatics using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO databases. One thousand six hundred and ninety-six differentially expressed genes (DEG; FDR-adjusted P ≤ 0.10) were detected in SCFP vs. control, with 451 upregulated and 1,245 downregulated. "Mucin type O-glycan biosynthesis" was the top downregulated KEGG pathway due to downregulation of genes catalyzing glycosylation of mucins (GCNT3, GALNT5, B3GNT3, GALNT18, and GALNT14). An overall downregulation of cell and tissue structure genes (e.g., extracellular matrix proteins) associated with collagen (COL6A1, COL1A1, COL4A1, COL1A2, and COL6A2), laminin (LAMB2), and integrins (ITGA8, ITGA2, and ITGA5) also were detected with SCFP. A subset of DEG enriched in the GO term "extracellular exosome" and "extracellular space". Chemokines within "Cytokine-cytokine receptor interaction pathways" such as CCL16, CCL21, CCL14, CXCL12, and CXCL14 were downregulated by SCFP. The "Glutathione metabolism" pathway was upregulated by SCFP, including GSTA1 and RRM2B among the top upregulated genes, and GSTM1 and GPX8 as top downregulated genes. There were 9 homeobox transcription factors among the top 50 predicted transcription factors using the RNAseq DEG dataset, underscoring the importance of cell differentiation as a potential target of dietary SCFP. Taken together, SCFP downregulated immune-, ECM-, and mucin synthesis-related genes during FR. Homeobox transcription factors appear important for the transcriptional response of SCFP.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | - Danielle N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | | | | | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| |
Collapse
|
14
|
Joshua PE, Yahaya J, Ekpo DE, Ogidigo JO, Odiba AS, Asomadu RO, Oka SA, Adeniyi OS. Modulation of immunological responses by aqueous extract of Datura stramonium L. seeds on cyclophosphamide-induced immunosuppression in Wistar rats. BMC Immunol 2022; 23:50. [PMID: 36261807 PMCID: PMC9583546 DOI: 10.1186/s12865-022-00519-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Datura stramonium L. (Solanaceae) is used traditionally in west Africa to treat asthma, epilepsy, rheumatoid arthritis, filariasis microbial infections and conjunctivitis. This study investigated the immunomodulatory effects of aqueous seed extract of D. stramonium L. (ASEDS) on Wistar rats. METHODS Thirty Wistar albino rats (180-200 g) were randomized into 6 groups (n = 5). Group 1 received distilled water only. Rats in groups 2-6 were pretreated with 10 mg/kg body weight (b.w.) Cyclophosphamide orally for 27-days to induce immunosuppression. Thereafter, they received treatment orally for 28 days as follows: Group 2 (distilled water), group 3 (5 mg/kg b.w. Levamisole), groups 4-6 (60, 90 and 120 mg/kg b.w. ASEDS, respectively). HPLC was used to determine major compounds in ASEDS. The effects of ASEDS on immune cells, immunoglobulins A, G and M levels, lipoproteins, and antioxidant status of rats were evaluated. RESULTS ASEDS indicated high content of Acutumine, Quinine, Catechin, Chlorogenic acid, Gallic acid, Quercetin, Vanillic acid, Luteolin, Formosanin C, Saponin, Cyanidin, Tannic acid, 3-Carene, Limonene and α-terpineol. Cyclophosphamide triggered significant (p < 0.05) reduction in total leucocyte count and differentials, IgA, IgG, high-density lipoproteins (HDL), catalase, superoxide dismutase, glutathione peroxidase, vitamins A, C and E levels of untreated rats. Administration of ASEDS led to significant (p < 0.05) improvement in immune cell counts, immunoglobulin synthesis, high-density lipoprotein concentration, and antioxidant status of rats in the treated groups. CONCLUSIONS The results obtained from the study showed the immunomodulatory activity of ASEDS, thereby indicating its potential in immunostimulatory drug discovery.
Collapse
Affiliation(s)
- Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001 Nsukka, Enugu State Federal Republic of Nigeria
| | - Junaidu Yahaya
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001 Nsukka, Enugu State Federal Republic of Nigeria
- Department of Human Physiology, Faculty of Basic Medical Sciences, Colleges of Health Sciences, Kogi State University, P.M.B. 1008, Anyigba, Kogi State Federal Republic of Nigeria
| | - Daniel Emmanuel Ekpo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001 Nsukka, Enugu State Federal Republic of Nigeria
| | - Joyce Oloaigbe Ogidigo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001 Nsukka, Enugu State Federal Republic of Nigeria
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Federal Capital Territory, Abuja, Federal Republic of Nigeria
| | - Arome Solomon Odiba
- Department of Molecular Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, 410001 Nsukka, Enugu State Federal Republic of Nigeria
- Department of Biochemistry, College of Life Science and Technology, Guangxi University, Nanning, 530007 People’s Republic of China
- National Engineering Research Centre for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530007 People’s Republic of China
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001 Nsukka, Enugu State Federal Republic of Nigeria
| | - Samson Ayodeji Oka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, 410001 Nsukka, Enugu State Federal Republic of Nigeria
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Colleges of Health Sciences, Kogi State University, P.M.B. 1008, Anyigba, Kogi State Federal Republic of Nigeria
| | - Olasupo Stephen Adeniyi
- Department of Physiology, Faculty of Basic and Allied Medical Sciences, Benue State University, Makurdi, Benue State Federal Republic of Nigeria
| |
Collapse
|
15
|
Pan L, Peng C, Wang L, Li L, Huang S, Fei C, Wang N, Chu F, Peng D, Duan X. Network pharmacology and experimental validation-based approach to understand the effect and mechanism of Taohong Siwu Decoction against ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115339. [PMID: 35525530 DOI: 10.1016/j.jep.2022.115339] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (THSWD) is a classic prescription of traditional Chinese medicine that is mainly used for promoting blood circulation and alleviating blood stasis. THSWD is composed of Prunus persica (L.) Batsch, Carthamus tinctorius L., Ligusticum chuanxiong hort, Angelica sinensis (Oliv.) Diels, Rehmannia glutinosa (Gaertn.) DC, and Paeoniae Radix Alba. This prescription eliminates blood stasis, supplements blood, and dredges the body as an auxiliary treatment. AIM OF THE STUDY To investigate the mechanistic effects of THSWD in the treatment of cerebral ischemia. MATERIALS AND METHODS we downloaded 39 blood components for THSWD from the PharmMapper database for target prediction studies and identified the targets of cerebral ischemia. We identified the intersection between the components and targets, constructed a protein-protein interaction (PPI) network, carried out GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. a rat model of cerebral ischemia was established in rats, and the results of network pharmacology were verified by in vivo experiments. RESULTS Established a component-target-pathway network, further transcriptomics analysis identified a total of 11 target genes (Plau, Fabp4, Mmp9, Mmp12, Cfd, Lcn2, Trem1, Lgals3, Hmox1, Selp and Slc6a4), a total of seven pathways (focal adhesion, complement and coagulation cascades, Staphylococcus aureus infection, malaria, transcriptional dysregulation in cancer, progesterone-mediated oocyte maturation, and the PI3K-Akt signaling pathway), because both targets genes and the complement and coagulation cascade signaling pathways mediate inflammatory responses, the signaling pathways associated with the complement and coagulation cascades were selected for experimental verification. We detected inflammatory factors and several key proteins in the complement and coagulation cascade signaling pathway (C1qb, C1qc, C3ar1, C5ar1, and Cfd). Analysis showed that THSWD can reduce the release of inflammatory factors and inhibit activation of the complement signaling pathways, thereby protecting against ischemic stroke disease. CONCLUSIONS Our findings provide preliminary clarification of the predominant mechanism of action of THSWD when used to treat ischemic stroke.
