1
|
Oubohssaine M, Hnini M, Rabeh K. Exploring lipid signaling in plant physiology: From cellular membranes to environmental adaptation. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154295. [PMID: 38885581 DOI: 10.1016/j.jplph.2024.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lipids have evolved as versatile signaling molecules that regulate a variety of physiological processes in plants. Convincing evidence highlights their critical role as mediators in a wide range of plant processes required for survival, growth, development, and responses to environmental conditions such as water availability, temperature changes, salt, pests, and diseases. Understanding lipid signaling as a critical process has helped us expand our understanding of plant biology by explaining how plants sense and respond to environmental cues. Lipid signaling pathways constitute a complex network of lipids, enzymes, and receptors that coordinate important cellular responses and stressing plant biology's changing and adaptable traits. Plant lipid signaling involves a wide range of lipid classes, including phospholipids, sphingolipids, oxylipins, and sterols, each of which contributes differently to cellular communication and control. These lipids function not only as structural components, but also as bioactive molecules that transfer signals. The mechanisms entail the production of lipid mediators and their detection by particular receptors, which frequently trigger downstream cascades that affect gene expression, cellular functions, and overall plant growth. This review looks into lipid signaling in plant physiology, giving an in-depth look and emphasizing its critical function as a master regulator of vital activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| | - Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
2
|
Xie S, Wang F, Li M, Hu Z, Wang H, Zhang Z, Chen X, Gu Z, Zhang G, Ye L. Enhancing barley yield potential and germination rate: gene editing of HvGA20ox2 and discovery of novel allele sdw1.ZU9. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:814-827. [PMID: 38739690 DOI: 10.1111/tpj.16798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Several dwarf and semi-dwarf genes have been identified in barley. However, only a limited number have been effectively utilized in breeding programs to cultivate lodging resistant varieties. This is due to the common association of dwarf and semi-dwarf traits with negative effects on malt quality. In this study, we employed gene editing to generate three new haplotypes of sdw1/denso candidate gene gibberellin (GA) 20-oxidase2 (GA20ox2). These haplotypes induced a dwarfing phenotype and enhancing yield potential, and promoting seed dormancy, thereby reducing pre-harvest sprouting. Moreover, β-amylase activity in the grains of the mutant lines was significantly increased, which is beneficial for malt quality. The haplotype analysis revealed significant genetic divergence of this gene during barley domestication and selection. A novel allele (sdw1.ZU9), containing a 96-bp fragment in the promoter region of HvGA20ox2, was discovered and primarily observed in East Asian and Russian barley varieties. The 96-bp fragment was associated with lower gene expression, leading to lower plant height but higher germination rate. In conclusion, HvGA20ox2 can be potentially used to develop semi-dwarf barley cultivars with high yield and improved malt quality.
Collapse
Affiliation(s)
- Shanggeng Xie
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengyue Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mengdi Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, 450000, China
| | - Zengjie Hu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Han Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhizhong Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiye Gu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, 450000, China
| | - Lingzhen Ye
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Klčová B, Balarynová J, Trněný O, Krejčí P, Cechová MZ, Leonova T, Gorbach D, Frolova N, Kysil E, Orlova A, Ihling С, Frolov A, Bednář P, Smýkal P. Domestication has altered gene expression and secondary metabolites in pea seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2269-2295. [PMID: 38578789 DOI: 10.1111/tpj.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
Collapse
Affiliation(s)
- Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd., Zemědělská 1, Troubsko, 664 41, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Сhristian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle (Saale), 06120, Germany
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| |
Collapse
|
4
|
Zhang H, Tang S, Wang H, Wang Y, Zhi H, Liu B, Zhang R, Ma Q, Jia G, Feng B, Diao X. Genetic diversity of grain yield traits and identification of a grain weight gene SiTGW6 in foxtail millet. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:84. [PMID: 38493242 DOI: 10.1007/s00122-024-04586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
KEY MESSAGE Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.
Collapse
Affiliation(s)
- Hui Zhang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Honglu Wang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yannan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Renliang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Ma
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Li Y, Zhao W, Tang J, Yue X, Gu J, Zhao B, Li C, Chen Y, Yuan J, Lin Y, Li Y, Kong F, He J, Wang D, Zhao TJ, Wang ZY. Identification of the domestication gene GmCYP82C4 underlying the major quantitative trait locus for the seed weight in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:62. [PMID: 38418640 DOI: 10.1007/s00122-024-04571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
KEY MESSAGE A major quantitative trait locus (QTL) for the hundred-seed weight (HSW) was identified and confirmed in the two distinct soybean populations, and the target gene GmCYP82C4 underlying this locus was identified that significantly associated with soybean seed weight, and it was selected during the soybean domestication and improvement process. Soybean is a major oil crop for human beings and the seed weight is a crucial goal of soybean breeding. However, only a limited number of target genes underlying the quantitative trait loci (QTLs) controlling seed weight in soybean are known so far. In the present study, six loci associated with hundred-seed weight (HSW) were detected in the first population of 573 soybean breeding lines by genome-wide association study (GWAS), and 64 gene models were predicted in these candidate QTL regions. The QTL qHSW_1 exhibits continuous association signals on chromosome four and was also validated by region association study (RAS) in the second soybean population (409 accessions) with wild, landrace, and cultivar soybean accessions. There were seven genes in qHSW_1 candidate region by linkage disequilibrium (LD) block analysis, and only Glyma.04G035500 (GmCYP82C4) showed specifically higher expression in flowers, pods, and seeds, indicating its crucial role in the soybean seed development. Significant differences in HSW trait were detected when the association panels are genotyped by single-nucleotide polymorphisms (SNPs) in putative GmCYP82C4 promoter region. Eight haplotypes were generated by six SNPs in GmCYP82C4 in the second soybean population, and two superior haplotypes (Hap2 and Hap4) of GmCYP82C4 were detected with average HSW of 18.27 g and 18.38 g, respectively. The genetic diversity of GmCYP82C4 was analyzed in the second soybean population, and GmCYP82C4 was most likely selected during the soybean domestication and improvement process, leading to the highest proportion of Hap2 of GmCYP82C4 both in landrace and cultivar subpopulations. The QTLs and GmCYP82C4 identified in this study provide novel genetic resources for soybean seed weight trait, and the GmCYP82C4 could be used for soybean molecular breeding to develop desirable seed weight in the future.
Collapse
Affiliation(s)
- Yang Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Wenqian Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jiajun Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Yue
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Biyao Zhao
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Cong Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yanhang Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Jianbo Yuan
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yan Lin
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin He
- College of Agriculture, Guizhou University, Guiyang, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| | - Tuan-Jie Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China.
| |
Collapse
|
6
|
Zhang Y, Bhat JA, Zhang Y, Yang S. Understanding the Molecular Regulatory Networks of Seed Size in Soybean. Int J Mol Sci 2024; 25:1441. [PMID: 38338719 PMCID: PMC10855573 DOI: 10.3390/ijms25031441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Soybean being a major cash crop provides half of the vegetable oil and a quarter of the plant proteins to the global population. Seed size traits are the most important agronomic traits determining the soybean yield. These are complex traits governed by polygenes with low heritability as well as are highly influenced by the environment as well as by genotype x environment interactions. Although, extensive efforts have been made to unravel the genetic basis and molecular mechanism of seed size in soybean. But most of these efforts were majorly limited to QTL identification, and only a few genes for seed size were isolated and their molecular mechanism was elucidated. Hence, elucidating the detailed molecular regulatory networks controlling seed size in soybeans has been an important area of research in soybeans from the past decades. This paper describes the current progress of genetic architecture, molecular mechanisms, and regulatory networks for seed sizes of soybeans. Additionally, the main problems and bottlenecks/challenges soybean researchers currently face in seed size research are also discussed. This review summarizes the comprehensive and systematic information to the soybean researchers regarding the molecular understanding of seed size in soybeans and will help future research work on seed size in soybeans.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (Y.Z.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
7
|
Hu Y, Liu Y, Wei JJ, Zhang WK, Chen SY, Zhang JS. Regulation of seed traits in soybean. ABIOTECH 2023; 4:372-385. [PMID: 38106437 PMCID: PMC10721594 DOI: 10.1007/s42994-023-00122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
Soybean (Glycine max) is an essential economic crop that provides vegetative oil and protein for humans, worldwide. Increasing soybean yield as well as improving seed quality is of great importance. Seed weight/size, oil and protein content are the three major traits determining seed quality, and seed weight also influences soybean yield. In recent years, the availability of soybean omics data and the development of related techniques have paved the way for better research on soybean functional genomics, providing a comprehensive understanding of gene functions. This review summarizes the regulatory genes that influence seed size/weight, oil content and protein content in soybean. We also provided a general overview of the pleiotropic effect for the genes in controlling seed traits and environmental stresses. Ultimately, it is expected that this review will be beneficial in breeding improved traits in soybean.
Collapse
Affiliation(s)
- Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yue Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jun-Jie Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
8
|
Hu Y, Liu Y, Lu L, Tao JJ, Cheng T, Jin M, Wang ZY, Wei JJ, Jiang ZH, Sun WC, Liu CL, Gao F, Zhang Y, Li W, Bi YD, Lai YC, Zhou B, Yu DY, Yin CC, Wei W, Zhang WK, Chen SY, Zhang JS. Global analysis of seed transcriptomes reveals a novel PLATZ regulator for seed size and weight control in soybean. THE NEW PHYTOLOGIST 2023; 240:2436-2454. [PMID: 37840365 DOI: 10.1111/nph.19316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.
