1
|
Renziehausen T, Chaudhury R, Hartman S, Mustroph A, Schmidt-Schippers RR. A mechanistic integration of hypoxia signaling with energy, redox, and hormonal cues. PLANT PHYSIOLOGY 2024; 197:kiae596. [PMID: 39530170 DOI: 10.1093/plphys/kiae596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Oxygen deficiency (hypoxia) occurs naturally in many developing plant tissues but can become a major threat during acute flooding stress. Consequently, plants as aerobic organisms must rapidly acclimate to hypoxia and the associated energy crisis to ensure cellular and ultimately organismal survival. In plants, oxygen sensing is tightly linked with oxygen-controlled protein stability of group VII ETHYLENE-RESPONSE FACTORs (ERFVII), which, when stabilized under hypoxia, act as key transcriptional regulators of hypoxia-responsive genes (HRGs). Multiple signaling pathways feed into hypoxia signaling to fine-tune cellular decision-making under stress. First, ATP shortage upon hypoxia directly affects the energy status and adjusts anaerobic metabolism. Secondly, altered redox homeostasis leads to reactive oxygen and nitrogen species (ROS and RNS) accumulation, evoking signaling and oxidative stress acclimation. Finally, the phytohormone ethylene promotes hypoxia signaling to improve acute stress acclimation, while hypoxia signaling in turn can alter ethylene, auxin, abscisic acid, salicylic acid, and jasmonate signaling to guide development and stress responses. In this Update, we summarize the current knowledge on how energy, redox, and hormone signaling pathways are induced under hypoxia and subsequently integrated at the molecular level to ensure stress-tailored cellular responses. We show that some HRGs are responsive to changes in redox, energy, and ethylene independently of the oxygen status, and we propose an updated HRG list that is more representative for hypoxia marker gene expression. We discuss the synergistic effects of hypoxia, energy, redox, and hormone signaling and their phenotypic consequences in the context of both environmental and developmental hypoxia.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Rim Chaudhury
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Romy R Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Gibbs DJ, Theodoulou FL, Bailey-Serres J. Primed to persevere: Hypoxia regulation from epigenome to protein accumulation in plants. PLANT PHYSIOLOGY 2024; 197:kiae584. [PMID: 39479777 DOI: 10.1093/plphys/kiae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 12/24/2024]
Abstract
Plant cells regularly encounter hypoxia (low-oxygen conditions) as part of normal growth and development, or in response to environmental stresses such as flooding. In recent years, our understanding of the multi-layered control of hypoxia-responsive gene expression has greatly increased. In this Update, we take a broad look at the epigenetic, transcriptional, translational, and post-translational mechanisms that regulate responses to low-oxygen levels. We highlight how a network of post-translational modifications (including phosphorylation), secondary messengers, transcriptional cascades, and retrograde signals from the mitochondria and endoplasmic reticulum (ER) feed into the control of transcription factor activity and hypoxia-responsive gene transcription. We discuss epigenetic mechanisms regulating the response to reduced oxygen availability, through focussing on active and repressive chromatin modifications and DNA methylation. We also describe current knowledge of the co- and post-transcriptional mechanisms that tightly regulate mRNA translation to coordinate effective gene expression under hypoxia. Finally, we present a series of outstanding questions in the field and consider how new insights into the molecular workings of the hypoxia-triggered regulatory hierarchy could pave the way for developing flood-resilient crops.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, the Netherlands
| |
Collapse
|
3
|
Selinski J, Frings S, Schmidt-Schippers R. Perception and processing of stress signals by plant mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2337-2355. [PMID: 39527570 DOI: 10.1111/tpj.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors. At the same time, mitochondrial function may fluctuate to a tolerable extent without the need to activate downstream retrograde signalling cascades for stress adaptation. In this Focus Review, we summarise the current state of knowledge on the perception and processing of stress signals by mitochondria and show which layers of retrograde signalling, that is, those involving transcription factors, metabolites, but also enzymes with moonlighting functions, enable communication with the nucleus. Also, light is shed on signal integration between mitochondria and chloroplasts as part of retrograde signalling. With this Focus Review, we aim to show ways in which organelle-specific communication can be further researched and the collected data used in the long-term to strengthen plant resilience in the context of climate change.
