1
|
Micic N, Holmelund Rønager A, Sørensen M, Bjarnholt N. Overlooked and misunderstood: can glutathione conjugates be clues to understanding plant glutathione transferases? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230365. [PMID: 39343017 PMCID: PMC11449216 DOI: 10.1098/rstb.2023.0365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Plant glutathione transferases (GSTs) constitute a large and diverse family of enzymes that are involved in plant stress response, metabolism and defence, yet their physiological functions remain largely elusive. Consistent with the traditional view on GSTs across organisms as detoxification enzymes, in vitro most plant GSTs catalyse glutathionylation, conjugation of the tripeptide glutathione (GSH; γ-Glu-Cys-Gly) onto reactive molecules. However, when it comes to elucidating GST functions, it remains a key challenge that the endogenous plant glutathione conjugates (GS-conjugates) that would result from such glutathionylation reactions are rarely reported. Furthermore, GSTs often display high substrate promiscuity, and their proposed substrates are prone to spontaneous chemical reactions with GSH; hence, single-gene knockouts rarely provide clear chemotypes or phenotypes. In a few cases, GS-conjugates are demonstrated to be biosynthetic intermediates that are rapidly further metabolized towards a pathway end product, explaining their low abundance and rare detection. In this review, we summarize the current knowledge of plant GST functions and how and possibly why evolution has resulted in a broad and extensive expansion of the plant GST family. Finally, we demonstrate that endogenous GS-conjugates are more prevalent in plants than assumed and suggest they are overlooked as clues towards the identification of plant GST functions. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Nikola Micic
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Asta Holmelund Rønager
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Mette Sørensen
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
- Novo Nordisk Pharmatech A/S , Køge 4600, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| |
Collapse
|
2
|
Sánchez-Pérez R, Neilson EH. The case for sporadic cyanogenic glycoside evolution in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102608. [PMID: 39089185 DOI: 10.1016/j.pbi.2024.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
Cyanogenic glycosides are α-hydroxynitrile glucosides present in approximately 3000 different plant species. Upon tissue disruption, cyanogenic glycosides are hydrolyzed to release toxic hydrogen cyanide as a means of chemical defense. Over 100 different cyanogenic glycosides have been reported, with structural diversity dependent on the precursor amino acid, and subsequent modifications. Cyanogenic glycosides represent a prime example of sporadic metabolite evolution, with the metabolic trait arising multiple times throughout the plant lineage as evidenced by recruitment of different enzyme families for biosynthesis. Here, we review the latest developments within cyanogenic glycoside biosynthesis, and argue possible factors driving sporadic evolution including shared intermediates and crossovers with other metabolic pathways crossovers, and metabolite multifunctionality beyond chemical defense.
Collapse
Affiliation(s)
| | - Elizabeth Hj Neilson
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen.
| |
Collapse
|
3
|
Wang B, Xiong W, Guo Y. Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2291. [PMID: 39204727 PMCID: PMC11359004 DOI: 10.3390/plants13162291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Sorghum (Sorghum bicolor) holds a significant position as the fifth most vital cereal crop globally. Its drought resistance and robust biomass production, coupled with commendable nutritional value, make sorghum a promising choice for animal feed. Nevertheless, the utilization of sorghum in animal production faces hurdles of dhurrin (a cyanogenic glycoside) poisoning. While dhurrin serves as a protective secondary metabolite during sorghum growth, the resulting highly toxic hydrogen cyanide poses a significant threat to animal safety. This review extensively examines the biometabolic processes of dhurrin, the pivotal genes involved in the regulation of dhurrin biosynthesis, and the factors influencing dhurrin content in sorghum. It delves into the impact of dhurrin on animal production and explores measures to mitigate its content, aiming to provide insights for advancing research on dhurrin metabolism regulation in sorghum and its rational utilization in animal production.
Collapse
Affiliation(s)
- Bo Wang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (W.X.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Wangdan Xiong
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (W.X.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (W.X.)
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Rosati VC, Quinn AA, Gleadow RM, Blomstedt CK. The Putative GATA Transcription Factor SbGATA22 as a Novel Regulator of Dhurrin Biosynthesis. Life (Basel) 2024; 14:470. [PMID: 38672741 PMCID: PMC11051066 DOI: 10.3390/life14040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Cyanogenic glucosides are specialized metabolites produced by over 3000 species of higher plants from more than 130 families. The deployment of cyanogenic glucosides is influenced by biotic and abiotic factors in addition to being developmentally regulated, consistent with their roles in plant defense and stress mitigation. Despite their ubiquity, very little is known regarding the molecular mechanisms that regulate their biosynthesis. The biosynthetic pathway of dhurrin, the cyanogenic glucoside found in the important cereal crop sorghum (Sorghum bicolor (L.) Moench), was described over 20 years ago, and yet no direct regulator of the biosynthetic genes has been identified. To isolate regulatory proteins that bind to the promoter region of the key dhurrin biosynthetic gene of sorghum, SbCYP79A1, yeast one-hybrid screens were performed. A bait fragment containing 1204 base pairs of the SbCYP79A1 5' regulatory region was cloned upstream of a reporter gene and introduced into Saccharomyces cerevisiae. Subsequently, the yeast was transformed with library cDNA representing RNA from two different sorghum developmental stages. From these screens, we identified SbGATA22, an LLM domain B-GATA transcription factor that binds to the putative GATA transcription factor binding motifs in the SbCYP79A1 promoter region. Transient assays in Nicotiana benthamiana show that SbGATA22 localizes to the nucleus. The expression of SbGATA22, in comparison with SbCYP79A1 expression and dhurrin concentration, was analyzed over 14 days of sorghum development and in response to nitrogen application, as these conditions are known to affect dhurrin levels. Collectively, these findings suggest that SbGATA22 may act as a negative regulator of SbCYP79A1 expression and provide a preliminary insight into the molecular regulation of dhurrin biosynthesis in sorghum.
Collapse
Affiliation(s)
- Viviana C. Rosati
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| | - Alicia A. Quinn
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| | - Roslyn M. Gleadow
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cecilia K. Blomstedt
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| |
Collapse
|
5
|
Malhotra B, Kumar P, Bisht NC. Defense versus growth trade-offs: Insights from glucosinolates and their catabolites. PLANT, CELL & ENVIRONMENT 2023; 46:2964-2984. [PMID: 36207995 DOI: 10.1111/pce.14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Specialized metabolites are a structurally diverse group of naturally occurring compounds that facilitate plant-environment interactions. Their synthesis and maintenance in plants is overall a resource-demanding process that occurs at the expense of growth and reproduction and typically incurs several costs. Evidence emerging on different specialized compounds suggests that they serve multiple auxiliary functions to influence and moderate primary metabolism in plants. These new functionalities enable them to mediate trade-offs from defenses to growth and also to offset their production and maintenance costs in plants. Recent research on glucosinolates (GSLs), which are specialized metabolites of Brassicales, demonstrates their emerging multifunctionalities to fine-tune plant growth and development under variable environments. Herein, we present findings from the septennium on individual GSLs and their catabolites (GHPs) per se, that work as mobile signals within plants to mediate precise regulations of their primary physiological functions. Both GSLs and GHPs calibrate growth-defense trade-off interactions either synergistically or directly when they function as storage compounds, abiotic stress alleviators, and one-to-one regulators of growth pathways in plants. We finally summarize the overall lessons learned from GSLs and GHPs as a model and raise the most pressing questions to address the molecular-genetic intricacies of specialized metabolite-based trade-offs in plants.
