1
|
Jaafar L, Anderson CT. Architecture and functions of stomatal cell walls in eudicots and grasses. ANNALS OF BOTANY 2024; 134:195-204. [PMID: 38757189 PMCID: PMC11232514 DOI: 10.1093/aob/mcae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Like all plant cells, the guard cells of stomatal complexes are encased in cell walls that are composed of diverse, interacting networks of polysaccharide polymers. The properties of these cell walls underpin the dynamic deformations that occur in guard cells as they expand and contract to drive the opening and closing of the stomatal pore, the regulation of which is crucial for photosynthesis and water transport in plants. SCOPE Our understanding of how cell wall mechanics are influenced by the nanoscale assembly of cell wall polymers in guard cell walls, how this architecture changes over stomatal development, maturation and ageing and how the cell walls of stomatal guard cells might be tuned to optimize stomatal responses to dynamic environmental stimuli is still in its infancy. CONCLUSION In this review, we discuss advances in our ability to probe experimentally and to model the structure and dynamics of guard cell walls quantitatively across a range of plant species, highlighting new ideas and exciting opportunities for further research into these actively moving plant cells.
Collapse
Affiliation(s)
- Leila Jaafar
- Department of Biology and Molecular, Cellular and Integrative Bioscience Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology and Molecular, Cellular and Integrative Bioscience Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Sinclair R, Wang M, Jawaid MZ, Longkumer T, Aaron J, Rossetti B, Wait E, McDonald K, Cox D, Heddleston J, Wilkop T, Drakakaki G. Four-dimensional quantitative analysis of cell plate development in Arabidopsis using lattice light sheet microscopy identifies robust transition points between growth phases. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2829-2847. [PMID: 38436428 PMCID: PMC11282576 DOI: 10.1093/jxb/erae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Minmin Wang
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Muhammad Zaki Jawaid
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | | | | | - Eric Wait
- Janelia Research Campus, Ashburn, VA, USA
| | - Kent McDonald
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Daniel Cox
- Department of Physics and Astronomy, University of California Davis, Davis, CA, USA
| | | | - Thomas Wilkop
- Department of Molecular and Cellular Biology, Light Microscopy Imaging Facility, University of California Davis, Davis, CA, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Ge S, Sun P, Wu W, Chen X, Wang Y, Zhang M, Huang J, Liang YK. COBL7 is required for stomatal formation via regulation of cellulose deposition in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:227-242. [PMID: 37853545 DOI: 10.1111/nph.19327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
As a key regulator of plant photosynthesis, water use efficiency and immunity, stomata are specialized cellular structures that adopt defined shapes. However, our knowledge about the genetic players of stomatal pore formation and stomatal morphogenesis remains limited. Forward genetic screening, positional cloning, confocal and electron microscopy, physiological and pharmacological assays were employed for isolation and characterization of mutants and genes. We identified a mutant, dsm1, with impaired cytokinesis and deformed stomata. DSM1 is highly expressed in guard mother cells and guard cells, and encodes COBRA-LIKE 7 (COBL7), a plant-specific glycosylphosphatidylinositol (GPI)-anchored protein. COBRA-LIKE 7 and its closest homologue, COBL8, are first enriched on the forming cell plates during cytokinesis, and then their subcellular distribution and abundance change are correlated with the progressive stages of stomatal pore formation. Both COBL7 and COBL8 possess an ability to bind cellulose. Perturbing the expression of COBL7 and COBL8 leads to a decrease in cellulose content and inhibition of stomatal pore development. Moreover, we found that COBL7, COBL8 and CSLD5 have synergistic effects on stomatal development and plant growth. Our findings reveal that COBL7 plays a predominant and functionally redundant role with COBL8 in stomatal formation through regulating cellulose deposition and ventral wall modification in Arabidopsis.
Collapse
Affiliation(s)
- Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenjuan Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinhang Chen
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yifei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
5
|
Dash L, Swaminathan S, Šimura J, Gonzales CLP, Montes C, Solanki N, Mejia L, Ljung K, Zabotina OA, Kelley DR. Changes in cell wall composition due to a pectin biosynthesis enzyme GAUT10 impact root growth. PLANT PHYSIOLOGY 2023; 193:2480-2497. [PMID: 37606259 PMCID: PMC10663140 DOI: 10.1093/plphys/kiad465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to β-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.
Collapse
Affiliation(s)
- Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Caitlin Leigh P Gonzales
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Iowa City, IA 50011, USA
| | - Neel Solanki
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Ludvin Mejia
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| |
Collapse
|
6
|
Ušák D, Haluška S, Pleskot R. Callose synthesis at the center point of plant development-An evolutionary insight. PLANT PHYSIOLOGY 2023; 193:54-69. [PMID: 37165709 DOI: 10.1093/plphys/kiad274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Polar callose deposition into the extracellular matrix is tightly controlled in time and space. Its presence in the cell wall modifies the properties of the surrounding area, which is fundamental for the correct execution of numerous processes such as cell division, male gametophyte development, intercellular transport, or responses to biotic and abiotic stresses. Previous studies have been invaluable in characterizing specific callose synthases (CalSs) during individual cellular processes. However, the complex view of the relationships between a particular CalS and a specific process is still lacking. Here we review the recent proceedings on the role of callose and individual CalSs in cell wall remodelling from an evolutionary perspective and with a particular focus on cytokinesis. We provide a robust phylogenetic analysis of CalS across the plant kingdom, which implies a 3-subfamily distribution of CalS. We also discuss the possible linkage between the evolution of CalSs and their function in specific cell types and processes.
Collapse
Affiliation(s)
- David Ušák
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Samuel Haluška
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Roman Pleskot
- Czech Academy of Sciences, Institute of Experimental Botany, 165 02 Prague, Czech Republic
| |
Collapse
|
7
|
Wu SZ, Chaves AM, Li R, Roberts AW, Bezanilla M. Cellulose synthase-like D movement in the plasma membrane requires enzymatic activity. J Cell Biol 2023; 222:e202212117. [PMID: 37071416 PMCID: PMC10120407 DOI: 10.1083/jcb.202212117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Cellulose Synthase-Like D (CSLD) proteins, important for tip growth and cell division, are known to generate β-1,4-glucan. However, whether they are propelled in the membrane as the glucan chains they produce assemble into microfibrils is unknown. To address this, we endogenously tagged all eight CSLDs in Physcomitrium patens and discovered that they all localize to the apex of tip-growing cells and to the cell plate during cytokinesis. Actin is required to target CSLD to cell tips concomitant with cell expansion, but not to cell plates, which depend on actin and CSLD for structural support. Like Cellulose Synthase (CESA), CSLD requires catalytic activity to move in the plasma membrane. We discovered that CSLD moves significantly faster, with shorter duration and less linear trajectories than CESA. In contrast to CESA, CSLD movement was insensitive to the cellulose synthesis inhibitor isoxaben, suggesting that CSLD and CESA function within different complexes possibly producing structurally distinct cellulose microfibrils.