Collapse
Affiliation(s)
- Yang Hu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tong Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Jin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou-Ya Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Jie Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Hao Jiang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Cai Sun
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250018, China
| | - Cheng-Lan Liu
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250018, China
| | - Feng Gao
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250018, China
| | - Yong Zhang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161000, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yong-Cai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Bin Zhou
- Crop Research Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250018, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Di Q, Dong L, Jiang L, Liu X, Cheng P, Liu B, Yu G. Genome-wide association study and RNA-seq identifies GmWRI1-like transcription factor related to the seed weight in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1268511. [PMID: 38046612 PMCID: PMC10691256 DOI: 10.3389/fpls.2023.1268511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The cultivated soybean (Glycine max (L.) Merrill) is domesticated from wild soybean (Glycine soja) and has heavier seeds with a higher oil content than the wild soybean. In this study, we identified a novel candidate gene associated with SW using a genome-wide association study (GWAS). The candidate gene GmWRI14-like was detected by GWAS analysis in three consecutive years. By constructing transgenic soybeans overexpressing the GmWRI14-like gene and gmwri14-like soybean mutants, we found that overexpression of GmWRI14-like increased the SW and increased total fatty acid content. We then used RNA-seq and qRT-PCR to identify the target genes directly or indirectly regulated by GmWRI14-like. Transgenic soyabeans overexpressing GmWRI14-like showed increased accumulation of GmCYP78A50 and GmCYP78A69 than non-transgenic soybean lines. Interestingly, we also found that GmWRI14-like proteins could interact with GmCYP78A69/GmCYP78A50 using yeast two-hybrid and bimolecular fluorescence complementation. Our results not only shed light on the genetic architecture of cultivated soybean SW, but also lays a theoretical foundation for improving the SW and oil content of soybeans.
Collapse
Affiliation(s)
- Qin Di
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Center of Molecular Genetics and Evolution, College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Li Jiang
- Innovative Center of Molecular Genetics and Evolution, College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Xiaoyi Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
10
|
Tayade R, Imran M, Ghimire A, Khan W, Nabi RBS, Kim Y. Molecular, genetic, and genomic basis of seed size and yield characteristics in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1195210. [PMID: 38034572 PMCID: PMC10684784 DOI: 10.3389/fpls.2023.1195210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Soybean (Glycine max L. Merr.) is a crucial oilseed cash crop grown worldwide and consumed as oil, protein, and food by humans and feed by animals. Comparatively, soybean seed yield is lower than cereal crops, such as maize, rice, and wheat, and the demand for soybean production does not keep up with the increasing consumption level. Therefore, increasing soybean yield per unit area is the most crucial breeding objective and is challenging for the scientific community. Moreover, yield and associated traits are extensively researched in cereal crops, but little is known about soybeans' genetics, genomics, and molecular regulation of yield traits. Soybean seed yield is a complex quantitative trait governed by multiple genes. Understanding the genetic and molecular processes governing closely related attributes to seed yield is crucial to increasing soybean yield. Advances in sequencing technologies have made it possible to conduct functional genomic research to understand yield traits' genetic and molecular underpinnings. Here, we provide an overview of recent progress in the genetic regulation of seed size in soybean, molecular, genetics, and genomic bases of yield, and related key seed yield traits. In addition, phytohormones, such as auxin, gibberellins, cytokinins, and abscisic acid, regulate seed size and yield. Hence, we also highlight the implications of these factors, challenges in soybean yield, and seed trait improvement. The information reviewed in this study will help expand the knowledge base and may provide the way forward for developing high-yielding soybean cultivars for future food demands.
Collapse
Affiliation(s)
- Rupesh Tayade
- Upland Field Machinery Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- Division of Biosafety, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Jeollabul-do, Republic of Korea
| | - Amit Ghimire
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Waleed Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Rizwana Begum Syed Nabi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Yoonha Kim
- Upland Field Machinery Research Center, Kyungpook National University, Daegu, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Wei S, Yong B, Jiang H, An Z, Wang Y, Li B, Yang C, Zhu W, Chen Q, He C. A loss-of-function mutant allele of a glycosyl hydrolase gene has been co-opted for seed weight control during soybean domestication. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2469-2489. [PMID: 37635359 DOI: 10.1111/jipb.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The resultant DNA from loss-of-function mutation can be recruited in biological evolution and development. Here, we present such a rare and potential case of "to gain by loss" as a neomorphic mutation during soybean domestication for increasing seed weight. Using a population derived from a chromosome segment substitution line of Glycine max (SN14) and Glycine soja (ZYD06), a quantitative trait locus (QTL) of 100-seed weight (qHSW) was mapped on chromosome 11, corresponding to a truncated β-1, 3-glucosidase (βGlu) gene. The novel gene hsw results from a 14-bp deletion, causing a frameshift mutation and a premature stop codon in the βGlu. In contrast to HSW, the hsw completely lost βGlu activity and function but acquired a novel function to promote cell expansion, thus increasing seed weight. Overexpressing hsw instead of HSW produced large soybean seeds, and surprisingly, truncating hsw via gene editing further increased the seed size. We further found that the core 21-aa peptide of hsw and its variants acted as a promoter of seed size. Transcriptomic variation in these transgenic soybean lines substantiated the integration hsw into cell and seed size control. Moreover, the hsw allele underwent selection and expansion during soybean domestication and improvement. Our work cloned a likely domesticated QTL controlling soybean seed weight, revealed a novel genetic variation and mechanism in soybean domestication, and provided new insight into crop domestication and breeding, and plant evolution.
Collapse
Affiliation(s)
- Siming Wei
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Yong
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
- Jilin Academy of Agricultural Sciences, Changchun, 130022, China
| | - Zhenghong An
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Bingbing Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ce Yang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Almeida-Silva F, Pedrosa-Silva F, Venancio TM. The Soybean Expression Atlas v2: A comprehensive database of over 5000 RNA-seq samples. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1041-1051. [PMID: 37681739 DOI: 10.1111/tpj.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Soybean is a crucial crop worldwide, used as a source of food, feed, and industrial products due to its high protein and oil content. Previously, the rapid accumulation of soybean RNA-seq data in public databases and the computational challenges of processing raw RNA-seq data motivated us to develop the Soybean Expression Atlas, a gene expression database of over a thousand RNA-seq samples. Over the past few years, our database has allowed researchers to explore the expression profiles of important gene families, discover genes associated with agronomic traits, and understand the transcriptional dynamics of cellular processes. Here, we present the Soybean Expression Atlas v2, an updated version of our database with a fourfold increase in the number of samples, featuring transcript- and gene-level transcript abundance matrices for 5481 publicly available RNA-seq samples. New features in our database include the availability of transcript-level abundance estimates and equivalence classes to explore differential transcript usage, abundance estimates in bias-corrected counts to increase the accuracy of differential gene expression analyses, a new web interface with improved data visualization and user experience, and a reproducible and scalable pipeline available as an R package. The Soybean Expression Atlas v2 is available at https://soyatlas.venanciogroup.uenf.br/, and it will accelerate soybean research, empowering researchers with high-quality and easily accessible gene expression data.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
13
|
Jiang A, Liu J, Gao W, Ma R, Zhang J, Zhang X, Du C, Yi Z, Fang X, Zhang J. Transcriptomic and Metabolomic Analyses Reveal the Key Genes Related to Shade Tolerance in Soybean. Int J Mol Sci 2023; 24:14230. [PMID: 37762532 PMCID: PMC10531609 DOI: 10.3390/ijms241814230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Soybean (Glycine max) is an important crop, rich in proteins, vegetable oils and several other phytochemicals, which is often affected by light during growth. However, the specific regulatory mechanisms of leaf development under shade conditions have yet to be understood. In this study, the transcriptome and metabolome sequencing of leaves from the shade-tolerant soybean 'Nanxiadou 25' under natural light (ND1) and 50% shade rate (SHND1) were carried out, respectively. A total of 265 differentially expressed genes (DEGs) were identified, including 144 down-regulated and 121 up-regulated genes. Meanwhile, KEGG enrichment analysis of DEGs was performed and 22 DEGs were significantly enriched in the top five pathways, including histidine metabolism, riboflavin metabolism, vitamin B6 metabolism, glycerolipid metabolism and cutin, suberine and wax biosynthesis. Among all the enrichment pathways, the most DEGs were enriched in plant hormone signaling pathways with 19 DEGs being enriched. Transcription factors were screened out and 34 differentially expressed TFs (DETFs) were identified. Weighted gene co-expression network analysis (WGCNA) was performed and identified 10 core hub genes. Combined analysis of transcriptome and metabolome screened out 36 DEGs, and 12 potential candidate genes were screened out and validated by quantitative real-time polymerase chain reaction (qRT-PCR) assay, which may be related to the mechanism of shade tolerance in soybean, such as ATP phosphoribosyl transferase (ATP-PRT2), phosphocholine phosphatase (PEPC), AUXIN-RESPONSIVE PROTEIN (IAA17), PURPLE ACID PHOSPHATASE (PAP), etc. Our results provide new knowledge for the identification and function of candidate genes regulating soybean shade tolerance and provide valuable resources for the genetic dissection of soybean shade tolerance molecular breeding.
Collapse
Affiliation(s)
- Aohua Jiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiaqi Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Weiran Gao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Ronghan Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jijun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Xiaochun Zhang
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Chengzhang Du
- Institute of Specialty Crop, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China
| | - Zelin Yi
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaomei Fang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jian Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Chu D, Zhang Z, Hu Y, Fang C, Xu X, Yuan J, Zhang J, Tian Z, Wang G. Genome-wide scan for oil quality reveals a coregulation mechanism of tocopherols and fatty acids in soybean seeds. PLANT COMMUNICATIONS 2023; 4:100598. [PMID: 37029487 PMCID: PMC10504561 DOI: 10.1016/j.xplc.2023.100598] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Tocopherols (vitamin E) play essential roles in human health because of their antioxidant activity, and plant-derived oils are the richest sources of tocopherols in the human diet. Although soybean (Glycine max) is one of the main sources of plant-derived oil and tocopherol in the world, the relationship between tocopherol and oil in soybean seeds remains unclear. Here, we focus on dissecting tocopherol metabolism with the long-term goal of increasing α-tocopherol content and soybean oil quality. We first collected tocopherol and fatty acid profiles in a soybean population (>800 soybean accessions) and found that tocopherol content increased during soybean domestication. A strong positive correlation between tocopherol and oil content was also detected. Five tocopherol pathway-related loci were identified using a metabolite genome-wide association study strategy. Genetic variations in three tocopherol pathway genes were responsible for total tocopherol content and composition in the soybean population through effects on enzyme activity, mainly caused by non-conserved amino acid substitution or changes in gene transcription level. Moreover, the fatty acid regulatory transcription factor GmZF351 directly activated tocopherol pathway gene expression, increasing both fatty acid and tocopherol contents in soybean seeds. Our study reveals the functional differentiation of tocopherol pathway genes in soybean populations and provides a framework for development of new soybean varieties with high α-tocopherol content and oil quality in seeds.
