1
|
Ren X, Chen J, Chen S, Zhang H, Li L. Genome-Wide Identification and Characterization of CLAVATA3/EMBRYO SURROUNDING REGION (CLE) Gene Family in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2023; 14:2046. [PMID: 38002989 PMCID: PMC10671770 DOI: 10.3390/genes14112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) genes encode signaling peptides that play important roles in various developmental and physiological processes. However, the systematic identification and characterization of CLE genes in foxtail millet (Setaria italica L.) remain limited. In this study, we identified and characterized 41 SiCLE genes in the foxtail millet genome. These genes were distributed across nine chromosomes and classified into four groups, with five pairs resulting from gene duplication events. SiCLE genes within the same phylogenetic group shared similar gene structure and motif patterns, while 34 genes were found to be single-exon genes. All SiCLE peptides harbored the conserved C-terminal CLE domain, with highly conserved positions in the CLE core sequences shared among foxtail millet, Arabidopsis, rice, and maize. The SiCLE genes contained various cis-elements, including five plant hormone-responsive elements. Notably, 34 SiCLE genes possessed more than three types of phytohormone-responsive elements on their promoters. Comparative analysis revealed higher collinearity between CLE genes in maize and foxtail millet, which may be because they are both C4 plants. Tissue-specific expression patterns were observed, with genes within the same group exhibiting similar and specific expression profiles. SiCLE32 and SiCLE41, classified in Group D, displayed relatively high expression levels in all tissues except panicles. Most SiCLE genes exhibited low expression levels in young panicles, while SiCLE6, SiCLE24, SiCLE25, and SiCLE34 showed higher expression in young panicles, with SiCLE24 down-regulated during later panicle development. Greater numbers of SiCLE genes exhibited higher expression in roots, with SiCLE7, SiCLE22, and SiCLE36 showing the highest levels and SiCLE36 significantly down-regulated after abscisic acid (ABA) treatment. Following treatments with ABA, 6-benzylaminopurine (6-BA), and gibberellic acid 3 (GA3), most SiCLE genes displayed down-regulation followed by subsequent recovery, while jasmonic acid (JA) and indole-3-acetic acid (IAA) treatments led to upregulation at 30 min in leaves. Moreover, identical hormone treatments elicited different expression patterns of the same genes in leaves and stems. This comprehensive study enhances our understanding of the SiCLE gene family and provides a foundation for further investigations into the functions and evolution of SiCLE genes in foxtail millet.
Collapse
|
2
|
Xie M, Zhao C, Song M, Xiang Y, Tong C. Genome-wide identification and comparative analysis of CLE family in rapeseed and its diploid progenitors. FRONTIERS IN PLANT SCIENCE 2022; 13:998082. [PMID: 36340404 PMCID: PMC9632860 DOI: 10.3389/fpls.2022.998082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Crop genomics and breeding CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) proteins belong to a small peptide family in plants. During plant development, CLE gene family members play a pivotal role in regulating cell-to-cell communication and stem cell maintenance. However, the evolutionary process and functional importance of CLEs are unclear in Brassicaceae. In this study, a total of 70 BnCLEs were identified in Brassica napus (2n = 4x = 38, AnCn): 32 from the An subgenome, 36 from the Cn subgenome, and 2 from the unanchored subgenome. Meanwhile, 29 BrCLE and 32 BoCLE genes were explored in Brassica rapa (2n = 2x = 20, Ar) and Brassica oleracea (2n = 2x = 18, Co). Phylogenetic analysis revealed that 163 CLEs derived from three Brassica species and Arabidopsis thaliana can be divided into seven subfamilies. Homology and synteny analyses indicated whole-genome triplication (WGT) and segmental duplication may be the major contributors to the expansion of CLE family. In addition, RNA-seq and qPCR analysis indicated that 19 and 16 BnCLEs were more highly expressed in immature seeds and roots than in other tissues. Some CLE gene pairs exhibited different expression patterns in the same tissue, which indicated possible functional divergence. Furthermore, genetic variations and regional association mapping analysis indicated that 12 BnCLEs were potential genes for regulating important agronomic traits. This study provided valuable information to understand the molecular evolution and biological function of CLEs in B. napus and its diploid progenitors, which will be helpful for genetic improvement of high-yield breeding in B. napus.