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arielle M. Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Rongrong Li
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
8
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
9
|
Su C, Rodriguez-Franco M, Lace B, Nebel N, Hernandez-Reyes C, Liang P, Schulze E, Mymrikov EV, Gross NM, Knerr J, Wang H, Siukstaite L, Keller J, Libourel C, Fischer AAM, Gabor KE, Mark E, Popp C, Hunte C, Weber W, Wendler P, Stanislas T, Delaux PM, Einsle O, Grosse R, Römer W, Ott T. Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nat Commun 2023; 14:323. [PMID: 36658193 PMCID: PMC9852587 DOI: 10.1038/s41467-023-35976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.
Collapse
Affiliation(s)
- Chao Su
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | - Beatrice Lace
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nils Nebel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Casandra Hernandez-Reyes
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Pengbo Liang
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eija Schulze
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Evgeny V Mymrikov
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Nikolas M Gross
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Julian Knerr
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Hong Wang
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Alexandra A M Fischer
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina E Gabor
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Eric Mark
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Claudia Popp
- Ludwig-Maximilians-University (LMU) Munich, Institute of Genetics, 82152, Martinsried, Germany
| | - Carola Hunte
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wilfried Weber
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Thomas Stanislas
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Robert Grosse
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
10
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
11
|
Hao G, Zhao X, Zhang M, Ying J, Yu F, Li S, Zhang Y. Vesicle trafficking in
Arabidopsis
pollen tubes. FEBS Lett 2022; 596:2231-2242. [DOI: 10.1002/1873-3468.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guang‐Jiu Hao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Xin‐Ying Zhao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | | | - Jun Ying
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Fei Yu
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Sha Li
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Yan Zhang
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
- College of Life Sciences Nankai University China
- Frontiers Science Center for Cell Responses Nankai University China
| |
Collapse
|
12
|
Jawaid MZ, Sinclair R, Bulone V, Cox DL, Drakakaki G. A biophysical model for plant cell plate maturation based on the contribution of a spreading force. PLANT PHYSIOLOGY 2022; 188:795-806. [PMID: 34850202 PMCID: PMC8825336 DOI: 10.1093/plphys/kiab552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Plant cytokinesis, a fundamental process of plant life, involves de novo formation of a "cell plate" partitioning the cytoplasm of dividing cells. Cell plate formation is directed by orchestrated delivery, fusion of cytokinetic vesicles, and membrane maturation to form a nascent cell wall by timely deposition of polysaccharides. During cell plate maturation, the fragile membrane network transitions to a fenestrated sheet and finally a young cell wall. Here, we approximated cell plate sub-structures with testable shapes and adopted the Helfrich-free energy model for membranes, including a stabilizing and spreading force, to understand the transition from a vesicular network to a fenestrated sheet and mature cell plate. Regular cell plate development in the model was possible, with suitable bending modulus, for a two-dimensional late stage spreading force of 2-6 pN/nm, an osmotic pressure difference of 2-10 kPa, and spontaneous curvature between 0 and 0.04 nm-1. With these conditions, stable membrane conformation sizes and morphologies emerged in concordance with stages of cell plate development. To reach a mature cell plate, our model required the late-stage onset of a spreading/stabilizing force coupled with a concurrent loss of spontaneous curvature. Absence of a spreading/stabilizing force predicts failure of maturation. The proposed model provides a framework to interrogate different players in late cytokinesis and potentially other membrane networks that undergo such transitions. Callose, is a polysaccharide that accumulates transiently during cell plate maturation. Callose-related observations were consistent with the proposed model's concept, suggesting that it is one of the factors involved in establishing the spreading force.
Collapse
Affiliation(s)
- Muhammad Zaki Jawaid
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - Rosalie Sinclair
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Vincent Bulone
- School of Food, Agriculture and Wine, The University of Adelaide, Waite Campus, Adelaide SA 5064, Australia
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel L Cox
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, California, USA
| |
Collapse
|
13
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
14
|
Li Z, Sela A, Fridman Y, Garstka L, Höfte H, Savaldi-Goldstein S, Wolf S. Optimal BR signalling is required for adequate cell wall orientation in the Arabidopsis root meristem. Development 2021; 148:273348. [PMID: 34739031 PMCID: PMC8627601 DOI: 10.1242/dev.199504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Plant brassinosteroid hormones (BRs) regulate growth in part through altering the properties of the cell wall, the extracellular matrix of plant cells. Conversely, feedback signalling from the wall connects the state of cell wall homeostasis to the BR receptor complex and modulates BR activity. Here, we report that both pectin-triggered cell wall signalling and impaired BR signalling result in altered cell wall orientation in the Arabidopsis root meristem. Furthermore, both depletion of endogenous BRs and exogenous supply of BRs triggered these defects. Cell wall signalling-induced alterations in the orientation of newly placed walls appear to occur late during cytokinesis, after initial positioning of the cortical division zone. Tissue-specific perturbations of BR signalling revealed that the cellular malfunction is unrelated to previously described whole organ growth defects. Thus, tissue type separates the pleiotropic effects of cell wall/BR signals and highlights their importance during cell wall placement. Summary: Both increased and reduced BR signalling strength results in altered cell wall orientation in the Arabidopsis root, uncoupled from whole-root growth control.
Collapse
Affiliation(s)
- Zhenni Li
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ayala Sela
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Fridman
- Plant Biology Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lucía Garstka
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Herman Höfte
- Department of Development, Signalling, and Modelling, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Sebastian Wolf
- Department of Cell Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
15
|
Studying Cell Division Plane Positioning in Early-Stage Embryos. Methods Mol Biol 2021. [PMID: 34705238 DOI: 10.1007/978-1-0716-1744-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Unraveling the mechanisms that govern division plane orientation is a major challenge to understand plant development. In this respect, the Arabidopsis early embryo is a model system of choice since embryogenesis is relatively simple and cell division planes orientation is highly predictable. Here we present an integrated set of protocols to study 3D cell division patterns in early-stage Arabidopsis embryos that combine both cellular and sub-cellular localization of selected protein markers with spatial organization of cells, cytoskeleton, and nuclei.
Collapse
|
16
|
Rich MK, Vigneron N, Libourel C, Keller J, Xue L, Hajheidari M, Radhakrishnan GV, Le Ru A, Diop SI, Potente G, Conti E, Duijsings D, Batut A, Le Faouder P, Kodama K, Kyozuka J, Sallet E, Bécard G, Rodriguez-Franco M, Ott T, Bertrand-Michel J, Oldroyd GED, Szövényi P, Bucher M, Delaux PM. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science 2021; 372:864-868. [PMID: 34016782 DOI: 10.1126/science.abg0929] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.