Collapse
Affiliation(s)
- Jennifer Selinski
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, D-24118, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, D-33615, Germany
- Center for Biotechnology, University of Bielefeld, Bielefeld, D-33615, Germany
| |
Collapse
|
4
|
Basit F, Khalid M, El-Keblawy A, Sheteiwy MS, Sulieman S, Josko I, Zulfiqar F. Hypoxia stress: plant's sensing, responses, and tolerance mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63458-63472. [PMID: 39489890 DOI: 10.1007/s11356-024-35439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Oxygen (O2) is an inhibiting factor for plant growth and development in submerged and flooding environments. Plants experience different O2 concentrations, such as normoxia, hypoxia, and anoxia, which can change over space and time. Plants have evolved various morphological, physiological, and biochemical adaptations to withstand low O2 stress, many of which have been well investigated. This review provides a detailed analysis of how plants respond to hypoxia, a significant stress factor primarily caused by flooding. Hypoxia affects plants at various cellular, developmental, and environmental levels. This review highlights genetic, molecular, and metabolic adaptations crops employ to cope with O2 deficiency. The roles of various transcription factors (TFs) and gene regulation mechanisms in enabling plants to modulate their physiological responses under hypoxic conditions are notable. The review also identifies a significant gap in research on plant responses during reoxygenation, the phase of returning to normal O2 levels, especially under natural lighting conditions. This transition poses ROS generation and photoinhibition challenges, affecting plant recovery post-hypoxia. We discuss various strategies to enhance plant hypoxia tolerance, including traditional breeding, genetic modification, and grafting techniques. It emphasizes integrating these approaches with a comprehensive understanding of hypoxia sensing and response mechanisms. We underscore the complexity of plant adaptations to hypoxia and the need for continued research in this field, especially in the face of global climate change. This is vital for developing sustainable agricultural practices and ensuring future food security.
Collapse
Affiliation(s)
- Farwa Basit
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Saad Sulieman
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, 13314, Shambat, Khartoum North, Sudan
| | - Izabela Josko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
5
|
Zhu Y, Narsai R, He C, Štaka Z, Bai C, Berkowitz O, Liew LC, Whelan J. Overexpression of the transcription factor ANAC017 results in a genomes uncoupled phenotype under lincomycin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:91-108. [PMID: 39145415 DOI: 10.1111/tpj.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Over-expression (OE) lines for the ER-tethered NAC transcription factor ANAC017 displayed de-repression of gun marker genes when grown on lincomycin (lin). RNA-seq revealed that ANAC017OE2 plants constitutively expressed greater than 40% of the genes induced in wild-type with lin treatment, including plastid encoded genes ycf1.2 and the gene cluster ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD, documented as direct RNA targets of GUN1. Genes encoding components involved in organelle translation were enriched in constitutively expressed genes in ANAC017OE2. ANAC017OE resulted in constitutive location in the nucleus and significant constitutive binding of ANAC017 was detected by ChIP-Seq to target genes. ANAC017OE2 lines maintained the ability to green on lin, were more ABA sensitive, did not show photo-oxidative damage after exposure of de-etiolated seedlings to continuous light and the transcriptome response to lin were as much as 80% unique compared to gun1-1. Both double mutants, gun1-1:ANAC017OE and bzip60:ANAC017OE (but not single bzip60), have a gun molecular gene expression pattern and result in variegated and green plants, suggesting that ANAC017OE may act through an independent pathway compared to gun1. Over-expression of ANAC013 or rcd1 did not produce a GUN phenotype or green plants on lin. Thus, constitutive ANAC017OE2 establishes an alternative transcriptional program that likely acts through a number of pathways, that is, maintains plastid gene expression, and induction of a variety of transcription factors involved in reactive oxygen species metabolism, priming plants for lin tolerance to give a gun phenotype.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Zorana Štaka
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Bai
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
6
|
Shriti S, Bhar A, Roy A. Unveiling the role of epigenetic mechanisms and redox signaling in alleviating multiple abiotic stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1456414. [PMID: 39363922 PMCID: PMC11446805 DOI: 10.3389/fpls.2024.1456414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Anthropogenic activities and subsequent global climate change instigate drastic crop productivity and yield changes. These changes comprise a rise in the number and severity of plant stress factors, which can arise simultaneously or sequentially. When abiotic stress factors are combined, their impact on plants is more substantial than that of a singleton stress factor. One such impact is the alteration of redox cellular homeostasis, which, in turn, can regulate downstream stress-responsive gene expression and resistance response. The epigenetic regulation of gene expression in response to varied stress factors is an interesting phenomenon, which, conversely, can be stable and heritable. The epigenetic control in plants in response to abiotic stress combinations and their interactions with cellular redox alteration is an emerging field to commemorate crop yield management under climate change. The article highlights the integration of the redox signaling pathways and epigenetic regulations as pivotal components in the complex network of plant responses against multi-combinatorial stresses across time and space. This review aims to lay the foundation for developing novel approaches to mitigate the impact of environmental stresses on crop productivity, bridging the gap between theoretical understanding and practical solutions in the face of a changing climate and anthropogenic disturbances.