Collapse
Affiliation(s)
- Danni Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xindan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinsong Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
15
|
Yang L, Yang L, Ding Y, Chen Y, Liu N, Zhou X, Huang L, Luo H, Xie M, Liao B, Jiang H. Global Transcriptome and Co-Expression Network Analyses Revealed Hub Genes Controlling Seed Size/Weight and/or Oil Content in Peanut. PLANTS (BASEL, SWITZERLAND) 2023; 12:3144. [PMID: 37687391 PMCID: PMC10490140 DOI: 10.3390/plants12173144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling these two traits, two peanut cultivars with contrasting phenotypes were compared to each other, one having a larger seed size and higher oil content (Zhonghua16, ZH16 for short), while the second cultivar had smaller-sized seeds and lower oil content (Zhonghua6, ZH6). Whole transcriptome analyses were performed on these two cultivars at four stages of seed development. The results showed that ~40% of the expressed genes were stage-specific in each cultivar during seed development, especially at the early stage of development. In addition, we identified a total of 5356 differentially expressed genes (DEGs) between ZH16 and ZH6 across four development stages. Weighted gene co-expression network analysis (WGCNA) based on DEGs revealed multiple hub genes with potential roles in seed size/weight and/or oil content. These hub genes were mainly involved in transcription factors (TFs), phytohormones, the ubiquitin-proteasome pathway, and fatty acid synthesis. Overall, the candidate genes and co-expression networks detected in this study could be a valuable resource for genetic breeding to improve seed yield and quality traits in peanut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430000, China; (L.Y.); (L.Y.); (Y.D.); (Y.C.); (N.L.); (X.Z.); (L.H.); (H.L.); (M.X.); (B.L.)
| |
Collapse
|
16
|
Yao Y, Xiong E, Qu X, Li J, Liu H, Quan L, Lu W, Zhu X, Chen M, Li K, Chen X, Lian Y, Lu W, Zhang D, Zhou X, Chu S, Jiao Y. WGCNA and transcriptome profiling reveal hub genes for key development stage seed size/oil content between wild and cultivated soybean. BMC Genomics 2023; 24:494. [PMID: 37641045 PMCID: PMC10463976 DOI: 10.1186/s12864-023-09617-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Soybean is one of the most important oil crops in the world. The domestication of wild soybean has resulted in significant changes in the seed oil content and seed size of cultivated soybeans. To better understand the molecular mechanisms of seed formation and oil content accumulation, WDD01514 (E1), ZYD00463 (E2), and two extreme progenies (E23 and E171) derived from RILs were used for weighted gene coexpression network analysis (WGCNA) combined with transcriptome analysis. RESULTS In this study, both seed weight and oil content in E1 and E171 were significantly higher than those in E2 and E23, and 20 DAF and 30 DAF may be key stages of soybean seed oil content accumulation and weight increase. Pathways such as "Photosynthesis", "Carbon metabolism", and "Fatty acid metabolism", were involved in oil content accumulation and grain formation between wild and cultivated soybeans at 20 and 30 DAF according to RNA-seq analysis. A total of 121 oil content accumulation and 189 seed formation candidate genes were screened from differentially expressed genes. WGCNA identified six modules related to seed oil content and seed weight, and 76 candidate genes were screened from modules and network. Among them, 16 genes were used for qRT-PCR and tissue specific expression pattern analysis, and their expression-levels in 33-wild and 23-cultivated soybean varieties were subjected to correlation analysis; some key genes were verified as likely to be involved in oil content accumulation and grain formation. CONCLUSIONS Overall, these results contribute to an understanding of seed lipid metabolism and seed size during seed development, and identify potential functional genes for improving soybean yield and seed oil quantity.
Collapse
Affiliation(s)
- Yanjie Yao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Leipo Quan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenyan Lu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuling Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Meiling Chen
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ke Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoming Chen
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yun Lian
- Zhengzhou Subcenter of National Soybean Improvement Center, Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture, Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weiguo Lu
- Zhengzhou Subcenter of National Soybean Improvement Center, Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture, Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
17
|
Hu Y, Liu Y, Tao JJ, Lu L, Jiang ZH, Wei JJ, Wu CM, Yin CC, Li W, Bi YD, Lai YC, Wei W, Zhang WK, Chen SY, Zhang JS. GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1983-2000. [PMID: 37066995 DOI: 10.1111/jipb.13494] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi-Hao Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Jie Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Mei Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui-Cui Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yong-Cai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250000, China
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Lv Z, Zhou D, Shi X, Ren J, Zhang H, Zhong C, Kang S, Zhao X, Yu H, Wang C. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rapid-growth stage by phytohormones. BMC PLANT BIOLOGY 2023; 23:371. [PMID: 37491223 PMCID: PMC10369843 DOI: 10.1186/s12870-023-04382-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Pod size is an important yield target trait for peanut breeding. However, the molecular mechanism underlying the determination of peanut pod size still remains unclear. RESULTS In this study, two peanut varieties with contrasting pod sizes were used for comparison of differences on the transcriptomic and endogenous hormonal levels. Developing peanut pods were sampled at 10, 15, 20, 25 and 30 days after pegging (DAP). Our results showed that the process of peanut pod-expansion could be divided into three stages: the gradual-growth stage, the rapid-growth stage and the slow-growth stage. Cytological analysis confirmed that the faster increase of cell-number during the rapid-growth stage was the main reason for the formation of larger pod size in Lps. Transcriptomic analyses showed that the expression of key genes related to the auxin, the cytokinin (CK) and the gibberellin (GA) were mostly up-regulated during the rapid-growth stage. Meanwhile, the cell division-related differentially expressed genes (DEGs) were mostly up-regulated at 10DAP which was consistent with the cytological-observation. Additionally, the absolute quantification of phytohormones were carried out by liquid-chromatography coupled with the tandem-mass-spectrometry (LC-MS/MS), and results supported the findings from comparative transcriptomic studies. CONCLUSIONS It was speculated that the differential expression levels of TAA1 and ARF (auxin-related), IPT and B-ARR (CK-related), KAO, GA20ox and GA3ox (GA-related), and certain cell division-related genes (gene-LOC112747313 and gene-LOC112754661) were important participating factors of the determination-mechanism of peanut pod sizes. These results were informative for the elucidation of the underlying regulatory network in peanut pod-growth and would facilitate further identification of valuable target genes.
Collapse
Affiliation(s)
- Zhenghao Lv
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dongying Zhou
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Shi
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jingyao Ren
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Chao Zhong
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Shuli Kang
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Peanut Research Institute, Shenyang Agricultural University, Shenyang, China.
| | | |
Collapse
|
19
|
Zhang Y, Gong H, Cui X, Gao C, Li N, Pu Y, Zhang X, Zhao J. Integrated lipidomic and transcriptomic analyses reveal the mechanism of lipid biosynthesis and accumulation during seed development in sesame. FRONTIERS IN PLANT SCIENCE 2023; 14:1211040. [PMID: 37426956 PMCID: PMC10325577 DOI: 10.3389/fpls.2023.1211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Sesame is one of the most important oilseed crops and attracts significant attention because of its huge nutritional capacity. However, the molecular mechanisms underlying oil accumulation in sesame remains poorly understood. In this study, lipidomic and transcriptomic analyses in different stages of sesame seed (Luzhi No.1, seed oil content 56%) development were performed to gain insight into the regulatory mechanisms that govern differences in lipid composition, content, biosynthesis, and transport. In total, 481 lipids, including fatty acids (FAs, 38 species), triacylglycerol (TAG, 127 species), ceramide (33 species), phosphatidic acid (20 species), and diacylglycerol (17 species), were detected in developing sesame seed using gas and liquid chromatography-mass spectrometry. Most FAs and other lipids accumulated 21-33 days after flowering. RNA-sequence profiling in developing seed highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, TAGs, and membrane lipids, which was similar to that seen during lipid accumulation. Through the differential expression analysis of genes involved in lipid biosynthesis and metabolism during seed development, several candidate genes were found to affect the oil content and FA composition of sesame seed, including ACCase, FAD2, DGAT, G3PDH, PEPCase, WRI1 and WRI1-like genes. Our study reveals the patterns of lipid accumulation and biosynthesis-related gene expression and lays an important foundation for the further exploration of sesame seed lipid biosynthesis and accumulation.
Collapse
Affiliation(s)
- Yujuan Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Huihui Gong
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinxiao Cui
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chunhua Gao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Nana Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanyan Pu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiurong Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Junsheng Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
20
|
Li B, Peng J, Wu Y, Hu Q, Huang W, Yuan Z, Tang X, Cao D, Xue Y, Luan X, Hou J, Liu X, Sun L. Identification of an important QTL for seed oil content in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:43. [PMID: 37313220 PMCID: PMC10248617 DOI: 10.1007/s11032-023-01384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Seed oil content is one of the most important quantitative traits in soybean (Glycine max) breeding. Here, we constructed a high-density single nucleotide polymorphism linkage map using two genetically similar parents, Heinong 84 and Kenfeng 17, that differ dramatically in their seed oil contents, and performed quantitative trait loci (QTL) mapping of seed oil content in a recombinant inbred line (RIL) population derived from their cross. We detected five QTL related to seed oil content distributed on five chromosomes. The QTL for seed oil content explained over 10% of the phenotypic variation over two years. This QTL was mapped to an interval containing 20 candidate genes, including a previously reported gene, soybean RING Finger 1a (RNF1a) encoding an E3 ubiquitin ligase. Notably, two short sequences were inserted in the GmRNF1a coding region of KF 17 compared to that of HN 84, resulting in a longer protein variant in KF 17. Our results thus provide information for uncovering the genetic mechanisms determining seed oil content in soybean, as well as identifying an additional QTL and highlighting GmRNF1a as candidate gene for modulating seed oil content in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01384-2.