Collapse
Affiliation(s)
- Mélanie K Rich
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Nicolas Vigneron
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | - Li Xue
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany.,College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mohsen Hajheidari
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | | | - Aurélie Le Ru
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, 31326 Castanet-Tolosan, France
| | - Seydina Issa Diop
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland.,Zurich-Basel Plant Science Center, 8092 Zurich, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland.,Zurich-Basel Plant Science Center, 8092 Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland.,Zurich-Basel Plant Science Center, 8092 Zurich, Switzerland
| | | | - Aurélie Batut
- MetaToulLipidomics Facility, INSERM UMR1048, 31432 Toulouse, France
| | | | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Erika Sallet
- Laboratory of Plant-Microbe Interactions (LIPM), Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France
| | | | - Thomas Ott
- Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Giles E D Oldroyd
- John Innes Centre, Norwich NR4 7UH, UK.,Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008 Zurich, Switzerland.,Zurich-Basel Plant Science Center, 8092 Zurich, Switzerland
| | - Marcel Bucher
- Institute for Plant Sciences, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 31326 Castanet-Tolosan, France.
| |
Collapse
|
17
|
Kohorn BD, Greed BE, Mouille G, Verger S, Kohorn SL. Effects of Arabidopsis wall associated kinase mutations on ESMERALDA1 and elicitor induced ROS. PLoS One 2021; 16:e0251922. [PMID: 34015001 PMCID: PMC8136723 DOI: 10.1371/journal.pone.0251922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Angiosperm cell adhesion is dependent on interactions between pectin polysaccharides which make up a significant portion of the plant cell wall. Cell adhesion in Arabidopsis may also be regulated through a pectin-related signaling cascade mediated by a putative O-fucosyltransferase ESMERALDA1 (ESMD1), and the Epidermal Growth Factor (EGF) domains of the pectin binding Wall associated Kinases (WAKs) are a primary candidate substrate for ESMD1 activity. Genetic interactions between WAKs and ESMD1 were examined using a dominant hyperactive allele of WAK2, WAK2cTAP, and a mutant of the putative O-fucosyltransferase ESMD1. WAK2cTAP expression results in a dwarf phenotype and activation of the stress response and reactive oxygen species (ROS) production, while esmd1 is a suppressor of a pectin deficiency induced loss of adhesion. Here we find that esmd1 suppresses the WAK2cTAP dwarf and stress response phenotype, including ROS accumulation and gene expression. Additional analysis suggests that mutations of the potential WAK EGF O-fucosylation site also abate the WAK2cTAP phenotype, yet only evidence for an N-linked but not O-linked sugar addition can be found. Moreover, a WAK locus deletion allele has no effect on the ability of esmd1 to suppress an adhesion deficiency, indicating WAKs and their modification are not a required component of the potential ESMD1 signaling mechanism involved in the control of cell adhesion. The WAK locus deletion does however affect the induction of ROS but not the transcriptional response induced by the elicitors Flagellin, Chitin and oligogalacturonides (OGs).
Collapse
Affiliation(s)
- Bruce D. Kohorn
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
- * E-mail:
| | - Bridgid E. Greed
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, Versailles Cedex, France
| | - Stéphane Verger
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Susan L. Kohorn
- Department of Biology, Bowdoin College, Brunswick, Maine, United States of America
| |
Collapse
|
18
|
Kohorn BD, Zorensky FDH, Dexter-Meldrum J, Chabout S, Mouille G, Kohorn S. Mutation of an Arabidopsis Golgi membrane protein ELMO1 reduces cell adhesion. Development 2021; 148:268319. [PMID: 34015094 DOI: 10.1242/dev.199420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022]
Abstract
Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.
Collapse
Affiliation(s)
| | | | | | - Salem Chabout
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susan Kohorn
- Department of Biology, Bowdoin College, ME 04011, USA
| |
Collapse
|
19
|
Abstract
The plant cell wall is an extracellular matrix that envelopes cells, gives them structure and shape, constitutes the interface with symbionts, and defends plants against external biotic and abiotic stress factors. The assembly of this matrix is regulated and mediated by the cytoskeleton. Cytoskeletal elements define where new cell wall material is added and how fibrillar macromolecules are oriented in the wall. Inversely, the cytoskeleton is also key in the perception of mechanical cues generated by structural changes in the cell wall as well as the mediation of intracellular responses. We review the delivery processes of the cell wall precursors that are required for the cell wall assembly process and the structural continuity between the inside and the outside of the cell. We provide an overview of the different morphogenetic processes for which cell wall assembly is a crucial element and elaborate on relevant feedback mechanisms.
Collapse
|
20
|
Peaucelle A, Wightman R, Haas KT. Multicolor 3D-dSTORM Reveals Native-State Ultrastructure of Polysaccharides' Network during Plant Cell Wall Assembly. iScience 2020; 23:101862. [PMID: 33336161 PMCID: PMC7733027 DOI: 10.1016/j.isci.2020.101862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
The plant cell wall, a form of the extracellular matrix, is a complex and dynamic network of polymers mediating a plethora of physiological functions. How polysaccharides assemble into a coherent and heterogeneous matrix remains mostly undefined. Further progress requires improved molecular-level visualization methods that would gain a deeper understanding of the cell wall nanoarchitecture. dSTORM, a type of super-resolution microscopy, permits quantitative nanoimaging of the cell wall. However, due to the lack of single-cell model systems and the requirement of tissue-level imaging, its use in plant science is almost absent. Here we overcome these limitations; we compare two methods to achieve three-dimensional dSTORM and identify optimal photoswitching dyes for tissue-level multicolor nanoscopy. Combining dSTORM with spatial statistics, we reveal and characterize the ultrastructure of three major polysaccharides, callose, mannan, and cellulose, in the plant cell wall precursor and provide evidence for cellulose structural re-organization related to callose content.
Collapse
Affiliation(s)
- Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Kalina Tamara Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
21
|
Serra L, Robinson S. Plant cell divisions: variations from the shortest symmetric path. Biochem Soc Trans 2020; 48:2743-2752. [PMID: 33336690 PMCID: PMC7752081 DOI: 10.1042/bst20200529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
In plants, the spatial arrangement of cells within tissues and organs is a direct consequence of the positioning of the new cell walls during cell division. Since the nineteenth century, scientists have proposed rules to explain the orientation of plant cell divisions. Most of these rules predict the new wall will follow the shortest path passing through the cell centroid halving the cell into two equal volumes. However, in some developmental contexts, divisions deviate significantly from this rule. In these situations, mechanical stress, hormonal signalling, or cell polarity have been described to influence the division path. Here we discuss the mechanism and subcellular structure required to define the cell division placement then we provide an overview of the situations where division deviates from the shortest symmetric path.