Collapse
Affiliation(s)
- Bhanu Malhotra
- National Institute of Plant Genome Research, New Delhi, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, New Delhi, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
6
|
Ren M, Yang F, Hua L, Liu S, Zhang S, Xie Y, Jiang J, Chen P, Wen Y, Wang L, Li H. Rapid and high-throughput measurement of cyanide in liquor by negative photoionization time-of-flight mass spectrometry. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Liu H, Micic N, Miller S, Crocoll C, Bjarnholt N. Species-specific dynamics of specialized metabolism in germinating sorghum grain revealed by temporal and tissue-resolved transcriptomics and metabolomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:807-820. [PMID: 36863218 DOI: 10.1016/j.plaphy.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is crucial for plant productivity, and the biochemical changes during germination affect seedling survival, plant health and yield. While the general metabolism of germination is extensively studied, the role of specialized metabolism is less investigated. We therefore analyzed the metabolism of the defense compound dhurrin during sorghum (Sorghum bicolor) grain germination and early seedling development. Dhurrin is a cyanogenic glucoside, which is catabolized into different bioactive compounds at other stages of plant development, but its fate and role during germination is unknown. We dissected sorghum grain into three different tissues and investigated dhurrin biosynthesis and catabolism at the transcriptomic, metabolomic and biochemical level. We further analyzed transcriptional signature differences of cyanogenic glucoside metabolism between sorghum and barley (Hordeum vulgare), which produces similar specialized metabolites. We found that dhurrin is de novo biosynthesized and catabolized in the growing embryonic axis as well as the scutellum and aleurone layer, two tissues otherwise mainly acknowledged for their involvement in release and transport of general metabolites from the endosperm to the embryonic axis. In contrast, genes encoding cyanogenic glucoside biosynthesis in barley are exclusively expressed in the embryonic axis. Glutathione transferase enzymes (GSTs) are involved in dhurrin catabolism and the tissue-resolved analysis of GST expression identified new pathway candidate genes and conserved GSTs as potentially important in cereal germination. Our study demonstrates a highly dynamic tissue- and species-specific specialized metabolism during cereal grain germination, highlighting the importance of tissue-resolved analyses and identification of specific roles of specialized metabolites in fundamental plant processes.
Collapse
Affiliation(s)
- Huijun Liu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Nikola Micic
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Sara Miller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Nanna Bjarnholt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| |
Collapse
|
8
|
Hillabrand RM, Gordon H, Hynes B, Constabel CP, Landhäusser SM. Populus root salicinoid phenolic glycosides are not mobilized to support metabolism and regrowth under carbon limited conditions. TREE PHYSIOLOGY 2023:tpad020. [PMID: 36809479 DOI: 10.1093/treephys/tpad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Remobilization of carbon storage compounds in trees is crucial for the resilience to disturbances, stress, and the requirements of their perennial lifestyle, all of which can impact photosynthetic carbon gain. Trees contain abundant non-structural carbohydrates (NSC) in the form of starch and sugars for long term carbon storage, yet questions remain about the ability of trees to remobilize non-conventional carbon compounds under stress. Aspens, like other members of the genus Populus, have abundant specialized metabolites called salicinoid phenolic glycosides, which contain a core glucose moiety. In this study, we hypothesized that the glucose-containing salicinoids could be remobilized as an additional carbon source during severe carbon limitation. We made use of genetically modified hybrid aspen (Populus tremula x P. alba) with minimal salicinoid content and compared these to control plants with high salicinoid content during resprouting (suckering) in dark (carbon limited) conditions. As salicinoids are abundant anti-herbivore compounds, identification of such a secondary function for salicinoids may provide insight to the evolutionary pressures that drive their accumulation. Our results show that salicinoid biosynthesis is maintained during carbon limitation and suggests that salicinoids are not remobilized as a carbon source for regenerating shoot tissue. However, we found that salicinoid-producing aspens had reduced resprouting capacity per available root biomass when compared to salicinoid-deficient aspens. Therefore, our work shows that the constitutive salicinoid production in aspens can reduce the capacity for resprouting and survival in carbon limited conditions.
Collapse
Affiliation(s)
- R M Hillabrand
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| | - H Gordon
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, British Columbia, Canada
| | - B Hynes
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| | - C P Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, British Columbia, Canada
| | - S M Landhäusser
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
9
|
Hansen CC, Sørensen M, Bellucci M, Brandt W, Olsen CE, Goodger JQD, Woodrow IE, Lindberg Møller B, Neilson EHJ. Recruitment of distinct UDP-glycosyltransferase families demonstrates dynamic evolution of chemical defense within Eucalyptus L'Hér. THE NEW PHYTOLOGIST 2023; 237:999-1013. [PMID: 36305250 PMCID: PMC10107851 DOI: 10.1111/nph.18581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The economic and ecologically important genus Eucalyptus is rich in structurally diverse specialized metabolites. While some specialized metabolite classes are highly prevalent across the genus, the cyanogenic glucoside prunasin is only produced by c. 3% of species. To investigate the evolutionary mechanisms behind prunasin biosynthesis in Eucalyptus, we compared de novo assembled transcriptomes, together with online resources between cyanogenic and acyanogenic species. Identified genes were characterized in vivo and in vitro. Pathway characterization of cyanogenic Eucalyptus camphora and Eucalyptus yarraensis showed for the first time that the final glucosylation step from mandelonitrile to prunasin is catalyzed by a novel UDP-glucosyltransferase UGT87. This step is typically catalyzed by a member of the UGT85 family, including in Eucalyptus cladocalyx. The upstream conversion of phenylalanine to mandelonitrile is catalyzed by three cytochrome P450 (CYP) enzymes from the CYP79, CYP706, and CYP71 families, as previously shown. Analysis of acyanogenic Eucalyptus species revealed the loss of different ortholog prunasin biosynthetic genes. The recruitment of UGTs from different families for prunasin biosynthesis in Eucalyptus demonstrates important pathway heterogeneities and unprecedented dynamic pathway evolution of chemical defense within a single genus. Overall, this study provides relevant insights into the tremendous adaptability of these long-lived trees.