Collapse
Affiliation(s)
- Meili Xie
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Min Song
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
- College of Life Science, Qufu Normal University, Qufu, China
| | - Yang Xiang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
3
|
Chambaud C, Cookson SJ, Ollat N, Bayer E, Brocard L. A correlative light electron microscopy approach reveals plasmodesmata ultrastructure at the graft interface. PLANT PHYSIOLOGY 2022; 188:44-55. [PMID: 34687300 PMCID: PMC8774839 DOI: 10.1093/plphys/kiab485] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/01/2023]
Abstract
Despite recent progress in our understanding of graft union formation, we still know little about the cellular events underlying the grafting process. This is partially due to the difficulty of reliably targeting the graft interface in electron microscopy to study its ultrastructure and three-dimensional architecture. To overcome this technological bottleneck, we developed a correlative light electron microscopy (CLEM) approach to study the graft interface with high ultrastructural resolution. Grafting hypocotyls of Arabidopsis thaliana lines expressing yellow FP or monomeric red FP in the endoplasmic reticulum (ER) allowed efficient targeting of the grafting interface for examination under light and electron microscopy. To explore the potential of our method to study sub-cellular events at the graft interface, we focused on the formation of secondary plasmodesmata (PD) between the grafted partners. We showed that four classes of PD were formed at the interface and that PD introgression into the cell wall was initiated equally by both partners. Moreover, the success of PD formation appeared not systematic with a third of PD not spanning the cell wall entirely. Characterizing the ultrastructural characteristics of these incomplete PD gives us insights into the process of secondary PD biogenesis. We found that the establishment of successful symplastic connections between the scion and rootstock occurred predominantly in the presence of thin cell walls and ER-plasma membrane tethering. The resolution reached in this work shows that our CLEM method advances the study of biological processes requiring the combination of light and electron microscopy.
Collapse
Affiliation(s)
- Clément Chambaud
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
| | - Sarah Jane Cookson
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
| | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
| | - Emmanuelle Bayer
- Laboratoire de Biogénèse Membranaire (LBM), CNRS, Univ. Bordeaux, UMR 5200, F-33882 Villenave d’Ornon, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France
| |
Collapse
|
4
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-causal testing for irregularly sampled time series with application to nitrogen signalling in Arabidopsis. BIOINFORMATICS (OXFORD, ENGLAND) 2021; 37:2450-2460. [PMID: 33693548 DOI: 10.1101/2020.06.15.152819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 05/27/2023]
Abstract
MOTIVATION Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. RESULTS This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model's dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. AVAILABILITY AND IMPLEMENTATION The method was developed with the R statistical software and is made available through the R package 'irg' hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva 1205, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Heerah S, Molinari R, Guerrier S, Marshall-Colon A. Granger-Causal Testing for Irregularly Sampled Time Series with Application to Nitrogen Signaling in Arabidopsis. Bioinformatics 2021; 37:2450-2460. [PMID: 33693548 PMCID: PMC8388030 DOI: 10.1093/bioinformatics/btab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/05/2022] Open
Abstract
Motivation Identification of system-wide causal relationships can contribute to our understanding of long-distance, intercellular signalling in biological organisms. Dynamic transcriptome analysis holds great potential to uncover coordinated biological processes between organs. However, many existing dynamic transcriptome studies are characterized by sparse and often unevenly spaced time points that make the identification of causal relationships across organs analytically challenging. Application of existing statistical models, designed for regular time series with abundant time points, to sparse data may fail to reveal biologically significant, causal relationships. With increasing research interest in biological time series data, there is a need for new statistical methods that are able to determine causality within and between time series data sets. Here, a statistical framework was developed to identify (Granger) causal gene-gene relationships of unevenly spaced, multivariate time series data from two different tissues of Arabidopsis thaliana in response to a nitrogen signal. Results This work delivers a statistical approach for modelling irregularly sampled bivariate signals which embeds functions from the domain of engineering that allow to adapt the model’s dependence structure to the specific sampling time. Using maximum-likelihood to estimate the parameters of this model for each bivariate time series, it is then possible to use bootstrap procedures for small samples (or asymptotics for large samples) in order to test for Granger-Causality. When applied to the A.thaliana data, the proposed approach produced 3078 significant interactions, in which 2012 interactions have root causal genes and 1066 interactions have shoot causal genes. Many of the predicted causal and target genes are known players in local and long-distance nitrogen signalling, including genes encoding transcription factors, hormones and signalling peptides. Of the 1007 total causal genes (either organ), 384 are either known or predicted mobile transcripts, suggesting that the identified causal genes may be directly involved in long-distance nitrogen signalling through intercellular interactions. The model predictions and subsequent network analysis identified nitrogen-responsive genes that can be further tested for their specific roles in long-distance nitrogen signalling. Availability and implementation The method was developed with the R statistical software and is made available through the R package ‘irg’ hosted on the GitHub repository https://github.com/SMAC-Group/irg where also a running example vignette can be found (https://smac-group.github.io/irg/articles/vignette.html). A few signals from the original data set are made available in the package as an example to apply the method and the complete A.thaliana data can be found at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97500. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sachin Heerah