Collapse
Affiliation(s)
- Léo Serra
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, U.K
| | - Sarah Robinson
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, U.K
| |
Collapse
|
22
|
Zhu X, Tellier F, Gu Y, Li S. Disruption of Very-Long-Chain-Fatty Acid Synthesis Has an Impact on the Dynamics of Cellulose Synthase in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1599. [PMID: 33218005 PMCID: PMC7698757 DOI: 10.3390/plants9111599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 01/16/2023]
Abstract
In higher plants, cellulose is synthesized by membrane-spanning large protein complexes named cellulose synthase complexes (CSCs). In this study, the Arabidopsis PASTICCINO2 (PAS2) was identified as an interacting partner of cellulose synthases. PAS2 was previously characterized as the plant 3-hydroxy-acyl-CoA dehydratase, an ER membrane-localized dehydratase that is essential for very-long-chain-fatty acid (VLCFA) elongation. The pas2-1 mutants show defective cell elongation and reduction in cellulose content in both etiolated hypocotyls and light-grown roots. Although disruption of VLCFA synthesis by a genetic alteration had a reduction in VLCFA in both etiolated hypocotyls and light-grown roots, it had a differential effect on cellulose content in the two systems, suggesting the threshold level of VLCFA for efficient cellulose synthesis may be different in the two biological systems. pas2-1 had a reduction in both CSC delivery rate and CSC velocity at the PM in etiolated hypocotyls. Interestingly, Golgi but not post-Golgi endomembrane structures exhibited a severe defect in motility. Experiments using pharmacological perturbation of VLCFA content in etiolated hypocotyls strongly indicate a novel function of PAS2 in the regulation of CSC and Golgi motility. Through a combination of genetic, biochemical and cell biology studies, our study demonstrated that PAS2 as a multifunction protein has an important role in the regulation of cellulose biosynthesis in Arabidopsis hypocotyl.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE-AgroParisTech, 78000 Versailles, France;
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA;
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
23
|
Wang L, Hart BE, Khan GA, Cruz ER, Persson S, Wallace IS. Associations between phytohormones and cellulose biosynthesis in land plants. ANNALS OF BOTANY 2020; 126:807-824. [PMID: 32619216 PMCID: PMC7539351 DOI: 10.1093/aob/mcaa121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. SCOPE Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. CONCLUSION Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.
Collapse
Affiliation(s)
- Liu Wang
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bret E Hart
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | | | - Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
- Department of Chemistry, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
24
|
To A, Joubès J, Thueux J, Kazaz S, Lepiniec L, Baud S. AtMYB92 enhances fatty acid synthesis and suberin deposition in leaves of Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:660-676. [PMID: 32246506 DOI: 10.1111/tpj.14759] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 05/11/2023]
Abstract
Acyl lipids are important constituents of the plant cell. Depending on the cell type, requirements in acyl lipids vary greatly, implying a tight regulation of fatty acid and lipid metabolism. The discovery of the WRINKLED1 (WRI1) transcription factors, members of the AP2-EREBP (APETALA2-ethylene-responsive element binding protein) family, has emphasized the importance of transcriptional regulation for adapting the rate of acyl chain production to cell requirements. Here, we describe the identification of another activator of the fatty acid biosynthetic pathway, the Arabidopsis MYB92 transcription factor. This MYB and all the members of the subgroups S10 and S24 of MYB transcription factors can directly activate the promoter of BCCP2 that encodes a component of the fatty acid biosynthetic pathway. Two adjacent MYB cis-regulatory elements are essential for the binding and activation of the BCCP2 promoter by MYB92. Overexpression of MYB92 or WRI1 in Nicotiana benthamiana induces the expression of fatty acid biosynthetic genes but results in the accumulation of different types of acyl lipids. In the presence of WRI1, triacylglycerol biosynthetic enzymes coded by constitutively expressed genes efficiently channel the excess fatty acids toward reserve lipid accumulation. By contrast, MYB92 activates both fatty acid and suberin biosynthetic genes; hence, the remarkable increase in suberin monomers measured in leaves expressing MYB92. These results provide additional insight into the molecular mechanisms that control the biosynthesis of an important cell wall-associated acylglycerol polymer playing critical roles in plants.
Collapse
Affiliation(s)
- Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, Université de Bordeaux, 33882, Villenave d'Ornon, France
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, 33882, Villenave d'Ornon, France
| | - Jean Thueux
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91400, Orsay, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
25
|
Anderson CT, Kieber JJ. Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:39-69. [PMID: 32084323 DOI: 10.1146/annurev-arplant-081519-035846] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cell walls are dynamic structures that are synthesized by plants to provide durable coverings for the delicate cells they encase. They are made of polysaccharides, proteins, and other biomolecules and have evolved to withstand large amounts of physical force and to resist external attack by herbivores and pathogens but can in many cases expand, contract, and undergo controlled degradation and reconstruction to facilitate developmental transitions and regulate plant physiology and reproduction. Recent advances in genetics, microscopy, biochemistry, structural biology, and physical characterization methods have revealed a diverse set of mechanisms by which plant cells dynamically monitor and regulate the composition and architecture of their cell walls, but much remains to be discovered about how the nanoscale assembly of these remarkable structures underpins the majestic forms and vital ecological functions achieved by plants.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
26
|
Abstract
Plant cells divide their cytoplasmic content by forming a new membrane compartment, the cell plate, via a rerouting of the secretory pathway toward the division plane aided by a dynamic cytoskeletal apparatus known as the phragmoplast. The phragmoplast expands centrifugally and directs the cell plate to the preselected division site at the plasma membrane to fuse with the parental wall. The division site is transiently decorated by the cytoskeletal preprophase band in preprophase and prophase, whereas a number of proteins discovered over the last decade reside continuously at the division site and provide a lasting spatial reference for phragmoplast guidance. Recent studies of membrane fusion at the cell plate have revealed the contribution of functionally conserved eukaryotic proteins to distinct stages of cell plate biogenesis and emphasize the coupling of cell plate formation with phragmoplast expansion. Together with novel findings concerning preprophase band function and the setup of the division site, cytokinesis and its spatial control remain an open-ended field with outstanding and challenging questions to resolve.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Developmental Genetics, Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; ,
| | - Sabine Müller
- Department of Developmental Genetics, Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; ,
| |
Collapse
|
27
|
Moukhtar J, Trubuil A, Belcram K, Legland D, Khadir Z, Urbain A, Palauqui JC, Andrey P. Cell geometry determines symmetric and asymmetric division plane selection in Arabidopsis early embryos. PLoS Comput Biol 2019; 15:e1006771. [PMID: 30742612 PMCID: PMC6386405 DOI: 10.1371/journal.pcbi.1006771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 02/22/2019] [Accepted: 01/10/2019] [Indexed: 01/20/2023] Open
Abstract