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization PlatformUniversity of Copenhagen2200CopenhagenDenmark
| | - Wolfgang Brandt
- Department of Bioorganic ChemistryLeibniz‐Institute of Plant BiochemistryHalle06120Germany
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | | | - Ian E. Woodrow
- School of Ecosystem and Forest SciencesThe University of MelbourneParkvilleVic.3052Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Elizabeth H. J. Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| |
Collapse
|
10
|
Yadav M, Singh IK, Singh A. Dhurrin: A naturally occurring phytochemical as a weapon against insect herbivores. PHYTOCHEMISTRY 2023; 205:113483. [PMID: 36279963 DOI: 10.1016/j.phytochem.2022.113483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Dhurrin, a cyanogenic glucoside, is a plant defensive chemical synthesized from aliphatic amino acids and consists of β-d-glucopyranose linked to α-hydroxy nitrile. It is catabolized by the consecutive action of hydroxynitrilase and β-glucosidase to release hydrogen cyanide on tissue disruption during herbivory. These phytoanticipins are widely distributed across various monocot and dicot plants such as Sorghum, Macadamia, Ostrya sp., and many other plant species with ornamental, pharmaceutical, medicinal, and food value. Although repellent properties of dhurrin against herbivores are often reported, less is known about its distribution, metabolism, mode of action against insects, and application for pest control. Herein, we highlight recent updates on dhurrin distribution, biosynthesis, and catabolism along with the cyanide detoxification pathway. Additionally, this article focuses on biological activities of dhurrin against various herbivores and opportunities to explore the utilization of dhurrin as a natural pest control agent and a substitute for chemically synthesized pesticides.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Perez VC, Dai R, Tomiczek B, Mendoza J, Wolf ESA, Grenning A, Vermerris W, Block AK, Kim J. Metabolic link between auxin production and specialized metabolites in Sorghum bicolor. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:364-376. [PMID: 36300527 PMCID: PMC9786853 DOI: 10.1093/jxb/erac421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Aldoximes are amino acid derivatives that serve as intermediates for numerous specialized metabolites including cyanogenic glycosides, glucosinolates, and auxins. Aldoxime formation is mainly catalyzed by cytochrome P450 monooxygenases of the 79 family (CYP79s) that can have broad or narrow substrate specificity. Except for SbCYP79A1, aldoxime biosynthetic enzymes in the cereal sorghum (Sorghum bicolor) have not been characterized. This study identified nine CYP79-encoding genes in the genome of sorghum. A phylogenetic analysis of CYP79 showed that SbCYP79A61 formed a subclade with maize ZmCYP79A61, previously characterized to be involved in aldoxime biosynthesis. Functional characterization of this sorghum enzyme using transient expression in Nicotiana benthamiana and stable overexpression in Arabidopsis thaliana revealed that SbCYP79A61 catalyzes the production of phenylacetaldoxime (PAOx) from phenylalanine but, unlike the maize enzyme, displays no detectable activity against tryptophan. Additionally, targeted metabolite analysis after stable isotope feeding assays revealed that PAOx can serve as a precursor of phenylacetic acid (PAA) in sorghum and identified benzyl cyanide as an intermediate of PAOx-derived PAA biosynthesis in both sorghum and maize. Taken together, our results demonstrate that SbCYP79A61 produces PAOx in sorghum and may serve in the biosynthesis of other nitrogen-containing phenylalanine-derived metabolites involved in mediating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Veronica C Perez
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Ru Dai
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Breanna Tomiczek
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Alexander Grenning
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Wilfred Vermerris
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Department of Microbiology & Cell Science, Gainesville, FL 32611, USA
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Florida Center for Renewable Chemicals and Fuels, University of Florida, Gainesville, FL 32611, USA
| | - Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL 32608, USA
| | - Jeongim Kim
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Rose T, Wilkinson M, Lowe C, Xu J, Hughes D, Hassall KL, Hassani‐Pak K, Amberkar S, Noleto‐Dias C, Ward J, Heuer S. Novel molecules and target genes for vegetative heat tolerance in wheat. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:264-289. [PMID: 37284432 PMCID: PMC10168084 DOI: 10.1002/pei3.10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/08/2023]
Abstract
To prevent yield losses caused by climate change, it is important to identify naturally tolerant genotypes with traits and related pathways that can be targeted for crop improvement. Here we report on the characterization of contrasting vegetative heat tolerance in two UK bread wheat varieties. Under chronic heat stress, the heat-tolerant cultivar Cadenza produced an excessive number of tillers which translated into more spikes and higher grain yield compared to heat-sensitive Paragon. RNAseq and metabolomics analyses revealed that over 5000 genotype-specific genes were differentially expressed, including photosynthesis-related genes, which might explain the observed ability of Cadenza to maintain photosynthetic rate under heat stress. Around 400 genes showed a similar heat-response in both genotypes. Only 71 genes showed a genotype × temperature interaction. As well as known heat-responsive genes such as heat shock proteins (HSPs), several genes that have not been previously linked to the heat response, particularly in wheat, have been identified, including dehydrins, ankyrin-repeat protein-encoding genes, and lipases. Contrary to primary metabolites, secondary metabolites showed a highly differentiated heat response and genotypic differences. These included benzoxazinoid (DIBOA, DIMBOA), and phenylpropanoids and flavonoids with known radical scavenging capacity, which was assessed via the DPPH assay. The most highly heat-induced metabolite was (glycosylated) propanediol, which is widely used in industry as an anti-freeze. To our knowledge, this is the first report on its response to stress in plants. The identified metabolites and candidate genes provide novel targets for the development of heat-tolerant wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sandeep Amberkar
- Rothamsted ResearchHarpendenUK
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | | | | | - Sigrid Heuer
- Rothamsted ResearchHarpendenUK
- National Institute of Agricultural Botany (NIAB)CambridgeUK
| |
Collapse
|
13
|
Knoch E, Kovács J, Deiber S, Tomita K, Shanmuganathan R, Serra Serra N, Okada K, Becker C, Schandry N. Transcriptional response of a target plant to benzoxazinoid and diterpene allelochemicals highlights commonalities in detoxification. BMC PLANT BIOLOGY 2022; 22:402. [PMID: 35974304 PMCID: PMC9382751 DOI: 10.1186/s12870-022-03780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants growing in proximity to other plants are exposed to a variety of metabolites that these neighbors release into the environment. Some species produce allelochemicals to inhibit growth of neighboring plants, which in turn have evolved ways to detoxify these compounds. RESULTS In order to understand how the allelochemical-receiving target plants respond to chemically diverse compounds, we performed whole-genome transcriptome analysis of Arabidopsis thaliana exposed to either the benzoxazinoid derivative 2-amino- 3H-phenoxazin-3-one (APO) or momilactone B. These two allelochemicals belong to two very different compound classes, benzoxazinoids and diterpenes, respectively, produced by different Poaceae crop species. CONCLUSIONS Despite their distinct chemical nature, we observed similar molecular responses of A. thaliana to these allelochemicals. In particular, many of the same or closely related genes belonging to the three-phase detoxification pathway were upregulated in both treatments. Further, we observed an overlap between genes upregulated by allelochemicals and those involved in herbicide detoxification. Our findings highlight the overlap in the transcriptional response of a target plant to natural and synthetic phytotoxic compounds and illustrate how herbicide resistance could arise via pathways involved in plant-plant interaction.
Collapse
Affiliation(s)
- Eva Knoch
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Judit Kovács
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Sebastian Deiber
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Keisuke Tomita
- Agro-Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS), The University of Tokyo, Tokyo, 113-8657, Japan
| | - Reshi Shanmuganathan
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Núria Serra Serra
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Kazunori Okada
- Agro-Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS), The University of Tokyo, Tokyo, 113-8657, Japan
| | - Claude Becker
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| | - Niklas Schandry
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
14
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
McMahon J, Sayre R, Zidenga T. Cyanogenesis in cassava and its molecular manipulation for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1853-1867. [PMID: 34905020 DOI: 10.1093/jxb/erab545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
While cassava is one of the most important staple crops worldwide, it has received the least investment per capita consumption of any of the major global crops. This is in part due to cassava being a crop of subsistence farmers that is grown in countries with limited resources for crop improvement. While its starchy roots are rich in calories, they are poor in protein and other essential nutrients. In addition, they contain potentially toxic levels of cyanogenic glycosides which must be reduced to safe levels before consumption. Furthermore, cyanogens compromise the shelf life of harvested roots due to cyanide-induced inhibition of mitochondrial respiration, and associated production of reactive oxygen species that accelerate root deterioration. Over the past two decades, the genetic, biochemical, and developmental factors that control cyanogen synthesis, transport, storage, and turnover have largely been elucidated. It is now apparent that cyanogens contribute substantially to whole-plant nitrogen metabolism and protein synthesis in roots. The essential role of cyanogens in root nitrogen metabolism, however, has confounded efforts to create acyanogenic varieties. This review proposes alternative molecular approaches that integrate accelerated cyanogen turnover with nitrogen reassimilation into root protein that may offer a solution to creating a safer, more nutritious cassava crop.
Collapse
|
16
|
Angelovici R, Kliebenstein D. A plant balancing act: Meshing new and existing metabolic pathways towards an optimized system. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102173. [PMID: 35144143 DOI: 10.1016/j.pbi.2022.102173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Specialized metabolic pathways evolve from existing pathways, creating new functionality potentially boosting fitness. However, how these pathways are integrated into a pre-existing working and well-balanced metabolic system is unclear. They could be integrated to the system as a functional appendage, or they could be fully embedded into primary metabolism by establishing new biochemical and regulatory connections. A full integration into the primary metabolic system requires substantial system re-wiring and because of this complexity, the latter is often not experimentally pursued. New studies provide evidence that some specialized metabolic pathways are fully embedded in primary metabolism with extensive new regulatory and biochemical connections. This suggests, that we should consider whether other specialized metabolic pathways could be fully integrated rather than being simple appendages. In this mini review, we survey compelling evidence supporting that some specialized metabolic pathways are fully integrated and ask if these metabolites now act as de-facto primary metabolites?