Collapse
Affiliation(s)
- Lingyu Pan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lili Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shi Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Changyi Fei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ni Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Furui Chu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xianchun Duan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
16
|
Chaudhary N, Jayaraman A, Reinhardt C, Campbell JD, Bosmann M. A single-cell lung atlas of complement genes identifies the mesothelium and epithelium as prominent sources of extrahepatic complement proteins. Mucosal Immunol 2022; 15:927-939. [PMID: 35672453 PMCID: PMC9173662 DOI: 10.1038/s41385-022-00534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023]
Abstract
To understand functional duality of the complement system in host defense and lung injury, a more comprehensive view of its localized production in the lung, and the impact of age on complement production are essential. Here, we explored the expression of complement genes through computational analysis of preexisting single cell RNA sequencing data from lung transcriptomes of healthy young (3 months) and old C57BL/6 mice (24 months), and humans. We characterized the distribution of 48 complement genes. Across 28 distinct immune and non-immune cell types in mice, mesothelial cells expressed the greatest number of complement genes (e.g., C1ra, C2, C3), and regulators (e.g., Serping1, Cfh). C5 was abundant in type II alveolar epithelial cells and C1q in interstitial lung macrophages. There were only moderate differences in gene expression between young and old mice. Among 57 human lung cell types, mesothelial cells showed abundant complement expression. A few differences in gene expression (e.g., FCN1, CFI, C6, C7) were also evident between mice and human lung cells. Our findings present a novel perspective on the expression patterns of complement genes in normal lungs. These findings highlight the potential functions of complement in tissue-specific homeostasis and immunity and may foster a mechanistic understanding of its role in lung health and disease.
Collapse
Affiliation(s)
- Neha Chaudhary
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Archana Jayaraman
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Joshua D Campbell
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
17
|
Brix N, Glerup M, Thiel S, Mistegaard CE, Skals RG, Berntson L, Fasth A, Nielsen SM, Nordal E, Rygg M, Hasle H, Albertsen BK, Herlin T. M-ficolin: a valuable biomarker to identify leukaemia from juvenile idiopathic arthritis. Arch Dis Child 2022; 107:371-376. [PMID: 34686494 PMCID: PMC8938675 DOI: 10.1136/archdischild-2021-322114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/06/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Distinction on clinical grounds between acute lymphoblastic leukaemia presenting with arthropathy (ALLarthropathy) and juvenile idiopathic arthritis (JIA) is difficult, as the clinical and paraclinical signs of leukaemia may be vague. The primary aim was to examine the use of lectin complement pathway proteins as markers to differentiate ALLarthropathy from JIA. The secondary aims were to compare the protein levels at baseline and follow-up in a paired number of children with ALL and to examine the correlation with haematology counts, erythrocyte sedimentation reaction (ESR), C-reactive protein (CRP), blasts, relapse and death. STUDY DESIGN In this observational study, we measured M-ficolin, CL-K1 and MASP-3 in serum from children with ALL (n=151) and JIA (n=238) by time-resolved immunofluorometric assays. Logistic regression was used for predictions of ALL risk, considering the markers as the respective exposures. We performed internal validation using repeated '10-fold cross-validation' with 100 repetitions computing the area under the curve (AUC) as well as positive and negative predictive values in order to evaluate the predictive performance. RESULTS The level of M-ficolin was higher in JIA than ALLtotal and the ALLarthropathy subgroup. The M-ficolin level normalised after remission of ALL. M-ficolin could differentiate ALL from JIA with an AUC of 94% and positive predictive value (PPV) of 95%, exceeding CRP and haemoglobin. In a dichotomised predictive model with optimal cut-offs for M-ficolin, platelets and haemoglobin, AUC was 99% and PPV 98% in detecting ALL from JIA. CONCLUSION M-ficolin is a valuable marker to differentiate the child with ALL from JIA.
Collapse
Affiliation(s)
- Ninna Brix
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Pediatrics and Adolescent Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Mia Glerup
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Clara Elbæk Mistegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | - Lillemor Berntson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anders Fasth
- Department of Pediatrics, University of Gothenburg Institute of Clinical Sciences, Goteborg, Sweden
| | - Susan Mary Nielsen
- Department of Pediatrics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ellen Nordal
- Department of Pediatrics, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marite Rygg
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Klug Albertsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Troels Herlin
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Heurich M, Föcking M, Mongan D, Cagney G, Cotter DR. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol Psychiatry 2022; 27:127-140. [PMID: 34226666 PMCID: PMC8256396 DOI: 10.1038/s41380-021-01197-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Early identification and treatment significantly improve clinical outcomes of psychotic disorders. Recent studies identified protein components of the complement and coagulation systems as key pathways implicated in psychosis. These specific protein alterations are integral to the inflammatory response and can begin years before the onset of clinical symptoms of psychotic disorder. Critically, they have recently been shown to predict the transition from clinical high risk to first-episode psychosis, enabling stratification of individuals who are most likely to transition to psychotic disorder from those who are not. This reinforces the concept that the psychosis spectrum is likely a central nervous system manifestation of systemic changes and highlights the need to investigate plasma proteins as diagnostic or prognostic biomarkers and pathophysiological mediators. In this review, we integrate evidence of alterations in proteins belonging to the complement and coagulation protein systems, including the coagulation, anticoagulation, and fibrinolytic pathways and their dysregulation in psychosis, into a consolidated mechanism that could be integral to the progression and manifestation of psychosis. We consolidate the findings of altered blood proteins relevant for progression to psychotic disorders, using data from longitudinal studies of the general population in addition to clinical high-risk (CHR) individuals transitioning to psychotic disorder. These are compared to markers identified from first-episode psychosis and schizophrenia as well as other psychosis spectrum disorders. We propose the novel hypothesis that altered complement and coagulation plasma levels enhance their pathways' activating capacities, while low levels observed in key regulatory components contribute to excessive activation observed in patients. This hypothesis will require future testing through a range of experimental paradigms, and if upheld, complement and coagulation pathways or specific proteins could be useful diagnostic or prognostic tools and targets for early intervention and preventive strategies.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Melanie Föcking
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Cotter
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
19
|
Abstract
Elderly individuals with chronic disorders tend to develop inflammaging, a condition associated with elevated levels of blood inflammatory markers, and increased susceptibility to chronic disease progression. Native and adaptive immunity are both involved in immune system senescence, kidney fibrosis and aging. The innate immune system is characterized by a limited number of receptors, constantly challenged by self and non-self stimuli. Circulating and kidney resident myeloid and lymphoid cells are all equipped with pattern recognition receptors (PRRs). Recent reports on PRRs show kidney overexpression of toll-like receptors (TLRs) in inflammaging autoimmune renal diseases, vasculitis, acute kidney injury and kidney transplant rejection. TLR upregulation leads to proinflammatory cytokine induction, fibrosis, and chronic kidney disease progression. TLR2 blockade in a murine model of renal ischemia reperfusion injury prevented the escape of natural killer cells and neutrophils by inflammaging kidney injury. Tumor necrosis factor-α blockade in endothelial cells with senescence-associated secretory phenotype significantly reduced interleukin-6 release. These findings should encourage experimental and translational clinical trials aimed at modulating renal inflammaging by native immunity blockade.
Collapse
|
20
|
Zewde NT, Hsu RV, Morikis D, Palermo G. Systems Biology Modeling of the Complement System Under Immune Susceptible Pathogens. FRONTIERS IN PHYSICS 2021; 9:603704. [PMID: 35145963 PMCID: PMC8827490 DOI: 10.3389/fphy.2021.603704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The complement system is assembled from a network of proteins that function to bring about the first line of defense of the body against invading pathogens. However, complement deficiencies or invasive pathogens can hijack complement to subsequently increase susceptibility of the body to infections. Moreover, invasive pathogens are increasingly becoming resistant to the currently available therapies. Hence, it is important to gain insights into the highly dynamic interaction between complement and invading microbes in the frontlines of immunity. Here, we developed a mathematical model of the complement system composed of 670 ordinary differential equations with 328 kinetic parameters, which describes all three complement pathways (alternative, classical, and lectin) and includes description of mannose-binding lectin, collectins, ficolins, factor H-related proteins, immunoglobulin M, and pentraxins. Additionally, we incorporate two pathogens: (type 1) complement susceptible pathogen and (type 2) Neisseria meningitidis located in either nasopharynx or bloodstream. In both cases, we generate time profiles of the pathogen surface occupied by complement components and the membrane attack complex (MAC). Our model shows both pathogen types in bloodstream are saturated by complement proteins, whereas MACs occupy <<1.0% of the pathogen surface. Conversely, the MAC production in nasopharynx occupies about 1.5-10% of the total N. meningitidis surface, thus making nasal MAC levels at least about eight orders of magnitude higher. Altogether, we predict complement-imbalance, favoring overactivation, is associated with nasopharynx homeostasis. Conversely, orientating toward complement-balance may cause disruption to the nasopharynx homeostasis. Thus, for sporadic meningococcal disease, our model predicts rising nasal levels of complement regulators as early infection biomarkers.