Plant tissue architecture and organ morphogenesis rely on the proper orientation of cell divisions. Previous attempts to predict division planes from cell geometry in plants mostly focused on 2D symmetric divisions. Using the stereotyped division patterns of Arabidopsis thaliana early embryogenesis, we investigated geometrical principles underlying plane selection in symmetric and in asymmetric divisions within complex 3D cell shapes. Introducing a 3D computational model of cell division, we show that area minimization constrained on passing through the cell centroid predicts observed divisions. Our results suggest that the positioning of division planes ensues from cell geometry and gives rise to spatially organized cell types with stereotyped shapes, thus underlining the role of self-organization in the developing architecture of the embryo. Our data further suggested the rule could be interpreted as surface minimization constrained by the nucleus position, which was validated using live imaging of cell divisions in the stomatal cell lineage. The proper positioning of division planes is key for correct development and morphogenesis of organs, in particular in plants were cellular walls prevent cell rearrangements. Elucidating how division planes are selected is therefore essential to decipher the cellular bases of plant morphogenesis. Previous attempts to identify geometrical rules relating cell shape and division plane positioning in plants mostly focused on symmetric divisions in tissues reduced to 2D geometries. Here, we combined 3D quantitative image analysis and a new 3D cell division model to evaluate the existence of geometrical rules in asymmetrical and symmetrical divisions of complex cell shapes. We show that in the early embryo of the model plant Arabidopsis thaliana, which presents stereotyped but complex cell division patterns, a single geometrical rule (area minimization constrained on passing through the cell centroid) recapitulates the complete sequence of division events. This new rule, valid for both symmetrical and asymmetrical divisions, generalizes previously proposed cell division rules and can be interpreted based on the dynamics of the cytoskeleton and on the positioning of the nucleus, a hypothesis that we validated using leaf cell division patterns. This work highlights the importance of self-organization in plant early morphogenesis and the emergence of robust cellular organizations based on geometrical feedback loops between cell geometry and division plane selection.
Collapse
Affiliation(s)
- Julien Moukhtar
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Alain Trubuil
- MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- * E-mail: (AT); (J-CP); (PA)
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - David Legland
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
- INRA, UMR782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval-Grignon, France
| | - Zhor Khadir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Aurélie Urbain
- MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Christophe Palauqui
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
- * E-mail: (AT); (J-CP); (PA)
| | - Philippe Andrey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
- * E-mail: (AT); (J-CP); (PA)
| |
Collapse
|
28
|
Abstract
SummaryFertilization in higher plants induces many structural and physiological changes in the fertilized egg, and represents the transition from the haploid female gamete to the diploid zygote, the first cell of a sporophyte. Some changes are induced extremely rapidly following fusion with sperm cells and are the preclusions of egg activation. This review focuses on the early changes that occur in the egg after fusion with sperm cells, but before nuclear fusion. Reported changes include cell shrinkage, cell wall formation, polarity change, oscillation in Ca2+ concentration, and DNA synthesis. In addition, the current understanding of egg activation is summarized and the possible functional relevance of the changes is explored.
Collapse
|
29
|
Sechet J, Marion-Poll A, North HM. Emerging Functions for Cell Wall Polysaccharides Accumulated during Eudicot Seed Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E81. [PMID: 30274256 PMCID: PMC6313846 DOI: 10.3390/plants7040081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 01/17/2023]
Abstract
The formation of seeds is a reproductive strategy in higher plants that enables the dispersal of offspring through time and space. Eudicot seeds comprise three main components, the embryo, the endosperm and the seed coat, where the coordinated development of each is important for the correct formation of the mature seed. In addition, the seed coat protects the quiescent progeny and can provide transport mechanisms. A key underlying process in the production of seed tissues is the formation of an extracellular matrix termed the cell wall, which is well known for its essential function in cytokinesis, directional growth and morphogenesis. The cell wall is composed of a macromolecular network of polymers where the major component is polysaccharides. The attributes of polysaccharides differ with their composition and charge, which enables dynamic remodeling of the mechanical and physical properties of the matrix by adjusting their production, modification or turnover. Accordingly, the importance of specific polysaccharides or modifications is increasingly being associated with specialized functions within seed tissues, often through the spatio-temporal accumulation or remodeling of particular polymers. Here, we review the evolution and accumulation of polysaccharides during eudicot seed development, what is known of their impact on wall architecture and the diverse roles associated with these in different seed tissues.
Collapse
Affiliation(s)
- Julien Sechet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Annie Marion-Poll
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
30
|
Chen HW, Persson S, Grebe M, McFarlane HE. Cellulose synthesis during cell plate assembly. PHYSIOLOGIA PLANTARUM 2018; 164:17-26. [PMID: 29418000 DOI: 10.1111/ppl.12703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 05/07/2023]
Abstract
The plant cell wall surrounds and protects the cells. To divide, plant cells must synthesize a new cell wall to separate the two daughter cells. The cell plate is a transient polysaccharide-based compartment that grows between daughter cells and gives rise to the new cell wall. Cellulose constitutes a key component of the cell wall, and mutants with defects in cellulose synthesis commonly share phenotypes with cytokinesis-defective mutants. However, despite the importance of cellulose in the cell plate and the daughter cell wall, many open questions remain regarding the timing and regulation of cellulose synthesis during cell division. These questions represent a critical gap in our knowledge of cell plate assembly, cell division and growth. Here, we review what is known about cellulose synthesis at the cell plate and in the newly formed cross-wall and pose key questions about the molecular mechanisms that govern these processes. We further provide an outlook discussing outstanding questions and possible future directions for this field of research.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Potsdam D-14476, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Potsdam D-14476, Germany
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Gigli-Bisceglia N, Hamann T. Outside-in control - does plant cell wall integrity regulate cell cycle progression? PHYSIOLOGIA PLANTARUM 2018; 164:82-94. [PMID: 29652097 DOI: 10.1111/ppl.12744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 05/12/2023]
Abstract
During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity (CWI) while, simultaneously, CWI can influence cellular processes. In yeast and animal cells such a bidirectional relationship also exists between the yeast/animal extracellular matrices and the cell cycle. In yeast, the CWI maintenance mechanism and a dedicated plasma membrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, the knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extracellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant CWI maintenance mechanism might also control cell cycle activity in plant cells.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
32
|
Troncoso-Ponce MA, Rivoal J, Dorion S, Sánchez R, Venegas-Calerón M, Moreno-Pérez AJ, Baud S, Garcés R, Martínez-Force E. Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:117-130. [PMID: 29807582 DOI: 10.1016/j.plantsci.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 05/19/2023]
Abstract
In the present study, we describe the molecular and biochemical characterization of sunflower (Helianthus annuus L.) enolase (ENO, EC 4.2.1.11) proteins, which catalyze the formation of phosphoenolpyruvate, the penultimate intermediate in the glycolytic pathway. We cloned and characterized three cDNAs encoding different ENO isoforms from developing sunflower seeds. Studies using fluorescently tagged ENOs confirmed the predicted subcellular localization of ENO isoforms: HaENO1 in the plastid while HaENO2 and HaENO3 were found in the cytosol. The cDNAs were used to express the corresponding 6(His)-tagged proteins in Escherichia coli. The proteins were purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Recombinant HaENO1 and HaENO2, but not HaENO3 were shown to have enolase activity, in agreement with data obtained with the Arabidopsis homolog proteins. Site directed mutagenesis of several critical amino acids was used to attempt to recover enolase activity in recombinant HaENO3, resulting in very small increases that were not additive. A kinetic characterization of the two active isoforms showed that pH had similar effect on their velocity, that they had similar affinity for 2-phosphoglycerate, but that the kcat/Km of the plastidial enzyme was higher than that of the cytosolic isoform. Even though HaENO2 was always the most highly expressed transcript, the levels of expression of the three ENO genes were remarkably distinct in all the vegetative and reproductive tissues studied. This indicates that in seeds the conversion of 2-phosphoglycerate to phosphoenolpyruvate takes place through the cytosolic and the plastidial pathways therefore both routes could contribute to the supply of carbon for lipid synthesis. The identity of the main source of carbon during the period of stored products synthesis is discussed.