Collapse
Affiliation(s)
- Ruthie Angelovici
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Dan Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
17
|
Sohail MN, Quinn AA, Blomstedt CK, Gleadow RM. Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor. PLANTA 2022; 255:74. [PMID: 35226202 PMCID: PMC8885504 DOI: 10.1007/s00425-022-03844-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Droughted sorghum had higher concentrations of ROS in both wildtype and dhurrin-lacking mutants. Dhurrin increased in wildtype genotypes with drought. Dhurrin does not appear to mitigate oxidative stress in sorghum. Sorghum bicolor is tolerant of high temperatures and prolonged droughts. During droughts, concentrations of dhurrin, a cyanogenic glucoside, increase posing a risk to livestock of hydrogen cyanide poisoning. Dhurrin can also be recycled without the release of hydrogen cyanide presenting the possibility that it may have functions other than defence. It has been hypothesised that dhurrin may be able to mitigate oxidative stress by scavenging reactive oxygen species (ROS) during biosynthesis and recycling. To test this, we compared the growth and chemical composition of S. bicolor in total cyanide deficient sorghum mutants (tcd1) with wild-type plants that were either well-watered or left unwatered for 2 weeks. Plants from the adult cyanide deficient class of mutant (acdc1) were also included. Foliar dhurrin increased in response to drought in all lines except tcd1 and acdc1, but not in the roots or leaf sheaths. Foliar ROS concentration increased in drought-stressed plants in all genotypes. Phenolic concentrations were also measured but no differences were detected. The total amounts of dhurrin, ROS and phenolics on a whole plant basis were lower in droughted plants due to their smaller biomass, but there were no significant genotypic differences. Up until treatments began at the 3-leaf stage, tcd1 mutants grew more slowly than the other genotypes but after that they had higher relative growth rates, even when droughted. The findings presented here do not support the hypothesis that the increase in dhurrin commonly seen in drought-stressed sorghum plays a role in reducing oxidative stress by scavenging ROS.
Collapse
Affiliation(s)
- M N Sohail
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - A A Quinn
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - C K Blomstedt
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - R M Gleadow
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
18
|
Ananda GKS, Norton SL, Blomstedt C, Furtado A, Møller BL, Gleadow R, Henry RJ. Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism. PLANTA 2022; 255:51. [PMID: 35084593 PMCID: PMC8795013 DOI: 10.1007/s00425-022-03831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION Australian native species of sorghum contain negligible amounts of dhurrin in their leaves and the cyanogenesis process is regulated differently under water-stress in comparison to domesticated sorghum species. Cyanogenesis in forage sorghum is a major concern in agriculture as the leaves of domesticated sorghum are potentially toxic to livestock, especially at times of drought which induces increased production of the cyanogenic glucoside dhurrin. The wild sorghum species endemic to Australia have a negligible content of dhurrin in the above ground tissues and thus represent a potential resource for key agricultural traits like low toxicity. In this study we investigated the differential expression of cyanogenesis related genes in the leaf tissue of the domesticated species Sorghum bicolor and the Australian native wild species Sorghum macrospermum grown in glasshouse-controlled water-stress conditions using RNA-Seq analysis to analyse gene expression. The study identified genes, including those in the cyanogenesis pathway, that were differentially regulated in response to water-stress in domesticated and wild sorghum. In the domesticated sorghum, dhurrin content was significantly higher compared to that in the wild sorghum and increased with stress and decreased with age whereas in wild sorghum the dhurrin content remained negligible. The key genes in dhurrin biosynthesis, CYP79A1, CYP71E1 and UGT85B1, were shown to be highly expressed in S. bicolor. DHR and HNL encoding the dhurrinase and α-hydroxynitrilase catalysing bio-activation of dhurrin were also highly expressed in S. bicolor. Analysis of the differences in expression of cyanogenesis related genes between domesticated and wild sorghum species may allow the use of these genetic resources to produce more acyanogenic varieties in the future.
Collapse
Affiliation(s)
- Galaihalage K S Ananda
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Sally L Norton
- Australian Grains Genebank, Agriculture Victoria, Horsham, VIC, Australia
| | - Cecilia Blomstedt
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roslyn Gleadow
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
19
|
Cyanogenesis in the Sorghum Genus: From Genotype to Phenotype. Genes (Basel) 2022; 13:genes13010140. [PMID: 35052482 PMCID: PMC8775130 DOI: 10.3390/genes13010140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Domestication has resulted in a loss of genetic diversity in our major food crops, leading to susceptibility to biotic and abiotic stresses linked with climate change. Crop wild relatives (CWR) may provide a source of novel genes potentially important for re-gaining climate resilience. Sorghum bicolor is an important cereal crop with wild relatives that are endemic to Australia. Sorghum bicolor is cyanogenic, but the cyanogenic status of wild Sorghum species is not well known. In this study, leaves of wild species endemic in Australia are screened for the presence of the cyanogenic glucoside dhurrin. The direct measurement of dhurrin content and the potential for dhurrin-derived HCN release (HCNp) showed that all the tested Australian wild species were essentially phenotypically acyanogenic. The unexpected low dhurrin content may reflect the variable and generally nutrient-poor environments in which they are growing in nature. Genome sequencing of six CWR and PCR amplification of the CYP79A1 gene from additional species showed that a high conservation of key amino acids is required for correct protein function and dhurrin synthesis, pointing to the transcriptional regulation of the cyanogenic phenotype in wild sorghum as previously shown in elite sorghum.
Collapse
|
20
|
Gleadow RM, McKinley BA, Blomstedt CK, Lamb AC, Møller BL, Mullet JE. Regulation of dhurrin pathway gene expression during Sorghum bicolor development. PLANTA 2021; 254:119. [PMID: 34762174 PMCID: PMC8585852 DOI: 10.1007/s00425-021-03774-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Developmental and organ-specific expression of genes in dhurrin biosynthesis, bio-activation, and recycling offers dynamic metabolic responses optimizing growth and defence responses in Sorghum. Plant defence models evaluate the costs and benefits of resource investments at different stages in the life cycle. Poor understanding of the molecular regulation of defence deployment and remobilization hampers accuracy of the predictions. Cyanogenic glucosides, such as dhurrin are phytoanticipins that release hydrogen cyanide upon bio-activation. In this study, RNA-seq was used to investigate the expression of genes involved in the biosynthesis, bio-activation and recycling of dhurrin in Sorghum bicolor. Genes involved in dhurrin biosynthesis were highly expressed in all young developing vegetative tissues (leaves, leaf sheath, roots, stems), tiller buds and imbibing seeds and showed gene specific peaks of expression in leaves during diel cycles. Genes involved in dhurrin bio-activation were expressed early in organ development with organ-specific expression patterns. Genes involved in recycling were expressed at similar levels in the different organ during development, although post-floral initiation when nutrients are remobilized for grain filling, expression of GSTL1 decreased > tenfold in leaves and NITB2 increased > tenfold in stems. Results are consistent with the establishment of a pre-emptive defence in young tissues and regulated recycling related to organ senescence and increased demand for nitrogen during grain filling. This detailed characterization of the transcriptional regulation of dhurrin biosynthesis, bioactivation and remobilization genes during organ and plant development will aid elucidation of gene regulatory networks and signalling pathways that modulate gene expression and dhurrin levels. In-depth knowledge of dhurrin metabolism could improve the yield, nitrogen use efficiency and stress resilience of Sorghum.