Collapse
Affiliation(s)
- Nehemiah T. Zewde
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Rohaine V. Hsu
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Correspondence: Giulia Palermo, , Dimitrios Morikis,
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- Correspondence: Giulia Palermo, , Dimitrios Morikis,
| |
Collapse
|
21
|
Bumiller-Bini V, de Freitas Oliveira-Toré C, Carvalho TM, Kretzschmar GC, Gonçalves LB, Alencar NDM, Gasparetto MA, Beltrame MH, Winter Boldt AB. MASPs at the crossroad between the complement and the coagulation cascades - the case for COVID-19. Genet Mol Biol 2021; 44:e20200199. [PMID: 33729332 PMCID: PMC7982787 DOI: 10.1590/1678-4685-gmb-2020-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Components of the complement system and atypical parameters of coagulation were reported in COVID-19 patients, as well as the exacerbation of the inflammation and coagulation activity. Mannose binding lectin (MBL)- associated serine proteases (MASPs) play an important role in viral recognition and subsequent activation of the lectin pathway of the complement system and blood coagulation, connecting both processes. Genetic variants of MASP1 and MASP2 genes are further associated with different levels and functional efficiency of their encoded proteins, modulating susceptibility and severity to diseases. Our review highlights the possible role of MASPs in SARS-COV-2 binding and activation of the lectin pathway and blood coagulation cascades, as well as their associations with comorbidities of COVID-19. MASP-1 and/or MASP-2 present an increased expression in patients with COVID-19 risk factors: diabetes, arterial hypertension and cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and cerebrovascular disease. Based also on the positive results of COVID-19 patients with anti-MASP-2 antibody, we propose the use of MASPs as a possible biomarker of the progression of COVID-19 and the investigation of new treatment strategies taking into consideration the dual role of MASPs, including MASP inhibitors as promising therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Valéria Bumiller-Bini
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
| | - Camila de Freitas Oliveira-Toré
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Medicina Interna e Ciências da Saúde, Laboratório de Imunopatologia Molecular, Curitiba, PR, Brazil
| | - Tamyres Mingorance Carvalho
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
- Universidade Federal do Paraná, Departamento de Genética, Laboratório de Citogenética Humana e Oncogenética, Curitiba, PR, Brazil
| | - Gabriela Canalli Kretzschmar
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
| | - Letícia Boslooper Gonçalves
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Imunogenética e Histocompatibilidade (LIGH), Curitiba, PR, Brazil
| | - Nina de Moura Alencar
- Fundação Oswaldo Cruz (Fiocruz), Instituto Carlos Chagas, Programa de Pós-Graduação em Biociências e Biotecnologia, Laboratório de Virologia Molecular, Curitiba, PR, Brazil
| | - Miguel Angelo Gasparetto
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| | - Marcia Holsbach Beltrame
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| | - Angelica Beate Winter Boldt
- Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil
| |
Collapse
|
22
|
Immune System Evasion Mechanisms in Staphylococcus aureus: Current Understanding. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that may cause a wide range of infections and is a frequent cause of soft tissue and bloodstream infections. It is a successful pathogen due to its collective virulence factors and its ability to evade the host immune systems. The review aims to highlight how S. aureus destroys and damage the host cells and explains how immune cells can respond to this pathogen. This review may also provide new insights that may be useful for developing new strategy for combating MRSA and its emerging clones such as community-associated methicillin-resistant S. aureus (CA-MRSA).
Collapse
|
23
|
Matzen JS, Krogh CL, Forman JL, Garred P, Møller K, Bache S. Lectin complement pathway initiators after subarachnoid hemorrhage - an observational study. J Neuroinflammation 2020; 17:338. [PMID: 33183322 PMCID: PMC7661172 DOI: 10.1186/s12974-020-01979-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Background This exploratory study investigated the time-course of lectin complement pathway (LCP) initiators in cerebrospinal fluid (CSF) and plasma in patients with subarachnoid hemorrhage (SAH), as well as their relationship to delayed cerebral ischemia (DCI) and functional outcome. Methods Concentrations of ficolin-1, ficolin-2, ficolin-3, and mannose-binding lectin (MBL) were analyzed in CSF and plasma from patients with SAH. Samples were collected daily from admission until day 9 (CSF; N_PATIENTS = 63, n_SAMPLES = 399) and day 8 (plasma; N_PATIENTS = 50, n_SAMPLES = 358), respectively. Twelve neurologically healthy patients undergoing spinal anesthesia and 12 healthy blood donors served as controls. The development of DCI during hospitalization and functional outcome at 3 months (modified Rankin Scale) were registered for patients. Results On admission, CSF levels of all LCP initiators were increased in SAH patients compared with healthy controls. Levels declined gradually over days in patients; however, a biphasic course was observed for ficolin-1. Increased CSF levels of all LCP initiators were associated with a poor functional outcome in univariate analyses. This relationship persisted for ficolin-1 and MBL in multivariate analysis after adjustments for confounders (age, sex, clinical severity, distribution and amount of blood on CT-imaging) and multiple testing (1.87 ng/mL higher in average, 95% CI, 1.17 to 2.99 and 1.69 ng/mL higher in average, 95% CI, 1.09 to 2.63, respectively). In patients who developed DCI compared with those without DCI, CSF levels of ficolin-1 and MBL tended to increase slightly more over time (p_interaction = 0.021 and 0.033, respectively); however, no association was found after adjustments for confounders and multiple testing (p-adj_interaction = 0.086 and 0.098, respectively). Plasma ficolin-1 and ficolin-3 were lower in SAH patients compared with healthy controls on all days. DCI and functional outcome were not associated with LCP initiator levels in plasma. Conclusion Patients with SAH displayed elevated CSF levels of ficolin-1, ficolin-2, ficolin-3, and MBL. Increased CSF levels of ficolin-1 and MBL were associated with a poor functional outcome. Trial registration This study was a retrospective analysis of samples, which had been prospectively sampled and stored in a biobank. Registered at clinicaltrials.gov (NCT01791257, February 13, 2013, and NCT02320539, December 19, 2014). Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-01979-y.
Collapse
Affiliation(s)
- Jeppe Sillesen Matzen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark.
| | - Charlotte Loumann Krogh
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Bache
- Department of Neuroanaesthesiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
24
|
Natali EN, Principato S, Ferlicca F, Bianchi F, Fontana LE, Faleri A, Pansegrau W, Surdo PL, Bartolini E, Santini L, Brunelli B, Giusti F, Veggi D, Ferlenghi I, Norais N, Scarselli M. Synergic complement-mediated bactericidal activity of monoclonal antibodies with distinct specificity. FASEB J 2020; 34:10329-10341. [PMID: 32725956 DOI: 10.1096/fj.201902795r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
The classical complement pathway is triggered when antigen-bound immunoglobulins bind to C1q through their Fc region. While C1q binds to a single Fc with low affinity, a higher avidity stable binding of two or more of C1q globular heads initiates the downstream reactions of the complement cascade ultimately resulting in bacteriolysis. Synergistic bactericidal activity has been demonstrated when monoclonal antibodies recognize nonoverlapping epitopes of the same antigen. The aim of the present work was to investigate the synergistic effect between antibodies directed toward different antigens. To this purpose, we investigated the bactericidal activity induced by combinations of monoclonal antibodies (mAbs) raised against factor H-binding protein (fHbp) and Neisserial Heparin-Binding Antigen (NHBA), two major antigens included in Bexsero, the vaccine against Meningococcus B, for prevention from this devastating disease in infants and adolescents. Collectively, our results show that mAbs recognizing different antigens can synergistically activate complement even when each single Mab is not bactericidal, reinforcing the evidence that cooperative immunity induced by antigen combinations can represent a remarkable added value of multicomponent vaccines. Our study also shows that the synergistic effect of antibodies is modulated by the nature of the respective epitopes, as well as by the antigen density on the bacterial cell surface.