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA
| | - Stéphane Guerrier
- Faculty of Science & Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Amy Marshall-Colon
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
6
|
Ma D, Endo S, Betsuyaku S, Shimotohno A, Fukuda H. CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. PLANT MOLECULAR BIOLOGY 2020; 104:561-574. [PMID: 32980951 DOI: 10.1007/s11103-020-01059-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/21/2020] [Indexed: 05/05/2023]
Abstract
This study focused on the role of CLE1-CLE7 peptides as environmental mediators and indicated that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots. Plants sense environmental stimuli and convert them into cellular signals, which are transmitted to distinct cells and tissues to induce adequate responses. Plant hormones and small secretory peptides often function as environmental stress mediators. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED proteins, CLE1-CLE7, which share closely related CLE domains, mediate environmental stimuli in Arabidopsis thaliana. Expression analysis of CLE1-CLE7 revealed that these genes respond to different environmental stimuli, such as nitrogen deprivation, nitrogen replenishment, cold, salt, dark, and sugar starvation, in a sophisticated manner. To further investigate the function of CLE2, we generated transgenic Arabidopsis lines expressing the β-glucuronidase gene under the control of the CLE2 promoter or expressing the CLE2 gene under the control of an estradiol-inducible promoter. We also generated cle2-1 and cle2-2 mutants using the CRISPR/Cas9 technology. In these transgenic lines, dark induced the expression of CLE2 in the root vasculature. Additionally, induction of CLE2 in roots induced the expression of various genes not only in roots but also in shoots, and genes related to light-dependent carbohydrate metabolism were particularly induced in shoots. In addition, cle2 mutant plants showed chlorosis when subjected to a shade treatment. These results suggest that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots.
Collapse
Affiliation(s)
- Dichao Ma
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Satoshi Endo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigeyuki Betsuyaku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Akie Shimotohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Zhang Z, Liu L, Kucukoglu M, Tian D, Larkin RM, Shi X, Zheng B. Predicting and clustering plant CLE genes with a new method developed specifically for short amino acid sequences. BMC Genomics 2020; 21:709. [PMID: 33045986 PMCID: PMC7552357 DOI: 10.1186/s12864-020-07114-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Background The CLV3/ESR-RELATED (CLE) gene family encodes small secreted peptides (SSPs) and plays vital roles in plant growth and development by promoting cell-to-cell communication. The prediction and classification of CLE genes is challenging because of their low sequence similarity. Results We developed a machine learning-aided method for predicting CLE genes by using a CLE motif-specific residual score matrix and a novel clustering method based on the Euclidean distance of 12 amino acid residues from the CLE motif in a site-weight dependent manner. In total, 2156 CLE candidates—including 627 novel candidates—were predicted from 69 plant species. The results from our CLE motif-based clustering are consistent with previous reports using the entire pre-propeptide. Characterization of CLE candidates provided systematic statistics on protein lengths, signal peptides, relative motif positions, amino acid compositions of different parts of the CLE precursor proteins, and decisive factors of CLE prediction. The approach taken here provides information on the evolution of the CLE gene family and provides evidence that the CLE and IDA/IDL genes share a common ancestor. Conclusions Our new approach is applicable to SSPs or other proteins with short conserved domains and hence, provides a useful tool for gene prediction, classification and evolutionary analysis.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Melis Kucukoglu
- Institute of Biotechnology, Helsinki Institute of Life Science (HILIFE), University of Helsinki, 00014, Helsinki, Finland.,Viikki Plant Science Centre, University of Helsinki, 00014, Helsinki, Finland
| | - Dongdong Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueping Shi
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Whitewoods CD. Evolution of CLE peptide signalling. Semin Cell Dev Biol 2020; 109:12-19. [PMID: 32444290 DOI: 10.1016/j.semcdb.2020.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
CLEs are small non-cell autonomous signalling peptides that regulate cell division rate and orientation in a variety of developmental contexts. Recent years have generated a huge amount of research on CLE function across land plants, characterising their role across the whole plant; they control stem cell division in the shoot, root and cambial meristems, balance developmental investment into symbiosis, regulate leaf development, pattern stomata and control axillary branching. They have even been co-opted by parasitic nematodes to mediate infection. This review synthesises these recent findings and embeds them in an evolutionary context, outlining the likely evolution of the CLE signalling pathway. I use this framework to infer common mechanistic themes and pose key future questions for the field.