Collapse
Affiliation(s)
- Roslyn M Gleadow
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Brian A McKinley
- Department of Plant Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | - Austin C Lamb
- Department of Plant Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John E Mullet
- Department of Plant Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
21
|
Panda S, Kazachkova Y, Aharoni A. Catch-22 in specialized metabolism: balancing defense and growth. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6027-6041. [PMID: 34293097 DOI: 10.1093/jxb/erab348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/21/2021] [Indexed: 05/25/2023]
Abstract
Plants are unsurpassed biochemists that synthesize a plethora of molecules in response to an ever-changing environment. The majority of these molecules, considered as specialized metabolites, effectively protect the plant against pathogens and herbivores. However, this defense most probably comes at a great expense, leading to reduction of growth (known as the 'growth-defense trade-off'). Plants employ several strategies to reduce the high metabolic costs associated with chemical defense. Production of specialized metabolites is tightly regulated by a network of transcription factors facilitating its fine-tuning in time and space. Multifunctionality of specialized metabolites-their effective recycling system by re-using carbon, nitrogen, and sulfur, thus re-introducing them back to the primary metabolite pool-allows further cost reduction. Spatial separation of biosynthetic enzymes and their substrates, and sequestration of potentially toxic substances and conversion to less toxic metabolite forms are the plant's solutions to avoid the detrimental effects of metabolites they produce as well as to reduce production costs. Constant fitness pressure from herbivores, pathogens, and abiotic stressors leads to honing of specialized metabolite biosynthesis reactions to be timely, efficient, and metabolically cost-effective. In this review, we assess the costs of production of specialized metabolites for chemical defense and the different plant mechanisms to reduce the cost of such metabolic activity in terms of self-toxicity and growth.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Gilat Research Center, Agricultural Research Organization, Negev, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Shen T, Wu Q, Xu Y. Biodegradation of cyanide with Saccharomyces cerevisiae in Baijiu fermentation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Sørensen M, Møller BL. Metabolic Engineering of Photosynthetic Cells – in Collaboration with Nature. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Cowan MF, Blomstedt CK, Møller BL, Henry RJ, Gleadow RM. Variation in production of cyanogenic glucosides during early plant development: A comparison of wild and domesticated sorghum. PHYTOCHEMISTRY 2021; 184:112645. [PMID: 33482417 DOI: 10.1016/j.phytochem.2020.112645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Domestication has narrowed the genetic diversity found in crop wild relatives, potentially reducing plasticity to cope with a changing climate. The tissues of domesticated sorghum (Sorghum bicolor), especially in younger plants, are cyanogenic and potentially toxic. Species of wild sorghum produce lower levels of the cyanogenic glucoside (CNglc) dhurrin than S. bicolor at maturity, but it is not known if this is also the case during germination and early growth. CNglcs play multiple roles in primary and specialised metabolism in domesticated sorghum and other crop plants. In this study, the temporal and spatial distribution of dhurrin in wild and domesticated sorghum at different growth stages was monitored in leaf, sheath and root tissues up to 35 days post germination using S. bicolor and the wild species S. brachypodum and S. macrospermum as the experimental systems. Growth parameters were also measured and allocation of plant total nitrogen (N%) to both dhurrin and nitrate (NO3-) was calculated. Negligible amounts of dhurrin were produced in the leaves of the two wild species compared to S. bicolor. The morphology of the two wild sorghums also differed from S. bicolor, with the greatest differences observed for the more distantly related S. brachypodum. S. bicolor had the highest leaf N% whilst the wild species had significantly higher root N%. Allocation of nitrogen to dhurrin in aboveground tissue was significantly higher in S. bicolor compared to the wild species but did not differ in the roots across the three species. The differences in plant morphology, dhurrin content and re-mobilisation, and nitrate/nitrogen allocation suggest that domestication has affected the functional roles of dhurrin in sorghum.
Collapse
Affiliation(s)
- Max F Cowan
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| | - Cecilia K Blomstedt
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center Plant Plasticity, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Victoria, 3800, Australia; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
25
|
Sohail MN, Blomstedt CK, Gleadow RM. Allocation of Resources to Cyanogenic Glucosides Does Not Incur a Growth Sacrifice in Sorghum bicolor (L.) Moench. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1791. [PMID: 33348715 PMCID: PMC7766812 DOI: 10.3390/plants9121791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
In plants, the production of secondary metabolites is considered to be at the expense of primary growth. Sorghum produces a cyanogenic glycoside (dhurrin) that is believed to act as its chemical defence. Studies have shown that acyanogenic plants are smaller in size compared to the wildtype. This study aimed to investigate whether the small plant size is due to delayed germination or due to the lack of dhurrin derived nitrogen. A novel plant system consisting of totally cyanide deficient class 1 (tcd1) and adult cyanide deficient 1 (acdc1) mutant lines was employed. The data for germination, plant height and developmental stage during seedling development and final plant reproductive fitness was recorded. The possible role of phytohormones in recovering the wildtype phenotype, especially in developmentally acyanogenic acdc1 line, was also investigated. The data on plant growth have shown that the lack of dhurrin is disadvantageous to growth, but only at the early developmental stage. The tcd1 plants also took longer to mature probably due to delayed flowering. None of the tested hormones were able to recover the wildtype phenotype. We conclude that the generation of dhurrin is advantageous for plant growth, especially at critical growth stages like germinating seed by providing a ready source of reduced nitrogen.
Collapse
Affiliation(s)
- Muhammad N. Sohail
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, VIC 3800, Australia; (M.N.S.); (C.K.B.)
- School of Life and Environmental Sciences, University of Sydney, Brownlow Hill, NSW 2570, Australia
| | - Cecilia K. Blomstedt
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, VIC 3800, Australia; (M.N.S.); (C.K.B.)
| | - Roslyn M. Gleadow
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, VIC 3800, Australia; (M.N.S.); (C.K.B.)
| |
Collapse
|
26
|
Choi SC, Chung YS, Lee YG, Kang Y, Park YJ, Park SU, Kim C. Prediction of Dhurrin Metabolism by Transcriptome and Metabolome Analyses in Sorghum. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1390. [PMID: 33086681 PMCID: PMC7589853 DOI: 10.3390/plants9101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
Sorghum (Sorghum bicolor (L.)) Moench is an important food for humans and feed for livestock. Sorghum contains dhurrin which can be degraded into toxic hydrogen cyanide. Here, we report the expression patterns of 14 candidate genes related to dhurrin ((S)-4-Hydroxymandelnitrile-β-D-glucopyranoside) metabolism and the effects of the gene expression on specific metabolite content in selected sorghum accessions. Dhurrin-related metabolism is vigorous in the early stages of development of sorghum. The dhurrin contents of most accessions tested were in the range of approximately 6-22 μg mg-1 fresh leaf tissue throughout growth. The p-hydroxybenzaldehyde (pHB) contents were high at seedling stages, but almost nonexistent at adult stages. The contents of p-hydroxyphenylacetic acid (pHPAAc) were relatively low throughout growth compared to those of dhurrin or pHB. Generally, the expression of the candidate genes was higher at seedling stage than at other stages and decreased gradually as plants grew. In addition, we identified significant SNPs, and six of them were potentially associated with non-synonymous changes in CAS1. Our results may provide the basis for choosing breeding materials to regulate cyanide contents in sorghum varieties to prevent HCN toxicity of livestock or to promote drought tolerance or pathogen resistance.
Collapse
Affiliation(s)
- Sang Chul Choi
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea; (S.C.C.); (Y.S.C.); (Y.G.L.); (Y.K.); (Y.J.P.); (S.U.P.)
| | - Yong Suk Chung
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea; (S.C.C.); (Y.S.C.); (Y.G.L.); (Y.K.); (Y.J.P.); (S.U.P.)
- Department of Plant Resources and Environment, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yun Gyeong Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea; (S.C.C.); (Y.S.C.); (Y.G.L.); (Y.K.); (Y.J.P.); (S.U.P.)
| | - Yuna Kang
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea; (S.C.C.); (Y.S.C.); (Y.G.L.); (Y.K.); (Y.J.P.); (S.U.P.)
| | - Yun Ji Park
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea; (S.C.C.); (Y.S.C.); (Y.G.L.); (Y.K.); (Y.J.P.); (S.U.P.)
| | - Sang Un Park
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea; (S.C.C.); (Y.S.C.); (Y.G.L.); (Y.K.); (Y.J.P.); (S.U.P.)
| | - Changsoo Kim
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea; (S.C.C.); (Y.S.C.); (Y.G.L.); (Y.K.); (Y.J.P.); (S.U.P.)