Collapse
Affiliation(s)
- Eriberto Noel Natali
- GSK, Siena, Italy.,CERM, Department of Chemistry, University of Florence, Florence, Italy
| | - Silvia Principato
- GSK, Siena, Italy.,Department of Biological Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Holt CB, Hoffmann-Petersen IT, Hansen TK, Parving HH, Thiel S, Hovind P, Tarnow L, Rossing P, Østergaard JA. Association between severe diabetic retinopathy and lectin pathway proteins - an 18-year follow-up study with newly diagnosed type 1 diabetes patients. Immunobiology 2020; 225:151939. [PMID: 32381273 DOI: 10.1016/j.imbio.2020.151939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022]
Affiliation(s)
- C B Holt
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Aarhus University, Aarhus, Denmark.
| | | | - T K Hansen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - H-H Parving
- Department of Medical Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - S Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - P Hovind
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - L Tarnow
- Steno Diabetes Center, Sjaelland, Denmark
| | - P Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; University of Copenhagen, Copenhagen, Denmark
| | - J A Østergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Weinschutz Mendes H, Boldt ABW, von Rosen Seeling Stahlke E, Jensenius JC, Thiel S, Messias-Reason IJT. Adding MASP1 to the lectin pathway-Leprosy association puzzle: Hints from gene polymorphisms and protein levels. PLoS Negl Trop Dis 2020; 14:e0007534. [PMID: 32240160 PMCID: PMC7162614 DOI: 10.1371/journal.pntd.0007534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/16/2020] [Accepted: 02/21/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Deposition of complement factors on Mycobacterium leprae may enhance phagocytosis. Such deposition may occur through the lectin pathway of complement. Three proteins of the lectin pathway are produced from the gene MASP1: Mannan-binding lectin-associated serine protease 1 (MASP-1) and MASP-3 and mannan-binding lectin-associated protein of 44 kDa (MAp44). Despite their obvious importance, the roles played by these proteins have never been investigated in leprosy disease. METHODOLOGY We haplotyped five MASP1 polymorphisms by multiplex sequence-specific PCR (intronic rs7609662*G>A and rs13064994*C>T, exon 12 3'-untranslated rs72549262*C>G, rs1109452*C>T and rs850314*G>A) and measured MASP-1, MASP-3 and MAp44 serum levels in 196 leprosy patients (60%, lepromatous) and 193 controls. PRINCIPAL FINDINGS Lower MASP-3 and MAp44 levels were observed in patients, compared with controls (P = 0.0002 and P<0.0001, respectively) and in lepromatous, compared with non-lepromatous patients (P = 0.008 and P = 0.002, respectively). Higher MASP-3 levels were present in controls carrying variants/haplotypes associated with leprosy resistance (rs13064994*T, rs1109452_rs850314*CG within GT_CCG and rs850314*A: OR = 0.5-0.6, Pcorr = 0.01-0.04). Controls with rs1109452*T, included in susceptibility haplotypes (GT_GTG/GT_CTG: OR = 2.0, Pcorr = 0.03), had higher MASP-1 and lower MASP-3 levels (P≤0.009). Those with GC_CCG, presented increasing susceptibility (OR = 1.7, Pcorr = 0.006) and higher MAp44 levels (P = 0.015). MASP-3 expression decreased in patients, compared with controls carrying rs1109452_rs850314*CA or CG (P≤0.02), which may rely on exon 12 CpG methylation and/or miR-2861/miR-3181 mRNA binding. CONCLUSION Polymorphisms regulating MASP-3/MAp44 availability in serum modulate leprosy susceptibility, underlining the importance of lectin pathway regulation against pathogens that exploit phagocytosis to parasitize host macrophages.
Collapse
Affiliation(s)
- Hellen Weinschutz Mendes
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Angelica Beate Winter Boldt
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Iara J. Taborda Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
27
|
Bonsignore P, Kuiper JWP, Adrian J, Goob G, Hauck CR. CEACAM3-A Prim(at)e Invention for Opsonin-Independent Phagocytosis of Bacteria. Front Immunol 2020; 10:3160. [PMID: 32117212 PMCID: PMC7026191 DOI: 10.3389/fimmu.2019.03160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is one of the key innate defense mechanisms executed by specialized cells in multicellular animals. Recent evidence suggests that a particular phagocytic receptor expressed by human polymorphonuclear granulocytes, the carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3), is one of the fastest-evolving human proteins. In this focused review, we will try to resolve the conundrum why a conserved process such as phagocytosis is conducted by a rapidly changing receptor. Therefore, we will first summarize the biochemical and structural details of this immunoglobulin-related glycoprotein in the context of the human CEACAM family. The function of CEACAM3 for the efficient, opsonin-independent detection and phagocytosis of highly specialized, host-restricted bacteria will be further elaborated. Taking into account the decisive role of CEACAM3 in the interaction with pathogenic bacteria, we will discuss the evolutionary trajectory of the CEACAM3 gene within the primate lineage and highlight the consequences of CEACAM3 polymorphisms in human populations. From a synopsis of these studies, CEACAM3 emerges as an important component of human innate immunity and a prominent example of a dedicated receptor for professional phagocytosis.
Collapse
Affiliation(s)
- Patrizia Bonsignore
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Johannes W P Kuiper
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
28
|
Allen RJ, Byrnes AP. Interaction of adenovirus with antibodies, complement, and coagulation factors. FEBS Lett 2019; 593:3449-3460. [PMID: 31660588 DOI: 10.1002/1873-3468.13649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Adenovirus (AdV) is one of the most widely used vectors for gene therapy and vaccine studies due to its excellent transduction efficiency, capacity for large transgenes, and high levels of gene expression. When administered intravascularly, the fate of AdV vectors is heavily influenced by interactions with host plasma proteins. Some plasma proteins can neutralize AdV, but AdV can also specifically bind plasma proteins that protect against neutralization and preserve activity. This review summarizes the plasma proteins that interact with AdV, including antibodies, complement, and vitamin K-dependent coagulation factors. We will also review the complex interactions of these plasma proteins with each other and with cellular proteins, as well as strategies for developing better AdV vectors that evade or manipulate plasma proteins.
Collapse
Affiliation(s)
- Rondine J Allen
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Andrew P Byrnes
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
29
|
Glerup M, Thiel S, Rypdal V, Arnstad ED, Ekelund M, Peltoniemi S, Aalto K, Rygg M, Nielsen S, Fasth A, Berntson L, Nordal E, Herlin T. Complement lectin pathway protein levels reflect disease activity in juvenile idiopathic arthritis: a longitudinal study of the Nordic JIA cohort. Pediatr Rheumatol Online J 2019; 17:63. [PMID: 31500626 PMCID: PMC6734250 DOI: 10.1186/s12969-019-0367-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine the serum levels of the lectin pathway proteins early in the disease course and 17 years after disease onset and to correlate the protein levels to markers of disease activity in participants from a population-based Nordic juvenile idiopathic arthritis (JIA) cohort. Additionally, to assess the predictive value of lectin pathway proteins with respect to remission status. METHODS A population-based cohort study of consecutive cases of JIA with a disease onset from 1997 to 2000 from defined geographical areas of Finland, Sweden, Norway and Denmark with 17 years of follow-up was performed. Clinical characteristics were registered and H-ficolin, M-ficolin, MASP-1, MASP-3, MBL and CL-K1 levels in serum were analyzed. RESULTS In total, 293 patients with JIA were included (mean age 23.7 ± 4.4 years; mean follow-up 17.2 ± 1.7 years). Concentrations of the lectin protein levels in serum were higher at baseline compared to the levels 17 years after disease onset (p ≤ 0.006, n = 164). At baseline, the highest level of M-ficolin was observed in systemic JIA. Further, high M-ficolin levels at baseline and at 17-year follow-up were correlated to high levels of ESR. In contrast, high MASP-1 and MASP-3 tended to correlate to low ESR. CL-K1 showed a negative correlation to JADAS71 at baseline. None of the protein levels had prognostic abilities for remission status 17 years after disease onset. CONCLUSION We hypothesize that increased serum M-ficolin levels are associated with higher disease activity in JIA and further, the results indicate that MASP-1, MASP-3 and CL-K1 are markers of inflammation.