Collapse
Affiliation(s)
- Bing Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Sanya Institute of China Agricultural University, Sanya, 572000 China
| | - Jingyu Peng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Sanya Institute of China Agricultural University, Sanya, 572000 China
| | - Yueying Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Quan Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Wenxuan Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Zhihui Yuan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Xiaofei Tang
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086 China
| | - Dan Cao
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086 China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086 China
| | - Jingjing Hou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086 China
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Sanya Institute of China Agricultural University, Sanya, 572000 China
| |
Collapse
|
21
|
Duan Z, Li Q, Wang H, He X, Zhang M. Genetic regulatory networks of soybean seed size, oil and protein contents. FRONTIERS IN PLANT SCIENCE 2023; 14:1160418. [PMID: 36959925 PMCID: PMC10028097 DOI: 10.3389/fpls.2023.1160418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
As a leading oilseed crop that supplies plant oil and protein for daily human life, increasing yield and improving nutritional quality (high oil or protein) are the top two fundamental goals of soybean breeding. Seed size is one of the most critical factors determining soybean yield. Seed size, oil and protein contents are complex quantitative traits governed by genetic and environmental factors during seed development. The composition and quantity of seed storage reserves directly affect seed size. In general, oil and protein make up almost 60% of the total storage of soybean seed. Therefore, soybean's seed size, oil, or protein content are highly correlated agronomical traits. Increasing seed size helps increase soybean yield and probably improves seed quality. Similarly, rising oil and protein contents improves the soybean's nutritional quality and will likely increase soybean yield. Due to the importance of these three seed traits in soybean breeding, extensive studies have been conducted on their underlying quantitative trait locus (QTLs) or genes and the dissection of their molecular regulatory pathways. This review summarized the progress in functional genome controlling soybean seed size, oil and protein contents in recent decades, and presented the challenges and prospects for developing high-yield soybean cultivars with high oil or protein content. In the end, we hope this review will be helpful to the improvement of soybean yield and quality in the future breeding process.
Collapse
Affiliation(s)
- Zongbiao Duan
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xuemei He
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Wei W, Lu L, Bian XH, Li QT, Han JQ, Tao JJ, Yin CC, Lai YC, Li W, Bi YD, Man WQ, Chen SY, Zhang JS, Zhang WK. Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36866859 DOI: 10.1111/jipb.13474] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- Key Lab of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
23
|
Novel Seed Size: A Novel Seed-Developing Gene in Glycine max. Int J Mol Sci 2023; 24:ijms24044189. [PMID: 36835599 PMCID: PMC9967547 DOI: 10.3390/ijms24044189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Soybean-seed development is controlled in multiple ways, as in many known regulating genes. Here, we identify a novel gene, Novel Seed Size (NSS), involved in seed development, by analyzing a T-DNA mutant (S006). The S006 mutant is a random mutant of the GmFTL4pro:GUS transgenic line, with phenotypes with small and brown seed coats. An analysis of the metabolomics and transcriptome combined with RT-qPCR in the S006 seeds revealed that the brown coat may result from the increased expression of chalcone synthase 7/8 genes, while the down-regulated expression of NSS leads to small seed size. The seed phenotypes and a microscopic observation of the seed-coat integument cells in a CRISPR/Cas9-edited mutant nss1 confirmed that the NSS gene conferred small phenotypes of the S006 seeds. As mentioned in an annotation on the Phytozome website, NSS encodes a potential DNA helicase RuvA subunit, and no such genes were previously reported to be involved in seed development. Therefore, we identify a novel gene in a new pathway controlling seed development in soybeans.
Collapse
|
24
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
25
|
Xu M, Kong K, Miao L, He J, Liu T, Zhang K, Yue X, Jin T, Gai J, Li Y. Identification of major quantitative trait loci and candidate genes for seed weight in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:22. [PMID: 36688967 PMCID: PMC9870841 DOI: 10.1007/s00122-023-04299-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Four major quantitative trait loci for 100-seed weight were identified in a soybean RIL population under five environments, and the most likely candidate genes underlying these loci were identified. Seed weight is an important target of soybean breeding. However, the genes underlying the major quantitative trait loci (QTL) controlling seed weight remain largely unknown. In this study, a soybean population of 300 recombinant inbred lines (RILs) derived from a cross between PI595843 (PI) and WH was used to map the QTL and identify candidate genes for seed weight. The RIL population was genotyped through whole genome resequencing, and phenotyped for 100-seed weight under five environments. A total of 38 QTL were detected, and four major QTL, each explained at least 10% of the variation in 100-seed weight, were identified. Six candidate genes within these four major QTL regions were identified by analyses of their tissue expression patterns, gene annotations, and differential gene expression levels in soybean seeds during four developmental stages between two parental lines. Further sequence variation analyses revealed a C to T substitution in the first exon of the Glyma.19G143300, resulting in an amino acid change between PI and WH, and thus leading to a different predicted kinase domain, which might affect its protein function. Glyma.19G143300 is highly expressed in soybean seeds and encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Its predicted protein has typical domains of LRR-RLK family, and phylogenetic analyses reveled its similarity with the known LRR-RLK protein XIAO (LOC_Os04g48760), which is involved in controlling seed size. The major QTL and candidate genes identified in this study provide useful information for molecular breeding of new soybean cultivars with desirable seed weight.
Collapse
Affiliation(s)
- Mengge Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Long Miao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Tengfei Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Kai Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Yue
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Ting Jin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
26
|
Liu N, Wu B, Pandey MK, Huang L, Luo H, Chen Y, Zhou X, Chen W, Huai D, Yu B, Chen H, Guo J, Lei Y, Liao B, Varshney RK, Jiang H. Gene expression and DNA methylation altering lead to the high oil content in wild allotetraploid peanut ( A. monticola). FRONTIERS IN PLANT SCIENCE 2022; 13:1065267. [PMID: 36589096 PMCID: PMC9802669 DOI: 10.3389/fpls.2022.1065267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The wild allotetraploid peanut Arachis monticola contains a higher oil content than the cultivated allotetraploid Arachis hypogaea. Besides the fact that increasing oil content is the most important peanut breeding objective, a proper understanding of its molecular mechanism controlling oil accumulation is still lacking. METHODS We investigated this aspect by performing comparative transcriptomics from developing seeds between three wild and five cultivated peanut varieties. RESULTS The analyses not only showed species-specific grouping transcriptional profiles but also detected two gene clusters with divergent expression patterns between two species enriched in lipid metabolism. Further analysis revealed that expression alteration of lipid metabolic genes with co-expressed transcription factors in wild peanut led to enhanced activity of oil biogenesis and retarded the rate of lipid degradation. In addition, bisulfite sequencing was conducted to characterize the variation of DNA methylation between wild allotetraploid (245, WH 10025) and cultivated allotetraploid (Z16, Zhh 7720) genotypes. CG and CHG context methylation was found to antagonistically correlate with gene expression during seed development. Differentially methylated region analysis and transgenic assay further illustrated that variations of DNA methylation between wild and cultivated peanuts could affect the oil content via altering the expression of peroxisomal acyl transporter protein (Araip.H6S1B). DISCUSSION From the results, we deduced that DNA methylation may negatively regulate lipid metabolic genes and transcription factors to subtly affect oil accumulation divergence between wild and cultivated peanuts. Our work provided the first glimpse on the regulatory mechanism of gene expression altering for oil accumulation in wild peanut and gene resources for future breeding applications.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Bei Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hao Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
27
|
Zuo JF, Chen Y, Ge C, Liu JY, Zhang YM. Identification of QTN-by-environment interactions and their candidate genes for soybean seed oil-related traits using 3VmrMLM. FRONTIERS IN PLANT SCIENCE 2022; 13:1096457. [PMID: 36578334 PMCID: PMC9792120 DOI: 10.3389/fpls.2022.1096457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Introduction Although seed oil content and its fatty acid compositions in soybean were affected by environment, QTN-by-environment (QEIs) and gene-by-environment interactions (GEIs) were rarely reported in genome-wide association studies. Methods The 3VmrMLM method was used to associate the trait phenotypes, measured in five to seven environments, of 286 soybean accessions with 106,013 SNPs for detecting QTNs and QEIs. Results Seven oil metabolism genes (GmSACPD-A, GmSACPD-B, GmbZIP123, GmSWEET39, GmFATB1A, GmDGAT2D, and GmDGAT1B) around 598 QTNs and one oil metabolism gene GmFATB2B around 54 QEIs were verified in previous studies; 76 candidate genes and 66 candidate GEIs were predicted to be associated with these traits, in which 5 genes around QEIs were verified in other species to participate in oil metabolism, and had differential expression across environments. These genes were found to be related to soybean seed oil content in haplotype analysis. In addition, most candidate GEIs were co-expressed with drought response genes in co-expression network, and three KEGG pathways which respond to drought were enriched under drought stress rather than control condition; six candidate genes were hub genes in the co-expression networks under drought stress. Discussion The above results indicated that GEIs, together with drought response genes in co-expression network, may respond to drought, and play important roles in regulating seed oil-related traits together with oil metabolism genes. These results provide important information for genetic basis, molecular mechanisms, and soybean breeding for seed oil-related traits.