Collapse
|
9
|
Wang P, Wang Y, Ren F. Genome-wide identification of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family in grape (Vitis vinifera L.). BMC Genomics 2019; 20:553. [PMID: 31277568 PMCID: PMC6612224 DOI: 10.1186/s12864-019-5944-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background CLE genes play various biological roles in plant growth and development, as well as in responses to environmental stimuli. Results In the present study, we identified nine CLE genes in the grape genome using an effective identification method. We analyzed the expression profiles of grape CLE genes in different tissues and under environmental different stimuli. VvCLE3 was expressed in shoot apical meristem (SAM) enriched regions, and VvCLE6 was expressed in shoot tissue without SAM. When grapes were infected with bois noir, VvCLE2 was up-regulated. Under ABA treatment, VvCLE3 was down-regulated. VvCLE6 was up-regulated under high temperature stress. We found that VvCLE6 and VvCLE1 were highly expressed in root tissue. In addition, we compared the characteristics of CLEs from grape and other plant species. The CLE family in Sphagnum fallax underwent positive selection, while the CLE family in grape underwent purifying selection. The frequency of optimal codons and codon adaptation index of rice and grape CLE family members were positively correlated with GC content at the third site of synonymous codons, indicating that the dominant evolutionary pressure acting on rice and grape CLE genes was mutation pressure. We also found that closely related species had higher levels of similarity in relative synonymous codon usage in CLE genes. The rice CLE family was biased toward C and G nucleotides at third codon positions. Gene duplication and loss events were also found in grape CLE genes. Conclusion These results demonstrate an effective identification method for CLE motifs and increase the understanding of grape CLEs. Future research on CLE genes may have applications for grape breeding and cultivation to better understand root and nodulation development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5944-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Wang
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| | - Yongmei Wang
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| | - Fengshan Ren
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| |
Collapse
|
10
|
Fonouni-Farde C, Miassod A, Laffont C, Morin H, Bendahmane A, Diet A, Frugier F. Gibberellins negatively regulate the development of Medicago truncatula root system. Sci Rep 2019; 9:2335. [PMID: 30787350 PMCID: PMC6382856 DOI: 10.1038/s41598-019-38876-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023] Open
Abstract
The root system displays a remarkable plasticity that enables plants to adapt to changing environmental conditions. This plasticity is tightly linked to the activity of root apical meristems (RAMs) and to the formation of lateral roots, both controlled by related hormonal crosstalks. In Arabidopsis thaliana, gibberellins (GAs) were shown to positively control RAM growth and the formation of lateral roots. However, we showed in Medicago truncatula that GAs negatively regulate root growth and RAM size as well as the number of lateral roots depending at least on the MtDELLA1 protein. By using confocal microscopy and molecular analyses, we showed that GAs primarily regulate RAM size by affecting cortical cell expansion and additionally negatively regulate a subset of cytokinin-induced root expansin encoding genes. Moreover, GAs reduce the number of cortical cell layers, resulting in the formation of both shorter and thinner roots. These results suggest contrasting effects of GA regulations on the root system architecture depending on plant species.