Collapse
Affiliation(s)
- M A Troncoso-Ponce
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain; Sorbonne University, Université de technologie de Compiègne, CNRS, Institute for Enzyme and Cell Engineering, Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne cedex, France.
| | - J Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC, Canada
| | - S Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC, Canada
| | - R Sánchez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - M Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - A J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - S Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - R Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - E Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| |
Collapse
|
33
|
Speicher TL, Li PZ, Wallace IS. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. PLANTS (BASEL, SWITZERLAND) 2018; 7:E52. [PMID: 29966291 PMCID: PMC6161211 DOI: 10.3390/plants7030052] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase A (CESA) proteins, which are responsible for synthesizing cellulose, and additional accessory proteins. Moreover, CESA-like (CSL) proteins are proposed to synthesize other essential non-cellulosic polysaccharides that comprise plant cell walls. The deposition of cell-wall polysaccharides is dynamically regulated in response to a variety of developmental and environmental stimuli, and post-translational phosphorylation has been proposed as one mechanism to mediate this dynamic regulation. In this review, we discuss CSC composition, the dynamics of CSCs in vivo, critical studies that highlight the post-translational control of CESAs and CSLs, and the receptor kinases implicated in plant cell-wall biosynthesis. Furthermore, we highlight the emerging importance of post-translational phosphorylation-based regulation of CSCs on the basis of current knowledge in the field.
Collapse
Affiliation(s)
- Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Ziqiang Li
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
34
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
35
|
Hu H, Zhang R, Feng S, Wang Y, Wang Y, Fan C, Li Y, Liu Z, Schneider R, Xia T, Ding S, Persson S, Peng L. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:976-988. [PMID: 28944540 PMCID: PMC5902768 DOI: 10.1111/pbi.12842] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6-like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild-type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6-like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.
Collapse
Affiliation(s)
- Huizhen Hu
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ran Zhang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shengqiu Feng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Youmei Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chunfen Fan
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zengyu Liu
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - René Schneider
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Tao Xia
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shi‐You Ding
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Staffan Persson
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Liangcai Peng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
36
|
Sánchez-Rodríguez C, Shi Y, Kesten C, Zhang D, Sancho-Andrés G, Ivakov A, Lampugnani ER, Sklodowski K, Fujimoto M, Nakano A, Bacic A, Wallace IS, Ueda T, Van Damme D, Zhou Y, Persson S. The Cellulose Synthases Are Cargo of the TPLATE Adaptor Complex. MOLECULAR PLANT 2018; 11:346-349. [PMID: 29221860 DOI: 10.1016/j.molp.2017.11.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 05/20/2023]
Affiliation(s)
- Clara Sánchez-Rodríguez
- Max-Planck-Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.
| | - Yanyun Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Christopher Kesten
- Max-Planck-Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Biology, ETH Zurich, 8092 Zurich, Switzerland; School of Biosciences, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Alexander Ivakov
- Max-Planck-Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; School of Biosciences, University of Melbourne, Parkville, 3010 VIC, Australia; ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, GPO Box 475, Canberra, ACT 2601 Australia
| | - Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville, 3010 VIC, Australia
| | | | - Masaru Fujimoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advances Photonics, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, 3010 VIC, Australia
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Staffan Persson
- Max-Planck-Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; School of Biosciences, University of Melbourne, Parkville, 3010 VIC, Australia
| |
Collapse
|
37
|
Smertenko A, Hewitt SL, Jacques CN, Kacprzyk R, Liu Y, Marcec MJ, Moyo L, Ogden A, Oung HM, Schmidt S, Serrano-Romero EA. Phragmoplast microtubule dynamics - a game of zones. J Cell Sci 2018; 131:jcs.203331. [PMID: 29074579 DOI: 10.1242/jcs.203331] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant morphogenesis relies on the accurate positioning of the partition (cell plate) between dividing cells during cytokinesis. The cell plate is synthetized by a specialized structure called the phragmoplast, which consists of microtubules, actin filaments, membrane compartments and associated proteins. The phragmoplast forms between daughter nuclei during the transition from anaphase to telophase. As cells are commonly larger than the originally formed phragmoplast, the construction of the cell plate requires phragmoplast expansion. This expansion depends on microtubule polymerization at the phragmoplast forefront (leading zone) and loss at the back (lagging zone). Leading and lagging zones sandwich the 'transition' zone. A population of stable microtubules in the transition zone facilitates transport of building materials to the midzone where the cell plate assembly takes place. Whereas microtubules undergo dynamic instability in all zones, the overall balance appears to be shifted towards depolymerization in the lagging zone. Polymerization of microtubules behind the lagging zone has not been reported to date, suggesting that microtubule loss there is irreversible. In this Review, we discuss: (1) the regulation of microtubule dynamics in the phragmoplast zones during expansion; (2) mechanisms of the midzone establishment and initiation of cell plate biogenesis; and (3) signaling in the phragmoplast.