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
27
|
Thodberg S, Sørensen M, Bellucci M, Crocoll C, Bendtsen AK, Nelson DR, Motawia MS, Møller BL, Neilson EHJ. A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Commun Biol 2020; 3:507. [PMID: 32917937 PMCID: PMC7486406 DOI: 10.1038/s42003-020-01224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Cyanogenic glycosides form part of a binary plant defense system that, upon catabolism, detonates a toxic hydrogen cyanide bomb. In seed plants, the initial step of cyanogenic glycoside biosynthesis-the conversion of an amino acid to the corresponding aldoxime-is catalyzed by a cytochrome P450 from the CYP79 family. An evolutionary conundrum arises, as no CYP79s have been identified in ferns, despite cyanogenic glycoside occurrence in several fern species. Here, we report that a flavin-dependent monooxygenase (fern oxime synthase; FOS1), catalyzes the first step of cyanogenic glycoside biosynthesis in two fern species (Phlebodium aureum and Pteridium aquilinum), demonstrating convergent evolution of biosynthesis across the plant kingdom. The FOS1 sequence from the two species is near identical (98%), despite diversifying 140 MYA. Recombinant FOS1 was isolated as a catalytic active dimer, and in planta, catalyzes formation of an N-hydroxylated primary amino acid; a class of metabolite not previously observed in plants.
Collapse
Affiliation(s)
- Sara Thodberg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization Platform, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark
| | - Christoph Crocoll
- Section for Plant Molecular Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Amalie Kofoed Bendtsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - David Ralph Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, 858 Madison Ave. Suite G01, Memphis, TN, 38163, USA
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Elizabeth Heather Jakobsen Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
28
|
Ritmejerytė E, Boughton BA, Bayly MJ, Miller RE. Unique and highly specific cyanogenic glycoside localization in stigmatic cells and pollen in the genus Lomatia (Proteaceae). ANNALS OF BOTANY 2020; 126:387-400. [PMID: 32157299 PMCID: PMC7424758 DOI: 10.1093/aob/mcaa038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/06/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Floral chemical defence strategies remain understudied despite the significance of flowers to plant fitness, and the fact that many flowers contain secondary metabolites that confer resistance to herbivores. Optimal defence and apparency theories predict that the most apparent plant parts and/or those most important to fitness should be most defended. To test whether within-flower distributions of chemical defence are consistent with these theories we used cyanogenic glycosides (CNglycs), which are constitutive defence metabolites that deter herbivores by releasing hydrogen cyanide upon hydrolysis. METHODS We used cyanogenic florets of the genus Lomatia to investigate at what scale there may be strategic allocation of CNglycs in flowers, what their localization reveals about function, and whether levels of floral CNglycs differ between eight congeneric species across a climatic gradient. Within-flower distributions of CNglycs during development were quantified, CNglycs were identified and their localization was visualized in cryosectioned florets using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). KEY RESULTS Florets of all congeneric species studied were cyanogenic, and concentrations differed between species. Within florets there was substantial variation in CNglyc concentrations, with extremely high concentrations (up to 14.6 mg CN g-1 d. wt) in pollen and loose, specialized surface cells on the pollen presenter, among the highest concentrations reported in plant tissues. Two tyrosine-derived CNglycs, the monoglycoside dhurrin and diglycoside proteacin, were identified. MALDI-MSI revealed their varying ratios in different floral tissues; proteacin was primarily localized to anthers and ovules, and dhurrin to specialized cells on the pollen presenter. The mix of transient specialized cells and pollen of L. fraxinifolia was ~11 % dhurrin and ~1.1 % proteacin by mass. CONCLUSIONS Tissue-specific distributions of two CNglycs and substantial variation in their concentrations within florets suggests their allocation is under strong selection. Localized, high CNglyc concentrations in transient cells challenge the predictions of defence theories, and highlight the importance of fine-scale metabolite visualization, and the need for further investigation into the ecological and metabolic roles of CNglycs in floral tissues.
Collapse
Affiliation(s)
- Edita Ritmejerytė
- School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, Victoria, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Berin A Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rebecca E Miller
- School of Ecosystem and Forest Sciences, The University of Melbourne, Richmond, Victoria, Australia
| |
Collapse
|
29
|
Knudsen C, Bavishi K, Viborg KM, Drew DP, Simonsen HT, Motawia MS, Møller BL, Laursen T. Stabilization of dhurrin biosynthetic enzymes from Sorghum bicolor using a natural deep eutectic solvent. PHYTOCHEMISTRY 2020; 170:112214. [PMID: 31794881 DOI: 10.1016/j.phytochem.2019.112214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
In recent years, ionic liquids and deep eutectic solvents (DESs) have gained increasing attention due to their ability to extract and solubilize metabolites and biopolymers in quantities far beyond their solubility in oil and water. The hypothesis that naturally occurring metabolites are able to form a natural deep eutectic solvent (NADES), thereby constituting a third intracellular phase in addition to the aqueous and lipid phases, has prompted researchers to study the role of NADES in living systems. As an excellent solvent for specialized metabolites, formation of NADES in response to dehydration of plant cells could provide an appropriate environment for the functional storage of enzymes during drought. Using the enzymes catalyzing the biosynthesis of the defense compound dhurrin as an experimental model system, we demonstrate that enzymes involved in this pathway exhibit increased stability in NADES compared with aqueous buffer solutions, and that enzyme activity is restored upon rehydration. Inspired by nature, application of NADES provides a biotechnological approach for long-term storage of entire biosynthetic pathways including membrane-anchored enzymes.
Collapse
Affiliation(s)
- Camilla Knudsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology "bioSYNergy", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | - Krutika Bavishi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology "bioSYNergy", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Department of Molecular Biology and Genetics, Structural Biology, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Ketil Mathiasen Viborg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology "bioSYNergy", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | - Damian Paul Drew
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Lyell McEwin Hospital, Elizabeth Vale, SA 5112, Australia
| | - Henrik Toft Simonsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kgs. Lyngby, Denmark
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology "bioSYNergy", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology "bioSYNergy", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Carlsberg Research Laboratory, J. C. Jacobsen Gade, DK-1799, Copenhagen V, Denmark.
| | - Tomas Laursen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology "bioSYNergy", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", Thorvaldsensvej 40, DK-1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
30
|
Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C, Jørgensen B, Larsen FH, Liu M, Manat R, Meyer AS, Mikkelsen JD, Motawia MS, Muschiol J, Møller BL, Møller SR, Perzon A, Petersen BL, Ravn JL, Ulvskov P. Phenolic cross-links: building and de-constructing the plant cell wall. Nat Prod Rep 2020; 37:919-961. [PMID: 31971193 DOI: 10.1039/c9np00028c] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.