Collapse
Affiliation(s)
- Jian-Fang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin-Yang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Li M, Li H, Sun A, Wang L, Ren C, Liu J, Gao X. Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Front Genet 2022; 13:1060529. [PMID: 36518213 PMCID: PMC9742610 DOI: 10.3389/fgene.2022.1060529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 08/21/2023] Open
Abstract
Drought is the most common environmental stress and has had dramatic impacts on soybean (Glycine max L.) growth and yield worldwide. Therefore, to investigate the response mechanism underlying soybean resistance to drought stress, the drought-sensitive cultivar "Liaodou 15" was exposed to 7 (mild drought stress, LD), 17 (moderate drought stress, MD) and 27 (severe drought stress, SD) days of drought stress at the flowering stage followed by rehydration until harvest. A total of 2214, 3684 and 2985 differentially expressed genes (DEGs) in LD/CK1, MD/CK2, and SD/CK3, respectively, were identified by RNA-seq. Weighted gene co-expression network analysis (WGCNA) revealed the drought-response TFs such as WRKY (Glyma.15G021900, Glyma.15G006800), MYB (Glyma.15G190100, Glyma.15G237900), and bZIP (Glyma.15G114800), which may be regulated soybean drought resistance. Second, Glyma.08G176300 (NCED1), Glyma.03G222600 (SDR), Glyma.02G048400 (F3H), Glyma.14G221200 (CAD), Glyma.14G205200 (C4H), Glyma.19G105100 (CHS), Glyma.07G266200 (VTC) and Glyma.15G251500 (GST), which are involved in ABA and flavonoid biosynthesis and ascorbic acid and glutathione metabolism, were identified, suggesting that these metabolic pathways play key roles in the soybean response to drought. Finally, the soybean yield after rehydration was reduced by 50% under severe drought stress. Collectively, our study deepens the understanding of soybean drought resistance mechanisms and provides a theoretical basis for the soybean drought resistance molecular breeding and effectively adjusts water-saving irrigation for soybean under field production.
Collapse
Affiliation(s)
- Mingqian Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Anni Sun
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chuanyou Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
29
|
GmWRI1c Increases Palmitic Acid Content to Regulate Seed Oil Content and Nodulation in Soybean ( Glycine max). Int J Mol Sci 2022; 23:ijms232213793. [PMID: 36430287 PMCID: PMC9694093 DOI: 10.3390/ijms232213793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Soybean (Glycine max) is an important oil crop, but the regulatory mechanisms underlying seed oil accumulation remain unclear. We identified a member of the GmWRI1s transcription factor family, GmWRI1c, that is involved in regulating soybean oil content and nodulation. Overexpression of GmWRI1c in soybean hairy roots increased the expression of genes involved in glycolysis and de novo lipogenesis, the proportion of palmitic acid (16:0), and the number of root nodules. The effect of GmWRI1c in increasing the number of root nodules via regulating the proportion of palmitic acid was confirmed in a recombinant inbred line (RIL) population. GmWRI1c shows abundant sequence diversity and has likely undergone artificial selection during domestication. An association analysis revealed a correlation between seed oil content and five linked natural variations (Hap1/Hap2) in the GmWRI1c promoter region. Natural variations in the GmWRI1c promoter were strongly associated with the GmWRI1c transcript level, with higher GmWRI1c transcript levels in lines carrying GmWRI1cHap1 than in those carrying GmWRI1cHap2. The effects of GmWRI1c alleles on seed oil content were confirmed in natural and RIL populations. We identified a favourable GmWRI1c allele that can be used to breed new varieties with increased seed oil content and nodulation.
Collapse
|
30
|
Zhu W, Yang C, Yong B, Wang Y, Li B, Gu Y, Wei S, An Z, Sun W, Qiu L, He C. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. THE NEW PHYTOLOGIST 2022; 236:1375-1392. [PMID: 36068955 DOI: 10.1111/nph.18461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/12/2022] [Indexed: 05/26/2023]
Abstract
Soybean (Glycine max) was domesticated from its wild relative Glycine soja. One-hundred-seed weight is one of the most important domesticated traits determining soybean yield; however, its underlying genetic basis remains elusive. We characterized a soybean seed size 1 (sss1) mutant featuring large seeds compared to its wild-type background. Positional cloning revealed that the candidate gene GmSSS1 encoded a SPINDLY homolog and was co-located in a well-identified quantitative trait locus (QTL)-rich region on chromosome 19. Knocking out GmSSS1 resulted in small seeds, while overexpressing GmSSS1/Gmsss1 induced large seeds. Modulating GmSSS1/Gmsss1 in transgenic plants can positively influence cell expansion and cell division. Relative to GmSSS1, one mutation leading to an E to Q substitution at the 182nd residue in Gmsss1 conferred an enhancing effect on seed weight. GmSSS1 underwent diversification in wild-type and cultivated soybean, and the alleles encoding the Gmsss1-type substitution of 182nd -Q, which originated along the central and downstream parts of the Yellow River, were selected and expanded during soybean domestication and improvement. We cloned the causative gene for the sss1 mutant, which is linked with a seed weight QTL, identified an elite allele of this gene for increasing seed weight, and provided new insights into soybean domestication and breeding.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Ce Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Bin Yong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
| | - Bingbing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yongzhe Gu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Siming Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Zhenghong An
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Wenkai Sun
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Lijuan Qiu
- National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
31
|
Liu J, Lin Y, Chen J, Yan Q, Xue C, Wu R, Chen X, Yuan X. Genome-wide association studies provide genetic insights into natural variation of seed-size-related traits in mungbean. FRONTIERS IN PLANT SCIENCE 2022; 13:997988. [PMID: 36311130 PMCID: PMC9608654 DOI: 10.3389/fpls.2022.997988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 05/24/2023]
Abstract
Although mungbean (Vigna radiata (L.) R. Wilczek) is an important legume crop, its seed yield is relatively low. To address this issue, here 196 accessions with 3,607,508 SNP markers were used to identify quantitative trait nucleotides (QTNs), QTN-by-environment interactions (QEIs), and their candidate genes for seed length (SL), seed width, and 100-seed weight (HSW) in two environments. As a result, 98 QTNs and 20 QEIs were identified using 3VmrMLM, while 95, >10,000, and 15 QTNs were identified using EMMAX, GEMMA, and CMLM, respectively. Among 809 genes around these QTNs, 12 were homologous to known seed-development genes in rice and Arabidopsis thaliana, in which 10, 2, 1, and 0 genes were found, respectively, by the above four methods to be associated with the three traits, such as VrEmp24/25 for SL and VrKIX8 for HSW. Eight of the 12 genes were significantly differentially expressed between two large-seed and two small-seed accessions, and VrKIX8, VrPAT14, VrEmp24/25, VrIAR1, VrBEE3, VrSUC4, and Vrflo2 were further verified by RT-qPCR. Among 65 genes around these QEIs, VrFATB, VrGSO1, VrLACS2, and VrPAT14 were homologous to known seed-development genes in A. thaliana, although new experiments are necessary to explore these novel GEI-trait associations. In addition, 54 genes were identified in comparative genomics analysis to be associated with seed development pathway, in which VrKIX8, VrABA2, VrABI5, VrSHB1, and VrIKU2 were also identified in genome-wide association studies. This result provided a reliable approach for identifying seed-size-related genes in mungbean and a solid foundation for further molecular biology research on seed-size-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| |
Collapse
|
32
|
Wu Y, Sun Z, Qi F, Tian M, Wang J, Zhao R, Wang X, Wu X, Shi X, Liu H, Dong W, Huang B, Zheng Z, Zhang X. Comparative transcriptomics analysis of developing peanut ( Arachis hypogaea L.) pods reveals candidate genes affecting peanut seed size. FRONTIERS IN PLANT SCIENCE 2022; 13:958808. [PMID: 36172561 PMCID: PMC9511224 DOI: 10.3389/fpls.2022.958808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Pod size is one of the most important agronomic features of peanuts, which directly affects peanut yield. Studies on the regulation mechanism underpinning pod size in cultivated peanuts remain hitherto limited compared to model plant systems. To better understand the molecular elements that underpin peanut pod development, we conducted a comprehensive analysis of chronological transcriptomics during pod development in four peanut accessions with similar genetic backgrounds, but varying pod sizes. Several plant transcription factors, phytohormones, and the mitogen-activated protein kinase (MAPK) signaling pathways were significantly enriched among differentially expressed genes (DEGs) at five consecutive developmental stages, revealing an eclectic range of candidate genes, including PNC, YUC, and IAA that regulate auxin synthesis and metabolism, CYCD and CYCU that regulate cell differentiation and proliferation, and GASA that regulates seed size and pod elongation via gibberellin pathway. It is plausible that MPK3 promotes integument cell division and regulates mitotic activity through phosphorylation, and the interactions between these genes form a network of molecular pathways that affect peanut pod size. Furthermore, two variant sites, GCP4 and RPPL1, were identified which are stable at the QTL interval for seed size attributes and function in plant cell tissue microtubule nucleation. These findings may facilitate the identification of candidate genes that regulate pod size and impart yield improvement in cultivated peanuts.
Collapse
Affiliation(s)
- Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziqi Sun
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Feiyan Qi
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengdi Tian
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Juan Wang
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruifang Zhao
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Wang
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohui Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xinlong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Hongfei Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenzhao Dong
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyan Huang
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Zheng Zheng
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyou Zhang
- Henan Academy of Agricultural Sciences, Henan Academy of Crop Molecular Breeding, State Industrial Innovation Center of Biological Breeding, Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Henan Provincial Key Laboratory for Oil Crops Improvement, Innovation Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
34
|
Jiang L, Liu C, Fan Y, Wu Q, Ye X, Li Q, Wan Y, Sun Y, Zou L, Xiang D, Lv Z. Dynamic transcriptome analysis suggests the key genes regulating seed development and filling in Tartary buckwheat (Fagopyrum tataricum Garetn.). Front Genet 2022; 13:990412. [PMID: 36072657 PMCID: PMC9441574 DOI: 10.3389/fgene.2022.990412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tartary buckwheat is highly attractive for the richness of nutrients and quality, yet post-embryonic seed abortion greatly halts the yield. Seed development is crucial for determining grain yield, whereas the molecular basis and regulatory network of Tartary buckwheat seed development and filling is not well understood at present. Here, we assessed the transcriptional dynamics of filling stage Tartary buckwheat seeds at three developmental stages by RNA sequencing. Among the 4249 differentially expressed genes (DEGs), genes related to seed development were identified. Specifically, 88 phytohormone biosynthesis signaling genes, 309 TFs, and 16 expansin genes participating in cell enlargement, 37 structural genes involved in starch biosynthesis represented significant variation and were candidate key seed development genes. Cis-element enrichment analysis indicated that the promoters of differentially expressed expansin genes and starch biosynthesis genes are rich of hormone-responsive (ABA-, AUX-, ET-, and JA-), and seed growth-related (MYB, MYC and WRKY) binding sites. The expansin DEGs showed strong correlations with DEGs in phytohormone pathways and transcription factors (TFs). In total, phytohormone ABA, AUX, ET, BR and CTK, and related TFs could substantially regulate seed development in Tartary buckwheat through targeting downstream expansin genes and structural starch biosynthetic genes. This transcriptome data could provide a theoretical basis for improving yield of Tartary buckwheat.