Collapse
Affiliation(s)
- Camille Fonouni-Farde
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Ambre Miassod
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Halima Morin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Anouck Diet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Univ Paris Diderot, INRA, Univ Paris Sud, Univ d'Evry, Université Paris-Saclay, Rue de Noetzlin, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
DiGennaro P, Grienenberger E, Dao TQ, Jun J, Fletcher JC. Peptide signaling molecules CLE5 and CLE6 affect Arabidopsis leaf shape downstream of leaf patterning transcription factors and auxin. PLANT DIRECT 2018; 2:e00103. [PMID: 31245702 PMCID: PMC6508849 DOI: 10.1002/pld3.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 05/18/2023]
Abstract
Intercellular signaling mediated by small peptides is critical to coordinate organ formation in animals, but whether extracellular polypeptides play similar roles in plants is unknown. Here we describe a role in Arabidopsis leaf development for two members of the CLAVATA3/ESR-RELATED peptide family, CLE5 and CLE6, which lie adjacent to each other on chromosome 2. Uniquely among the CLE genes, CLE5 and CLE6 are expressed specifically at the base of developing leaves and floral organs, adjacent to the boundary with the shoot apical meristem. During vegetative development CLE5 and CLE6 transcription is regulated by the leaf patterning transcription factors BLADE-ON-PETIOLE1 (BOP1) and ASYMMETRIC LEAVES2 (AS2), as well as by the WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors WOX1 and PRESSED FLOWER (PRS). Moreover, CLE5 and CLE6 transcript levels are differentially regulated in various genetic backgrounds by the phytohormone auxin. Analysis of loss-of-function mutations generated by genome engineering reveals that CLE5 and CLE6 independently and together have subtle effects on rosette leaf shape. Our study indicates that the CLE5 and CLE6 peptides function downstream of leaf patterning factors and phytohormones to modulate the final leaf morphology.
Collapse
Affiliation(s)
- Peter DiGennaro
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
- Present address:
Department of Entomology and NematologyUniversity of FloridaGainesvilleFlorida
| | - Etienne Grienenberger
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
- Present address:
Centre National de la Recherche Scientifique (CNRS)Institute of Plant Molecular BiologyUniversity of StrasbourgStrasbourgFrance
| | - Thai Q. Dao
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
| | - Ji Hyung Jun
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
- Present address:
BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTexas
| | - Jennifer C. Fletcher
- Plant Gene Expression CenterUSDA‐ARS/UC BerkeleyAlbanyCalifornia
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
12
|
Laffont C, De Cuyper C, Fromentin J, Mortier V, De Keyser A, Verplancke C, Holsters M, Goormachtig S, Frugier F. MtNRLK1, a CLAVATA1-like leucine-rich repeat receptor-like kinase upregulated during nodulation in Medicago truncatula. Sci Rep 2018; 8:2046. [PMID: 29391543 PMCID: PMC5794917 DOI: 10.1038/s41598-018-20359-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
Peptides are signaling molecules regulating various aspects of plant development, including the balance between cell division and differentiation in different meristems. Among those, CLAVATA3/Embryo Surrounding Region-related (CLE-ESR) peptide activity depends on leucine-rich-repeat receptor-like-kinases (LRR-RLK) belonging to the subclass XI. In legume plants, such as the Medicago truncatula model, specific CLE peptides were shown to regulate root symbiotic nodulation depending on the LRR-RLK SUNN (Super Numeric Nodules). Amongst the ten M. truncatula LRR-RLK most closely related to SUNN, only one showed a nodule-induced expression, and was so-called MtNRLK1 (Nodule-induced Receptor-Like Kinase 1). MtNRLK1 expression is associated to root and nodule vasculature as well as to the proximal meristem and rhizobial infection zone in the nodule apex. Except for the root vasculature, the MtNRLK1 symbiotic expression pattern is different than the one of MtSUNN. Functional analyses either based on RNA interference, insertional mutagenesis, and overexpression of MtNRLK1 however failed to identify a significant nodulation phenotype, either regarding the number, size, organization or nitrogen fixation capacity of the symbiotic organs formed.