Collapse
Affiliation(s)
- Ewelina Mnich
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rosado‐Souza L, David LC, Drapal M, Fraser PD, Hofmann J, Klemens PAW, Ludewig F, Neuhaus HE, Obata T, Perez‐Fons L, Schlereth A, Sonnewald U, Stitt M, Zeeman SC, Zierer W, Fernie AR. Cassava Metabolomics and Starch Quality. ACTA ACUST UNITED AC 2019; 4:e20102. [DOI: 10.1002/cppb.20102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Laure C. David
- Plant Biochemistry, Institute of Molecular Plant Biology Zurich Switzerland
| | - Margit Drapal
- School of Biological SciencesRoyal Holloway University of London Egham United Kingdom
| | - Paul D. Fraser
- School of Biological SciencesRoyal Holloway University of London Egham United Kingdom
| | - Jörg Hofmann
- Department of BiochemistryUniversity of Erlangen‐Nuremberg Erlangen Germany
| | | | - Frank Ludewig
- Department of BiochemistryUniversity of Erlangen‐Nuremberg Erlangen Germany
| | | | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
- Department of Biochemistry and Center for Plant Science InnovationUniversity of Nebraska–Lincoln Lincoln Nebraska
| | - Laura Perez‐Fons
- School of Biological SciencesRoyal Holloway University of London Egham United Kingdom
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
| | - Uwe Sonnewald
- Department of BiochemistryUniversity of Erlangen‐Nuremberg Erlangen Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology Potsdam‐Golm Germany
| | - Samuel C. Zeeman
- Plant Biochemistry, Institute of Molecular Plant Biology Zurich Switzerland
| | - Wolfgang Zierer
- Department of BiochemistryUniversity of Erlangen‐Nuremberg Erlangen Germany
| | | |
Collapse
|
32
|
Rosati VC, Blomstedt CK, Møller BL, Garnett T, Gleadow R. The Interplay Between Water Limitation, Dhurrin, and Nitrate in the Low-Cyanogenic Sorghum Mutant adult cyanide deficient class 1. FRONTIERS IN PLANT SCIENCE 2019; 10:1458. [PMID: 31798611 PMCID: PMC6874135 DOI: 10.3389/fpls.2019.01458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/21/2019] [Indexed: 05/27/2023]
Abstract
Sorghum bicolor (L.) Moench produces the nitrogen-containing natural product dhurrin that provides chemical defense against herbivores and pathogens via the release of toxic hydrogen cyanide gas. Drought can increase dhurrin in shoot tissues to concentrations toxic to livestock. As dhurrin is also a remobilizable store of reduced nitrogen and plays a role in stress mitigation, reductions in dhurrin may come at a cost to plant growth and stress tolerance. Here, we investigated the response to an extended period of water limitation in a unique EMS-mutant adult cyanide deficient class 1 (acdc1) that has a low dhurrin content in the leaves of mature plants. A mutant sibling line was included to assess the impact of unknown background mutations. Plants were grown under three watering regimes using a gravimetric platform, with growth parameters and dhurrin and nitrate concentrations assessed over four successive harvests. Tissue type was an important determinant of dhurrin and nitrate concentrations, with the response to water limitation differing between above and below ground tissues. Water limitation increased dhurrin concentration in the acdc1 shoots to the same extent as in wild-type plants and no growth advantage or disadvantage between the lines was observed. Lower dhurrin concentrations in the acdc1 leaf tissue when fully watered correlated with an increase in nitrate content in the shoot and roots of the mutant. In targeted breeding efforts to down-regulate dhurrin concentration, parallel effects on the level of stored nitrates should be considered in all vegetative tissues of this important forage crop to avoid potential toxic effects.
Collapse
Affiliation(s)
- Viviana C. Rosati
- School of Biological Sciences Faculty of Science Monash University, Clayton, Victoria, Australia
| | - Cecilia K. Blomstedt
- School of Biological Sciences Faculty of Science Monash University, Clayton, Victoria, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory and VILLUM Research Centre for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trevor Garnett
- The Australian Plant Phenomics Facility, The University of Adelaide, Adelaide, Australia
| | - Ros Gleadow
- School of Biological Sciences Faculty of Science Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Cuny MAC, La Forgia D, Desurmont GA, Glauser G, Benrey B. Role of cyanogenic glycosides in the seeds of wild lima bean, Phaseolus lunatus: defense, plant nutrition or both? PLANTA 2019; 250:1281-1292. [PMID: 31240396 DOI: 10.1007/s00425-019-03221-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Cyanogenic glycosides present in the seeds of wild lima bean plants are associated with seedling defense but do not affect seed germination and seedling growth. Wild lima bean plants contain cyanogenic glycosides (CNGs) that are known to defend the plant against leaf herbivores. However, seed feeders appear to be unaffected despite the high levels of CNGs in the seeds. We investigated a possible role of CNGs in seeds as nitrogen storage compounds that influence plant growth, as well as seedling resistance to herbivores. Using seeds from four different wild lima bean natural populations that are known to vary in CNG levels, we tested two non-mutually exclusive hypotheses: (1) seeds with higher levels of CNGs produce seedlings that are more resistant against generalist herbivores and, (2) seeds with higher levels of CNGs germinate faster and produce plants that exhibit better growth. Levels of CNGs in the seeds were negatively correlated with germination rates and not correlated with seedling growth. However, levels of CNGs increased significantly soon after germination and seeds with the highest CNG levels produced seedlings with higher CNG levels in cotyledons. Moreover, the growth rate of the generalist herbivore Spodoptera littoralis was lower in cotyledons with high-CNG levels. We conclude that CNGs in lima bean seeds do not play a role in seed germination and seedling growth, but are associated with seedling defense. Our results provide insight into the potential dual function of plant secondary metabolites as defense compounds and storage molecules for growth and development.
Collapse
Affiliation(s)
- Maximilien A C Cuny
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Diana La Forgia
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030, Liege, Belgium
| | - Gaylord A Desurmont
- European Biological Control Laboratory (EBCL), USDA-ARS, 810 Avenue de Baillarguet, 34980, Montferrier sur Lez, France
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
34
|
Wang S, Alseekh S, Fernie AR, Luo J. The Structure and Function of Major Plant Metabolite Modifications. MOLECULAR PLANT 2019; 12:899-919. [PMID: 31200079 DOI: 10.1016/j.molp.2019.06.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
Plants produce a myriad of structurally and functionally diverse metabolites that play many different roles in plant growth and development and in plant response to continually changing environmental conditions as well as abiotic and biotic stresses. This metabolic diversity is, to a large extent, due to chemical modification of the basic skeletons of metabolites. Here, we review the major known plant metabolite modifications and summarize the progress that has been achieved and the challenges we are facing in the field. We focus on discussing both technical and functional aspects in studying the influences that various modifications have on biosynthesis, degradation, transport, and storage of metabolites, as well as their bioactivity and toxicity. Finally, we discuss some emerging insights into the evolution of metabolic pathways and metabolite functionality.
Collapse
Affiliation(s)
- Shouchuang Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 572208, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Ehlert M, Jagd LM, Braumann I, Dockter C, Crocoll C, Motawia MS, Møller BL, Lyngkjær MF. Deletion of biosynthetic genes, specific SNP patterns and differences in transcript accumulation cause variation in hydroxynitrile glucoside content in barley cultivars. Sci Rep 2019; 9:5730. [PMID: 30952890 PMCID: PMC6450869 DOI: 10.1038/s41598-019-41884-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/15/2019] [Indexed: 11/09/2022] Open
Abstract
Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides, potentially involved in alleviating pathogen and environmental stresses. These compounds include the cyanogenic glucoside epiheterodendrin. The biosynthetic genes are clustered. Total hydroxynitrile glucoside contents were previously shown to vary from zero to more than 10,000 nmoles g-1 in different barley lines. To elucidate the cause of this variation, the biosynthetic genes from the high-level producer cv. Mentor, the medium-level producer cv. Pallas, and the zero-level producer cv. Emir were investigated. In cv. Emir, a major deletion in the genome spanning most of the hydroxynitrile glucoside biosynthetic gene cluster was identified and explains the complete absence of hydroxynitrile glucosides in this cultivar. The transcript levels of the biosynthetic genes were significantly higher in the high-level producer cv. Mentor compared to the medium-level producer cv. Pallas, indicating transcriptional regulation as a contributor to the variation in hydroxynitrile glucoside levels. A correlation between distinct single nucleotide polymorphism (SNP) patterns in the biosynthetic gene cluster and the hydroxynitrile glucoside levels in 227 barley lines was identified. It is remarkable that in spite of the demonstrated presence of a multitude of SNPs and differences in transcript levels, the ratio between the five hydroxynitrile glucosides is maintained across all the analysed barley lines. This implies the involvement of a stably assembled multienzyme complex.