Collapse
Affiliation(s)
- Mia Glerup
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Veronika Rypdal
- Department of Pediatrics, University Hospital of North Norway, and Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ellen Dalen Arnstad
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Maria Ekelund
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatrics, Ryhov County Hospital, Jonkoping, Sweden
| | - Suvi Peltoniemi
- New Children’s Hospital, Pediatric Research Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Kristiina Aalto
- New Children’s Hospital, Pediatric Research Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Marite Rygg
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway
| | - Susan Nielsen
- Department of Pediatrics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Berntson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Ellen Nordal
- Department of Pediatrics, University Hospital of North Norway, and Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Troels Herlin
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - for the Nordic Study Group of Pediatric Rheumatology (NoSPeR)
- Department of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Pediatrics, University Hospital of North Norway, and Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatrics, Ryhov County Hospital, Jonkoping, Sweden
- New Children’s Hospital, Pediatric Research Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway
- Department of Pediatrics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Lv Z, Wang L, Jia Z, Sun J, Wang W, Liu Z, Qiu L, Wang M, Song L. Hemolymph C1qDC promotes the phagocytosis of oyster Crassostrea gigas hemocytes by interacting with the membrane receptor β-integrin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:42-53. [PMID: 30995452 DOI: 10.1016/j.dci.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Phagocytosis constitutes a conserved cellular process for multicellular animals to ingest or engulf other cells or particles, which is facilitated by the use of opsonins to bind foreign particles and interact with cell surface receptors. The invertebrate secreted C1q domain-containing proteins (C1qDCs) have been reported to exhibit opsonic activity, while the detailed mechanisms of opsonization still remain unclear. In the present study, a C1qDC (designated as CgC1qDC-5) with opsonic activity was identified from the hemolymph of oyster Crassostrea gigas. CgC1qDC-5 exhibited the ability to bind pathogen-associated molecular patterns (PAMPs) of lipopolysaccharides (LPS) and Lipid A. It could also bind and agglutinate Gram-negative bacteria Escherichia coli, Vibrio splendidus and Vibrio anguillarum, whereas the agglutinating activity could be inhibited by LPS. In addition, CgC1qDC-5 could enhance the phagocytosis of hemocytes toward E. coli, V. splendidus, and V. anguillarum. GST pull-down and surface plasmon resonance assays in vitro revealed that CgC1qDC-5 could interact with β-integrin (CgIntegrin). In vivo, CgC1qDC-5 was observed to bind hemocytes and co-localized with CgIntegrin on the cell membrane of hemocytes. Antibody-mediated blockage of CgIntegrin hindered the CgC1qDC-5-enhanced hemocytic phagocytosis. CgIntegrin also exhibited the ability to bind the Gram-negative bacteria E. coli, V. splendidus, V. anguillarum and Vibrio parahaemolyticus, and PAMP of LPS, but not Lipid A. A phagocytosis assay demonstrated that CgIntegrin could directly mediate phagocytosis toward bacteria as a phagocytic receptor. These results collectively suggested that CgC1qDC-5 could serve as an opsonin to recognize and bind bacteria, and subsequently interact with CgIntegrin on the hemocyte surface to enhance the CgIntegrin-mediated phagocytosis in oyster.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
31
|
Liu Y, Song Q, Li D, Zou R, Zhang Y, Hao S, Geng X, Sun J. A novel complement C3 like gene (Lv-C3L) from Litopenaeus vannamei with bacteriolytic and hemolytic activities and its role in antiviral immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 91:376-387. [PMID: 31125666 DOI: 10.1016/j.fsi.2019.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
As a core component of the complement system, complement component 3 (C3) plays a central role in the opsonization of pathogens, immune defense and immune regulation in the mammalian for its activation is required to trigger classical as well as alternative complement pathways. However, the molecular mechanism underlying C3 activation in invertebrates remains unknown. Several C3 genes have been characterized in invertebrates but very few in crustacean. To understand the molecular characterization and immunological functions of shrimp C3, we characterized a novel complement C3 like gene (designated Lv-C3L) with full-length cDNA sequence identified from pacific white shrimp Litopenaeus vannamei in the present study. The full length cDNA of Lv-C3L sequence was 4769 bp (GenBank accession number: MH638255) containing a 4077 bp open reading frame (ORF), which encodes 1358 amino acids contained a putative signal peptide of 17 amino acids. Six model motifs of C3 were found in Lv-C3L including typical A2M domain, a highly conserved thioester region (GCGEQ) and proteolytic cleavage site of ANATO. In addition to typical conservative domains, Lv-C3L also contains a particular GLN-rich region which might be involved in the protein interaction and transcriptional activation. The transcripts of Lv-C3L were mainly detected in hemocytes and gill which might be involved in defense response. At 36 h post V.parahaemolyticus and B.thuringensis infection, the expression level of Lv-C3L gene in hemocytes were significantly upregulated. At 48 h and 72 h post WSSV infection, the expression level of Lv-C3L gene in hemocytes and gill were significantly upregulated. These results indicated that Lv-C3L gene play a pivotal role in innate immune responses to the WSSV and G+/G- bacterial infection. The obvious immune function of Lv-C3L was described as an effective membrane rupture in bacteriolytic and hemolytic activities on V.parahaemolyticus, V.anguillarum and rabbit erythrocytes. Combining with WSSV copy number, WSSV-VP28 gene expression profile and shrimp cumulative mortality analysis, RNAi knockdown of Lv-C3L gene could obviously promote the in vivo propagation of WSSV in shrimp. This is the first report in crustaceans that Lv-C3L, as a key complement like components, is involved in shrimp antiviral immune response. It is speculated that complicated complement response cascade may exist in shrimp. These results collectively indicated that the complement pathway in shrimp might play an important protective role against pathogenic infection and activation of complement pathway including C3 could restrict the propagation of WSSV.
Collapse
Affiliation(s)
- Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Qiaozhen Song
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Danlei Li
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Ruifeng Zou
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yichen Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Shaoyan Hao
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Xuyun Geng
- Tianjin Fisheries Research Institute, Tianjin, 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
32
|
Mueller FB, Yang H, Lubetzky M, Verma A, Lee JR, Dadhania DM, Xiang JZ, Salvatore SP, Seshan SV, Sharma VK, Elemento O, Suthanthiran M, Muthukumar T. Landscape of innate immune system transcriptome and acute T cell-mediated rejection of human kidney allografts. JCI Insight 2019; 4:128014. [PMID: 31292297 PMCID: PMC6629252 DOI: 10.1172/jci.insight.128014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Acute rejection of human allografts has been viewed mostly through the lens of adaptive immunity, and the intragraft landscape of innate immunity genes has not been characterized in an unbiased fashion. We performed RNA sequencing of 34 kidney allograft biopsy specimens from 34 adult recipients; 16 were categorized as Banff acute T cell-mediated rejection (TCMR) and 18 as normal. Computational analysis of intragraft mRNA transcriptome identified significantly higher abundance of mRNA for pattern recognition receptors in TCMR compared with normal biopsies, as well as increased expression of mRNAs for cytokines, chemokines, interferons, and caspases. Intragraft levels of calcineurin mRNA were higher in TCMR biopsies, suggesting underimmunosuppression compared with normal biopsies. Cell-type-enrichment analysis revealed higher abundance of dendritic cells and macrophages in TCMR biopsies. Damage-associated molecular patterns, the endogenous ligands for pattern recognition receptors, as well markers of DNA damage were higher in TCMR. mRNA expression patterns supported increased calcium flux and indices of endoplasmic, cellular oxidative, and mitochondrial stress were higher in TCMR. Expression of mRNAs in major metabolic pathways was decreased in TCMR. Our global and unbiased transcriptome profiling identified heightened expression of innate immune system genes during an episode of TCMR in human kidney allografts.