Collapse
Affiliation(s)
- Carole Laffont
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, U Paris-Sud, U Paris-Diderot, U d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Carolien De Cuyper
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Justine Fromentin
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Virginie Mortier
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Annick De Keyser
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Christa Verplancke
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Marcelle Holsters
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Sofie Goormachtig
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, U Paris-Sud, U Paris-Diderot, U d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Abstract
Vascular tissue, comprising xylem and phloem, is responsible for the transport of water and nutrients throughout the plant body. Such tissue is continually produced from stable populations of stem cells, specifically the procambium during primary growth and the cambium during secondary growth. As the majority of plant biomass is produced by the cambium, there is an obvious demand for an understanding of the genetic mechanisms that control the rate of vascular cell division. Moreover, wood is an industrially important product of the cambium, and research is beginning to uncover similar mechanisms in trees such as poplar. This review focuses upon recent work that has identified the major molecular pathways that regulate procambial and cambial activity.
Collapse
Affiliation(s)
- Liam Campbell
- University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon Turner
- University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Okamoto S, Tabata R, Matsubayashi Y. Long-distance peptide signaling essential for nutrient homeostasis in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:35-40. [PMID: 27552346 DOI: 10.1016/j.pbi.2016.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 05/10/2023]
Abstract
Organ-to-organ communication is indispensable for higher organisms to maintain homeostasis over their entire life. Recent findings have uncovered that plants, like animals, mediate organ-to-organ communication by long-distance signaling through the vascular system. In particular, xylem-mobile secreted peptides have attracted much attention as root-to-shoot long-distance signaling molecules in response to fluctuating environmental nutrient status. Several leguminous CLE peptides induced by rhizobial inoculation act as 'satiety' signals in long-distance negative feedback of nodule formation. By contrast, Arabidopsis CEP family peptides induced by local nitrogen (N)-starvation behave as systemic 'hunger' signals to promote compensatory N acquisition in other parts of the roots. Xylem sap peptidomics also implies the presence of still uncharacterized long-distance signaling peptides. This review highlights the current understanding of and new insights into the mechanisms and functions of root-to-shoot long-distance peptide signaling during environmental responses.
Collapse
Affiliation(s)
- Satoru Okamoto
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryo Tabata
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
| |
Collapse
|
15
|
Matsuoka K, Sugawara E, Aoki R, Takuma K, Terao-Morita M, Satoh S, Asahina M. Differential Cellular Control by Cotyledon-Derived Phytohormones Involved in Graft Reunion of Arabidopsis Hypocotyls. PLANT & CELL PHYSIOLOGY 2016; 57:2620-2631. [PMID: 27986917 DOI: 10.1093/pcp/pcw177] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/13/2016] [Indexed: 05/24/2023]
Abstract
When wounding or grafting interrupts the original connection of plant tissue, cell proliferation is induced and the divided tissue is reunited. Previous studies suggested that gibberellin derived from the cotyledon is required for tissue reunion in cucumber and tomato incised hypocotyls, and tissue reunion of Arabidopsis incised flowering stems is controlled by auxin. Differences in the hormone requirements of the tissue reunion process between Arabidopsis and cucumber might be due to differences in organs or species. In this study, we performed morphological and gene expression analyses of graft union in Arabidopsis hypocotyl. We found that removal of the cotyledon and treatment of the cotyledon with the auxin transport inhibitor triiodobenzoic acid (TIBA) suppressed cell proliferation of vascular tissue during graft union formation. These treatments also suppressed expression of IAA5, ANAC071, ANAC096 and CYCB1;1. ANAC071 is involved in the tissue reunion process. The anac071 anac096 double mutant suppressed cell proliferation more so than either of the single mutants. On the other hand, paclobutrazol treatment or deficiency of gibberellin biosynthesis genes suppressed expansion of cortex cells, and exogenous gibberellin treatment or rga/gai mutations that lack the negative regulator of gibberellin reversed this inhibition. The up-regulation of the key gibberellin biosynthesis gene GA20ox1 during graft union formation was prevented by cotyledon removal or TIBA treatment. These data suggest that auxin regulates cell proliferation of vascular tissue and expansion of cortex cells by promoting gibberellin biosynthesis during graft attachment. We hypothesize that the cotyledon-derived phytohormones are essential for graft reunion of the hypocotyl, processed in a cell type-specific manner, in Arabidopsis.