Collapse
Affiliation(s)
- Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yanxia Sun
- College of Tourism and Culture Industry, Chengdu University, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Dabing Xiang, ; Zhibin Lv,
| | - Zhibin Lv
- Department of Medical Instruments and Information, College of Biomedical Engineering, Sichuan University, Chengdu, China
- *Correspondence: Dabing Xiang, ; Zhibin Lv,
| |
Collapse
|
35
|
Chen Z, Zhong W, Zhou Y, Ji P, Wan Y, Shi S, Yang Z, Gong Y, Mu F, Chen S. Integrative analysis of metabolome and transcriptome reveals the improvements of seed quality in vegetable soybean (Glycine max (L.) Merr.). PHYTOCHEMISTRY 2022; 200:113216. [PMID: 35487251 DOI: 10.1016/j.phytochem.2022.113216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Vegetable soybean is derived from grain soybean. Seeds of vegetable soybean are bigger, sweeter, and have smoother texture and better flavor than those of grain soybean. To better understand the improvements of seed quality in vegetable soybean, comparative metabolome and transcriptome analyses were performed in the developing seeds between grain (Williams 82) and vegetable (Jiaoda 133) soybeans. A total of 299 differential metabolites were identified between two genotypes, with an increase in free amino acids, carbohydrates, sterols, and flavonoids and a decrease in fatty acid in vegetable soybean. Thousands of differentially expressed genes (DEGs) were identified by transcriptome analysis. DEGs were used for weighted gene co-expression network analysis (WGCNA), yielding 16 co-expression modules. The expression patterns of DEGs within these modules were distinct between two genotypes. Functional enrichment analysis revealed that metabolic pathways, including alanine, aspartate and glutamate metabolism, fatty acid degradation, starch and sucrose metabolism, sucrose transport, and flavonoid biosynthesis, were up-regulated, whereas photosynthesis, arginine biosynthesis, arginine and proline metabolism, glycolysis/gluconeogenesis, and fatty acid biosynthesis were down-regulated in vegetable soybean. Reasonably, the alterations of metabolic pathways corresponding to DEGs partly explained the formation of differential metabolites. These findings provide a better understanding of seed development and breeding improvements of vegetable soybean.
Collapse
Affiliation(s)
- Zhengjie Chen
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Wenjuan Zhong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Yonghang Zhou
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Peicheng Ji
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Yonglu Wan
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Shengjia Shi
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Zehu Yang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Yiyun Gong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Fangsheng Mu
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| | - Siwei Chen
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Science, No.159 Huajin Avanue, Qingbaijiang District, Chengdu City, 610300, China.
| |
Collapse
|
36
|
Cao Y, Jia S, Chen L, Zeng S, Zhao T, Karikari B. Identification of major genomic regions for soybean seed weight by genome-wide association study. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:38. [PMID: 37313505 PMCID: PMC10248628 DOI: 10.1007/s11032-022-01310-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The hundred-seed weight (HSW) is an important yield component and one of the principal breeding traits in soybean. More than 250 quantitative trait loci (QTL) for soybean HSW have been identified. However, most of them have a large genomic region or are environmentally sensitive, which provide limited information for improving the phenotype in marker-assisted selection (MAS) and identifying the candidate genes. Here, we utilized 281 soybean accessions with 58,112 single nucleotide polymorphisms (SNPs) to dissect the genetic basis of HSW in across years in the northern Shaanxi province of China through one single-locus (SL) and three multi-locus (ML) genome-wide association study (GWAS) models. As a result, one hundred and fifty-four SNPs were detected to be significantly associated with HSW in at least one environment via SL-GWAS model, and 27 of these 154 SNPs were detected in all (three) environments and located within 7 linkage disequilibrium (LD) block regions with the distance of each block ranged from 40 to 610 Kb. A total of 15 quantitative trait nucleotides (QTNs) were identified by three ML-GWAS models. Combined with the results of different GWAS models, the 7 LD block regions associated with HSW detected by SL-GWAS model could be verified directly or indirectly by the results of ML-GWAS models. Eleven candidate genes underlying the stable loci that may regulate seed weight in soybean were predicted. The significantly associated SNPs and the stable loci as well as predicted candidate genes may be of great importance for marker-assisted breeding, polymerization breeding, and gene discovery for HSW in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01310-y.
Collapse
Affiliation(s)
- Yongce Cao
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Shihao Jia
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Liuxing Chen
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Shunan Zeng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute of Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, 00233 Tamale, Ghana
| |
Collapse
|
37
|
Zheng H, Hou L, Xie J, Cao F, Wei R, Yang M, Qi Z, Zhu R, Zhang Z, Xin D, Li C, Liu C, Jiang H, Chen Q. Construction of Chromosome Segment Substitution Lines and Inheritance of Seed-Pod Characteristics in Wild Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:869455. [PMID: 35783974 PMCID: PMC9247457 DOI: 10.3389/fpls.2022.869455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Genetic populations provide the basis for genetic and genomic research, and chromosome segment substitution lines (CSSLs) are a powerful tool for the fine mapping of quantitative traits, new gene mining, and marker-assisted breeding. In this study, 213 CSSLs were obtained by self-crossing, backcrossing, and marker-assisted selection between cultivated soybean (Glycine max [L.] Merr.) variety Suinong14 (SN14) and wild soybean (Glycine soja Sieb. et Zucc.) ZYD00006. The genomes of these 213 CSSLs were resequenced and 580,524 single-nucleotide polymorphism markers were obtained, which were divided into 3,780 bin markers. The seed-pod-related traits were analyzed by quantitative trait locus (QTL) mapping using CSSLs. A total of 170 QTLs were detected, and 32 QTLs were detected stably for more than 2 years. Through epistasis analysis, 955 pairs of epistasis QTLs related to seed-pod traits were obtained. Furthermore, the hundred-seed weight QTL was finely mapped to the region of 64.4 Kb on chromosome 12, and Glyma.12G088900 was identified as a candidate gene. Taken together, a set of wild soybean CSSLs was constructed and upgraded by a resequencing technique. The seed-pod-related traits were studied by bin markers, and a candidate gene for the hundred-seed weight was finely mapped. Our results have revealed the CSSLs can be an effective tool for QTL mapping, epistatic effect analysis, and gene cloning.
Collapse
Affiliation(s)
| | - Lilong Hou
- Northeast Agricultural University, Harbin, China
| | - Jianguo Xie
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, China
| | - Fubin Cao
- Northeast Agricultural University, Harbin, China
| | - Ruru Wei
- Northeast Agricultural University, Harbin, China
| | | | - Zhaoming Qi
- Northeast Agricultural University, Harbin, China
| | | | | | - Dawei Xin
- Northeast Agricultural University, Harbin, China
| | - Candong Li
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Chunyan Liu
- Northeast Agricultural University, Harbin, China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, China
| | | |
Collapse
|
38
|
Zhou X, Wang D, Mao Y, Zhou Y, Zhao L, Zhang C, Liu Y, Chen J. The Organ Size and Morphological Change During the Domestication Process of Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:913238. [PMID: 35755657 PMCID: PMC9221068 DOI: 10.3389/fpls.2022.913238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most important legume crops that can provide the rich source of protein and oil for human beings and livestock. In the twenty-one century, the total production of soybean is seriously behind the needs of a growing world population. Cultivated soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) with the significant morphology and organ size changes in China around 5,000 years ago, including twisted stems to erect stems, small seeds to large seeds. Then it was spread worldwide to become one of the most popular and important crops. The release of the reference soybean genome and omics data provides powerful tools for researchers and breeders to dissect the functional genes and apply the germplasm in their work. Here, we summarized the function genes related to yield traits and organ size in soybean, including stem growth habit, leaf size and shape, seed size and weight. In addition, we also summarized the selection of organ traits during soybean domestication. In the end, we also discussed the application of new technology including the gene editing on the basic research and breeding of soybean, and the challenges and research hotspots in the future.
Collapse
Affiliation(s)
- Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueqiong Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chunbao Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
39
|
Liu J, Dong L, Duan R, Hu L, Zhao Y, Zhang L, Wang X. Transcriptomic Analysis Reveals the Regulatory Networks and Hub Genes Controlling the Unsaturated Fatty Acid Contents of Developing Seed in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:876371. [PMID: 35646018 PMCID: PMC9134122 DOI: 10.3389/fpls.2022.876371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Soybean [Glycine max (L.) Merr.] is one of the most important crops, which produces about 25% of the world's edible oil. The nutritional value of soybean oil depends mostly on the relative contents of three unsaturated fatty acids (UFAs), i.e., oleic acid, linoleic acid (LA), and linolenic acid. However, the biosynthetic mechanism of UFAs remains largely unknown, and there are few studies on RNA-seq analysis of developing seeds. To identify the candidate genes and related pathways involved in the regulation of UFA contents during seed development in soybean, two soybean lines with different UFA profiles were selected from 314 cultivars and landraces originated from Southern China, and RNA-seq analysis was performed in soybean seeds at three developmental stages. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, a series of genes and pathways related to fatty acid metabolism were identified, and 40 days after flowering (DAF) was found to be the crucial period in the formation of UFA profiles. Further, weighted gene co-expression network analysis identified three modules with six genes whose functions were highly associated with the contents of oleic and LA. The detailed functional investigation of the networks and hub genes could further improve the understanding of the underlying molecular mechanism of UFA contents and might provide some ideas for the improvement in fatty acids profiles in soybean.