Collapse
Affiliation(s)
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine
| | - Michelle Lubetzky
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| | - Akanksha Verma
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine
| | - John R. Lee
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Department of Microbiology and Immunology; and
| | - Steven P. Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/NewYork–Presbyterian Hospital, New York, New York, USA
| | - Surya V. Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College/NewYork–Presbyterian Hospital, New York, New York, USA
| | - Vijay K. Sharma
- Division of Nephrology and Hypertension, Department of Medicine
| | - Olivier Elemento
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine
- Department of Transplantation Medicine
| |
Collapse
|
33
|
Shen L, Zhao D, Chen Y, Zhang K, Chen X, Lin J, Li C, Iqbal J, Zhao Y, Liang Y, Wei Y, Feng C. Comparative Proteomics Analysis of Serum Proteins in Gestational Diabetes during Early and Middle Stages of Pregnancy. Proteomics Clin Appl 2019; 13:e1800060. [DOI: 10.1002/prca.201800060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/26/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Liming Shen
- College of Life Science and OceanographyShenzhen University Shenzhen 518060 P. R. China
| | - Danqing Zhao
- Department of Obstetrics and GynecologyAffiliated Hospital of Guizhou Medical University Guiyang 550004 P. R. China
| | - Youjiao Chen
- College of Life Science and OceanographyShenzhen University Shenzhen 518060 P. R. China
| | - Kaoyuan Zhang
- College of Life Science and OceanographyShenzhen University Shenzhen 518060 P. R. China
| | - Xinqian Chen
- College of Life Science and OceanographyShenzhen University Shenzhen 518060 P. R. China
| | - Jing Lin
- College of Life Science and OceanographyShenzhen University Shenzhen 518060 P. R. China
| | - Cuihua Li
- College of Life Science and OceanographyShenzhen University Shenzhen 518060 P. R. China
| | - Javed Iqbal
- College of Life Science and OceanographyShenzhen University Shenzhen 518060 P. R. China
| | - Yuxi Zhao
- College of Life Science and OceanographyShenzhen University Shenzhen 518060 P. R. China
| | - Yi Liang
- School of Public HealthGuizhou Medical University Guiyang 550025 P. R. China
| | - Yan Wei
- School of Public HealthGuizhou Medical University Guiyang 550025 P. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan Shenzhen 518100 P. R. China
| |
Collapse
|
34
|
Pecoraro A, Crescenzi L, Galdiero MR, Marone G, Rivellese F, Rossi FW, de Paulis A, Genovese A, Spadaro G. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy 2019; 17:9. [PMID: 31080365 PMCID: PMC6501382 DOI: 10.1186/s12948-019-0113-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary antibody deficiency in adulthood and is characterized by the marked reduction of IgG and IgA serum levels. Thanks to the successful use of polyvalent immunoglobulin replacement therapy to treat and prevent recurrent infections, non-infectious complications, including autoimmunity, polyclonal lymphoproliferation and malignancies, have progressively become the major cause of morbidity and mortality in CVID patients. The management of these complications is particularly challenging, often requiring multiple lines of immunosuppressive treatments. Over the last 5–10 years, the anti-CD20 monoclonal antibody (i.e., rituximab) has been increasingly used for the treatment of both autoimmune and non-malignant lymphoproliferative manifestations associated with CVID. This review illustrates the evidence on the use of rituximab in CVID. For this purpose, first we discuss the mechanisms proposed for the rituximab mediated B-cell depletion; then, we analyze the literature data regarding the CVID-related complications for which rituximab has been used, focusing on autoimmune cytopenias, granulomatous lymphocytic interstitial lung disease (GLILD) and non-malignant lymphoproliferative syndromes. The cumulative data suggest that in the vast majority of the studies, rituximab has proven to be an effective and relatively safe therapeutic option. However, there are currently no data on the long-term efficacy and side effects of rituximab and other second-line therapeutic options. Further randomized controlled trials are needed to optimize the management strategies of non-infectious complications of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Ludovica Crescenzi
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giancarlo Marone
- 2Department of Public Health, University of Naples Federico II, Naples, Italy.,3Monaldi Hospital Pharmacy, Naples, Italy
| | - Felice Rivellese
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.,4Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesca Wanda Rossi
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Amato de Paulis
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Arturo Genovese
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Spadaro
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
35
|
Seiler BT, Cartwright M, Dinis ALM, Duffy S, Lombardo P, Cartwright D, Super EH, Lanzaro J, Dugas K, Super M, Ingber DE. Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000Res 2019; 8:108. [PMID: 31275563 PMCID: PMC6544136 DOI: 10.12688/f1000research.17447.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Fc-mannose-binding lectin (FcMBL), an engineered version of the blood opsonin MBL that contains the carbohydrate recognition domain (CRD) and flexible neck regions of MBL fused to the Fc portion of human IgG1, has been shown to bind various microbes and pathogen-associated molecular patterns (PAMPs). FcMBL has also been used to create an enzyme-linked lectin sorbent assay (ELLecSA) for use as a rapid (<1 h) diagnostic of bloodstream infections. Methods: Here we extended this work by using the ELLecSA to test FcMBL's ability to bind to more than 190 different isolates from over 95 different pathogen species. Results: FcMBL bound to 85% of the isolates and 97 of the 112 (87%) different pathogen species tested, including bacteria, fungi, viral antigens and parasites. FcMBL also bound to PAMPs including, lipopolysaccharide endotoxin (LPS) and lipoteichoic acid (LTA) from Gram-negative and Gram-positive bacteria, as well as lipoarabinomannan (LAM) and phosphatidylinositol mannoside 6 (PIM 6) from Mycobacterium tuberculosis. Conclusions: The efficiency of pathogen detection and variation between binding of different strains of the same species could be improved by treating the bacteria with antibiotics, or mechanical disruption using a bead mill, prior to FcMBL capture to reveal previously concealed binding sites within the bacterial cell wall. As FcMBL can bind to pathogens and PAMPs in urine as well as blood, its broad-binding capability could be leveraged to develop a variety of clinically relevant technologies, including infectious disease diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Benjamin T. Seiler
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - Mark Cartwright
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - Alexandre L. M. Dinis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - Shannon Duffy
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - Patrick Lombardo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - David Cartwright
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - Elana H. Super
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - Jacqueline Lanzaro
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - Kristen Dugas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, USA
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA
| |
Collapse
|
36
|
Dobó J, Kocsis A, Gál P. Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement-Mediated Diseases. Front Immunol 2018; 9:1851. [PMID: 30135690 PMCID: PMC6092519 DOI: 10.3389/fimmu.2018.01851] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system has moved into the focus of drug development efforts in the last decade, since its inappropriate or uncontrolled activation has been recognized in many diseases. Some of them are primarily complement-mediated rare diseases, such as paroxysmal nocturnal hemoglobinuria, C3 glomerulonephritis, and atypical hemolytic uremic syndrome. Complement also plays a role in various multifactorial diseases that affect millions of people worldwide, such as ischemia reperfusion injury (myocardial infarction, stroke), age-related macular degeneration, and several neurodegenerative disorders. In this review, we summarize the potential advantages of targeting various complement proteins with special emphasis on the components of the lectin (LP) and the alternative pathways (AP). The serine proteases (MASP-1/2/3, factor D, factor B), which are responsible for the activation of the cascade, are straightforward targets of inhibition, but the pattern recognition molecules (mannose-binding lectin, other collectins, and ficolins), the regulatory components (factor H, factor I, properdin), and C3 are also subjects of drug development. Recent discoveries about cross-talks between the LP and AP offer new approaches for clinical intervention. Mannan-binding lectin-associated serine proteases (MASPs) are not just responsible for LP activation, but they are also indispensable for efficient AP activation. Activated MASP-3 has recently been shown to be the enzyme that continuously supplies factor D (FD) for the AP by cleaving pro-factor D (pro-FD). In this aspect, MASP-3 emerges as a novel feasible target for the regulation of AP activity. MASP-1 was shown to be required for AP activity on various surfaces, first of all on LPS of Gram-negative bacteria.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Kocsis
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
37
|
Álvarez-Rodríguez M, Pereiro P, Reyes-López FE, Tort L, Figueras A, Novoa B. Analysis of the Long-Lived Responses Induced by Immunostimulants and Their Effects on a Viral Infection in Zebrafish ( Danio rerio). Front Immunol 2018; 9:1575. [PMID: 30038625 PMCID: PMC6047052 DOI: 10.3389/fimmu.2018.01575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
In recent years, the innate immune response has gained importance since evidence indicates that after an adequate priming protocol, it is possible to obtain some prolonged and enhanced immune responses. Nevertheless, several factors, such as the timing and method of administration of the immunostimulants, must be carefully considered. An inappropriate protocol can transform the treatments into a double-edged sword for the teleost immune system, resulting in a stressful and immunosuppressive state. In this work, we analyzed the long-term effects of different stimuli (β-glucans, lipopolysaccharide, and polyinosinic:polycytidylic acid) on the transcriptome modulation induced by Spring Viremia Carp Virus (SVCV) in adult zebrafish (Danio rerio) and on the mortality caused by this infection. At 35 days post-immunostimulation, the transcriptome was found to be highly altered compared to that of the control fish, and these stimuli also conditioned the response to SVCV challenge, especially in the case of β-glucans. No protection against SVCV was found with any of the stimuli, and non-significant higher mortalities were even observed, especially with β-glucans. However, in the short term (pre-stimulation with β-glucan and infection after 7 days), slight protection was observed after infection. The transcriptome response in the zebrafish kidney at 35 days posttreatment with β-glucans revealed a significant response associated with stress and immunosuppression. The identification of genes that were differentially expressed before and after the infection seemed to indicate a high energy cost of the immunostimulation that was prolonged over time and could explain the lack of protection against SVCV. Differential responses to stress and alterations in lipid metabolism, the tryptophan–kynurenine pathway, and interferon-gamma signaling seem to be some of the mechanisms involved in this response, which represents the end of trained immunity and the beginning of a stressful state characterized by immunosuppression.