Collapse
Affiliation(s)
- Keita Matsuoka
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551 Japan
| | - Eri Sugawara
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551 Japan
| | - Ryo Aoki
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551 Japan
| | - Kazuki Takuma
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551 Japan
| | - Miyo Terao-Morita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Shinobu Satoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572 Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551 Japan
| |
Collapse
|
16
|
Nishida H, Handa Y, Tanaka S, Suzaki T, Kawaguchi M. Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus. JOURNAL OF PLANT RESEARCH 2016; 129:909-919. [PMID: 27294965 DOI: 10.1007/s10265-016-0842-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/12/2016] [Indexed: 05/21/2023]
Abstract
Cell-to-cell communication, principally mediated by short- or long-range mobile signals, is involved in many plant developmental processes. In root nodule symbiosis, a mutual relationship between leguminous plants and nitrogen-fixing rhizobia, the mechanism for the autoregulation of nodulation (AON) plays a key role in preventing the production of an excess number of nodules. AON is based on long-distance cell-to-cell communication between roots and shoots. In Lotus japonicus, two CLAVATA3/ESR-related (CLE) peptides, encoded by CLE-ROOT SIGNAL 1 (CLE-RS1) and -RS2, act as putative root-derived signals that transmit signals inhibiting further nodule development through interaction with a shoot-acting receptor-like kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1). Here, an in silico search and subsequent expression analyses enabled us to identify two new L. japonicus CLE genes that are potentially involved in nodulation, designated as CLE-RS3 and LjCLE40. Time-course expression patterns showed that CLE-RS1/2/3 and LjCLE40 expression is induced during nodulation with different activation patterns. Furthermore, constitutive expression of CLE-RS3 significantly suppressed nodule formation in a HAR1-dependent manner. TOO MUCH LOVE, a root-acting regulator of AON, is also required for the CLE-RS3 action. These results suggest that CLE-RS3 is a new component of AON in L. japonicus that may act as a potential root-derived signal through interaction with HAR1. Because CLE-RS2, CLE-RS3 and LjCLE40 are located in tandem in the genome and their expression is induced not only by rhizobial infection but also by nitrate, these genes may have duplicated from a common gene.
Collapse
Affiliation(s)
- Hanna Nishida
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Yoshihiro Handa
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Sachiko Tanaka
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, 444-8585, Japan.
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan.
| |
Collapse
|
17
|
Abstract
The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.
Collapse
|
18
|
Kucukoglu M, Nilsson O. CLE peptide signaling in plants - the power of moving around. PHYSIOLOGIA PLANTARUM 2015; 155:74-87. [PMID: 26096704 DOI: 10.1111/ppl.12358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 05/25/2023]
Abstract
The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) gene family encodes small secreted peptide ligands in plants. These peptides function non-cell autonomously through interactions with plasma membrane-associated LEUCINE-RICH REPEAT RECEPTOR-LIKE KINASEs (LRR-RLKs). These interactions are critical for cell-to-cell communications and control a variety of developmental and physiological processes in plants, such as regulation of stem cell proliferation and differentiation in the meristems, embryo and endosperm development, vascular development and autoregulation of nodulation. Here, we review the current knowledge in the field of CLE polypeptide signaling.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| |
Collapse
|
19
|
Czyzewicz N, Shi CL, Vu LD, Van De Cotte B, Hodgman C, Butenko MA, De Smet I. Modulation of Arabidopsis and monocot root architecture by CLAVATA3/EMBRYO SURROUNDING REGION 26 peptide. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5229-43. [PMID: 26188203 PMCID: PMC4526925 DOI: 10.1093/jxb/erv360] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant roots are important for a wide range of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface with the soil environment. Several small signalling peptides and receptor kinases have been shown to affect primary root growth, but very little is known about their role in lateral root development. In this context, the CLE family, a group of small signalling peptides that has been shown to affect a wide range of developmental processes, were the focus of this study. Here, the expression pattern during lateral root initiation for several CLE family members is explored and to what extent CLE1, CLE4, CLE7, CLE26, and CLE27, which show specific expression patterns in the root, are involved in regulating root architecture in Arabidopsis thaliana is assessed. Using chemically synthesized peptide variants, it was found that CLE26 plays an important role in regulating A. thaliana root architecture and interacts with auxin signalling. In addition, through alanine scanning and in silico structural modelling, key residues in the CLE26 peptide sequence that affect its activity are pinpointed. Finally, some interesting similarities and differences regarding the role of CLE26 in regulating monocot root architecture are presented.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Chun-Lin Shi