Collapse
Affiliation(s)
- Andrei Smertenko
- Institute of Biological Chemistry, Pullman, WA 99164, USA .,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Seanna L Hewitt
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Horticulture, Washington State University, Pullman, WA 99164, USA
| | - Caitlin N Jacques
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rafal Kacprzyk
- Institute of Biological Chemistry, Pullman, WA 99164, USA
| | - Yan Liu
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Matthew J Marcec
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lindani Moyo
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Aaron Ogden
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Hui Min Oung
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Sharol Schmidt
- Institute of Biological Chemistry, Pullman, WA 99164, USA.,Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Erika A Serrano-Romero
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
38
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
39
|
Novák D, Vadovič P, Ovečka M, Šamajová O, Komis G, Colcombet J, Šamaj J. Gene Expression Pattern and Protein Localization of Arabidopsis Phospholipase D Alpha 1 Revealed by Advanced Light-Sheet and Super-Resolution Microscopy. FRONTIERS IN PLANT SCIENCE 2018; 9:371. [PMID: 29628934 PMCID: PMC5877115 DOI: 10.3389/fpls.2018.00371] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/06/2018] [Indexed: 05/11/2023]
Abstract
Phospholipase D alpha 1 (PLDα1, At3g15730) and its product phosphatidic acid (PA) are involved in a variety of cellular and physiological processes, such as cytoskeletal remodeling, regulation of stomatal closure and opening, as well as biotic and abiotic stress signaling. Here we aimed to study developmental expression patterns and subcellular localization of PLDα1 in Arabidopsis using advanced microscopy methods such as light-sheet fluorescence microscopy (LSFM) and structured illumination microscopy (SIM). We complemented two knockout pldα1 mutants with a YFP-tagged PLDα1 expressed under the PLDα1 native promoter in order to study developmental expression pattern and subcellular localization of PLDα1 in Arabidopsis thaliana under natural conditions. Imaging of tissue-specific and developmentally-regulated localization of YFP-tagged PLDα1 by LSFM in roots of growing seedlings showed accumulation of PLDα1-YFP in the root cap and the rhizodermis. Expression of PLDα1-YFP in the rhizodermis was considerably higher in trichoblasts before and during root hair formation and growth. Thus, PLDα1-YFP accumulated in emerging root hairs and in the tips of growing root hairs. PLDα1-YFP showed cytoplasmic subcellular localization in root cap cells and in cells of the root transition zone. In aerial parts of plants PLDα1-YFP was also localized in the cytoplasm showing enhanced accumulation in the cortical cytoplasmic layer of epidermal non-dividing cells of hypocotyls, leaves, and leaf petioles. However, in dividing cells of root apical meristem and leaf petiole epidermis PLDα1-YFP was enriched in mitotic spindles and phragmoplasts, as revealed by co-visualization with microtubules. Finally, super-resolution SIM imaging revealed association of PLDα1-YFP with both microtubules and clathrin-coated vesicles (CCVs) and pits (CCPs). In conclusion, this study shows the developmentally-controlled expression and subcellular localization of PLDα1 in dividing and non-dividing Arabidopsis cells.
Collapse
Affiliation(s)
- Dominik Novák
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Pavol Vadovič
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
| | - Jean Colcombet
- UMR9213 Institut des Sciences des Plantes de Paris Saclay, Orsay, France
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Jozef Šamaj
| |
Collapse
|
40
|
Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA, Jamoune A, Alipanah L, Novák O, Persson S, Hejatko J, Hamann T. Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development 2018; 145:dev.166678. [DOI: 10.1242/dev.166678] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
During plant growth and defense, cell cycle activity needs to be coordinated with cell wall integrity. Little is known about how coordination is achieved. Here we investigated coordination in Arabidopsis thaliana seedlings by studying the impact of cell wall damage (CWD, caused by cellulose biosynthesis inhibition) on cytokinin homeostasis, cell cycle gene expression and shape in root tips. CWD inhibited cell cycle gene expression and increased transition zone cell width in an osmo-sensitive manner. These results were correlated with CWD-induced, osmo-sensitive changes in cytokinin homeostasis. Expression of CYTOKININ OXIDASE/DEHYDROGENASE2 and 3 (CKX2, CKX3), encoding cytokinin-degrading enzymes was induced by CWD and reduced by osmoticum treatment. In nitrate reductase1 nitrate reductase2 (nia1 nia2) seedlings, neither CKX2 and CKX3 transcript levels were increased nor cell cycle gene expression repressed by CWD. Moreover, established CWD-induced responses like jasmonic acid, salicylic acid and lignin production, were also absent, implying a central role of NIA1- and NIA2-mediated processes in regulation of CWD responses. These results suggest that CWD enhances cytokinin degradation rates through a NIA1 and NIA2-mediated process, subsequently attenuating cell cycle gene expression.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lauri Vaahtera
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Amel Jamoune
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Leila Alipanah
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia
| | - Jan Hejatko
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants CEITEC-Central European Institute of Technology Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
41
|
Plant Cytokinesis: Terminology for Structures and Processes. Trends Cell Biol 2017; 27:885-894. [PMID: 28943203 DOI: 10.1016/j.tcb.2017.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/22/2022]
Abstract
Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network. Furthermore, the phragmoplast combines plant-specific features with the conserved cytokinetic processes of animals, fungi, and protists. As such, the phragmoplast represents a useful system for understanding both plant cell dynamics and the evolution of cytokinesis. We recognize that future research and knowledge transfer into other fields would benefit from standardized terminology. Here, we propose such a lexicon of terminology for specific structures and processes associated with plant cytokinesis.
Collapse
|
42
|
THOMAS J, IDRIS N, COLLINGS D. Pontamine fast scarlet 4B bifluorescence and measurements of cellulose microfibril angles. J Microsc 2017; 268:13-27. [DOI: 10.1111/jmi.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/23/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- J. THOMAS
- School of Biological Sciences; The University of Canterbury; Christchurch New Zealand
- Central Wood Testing Laboratory; The Rubber Board; Kottayam Kerala India
| | - N.A. IDRIS
- School of Biological Sciences; The University of Canterbury; Christchurch New Zealand
- School of Fundamental Sciences; Universiti Malaysia Terengganu; Kuala Nerus Kuala Terengganu Terengganu Malaysia
| | - D.A. COLLINGS
- School of Biological Sciences; The University of Canterbury; Christchurch New Zealand
- School of Environmental and Life Sciences; The University of Newcastle; Callaghan NSW Australia
| |
Collapse
|
43
|
The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet 2017; 13:e1006832. [PMID: 28604776 PMCID: PMC5484538 DOI: 10.1371/journal.pgen.1006832] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 06/26/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues. Plants are constantly exposed to external stresses of biotic and abiotic nature, as well as internal stresses, resulting from growth and mechanical tension. Feedback information about the integrity of the cell wall can enable the plant to perceive such stresses, and respond adequately. Plants are known to perceive signals from their environment through receptor kinases at the plant cell surface. Here, we reveal that the Arabidopsis thaliana receptor kinase MIK2 regulates responses to cell wall perturbation. Moreover, we find that MIK2 controls root growth angle, modulates cell wall structure in the root tip, contributes to salt stress tolerance, and is required for resistance against a root-infecting pathogen. Our data suggest that MIK2 is involved in sensing cell wall perturbations in plants, whereby it allows the plant to cope with a diverse range of environmental stresses. These data provide an important step forward in our understanding of the mechanisms plants deploy to sense internal and external danger.