Collapse
Affiliation(s)
| | - Patricia Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
38
|
Lidani KCF, Sandri TL, Andrade FA, Bavia L, Nisihara R, Messias-Reason IJ. Complement Factor H as a potential atherogenic marker in chronic Chagas’ disease. Parasite Immunol 2018; 40:e12537. [DOI: 10.1111/pim.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 02/03/2023]
Affiliation(s)
- K. C. F. Lidani
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - T. L. Sandri
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
- Institute of Tropical Medicine; University of Tübingen; Tübingen Germany
| | - F. A. Andrade
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - L. Bavia
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - R. Nisihara
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - I. J. Messias-Reason
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| |
Collapse
|
39
|
Ratajczak MZ, Adamiak M, Kucia M, Tse W, Ratajczak J, Wiktor-Jedrzejczak W. The Emerging Link Between the Complement Cascade and Purinergic Signaling in Stress Hematopoiesis. Front Immunol 2018; 9:1295. [PMID: 29922299 PMCID: PMC5996046 DOI: 10.3389/fimmu.2018.01295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Innate immunity plays an important role in orchestrating the immune response, and the complement cascade (ComC) is a major component of this ancient defense system, which is activated by the classical-, alternative-, or mannan-binding lectin (MBL) pathways. However, the MBL-dependent ComC-activation pathway has been somewhat underappreciated for many years; recent evidence indicates that it plays a crucial role in regulating the trafficking of hematopoietic stem/progenitor cells (HSPCs) by promoting their egress from bone marrow (BM) into peripheral blood (PB). This process is initiated by the release of danger-associated molecular patterns (DAMPs) from BM cells, including the most abundant member of this family, adenosine triphosphate (ATP). This nucleotide is well known as a ubiquitous intracellular molecular energy source, but when secreted becomes an important extracellular nucleotide signaling molecule and mediator of purinergic signaling. What is important for the topic of this review, ATP released from BM cells is recognized as a DAMP by MBL, and the MBL-dependent pathway of ComC activation induces a state of "sterile inflammation" in the BM microenvironment. This activation of the ComC by MBL leads to the release of several potent mediators, including the anaphylatoxins C5a and desArgC5a, which are crucial for egress of HSPCs into the circulation. In parallel, as a ligand for purinergic receptors, ATP affects mobilization of HSPCs by activating other pro-mobilizing pathways. This emerging link between the release of ATP, which on the one hand is an activator of the MBL pathway of the ComC and on the other hand is a purinergic signaling molecule, will be discussed in this review. This mechanism plays an important role in triggering defense mechanisms in response to tissue/organ injury but may also have a negative impact by triggering autoimmune disorders, aging of HSPCs, induction of myelodysplasia, and graft-versus-host disease after transplantation of histoincompatible hematopoietic cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - William Tse
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
40
|
Affiliation(s)
- J H Foley
- Freeline Therapeutics, Stevenage, UK
| | - E M Conway
- Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Hofmann K, Clauder AK, Manz RA. Targeting B Cells and Plasma Cells in Autoimmune Diseases. Front Immunol 2018; 9:835. [PMID: 29740441 PMCID: PMC5924791 DOI: 10.3389/fimmu.2018.00835] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Success with B cell depletion using rituximab has proven the concept that B lineage cells represent a valid target for the treatment of autoimmune diseases, and has promoted the development of other B cell targeting agents. Present data confirm that B cell depletion is beneficial in various autoimmune disorders and also show that it can worsen the disease course in some patients. These findings suggest that B lineage cells not only produce pathogenic autoantibodies, but also significantly contribute to the regulation of inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles of B lineage cells play in autoimmune diseases, in the context of recent findings using B lineage targeting therapies.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| |
Collapse
|
42
|
Konečná B, Lauková L, Vlková B. Immune activation by nucleic acids: A role in pregnancy complications. Scand J Immunol 2018; 87:e12651. [PMID: 29479732 DOI: 10.1111/sji.12651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Cell-free self-DNA or RNA may induce an immune response by activating specific sensing receptors. During pregnancy, placental nucleic acids present in the maternal circulation further activate these receptors due to the presence of unmethylated CpG islands. A higher concentration of cell-free foetal DNA is associated with pregnancy complications and a higher risk for foetal rejection. Cell-free foetal DNA originates from placental trophoblasts. It appears in different forms: free, bound to histones in nucleosomes, in neutrophil extracellular traps (NETs) and in extracellular vesicles (EVs). In several pregnancy complications, cell-free foetal DNA triggers the production of proinflammatory cytokines, and this production results in a cellular and humoral immune response. This review discusses preeclampsia, systemic lupus erythematosus, foetal growth restriction, gestational diabetes, rheumatoid arthritis and obesity in pregnancy from an immunological point of view and closely examines the different pathways that result in maternal inflammation. Understanding the role of cell-free nucleic acids, as well as the biogenesis of NETs and EVs, will help us to specify their functions or targets, which seem to be important in pregnancy complications. It is still not clear whether higher concentrations of cell-free nucleic acids in the maternal circulation are the cause or consequence of various complications. Therefore, further clinical studies and, even more importantly, animal experiments that focus on the involved immunological pathways are needed.
Collapse
Affiliation(s)
- B Konečná
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - L Lauková
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - B Vlková
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
43
|
Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK, Weiss BP, Miller ES, Bihorac A, Larson SD, Mohr AM, Brakenridge SC, Tsujimoto H, Ueno H, Moore FA, Moldawer LL, Efron PA. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Front Immunol 2018; 9:595. [PMID: 29670613 PMCID: PMC5893931 DOI: 10.3389/fimmu.2018.00595] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI), defined as ≥14 days requiring intensive care unit (ICU) resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS), and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.
Collapse
Affiliation(s)
- Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Russell B Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brett P Weiss
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Elizabeth S Miller
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | |
Collapse
|
44
|
Jacquet M, Cioci G, Fouet G, Bally I, Thielens NM, Gaboriaud C, Rossi V. C1q and Mannose-Binding Lectin Interact with CR1 in the Same Region on CCP24-25 Modules. Front Immunol 2018; 9:453. [PMID: 29563915 PMCID: PMC5845983 DOI: 10.3389/fimmu.2018.00453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Complement receptor type 1 (CR1) is a multi modular membrane receptor composed of 30 homologous complement control protein modules (CCP) organized in four different functional regions called long homologous repeats (LHR A, B, C, and D). CR1 is a receptor for complement-opsonins C3b and C4b and specifically interacts through pairs of CCP modules located in LHR A, B, and C. Defense collagens such as mannose-binding lectin (MBL), ficolin-2, and C1q also act as opsonins and are involved in immune clearance through binding to the LHR-D region of CR1. Our previous results using deletion variants of CR1 mapped the interaction site for MBL and ficolin-2 on CCP24-25. The present work aimed at deciphering the interaction of C1q with CR1 using new CR1 variants concentrated around CCP24-25. CR1 bimodular fragment CCP24-25 and CR1 CCP22-30 deleted from CCP24-25 produced in eukaryotic cells enabled to highlight that the interaction site for both MBL and C1q is located on the same pair of modules CCP24-25. C1q binding to CR1 shares with MBL a main common interaction site on the collagen stalks but also subsidiary sites most probably located on C1q globular heads, contrarily to MBL.