Collapse
Affiliation(s)
- Junqi Liu
- School of Agriculture, Yunnan University, Kunming, China
| | - Liang Dong
- School of Agriculture, Yunnan University, Kunming, China
| | - Runqing Duan
- School of Agriculture, Yunnan University, Kunming, China
| | - Li Hu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yinyue Zhao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Liang Zhang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xianzhi Wang
- School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
40
|
Cao P, Zhao Y, Wu F, Xin D, Liu C, Wu X, Lv J, Chen Q, Qi Z. Multi-Omics Techniques for Soybean Molecular Breeding. Int J Mol Sci 2022; 23:4994. [PMID: 35563386 PMCID: PMC9099442 DOI: 10.3390/ijms23094994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Soybean is a major crop that provides essential protein and oil for food and feed. Since its origin in China over 5000 years ago, soybean has spread throughout the world, becoming the second most important vegetable oil crop and the primary source of plant protein for global consumption. From early domestication and artificial selection through hybridization and ultimately molecular breeding, the history of soybean breeding parallels major advances in plant science throughout the centuries. Now, rapid progress in plant omics is ushering in a new era of precision design breeding, exemplified by the engineering of elite soybean varieties with specific oil compositions to meet various end-use targets. The assembly of soybean reference genomes, made possible by the development of genome sequencing technology and bioinformatics over the past 20 years, was a great step forward in soybean research. It facilitated advances in soybean transcriptomics, proteomics, metabolomics, and phenomics, all of which paved the way for an integrated approach to molecular breeding in soybean. In this review, we summarize the latest progress in omics research, highlight novel findings made possible by omics techniques, note current drawbacks and areas for further research, and suggest that an efficient multi-omics approach may accelerate soybean breeding in the future. This review will be of interest not only to soybean breeders but also to researchers interested in the use of cutting-edge omics technologies for crop research and improvement.
Collapse
Affiliation(s)
- Pan Cao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (P.C.); (Y.Z.); (F.W.); (D.X.); (C.L.)
| | - Ying Zhao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (P.C.); (Y.Z.); (F.W.); (D.X.); (C.L.)
| | - Fengjiao Wu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (P.C.); (Y.Z.); (F.W.); (D.X.); (C.L.)
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (P.C.); (Y.Z.); (F.W.); (D.X.); (C.L.)
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (P.C.); (Y.Z.); (F.W.); (D.X.); (C.L.)
| | - Xiaoxia Wu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (P.C.); (Y.Z.); (F.W.); (D.X.); (C.L.)
| | - Jian Lv
- Department of Innovation, Syngenta Biotechnology China, Beijing 102206, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (P.C.); (Y.Z.); (F.W.); (D.X.); (C.L.)
| | - Zhaoming Qi
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (P.C.); (Y.Z.); (F.W.); (D.X.); (C.L.)
| |
Collapse
|
41
|
Zhang HY, Hou ZH, Zhang Y, Li ZY, Chen J, Zhou YB, Chen M, Fu JD, Ma YZ, Zhang H, Xu ZS. A soybean EF-Tu family protein GmEF8, an interactor of GmCBL1, enhances drought and heat tolerance in transgenic Arabidopsis and soybean. Int J Biol Macromol 2022; 205:462-472. [PMID: 35122805 DOI: 10.1016/j.ijbiomac.2022.01.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
A soybean elongation factor Tu family (EF-Tu) protein, GmEF8, was determined to interact with GmCBL1, and GmEF8 expression was found to be induced by various abiotic stresses such as drought and heat. An ortholog of GmEF8 was identified in Arabidopsis, a T-DNA knockout line for which exhibited hypersensitivity to drought and heat stresses. Complementation with GmEF8 rescued the sensitivity of the Arabidopsis mutant to drought and heat stresses, and GmEF8 overexpression conferred drought and heat tolerance to transgenic Arabidopsis plants. In soybean, plants with GmEF8-overexpressing hairy roots (OE-GmEF8) exhibited enhanced drought and heat tolerance and had higher proline levels compared to plants with RNAi GmEF8-knockdown hairy roots (MR-GmEF8) and control hairy roots (EV). A number of drought-responsive genes, such as GmRD22 and GmP5CS, were induced in the OE-GmEF8 line compared to MR-GmEF8 and EV under normal growth conditions. These results suggest that GmEF8 has a positive role in regulating drought and heat stresses in Arabidopsis and soybean. This study reveals a potential role of the soybean GmEF8 gene in response to abiotic stresses, providing a foundation for further investigation into the complexities of stress signal transduction pathways.
Collapse
Affiliation(s)
- Hui-Yuan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ze-Hao Hou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China.
| | - Zhi-Yong Li
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Hui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
42
|
Mathur S, Paritosh K, Tandon R, Pental D, Pradhan AK. Comparative Analysis of Seed Transcriptome and Coexpression Analysis Reveal Candidate Genes for Enhancing Seed Size/Weight in Brassica juncea. Front Genet 2022; 13:814486. [PMID: 35281836 PMCID: PMC8907137 DOI: 10.3389/fgene.2022.814486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size/weight is a multigenic trait that is governed by complex transcriptional regulatory pathways. An understanding of the genetic basis of seed size is of great interest in the improvement of seed yield and quality in oilseed crops. A global transcriptome analysis was performed at the initial stages of seed development in two lines of Brassica juncea, small-seeded EH-2 and large-seeded PJ. The anatomical analyses revealed significant differences in cell number and cell size in the outer layer of the seed coat between EH-2 and PJ. Pairwise comparisons at each developmental stage identified 5,974 differentially expressed genes (DEGs) between the two lines, of which 954 genes belong to different families of transcription factors. Two modules were found to be significantly correlated with an increased seed size using weighted gene coexpression network analysis. The DEG and coexpression datasets were integrated with the thousand seed weight (Tsw) quantitative trait loci (QTL) mapped earlier in the EPJ (EH-2 × PJ) doubled haploid (DH) population, which identified forty potential key components controlling seed size. The candidate genes included genes regulating the cell cycle, cell wall biogenesis/modification, solute/sugar transport, and hormone signaling. The results provide a valuable resource to widen the current understanding of regulatory mechanisms underlying seed size in B. juncea.
Collapse
Affiliation(s)
- Shikha Mathur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Kumar Paritosh
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, New Delhi, India
| | - Deepak Pental
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- *Correspondence: Akshay K. Pradhan,
| |
Collapse
|
43
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
44
|
Turquetti-Moraes DK, Moharana KC, Almeida-Silva F, Pedrosa-Silva F, Venancio TM. Integrating omics approaches to discover and prioritize candidate genes involved in oil biosynthesis in soybean. Gene 2022; 808:145976. [PMID: 34592351 DOI: 10.1016/j.gene.2021.145976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022]
Abstract
Soybean is a major source of edible protein and oil. Oil content is a quantitative trait that is significantly determined by genetic and environmental factors. Over the past 30 years, a large volume of soybean genetic, genomic, and transcriptomic data have been accumulated. Nevertheless, integrative analyses of such data remain scarce, in spite of their importance for crop improvement. We hypothesized that the co-occurrence of genomic regions for oil-related traits in different studies may reveal more stable regions encompassing important genetic determinants of oil content and quality in soybean. We integrated publicly available data, obtained with distinct techniques, to discover and prioritize candidate genes involved in oil biosynthesis and regulation in soybean. We detected key fatty acid biosynthesis genes (e.g., BCCP2 and ACCase, FADs, KAS family proteins) and several transcription factors, which are likely regulators of oil biosynthesis. In addition, we identified new candidates for seed oil accumulation and quality, such as Glyma.03G213300 and Glyma.19G160700, which encode a translocator protein homolog and a histone acetyltransferase, respectively. Further, oil and protein genomic hotspots are strongly associated with breeding and not with domestication, suggesting that soybean domestication prioritized other traits. The genes identified here are promising targets for breeding programs and for the development of soybean lines with increased oil content and quality.
Collapse
Affiliation(s)
- Dayana K Turquetti-Moraes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
45
|
Zuo JF, Ikram M, Liu JY, Han CY, Niu Y, Dunwell JM, Zhang YM. Domestication and improvement genes reveal the differences of seed size- and oil-related traits in soybean domestication and improvement. Comput Struct Biotechnol J 2022; 20:2951-2964. [PMID: 35782726 PMCID: PMC9213226 DOI: 10.1016/j.csbj.2022.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022] Open
Abstract
Due to reduced diversity, it is essential to map domesticated and improved genes. 13 known and 442 candidate genes were mined for seed size- and oil-related traits. All the genes were used to explain trait changes in domestication and improvement. 56 domesticated and 15 improved genes may be valuable for future soybean breeding. This study provides useful gene resources for future breeding and biology research.
To address domestication and improvement studies of soybean seed size- and oil-related traits, a series of domesticated and improved regions, loci, and candidate genes were identified in 286 soybean accessions using domestication and improvement analyses, genome-wide association studies, quantitative trait locus (QTL) mapping and bulked segregant analyses in this study. As a result, 534 candidate domestication regions (CDRs) and 458 candidate improvement regions (CIRs) were identified in this study and integrated with those in five and three previous studies, respectively, to obtain 952 CDRs and 538 CIRs; 1469 loci for soybean seed size- and oil-related traits were identified in this study and integrated with those in Soybase to obtain 433 QTL clusters. The two results were intersected to obtain 245 domestication and 221 improvement loci for the above traits. Around these trait-related domestication and improvement loci, 7 domestication and 7 improvement genes were found to be truly associated with these traits, and 372 candidate domestication and 87 candidate improvement genes were identified using gene expression, SNP variants in genome, miRNA binding, KEGG pathway, DNA methylation, and haplotype analysis. These genes were used to explain the trait changes in domestication and improvement. As a result, the trait changes can be explained by their frequencies of elite haplotypes, base mutations in coding region, and three factors affecting their expression levels. In addition, 56 domestication and 15 improvement genes may be valuable for future soybean breeding. This study can provide useful gene resources for future soybean breeding and molecular biology research.