Collapse
|
44
|
BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1. Proc Natl Acad Sci U S A 2017; 114:3533-3538. [PMID: 28289192 DOI: 10.1073/pnas.1615005114] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deposition of cellulose is a defining aspect of plant growth and development, but regulation of this process is poorly understood. Here, we demonstrate that the protein kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a key negative regulator of brassinosteroid (BR) signaling, can phosphorylate Arabidopsis cellulose synthase A1 (CESA1), a subunit of the primary cell wall cellulose synthase complex, and thereby negatively regulate cellulose biosynthesis. Accordingly, point mutations of the BIN2-mediated CESA1 phosphorylation site abolished BIN2-dependent regulation of cellulose synthase activity. Hence, we have uncovered a mechanism for how BR signaling can modulate cellulose synthesis in plants.
Collapse
|
45
|
Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis. Curr Biol 2016; 26:1404-15. [PMID: 27212401 PMCID: PMC5024349 DOI: 10.1016/j.cub.2016.04.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
The cell walls of the shoot apical meristem (SAM), containing the stem cell niche that gives rise to the above-ground tissues, are crucially involved in regulating differentiation. It is currently unknown how these walls are built and refined or their role, if any, in influencing meristem developmental dynamics. We have combined polysaccharide linkage analysis, immuno-labeling, and transcriptome profiling of the SAM to provide a spatiotemporal plan of the walls of this dynamic structure. We find that meristematic cells express only a core subset of 152 genes encoding cell wall glycosyltransferases (GTs). Systemic localization of all these GT mRNAs by in situ hybridization reveals members with either enrichment in or specificity to apical subdomains such as emerging flower primordia, and a large class with high expression in dividing cells. The highly localized and coordinated expression of GTs in the SAM suggests distinct wall properties of meristematic cells and specific differences between newly forming walls and their mature descendants. Functional analysis demonstrates that a subset of CSLD genes is essential for proper meristem maintenance, confirming the key role of walls in developmental pathways.
Collapse
|
46
|
Jones DM, Murray CM, Ketelaar KJ, Thomas JJ, Villalobos JA, Wallace IS. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:684. [PMID: 27252710 PMCID: PMC4877384 DOI: 10.3389/fpls.2016.00684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/04/2016] [Indexed: 05/02/2023]
Abstract
Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites.
Collapse
Affiliation(s)
- Danielle M. Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Christian M. Murray
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - KassaDee J. Ketelaar
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Joseph J. Thomas
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Jose A. Villalobos
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
| | - Ian S. Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, RenoNV, USA
- Department of Chemistry, University of Nevada, Reno, RenoNV, USA
- *Correspondence: Ian S. Wallace,
| |
Collapse
|
47
|
Somssich M, Khan GA, Persson S. Cell Wall Heterogeneity in Root Development of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1242. [PMID: 27582757 PMCID: PMC4987334 DOI: 10.3389/fpls.2016.01242] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 05/19/2023]
Abstract
Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes.
Collapse
Affiliation(s)
- Marc Somssich
- School of Biosciences, University of MelbourneMelbourne, VIC, Australia
| | - Ghazanfar Abbas Khan
- Department of Plant Molecular Biology, University of LausanneLausanne, Switzerland
| | - Staffan Persson
- School of Biosciences, University of MelbourneMelbourne, VIC, Australia
- *Correspondence: Staffan Persson,
| |
Collapse
|
48
|
Belcram K, Palauqui JC, Pastuglia M. Studying Cell Division Plane Positioning in Early-Stage Embryos. Methods Mol Biol 2016; 1370:183-195. [PMID: 26659963 DOI: 10.1007/978-1-4939-3142-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Unraveling the mechanisms that govern division plane orientation is a major challenge to understand plant development. In this respect, the Arabidopsis early embryo is a model system of choice since embryogenesis is relatively simple and cell division planes orientation is highly predictable. Here, we present an integrated set of protocols to study 3D cell division patterns in early-stage Arabidopsis embryos that combine both cellular and sub-cellular localization of selected protein markers with spatial organization of cells, cytoskeleton, and nuclei.
Collapse
Affiliation(s)
- Katia Belcram
- Institut Jean-Pierre Bourgin (IJPB), INRA, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France.
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France.
| | - Jean-Christophe Palauqui
- Institut Jean-Pierre Bourgin (IJPB), INRA, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France
| | - Martine Pastuglia
- Institut Jean-Pierre Bourgin (IJPB), INRA, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France
- Institut Jean-Pierre Bourgin (IJPB), AgroParisTech, UMR 1318, ERL 3559 CNRS, Saclay Plant Sciences, 78000, Versailles, France
| |
Collapse
|
49
|
Anderson CT. We be jammin': an update on pectin biosynthesis, trafficking and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:495-502. [PMID: 26590862 DOI: 10.1093/jxb/erv501] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pectins are complex polysaccharides that contain acidic sugars and are major determinants of the cohesion, adhesion, extensibility, porosity and electrostatic potential of plant cell walls. Recent evidence has solidified their positions as key regulators of cellular growth and tissue morphogenesis, although important details of how they achieve this regulation are still missing. Pectins are also hypothesized to function as ligands for wall integrity sensors that enable plant cells to respond to intrinsic defects in wall biomechanics and to wall degradation by attacking pathogens. This update highlights recent advances in our understanding of the biosynthesis of pectins, how they are delivered to the cell surface and become incorporated into the cell wall matrix and how pectins are modified over time in the apoplast. It also poses unanswered questions for further research into this enigmatic but essential class of carbohydrate polymers.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
50
|
Slabaugh E, Scavuzzo-Duggan T, Chaves A, Wilson L, Wilson C, Davis JK, Cosgrove DJ, Anderson CT, Roberts AW, Haigler CH. The valine and lysine residues in the conserved FxVTxK motif are important for the function of phylogenetically distant plant cellulose synthases. Glycobiology 2015; 26:509-19. [PMID: 26646446 DOI: 10.1093/glycob/cwv118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure-function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA.
Collapse
Affiliation(s)
- Erin Slabaugh
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Tess Scavuzzo-Duggan
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Arielle Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Liza Wilson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Carmen Wilson
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jonathan K Davis
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel J Cosgrove
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alison W Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Candace H Haigler
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|