Collapse
|
45
|
Ratajczak MZ, Adamiak M, Plonka M, Abdel-Latif A, Ratajczak J. Mobilization of hematopoietic stem cells as a result of innate immunity-mediated sterile inflammation in the bone marrow microenvironment-the involvement of extracellular nucleotides and purinergic signaling. Leukemia 2018; 32:1116-1123. [PMID: 29556022 PMCID: PMC5940655 DOI: 10.1038/s41375-018-0087-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) circulate in peripheral blood (PB) under normal conditions and their number increases in response to stress, inflammation, tissue/organ injury, and may increase up to 100-fold after administration of mobilization-inducing drugs. Mounting evidence suggests that mobilizing agent-induced mobilization of HSPCs from bone marrow into PB is a result of innate immunity-mediated sterile inflammation in the bone marrow (BM) microenvironment. A critical initiating role in this process is played by tissue/organ injury-mediated or pharmacologically induced release from bone marrow-residing granulocytes and monocytes of (i) danger-associated molecular patterns (DAMPs), (ii) reactive oxygen species (ROS), and (iii) proteolytic and lipolytic enzymes. All these factors together trigger activation of the complement and coagulation cascades, both of which orchestrate egress of HSPCs into BM sinusoids and lymphatics. Recent evidence also indicates that, in addition to attenuation of the SDF-1–CXCR4 and VLA-4–VCAM-1 retention axes in the BM microenvironment and the presence of a mobilization-directing phosphosphingolipid gradient in PB, an important role in the mobilization process is played by extracellular nucleotides and purinergic signaling. In particular, a new finding by our laboratory is that, while extracellular ATP promotes mobilization of HSPCs, its derivative, adenosine, has the opposite (inhibitory) effect.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Monika Plonka
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
46
|
Complement as a diagnostic tool in immunopathology. Semin Cell Dev Biol 2018; 85:86-97. [PMID: 29292221 DOI: 10.1016/j.semcdb.2017.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
The complement system is a complex and autoregulated multistep cascade at the interface of innate and adaptive immunity. It is activated by immune complexes or apoptotic cells (classical pathway), pathogen-associated glycoproteins (lectin pathway) or a variety of molecular and cellular surfaces (alternative pathway). Upon activation, complement triggers the generation of proteolytic fragments that allow the elimination of the activating surface by enhancing inflammation, opsonization, phagocytosis, and cellular lysis. Moreover, complement efficiently discriminates self from non-self surfaces by means of soluble and membrane-bound complement regulators which are critical for innate self-tolerance. Complement deficiency or dysfunction disturb complement homeostasis and give rise to diseases as diverse as bacterial infections, autoimmunity, or renal and neurological disorders. Research on complement-targeted therapies is an expanding field that has already improved the prognosis of severe diseases such as atypical Haemolytic Uremic syndrome or Paroxysmal Nocturnal Haemoglobinuria. Therefore, complement analysis and monitoring provides valuable information with deep implications for diagnosis and therapy. In addition to its important role as an extracellular defense system, it has now become evident that complement is also present intracellularly, and its activation has profound implications for leukocyte survival and function. In this review, we summarize the essential, up-to-date information on the use of complement as a diagnostic and therapeutic tool in the clinics.
Collapse
|
47
|
Abstract
Developing new vaccines against emerging pathogens or pathogens where variability of antigenic sites presents a challenge, the inclusion of stimulators of the innate immune system is critical to mature the immune response in a way that allows high avidity recognition while preserving the ability to react to drifted serovars. The innate immune system is an ancient mechanism for recognition of nonself and the first line of defense against pathogen insult. By triggering innate receptors, adjuvants can boost responses to vaccines and enhance the quality and magnitude of the resulting immune response. This chapter: (1) describes the innate immune system, (2) provides examples of how adjuvants are formulated to optimize their effectiveness, and (3) presents examples of how adjuvants can improve outcomes of immunization.
Collapse
Affiliation(s)
- Darrick Carter
- PAI Life Sciences Inc., 1616 Eastlake Ave E, Suite 550, Seattle, WA, 98102, USA.
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA.
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA.
| | - Malcolm S Duthie
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Steven G Reed
- Adjuvant Technologies, IDRI, 1616 Eastlake Avenue E., Suite 400, Seattle, WA, 98102, USA
- Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| |
Collapse
|
48
|
A generalized quantitative antibody homeostasis model: maintenance of global antibody equilibrium by effector functions. Clin Transl Immunology 2017; 6:e161. [PMID: 29201362 PMCID: PMC5704100 DOI: 10.1038/cti.2017.50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
The homeostasis of antibodies can be characterized as a balanced production, target-binding and receptor-mediated elimination regulated by an interaction network, which controls B-cell development and selection. Recently, we proposed a quantitative model to describe how the concentration and affinity of interacting partners generates a network. Here we argue that this physical, quantitative approach can be extended for the interpretation of effector functions of antibodies. We define global antibody equilibrium as the zone of molar equivalence of free antibody, free antigen and immune complex concentrations and of dissociation constant of apparent affinity: [Ab]=[Ag]=[AbAg]=KD. This zone corresponds to the biologically relevant KD range of reversible interactions. We show that thermodynamic and kinetic properties of antibody–antigen interactions correlate with immunological functions. The formation of stable, long-lived immune complexes correspond to a decrease of entropy and is a prerequisite for the generation of higher-order complexes. As the energy of formation of complexes increases, we observe a gradual shift from silent clearance to inflammatory reactions. These rules can also be applied to complement activation-related immune effector processes, linking the physicochemical principles of innate and adaptive humoral responses. Affinity of the receptors mediating effector functions shows a wide range of affinities, allowing the continuous sampling of antibody-bound antigen over the complete range of concentrations. The generation of multivalent, multicomponent complexes triggers effector functions by crosslinking these receptors on effector cells with increasing enzymatic degradation potential. Thus, antibody homeostasis is a thermodynamic system with complex network properties, nested into the host organism by proper immunoregulatory and effector pathways. Maintenance of global antibody equilibrium is achieved by innate qualitative signals modulating a quantitative adaptive immune system, which regulates molecular integrity of the host by tuning the degradation and recycling of molecules from silent removal to inflammatory elimination.
Collapse
|
49
|
Patel S. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergol Immunopathol (Madr) 2017; 45:579-591. [PMID: 28236540 PMCID: PMC7126602 DOI: 10.1016/j.aller.2016.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Proteolytic activity is fundamental to survival, so it is not surprising that all living organisms have proteases, especially seine protease. This enzyme in its numerous isoforms and homologues, constitutes the quintessential offence and defence factors, in the form of surface proteins, secreted molecules, gut digestive enzymes, venom in specialised glands or plant latex, among other manifestations. Occurring as trypsin, chymotrypsin, elastase, collagenase, thrombin, subtilisin etc., it mediates a diverse array of functions, including pathological roles as inflammatory, coagulatory to haemorrhagic. This review emphasizes that despite the superficial differences in mechanisms, most health issues, be they infectious, allergic, metabolic, or neural have a common conduit. This enzyme, in its various glycosylated forms leads to signal misinterpretations, wreaking havoc. However, organisms are endowed with serine protease inhibitors which might restrain this ubiquitous yet deleterious enzyme. Hence, serine proteases-driven pathogenesis and antagonising role of inhibitors is the focal point of this critical review.
Collapse
|
50
|
Marshall MJE, Stopforth RJ, Cragg MS. Therapeutic Antibodies: What Have We Learnt from Targeting CD20 and Where Are We Going? Front Immunol 2017; 8:1245. [PMID: 29046676 PMCID: PMC5632755 DOI: 10.3389/fimmu.2017.01245] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have become one of the fastest growing classes of drugs in recent years and are approved for the treatment of a wide range of indications, from cancer to autoimmune disease. Perhaps the best studied target is the pan B-cell marker CD20. Indeed, the first mAb to receive approval by the Food and Drug Administration for use in cancer treatment was the CD20-targeting mAb rituximab (Rituxan®). Since its approval for relapsed/refractory non-Hodgkin's lymphoma in 1997, rituximab has been licensed for use in the treatment of numerous other B-cell malignancies, as well as autoimmune conditions, including rheumatoid arthritis. Despite having a significant impact on the treatment of these patients, the exact mechanisms of action of rituximab remain incompletely understood. Nevertheless, numerous second- and third-generation anti-CD20 mAbs have since been developed using various strategies to enhance specific effector functions thought to be key for efficacy. A plethora of knowledge has been gained during the development and testing of these mAbs, and this knowledge can now be applied to the design of novel mAbs directed to targets beyond CD20. As we enter the "post-rituximab" era, this review will focus on the lessons learned thus far through investigation of anti-CD20 mAb. Also discussed are current and future developments relating to enhanced effector function, such as the ability to form multimers on the target cell surface. These strategies have potential applications not only in oncology but also in the improved treatment of autoimmune disorders and infectious diseases. Finally, potential approaches to overcoming mechanisms of resistance to anti-CD20 therapy are discussed, chiefly involving the combination of anti-CD20 mAbs with various other agents to resensitize patients to treatment.
Collapse
Affiliation(s)
- Michael J. E. Marshall
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Richard J. Stopforth
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|