Collapse
Affiliation(s)
- Marcus Ehlert
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Lea Møller Jagd
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Michael Foged Lyngkjær
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
36
|
Baek YS, Goodrich LV, Brown PJ, James BT, Moose SP, Lambert KN, Riechers DE. Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum. FRONTIERS IN PLANT SCIENCE 2019; 10:192. [PMID: 30906302 PMCID: PMC6418823 DOI: 10.3389/fpls.2019.00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/05/2019] [Indexed: 05/04/2023]
Abstract
Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for investigating plant responses to safener treatment in cereal crops, and most transcriptome analyses in response to safener treatments have been conducted in dicot model species that are not protected by safener from herbicide injury. In this study, three different approaches were utilized in grain sorghum (Sorghum bicolor (L.) Moench) to investigate mechanisms involved in safener-regulated signaling pathways. An initial transcriptome analysis was performed to examine global gene expression in etiolated shoot tissues of hybrid grain sorghum following treatment with the sorghum safener, fluxofenim. Most upregulated transcripts encoded detoxification enzymes, including P450s, GSTs, and UDP-dependent glucosyltransferases (UGTs). Interestingly, several of these upregulated transcripts are similar to genes involved with the biosynthesis and recycling/catabolism of dhurrin, an important chemical defense compound, in these seedling tissues. Secondly, 761 diverse sorghum inbred lines were evaluated in a genome-wide association study (GWAS) to determine key molecular-genetic factors governing safener-mediated signaling mechanisms and/or herbicide detoxification. GWAS revealed a significant single nucleotide polymorphism (SNP) associated with safener-induced response on chromosome 9, located within a phi-class SbGST gene and about 15-kb from a different phi-class SbGST. Lastly, the expression of these two candidate SbGSTs was quantified in etiolated shoot tissues of sorghum inbred BTx623 in response to fluxofenim treatment. SbGSTF1 and SbGSTF2 transcripts increased within 12-hr after fluxofenim treatment but the level of safener-induced expression differed between the two genes. In addition to identifying specific GSTs potentially involved in the safener-mediated detoxification pathway, this research elucidates a new direction for studying both constitutive and inducible mechanisms for chemical defense in cereal crop seedlings.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Loren V. Goodrich
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Jerseyville Research Center, Monsanto Company, Jerseyville, IL, United States
| | - Patrick J. Brown
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Brandon T. James
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Stephen P. Moose
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kris N. Lambert
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
37
|
Csiszár J, Hecker A, Labrou NE, Schröder P, Riechers DE. Editorial: Plant Glutathione Transferases: Diverse, Multi-Tasking Enzymes With Yet-to-Be Discovered Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:1304. [PMID: 31681390 PMCID: PMC6813781 DOI: 10.3389/fpls.2019.01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 05/21/2023]
Affiliation(s)
- Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analyses, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dean E. Riechers,
| |
Collapse
|
38
|
Zagrobelny M, de Castro ÉCP, Møller BL, Bak S. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. INSECTS 2018; 9:E51. [PMID: 29751568 PMCID: PMC6023451 DOI: 10.3390/insects9020051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
Chemical defences are key components in insect⁻plant interactions, as insects continuously learn to overcome plant defence systems by, e.g., detoxification, excretion or sequestration. Cyanogenic glucosides are natural products widespread in the plant kingdom, and also known to be present in arthropods. They are stabilised by a glucoside linkage, which is hydrolysed by the action of β-glucosidase enzymes, resulting in the release of toxic hydrogen cyanide and deterrent aldehydes or ketones. Such a binary system of components that are chemically inert when spatially separated provides an immediate defence against predators that cause tissue damage. Further roles in nitrogen metabolism and inter- and intraspecific communication has also been suggested for cyanogenic glucosides. In arthropods, cyanogenic glucosides are found in millipedes, centipedes, mites, beetles and bugs, and particularly within butterflies and moths. Cyanogenic glucosides may be even more widespread since many arthropod taxa have not yet been analysed for the presence of this class of natural products. In many instances, arthropods sequester cyanogenic glucosides or their precursors from food plants, thereby avoiding the demand for de novo biosynthesis and minimising the energy spent for defence. Nevertheless, several species of butterflies, moths and millipedes have been shown to biosynthesise cyanogenic glucosides de novo, and even more species have been hypothesised to do so. As for higher plant species, the specific steps in the pathway is catalysed by three enzymes, two cytochromes P450, a glycosyl transferase, and a general P450 oxidoreductase providing electrons to the P450s. The pathway for biosynthesis of cyanogenic glucosides in arthropods has most likely been assembled by recruitment of enzymes, which could most easily be adapted to acquire the required catalytic properties for manufacturing these compounds. The scattered phylogenetic distribution of cyanogenic glucosides in arthropods indicates that the ability to biosynthesise this class of natural products has evolved independently several times. This is corroborated by the characterised enzymes from the pathway in moths and millipedes. Since the biosynthetic pathway is hypothesised to have evolved convergently in plants as well, this would suggest that there is only one universal series of unique intermediates by which amino acids are efficiently converted into CNglcs in different Kingdoms of Life. For arthropods to handle ingestion of cyanogenic glucosides, an effective detoxification system is required. In butterflies and moths, hydrogen cyanide released from hydrolysis of cyanogenic glucosides is mainly detoxified by β-cyanoalanine synthase, while other arthropods use the enzyme rhodanese. The storage of cyanogenic glucosides and spatially separated hydrolytic enzymes (β-glucosidases and α-hydroxynitrile lyases) are important for an effective hydrogen cyanide release for defensive purposes. Accordingly, such hydrolytic enzymes are also present in many cyanogenic arthropods, and spatial separation has been shown in a few species. Although much knowledge regarding presence, biosynthesis, hydrolysis and detoxification of cyanogenic glucosides in arthropods has emerged in recent years, many exciting unanswered questions remain regarding the distribution, roles apart from defence, and convergent evolution of the metabolic pathways involved.
Collapse
Affiliation(s)
- Mika Zagrobelny
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
- VILLUM Center for Plant Plasticity, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Søren Bak
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
39
|
Bøgeskov Schmidt F, Heskes AM, Thinagaran D, Lindberg Møller B, Jørgensen K, Boughton BA. Mass Spectrometry Based Imaging of Labile Glucosides in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:892. [PMID: 30002667 PMCID: PMC6031732 DOI: 10.3389/fpls.2018.00892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 05/19/2023]
Abstract
Mass spectrometry based imaging is a powerful tool to investigate the spatial distribution of a broad range of metabolites across a variety of sample types. The recent developments in instrumentation and computing capabilities have increased the mass range, sensitivity and resolution and rendered sample preparation the limiting step for further improvements. Sample preparation involves sectioning and mounting followed by selection and application of matrix. In plant tissues, labile small molecules and specialized metabolites are subject to degradation upon mechanical disruption of plant tissues. In this study, the benefits of cryo-sectioning, stabilization of fragile tissues and optimal application of the matrix to improve the results from MALDI mass spectrometry imaging (MSI) is investigated with hydroxynitrile glucosides as the main experimental system. Denatured albumin proved an excellent agent for stabilizing fragile tissues such as Lotus japonicus leaves. In stem cross sections of Manihot esculenta, maintaining the samples frozen throughout the sectioning process and preparation of the samples by freeze drying enhanced the obtained signal intensity by twofold to fourfold. Deposition of the matrix by sublimation improved the spatial information obtained compared to spray. The imaging demonstrated that the cyanogenic glucosides (CNglcs) were localized in the vascular tissues in old stems of M. esculenta and in the periderm and vascular tissues of tubers. In MALDI mass spectrometry, the imaged compounds are solely identified by their m/z ratio. L. japonicus MG20 and the mutant cyd1 that is devoid of hydroxynitrile glucosides were used as negative controls to verify the assignment of the observed masses to linamarin, lotaustralin, and linamarin acid.
Collapse
Affiliation(s)
- Frederik Bøgeskov Schmidt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Allison M. Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dinaiz Thinagaran
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Birger Lindberg Møller,
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Berin A. Boughton
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|