Collapse
Affiliation(s)
- Jian-Fang Zuo
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Ikram
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin-Yang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chun-Yu Han
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuan Niu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Yuan-Ming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Corresponding author.
| |
Collapse
|
46
|
Dong W, Wu D, Wang C, Liu Y, Wu D. Characterization of the molecular mechanism underlying the dwarfism of dsh mutant watermelon plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111074. [PMID: 34763866 DOI: 10.1016/j.plantsci.2021.111074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Developing dwarf watermelon is a major objective among breeders. The dsh dwarf watermelon germplasm developed in our laboratory is genetically stable. We previously produced preliminary evidence that Cla010726, which encodes a gibberellin 20-oxidase-like protein, is the primary gene controlling dwarfism in watermelon. However, the underlying genetic mechanism was unknown. In this study, we characterized the spontaneous recessive mutant dsh, which is a gibberellin (GA)-deficient mutant. Many of the phenotypic traits of dsh plants are similar to those of known GA-deficient mutants. The dsh plants were sensitive to exogenous bioactive GAs, which increased seedling height. Moreover, a quantitative analysis of endogenous GA3 proved that the bioactive GA3 content was substantially lower than normal in dsh. Additionally, the T5ClaGA20ox RNAi plants generally exhibited dwarfism, with short stems and internodes as well as small leaves and fruit. An examination of the transgenic plants carrying the ClaGA20ox1 promoter-GUS and mutant ClaGA20ox2 promoter-GUS constructs confirmed that two promoter sites are involved in the regulation of ClaGA20ox expression. Hence, mutations in the promoter of the GA20ox gene, which encodes a key enzyme involved in gibberellin biosynthesis, lead to the dwarfism of watermelon plants. The dsh mutant is a potentially useful germplasm resource for developing new watermelon varieties exhibiting dwarfism.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Caihui Wang
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Ying Liu
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China
| | - Defeng Wu
- School of Life Science, Henan University, Kaifeng, Henan, 475004, People's Republic of China.
| |
Collapse
|
47
|
Huang J, Chen X, He A, Ma Z, Gong T, Xu K, Chen R. Integrative Morphological, Physiological, Proteomics Analyses of Jujube Fruit Development Provide Insights Into Fruit Quality Domestication From Wild Jujube to Cultivated Jujube. FRONTIERS IN PLANT SCIENCE 2021; 12:773825. [PMID: 34899802 PMCID: PMC8653901 DOI: 10.3389/fpls.2021.773825] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 06/12/2023]
Abstract
Jujube (Ziziphus jujuba) was domesticated from wild jujube (Z. jujuba var. spinosa). Here, integrative physiological, metabolomic, and comparative proteomic analyses were performed to investigate the fruit expansion and fruit taste components in a jujube cultivar 'Junzao' and a wild jujube 'Qingjiansuanzao' with contrasting fruit size and taste. We revealed that the duration of cell division and expansion largely determined the final fruit size, while the intercellular space in the mesocarp dictated the ratio of mesocarp volume in mature fruits. The high levels of endogenous gibbereline3 (GA) and zeatin in the growing fruit of 'Junzao' were associated with their increased fruit expansion. Compared with 'Junzao,' wild jujube accumulated lower sugars and higher organic acids. Furthermore, several protein co-expression modules and important member proteins correlated with fruit expansion, sugar synthesis, and ascorbic acid metabolism were identified. Among them, GA20OX involved in GA biosynthesis was identified as a key protein regulating fruit expansion, whereas sucrose-6-phosphate synthase (SPS) and neutral invertase (NINV) were considered as key enzymes promoting sugar accumulation and as major factors regulating the ratio of sucrose to hexose in jujube fruits, respectively. Moreover, the increase of Nicotinamide adenine dinucleotide-Malate dehydrogenase (NAD-MDH) activity and protein abundance were associated with the malic acid accumulation, and the high accumulation of ascorbic acid in wild jujube was correlated with the elevated abundance of GalDH, ZjAPXs, and MDHAR1, which are involved in the ascorbic acid biosynthesis and recycling pathways. Overall, these results deepened the understanding of mechanisms regulating fruit expansion and sugar/acids metabolisms in jujube fruit.
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Chen
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Aobing He
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Zhibo Ma
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Tianqi Gong
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, United States
| | - Ruihong Chen
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, China
- Key Laboratory of Shaanxi Province on Jujube, College of Life Science, Yan’an University, Yan’an, China
| |
Collapse
|
48
|
Lu L, Wei W, Tao J, Lu X, Bian X, Hu Y, Cheng T, Yin C, Zhang W, Chen S, Zhang J. Nuclear factor Y subunit GmNFYA competes with GmHDA13 for interaction with GmFVE to positively regulate salt tolerance in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2362-2379. [PMID: 34265872 PMCID: PMC8541785 DOI: 10.1111/pbi.13668] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 05/07/2023]
Abstract
Soybean is an important crop worldwide, but its production is severely affected by salt stress. Understanding the regulatory mechanism of salt response is crucial for improving the salt tolerance of soybean. Here, we reveal a role for nuclear factor Y subunit GmNFYA in salt tolerance of soybean likely through the regulation of histone acetylation. GmNFYA is induced by salt stress. Overexpression of GmNFYA significantly enhances salt tolerance in stable transgenic soybean plants by inducing salt-responsive genes. Analysis in soybean plants with transgenic hairy roots also supports the conclusion. GmNFYA interacts with GmFVE, which functions with putative histone deacetylase GmHDA13 in a complex for transcriptional repression possibly by reducing H3K9 acetylation at target loci. Under salt stress, GmNFYA likely accumulates and competes with GmHDA13 for interaction with GmFVE, leading to the derepression and maintenance of histone acetylation for activation of salt-responsive genes and finally conferring salt tolerance in soybean plants. In addition, a haplotype I GmNFYA promoter is identified with the highest self-activated promoter activity and may be selected during future breeding for salt-tolerant cultivars. Our study uncovers the epigenetic regulatory mechanism of GmNFYA in salt-stress response, and all the factors/elements identified may be potential targets for genetic manipulation of salt tolerance in soybean and other crops.
Collapse
Affiliation(s)
- Long Lu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- Key Lab of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsCollege of Crop SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wei Wei
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Jian‐Jun Tao
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Xiang Lu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Xiao‐Hua Bian
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Yang Hu
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Tong Cheng
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Cui‐Cui Yin
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Wan‐Ke Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Shou‐Yi Chen
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
| | - Jin‐Song Zhang
- State Key Lab of Plant GenomicsInstitute of Genetics and Developmental BiologyINASEEDChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
49
|
Li Q, Qiao X, Jia L, Zhang Y, Zhang S. Transcriptome and Resequencing Analyses Provide Insight into Differences in Organic Acid Accumulation in Two Pear Varieties. Int J Mol Sci 2021; 22:ijms22179622. [PMID: 34502530 PMCID: PMC8456318 DOI: 10.3390/ijms22179622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Fruit acidity is one of the main determinants of fruit flavor and a target trait in fruit breeding. However, the genomic mechanisms governing acidity variation among different pear varieties remain poorly understood. In this study, two pear varieties with contrasting organic acid levels, ‘Dangshansuli’ (low-acidity) and ‘Amute’ (high-acidity), were selected, and a combination of transcriptome and population genomics analyses were applied to characterize their patterns of gene expression and genetic variation. Based on RNA-seq data analysis, differentially expressed genes (DEGs) involved in organic acid metabolism and accumulation were identified. Weighted correlation network analysis (WGCNA) revealed that nine candidate TCA (tricarboxylic acid)-related DEGs and three acid transporter-related DEGs were located in three key modules. The regulatory networks of the above candidate genes were also predicted. By integrating pear resequencing data, two domestication-related genes were found to be upregulated in ‘Amute’, and this trend was further validated for other pear varieties with high levels of organic acid, suggesting distinct selective sweeps during pear dissemination and domestication. Collectively, this study provides insight into organic acid differences related to expression divergence and domestication in two pear varieties, pinpointing several candidate genes for the genetic manipulation of acidity in pears.
Collapse
|
50
|
Hu X, Zuo J. The CCCH zinc finger family of soybean (Glycine max L.): genome-wide identification, expression, domestication, GWAS and haplotype analysis. BMC Genomics 2021; 22:511. [PMID: 34233625 PMCID: PMC8261996 DOI: 10.1186/s12864-021-07787-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CCCH zinc finger (zf_CCCH) is a unique subfamily featured one or more zinc finger motif(s) comprising of three Cys and one His residues. The zf_CCCH family have been reported involving in various processes of plant development and adaptation. RESULTS In this study, the zf_CCCH genes were identified via a genome-wide search and were systematically analyzed. 116 Gmzf_CCCHs were obtained and classified into seventeen subfamilies. Gene duplication and expansion analysis showed that tandem and segmental duplications contributed to the expansion of the Gmzf_CCCH gene family, and that segmental duplication play the main role. The expression patterns of Gmzf_CCCH genes were tissue-specific. Eleven domesticated genes were detected involved in the regulation of seed oil and protein synthesis as well as growth and development of soybean through GWAS and haplotype analysis for Gmzf_CCCH genes among the 164 of 302 soybeans resequencing data. Among which, 8 genes play an important role in the synthesis of seed oil or fatty acid, and the frequency of their elite haplotypes changes significantly among wild, landrace and improved cultivars, indicating that they have been strongly selected in the process of soybean domestication. CONCLUSIONS This study provides a scientific foundation for the comprehensive understanding, future cloning and functional studies of Gmzf_CCCH genes in soybean, meanwhile, it was also helpful for the improvement of soybean with high oil content.
Collapse
Affiliation(s)
- Xin Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China.
| | - Jianfang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|