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| |
Collapse
|
20
|
Wang G, Zhang G, Wu M. CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2015; 6:1211. [PMID: 26779239 PMCID: PMC4703810 DOI: 10.3389/fpls.2015.01211] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 05/07/2023]
Abstract
The CLE (CLAVATA3/Endosperm surrounding region-related) peptide family is one of the best-studied secreted peptide families in plants. Accumulated data have revealed that CLE genes play vital roles on stem cell homeostasis in different types of meristems. Additionally, CLE genes have been found to perform various biological roles in plant growth and development, and in response to environmental stimuli. With recent advances on our understanding of CLE peptide function, it is showing that the existence of potential crosstalks of CLE peptides with phytohormones and external stimuli. Complex interactions exist in which CLE petides coordinate with hormones to regulate plant growth and development, and in response to external stimuli. In this article, we present recent advances in cell-cell communication that is mediated by CLE peptides combining with phytohormones and external stimuli, and suggest additional Arabidopsis CLE genes that are likely to be controlled by hormones and environmental cues.
Collapse
|
21
|
Notaguchi M, Okamoto S. Dynamics of long-distance signaling via plant vascular tissues. FRONTIERS IN PLANT SCIENCE 2015; 6:161. [PMID: 25852714 PMCID: PMC4364159 DOI: 10.3389/fpls.2015.00161] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/01/2015] [Indexed: 05/18/2023]
Abstract
Plant vascular systems are constructed by specific cell wall modifications through which cells are highly specialized to make conduits for water and nutrients. Xylem vessels are formed by thickened cell walls that remain after programmed cell death, and serve as water conduits from the root to the shoot. In contrast, phloem tissues consist of a complex of living cells, including sieve tube elements and their neighboring companion cells, and translocate photosynthetic assimilates from mature leaves to developing young tissues. Intensive studies on the content of vascular flow fluids have unveiled that plant vascular tissues transport various types of gene product, and the transport of some provides the molecular basis for the long-distance communications. Analysis of xylem sap has demonstrated the presence of proteins in the xylem transpiration stream. Recent studies have revealed that CLE and CEP peptides secreted in the roots are transported to above ground via the xylem in response to plant-microbe interaction and soil nitrogen starvation, respectively. Their leucine-rich repeat transmembrane receptors localized in the shoot phloem are required for relaying the signal from the shoot to the root. These findings well-fit to the current scenario of root-to-shoot-to-root feedback signaling, where peptide transport achieves the root-to-shoot signaling, the first half of the signaling process. Meanwhile, it is now well-evidenced that proteins and a range of RNAs are transported via the phloem translocation system, and some of those can exert their physiological functions at their destinations, including roots. Thus, plant vascular systems may serve not only as conduits for the translocation of essential substances but also as long-distance communication pathways that allow plants to adapt to changes in internal and external environments at the whole plant level.
Collapse
Affiliation(s)
- Michitaka Notaguchi
- Graduate School of Science, Nagoya University, NagoyaJapan
- ERATO Higashiyama Live-Holonics Project, NagoyaJapan
- *Correspondence: Michitaka Notaguchi and Satoru Okamoto, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan ;
| | - Satoru Okamoto
- Graduate School of Science, Nagoya University, NagoyaJapan
- Research Fellow of the Japan Society for the Promotion of Science, TokyoJapan
- *Correspondence: Michitaka Notaguchi and Satoru Okamoto, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan ;
| |
Collapse
|
22
|
Peptide ligands in plants. Enzymes 2014; 35:85-112. [PMID: 25740716 DOI: 10.1016/b978-0-12-801922-1.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants have evolved small peptide ligands as intercellular signaling molecules. Previous studies have uncovered pairs of ligands and receptors in cell-cell communications. This review focuses on signaling and function of key plant peptide ligands.
Collapse
|