Collapse
Affiliation(s)
- Surbhi Shriti
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
7
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
8
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
9
|
Rankenberg T, van Veen H, Sedaghatmehr M, Liao CY, Devaiah MB, Stouten EA, Balazadeh S, Sasidharan R. Differential leaf flooding resilience in Arabidopsis thaliana is controlled by ethylene signaling-activated and age-dependent phosphorylation of ORESARA1. PLANT COMMUNICATIONS 2024; 5:100848. [PMID: 38379284 PMCID: PMC11211547 DOI: 10.1016/j.xplc.2024.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024]
Abstract
The phytohormone ethylene is a major regulator of plant adaptive responses to flooding. In flooded plant tissues, ethylene quickly increases to high concentrations owing to its low solubility and diffusion rates in water. Ethylene accumulation in submerged plant tissues makes it a reliable cue for triggering flood acclimation responses, including metabolic adjustments to cope with flood-induced hypoxia. However, persistent ethylene accumulation also accelerates leaf senescence. Stress-induced senescence hampers photosynthetic capacity and stress recovery. In submerged Arabidopsis, senescence follows a strict age-dependent pattern starting with the older leaves. Although mechanisms underlying ethylene-mediated senescence have been uncovered, it is unclear how submerged plants avoid indiscriminate breakdown of leaves despite high systemic ethylene accumulation. We demonstrate that although submergence triggers leaf-age-independent activation of ethylene signaling via EIN3 in Arabidopsis, senescence is initiated only in old leaves. EIN3 stabilization also leads to overall transcript and protein accumulation of the senescence-promoting transcription factor ORESARA1 (ORE1) in both old and young leaves during submergence. However, leaf-age-dependent senescence can be explained by ORE1 protein activation via phosphorylation specifically in old leaves, independent of the previously identified age-dependent control of ORE1 via miR164. A systematic analysis of the roles of the major flooding stress cues and signaling pathways shows that only the combination of ethylene and darkness is sufficient to mimic submergence-induced senescence involving ORE1 accumulation and phosphorylation. Hypoxia, most often associated with flooding stress in plants, appears to have no role in these processes. Our results reveal a mechanism by which plants regulate the speed and pattern of senescence during environmental stresses such as flooding. Age-dependent ORE1 activity ensures that older, expendable leaves are dismantled first, thus prolonging the life of younger leaves and meristematic tissues that are vital to whole-plant survival.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hans van Veen
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Evolutionary Plant-Ecophysiology, Groningen Institute for Evolutionary LIfe Sciences, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Mastoureh Sedaghatmehr
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Che-Yang Liao
- Experimental and Computational Plant Development, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Muthanna Biddanda Devaiah
- Experimental and Computational Plant Development, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Evelien A Stouten
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Rashmi Sasidharan
- Plant Stress Resilience, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
10
|
Shu L, Li L, Jiang YQ, Yan J. Advances in membrane-tethered NAC transcription factors in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112034. [PMID: 38365003 DOI: 10.1016/j.plantsci.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Transcription factors are central components in cell signal transduction networks and are critical regulators for gene expression. It is estimated that approximately 10% of all transcription factors are membrane-tethered. MTFs (membrane-bound transcription factors) are latent transcription factors that are inherently anchored in the cellular membrane in a dormant form. When plants encounter environmental stimuli, they will be released from the membrane by intramembrane proteases or by the ubiquitin proteasome pathway and then were translocated to the nucleus. The capacity to instantly activate dormant transcription factors is a critical strategy for modulating diverse cellular functions in response to external or internal signals, which provides an important transcriptional regulatory network in response to sudden stimulus and improves plant survival. NTLs (NTM1-like) are a small subset of NAC (NAM, ATAF1/2, CUC2) transcription factors, which contain a conserved NAC domain at the N-terminus and a transmembrane domain at the C-terminus. In the past two decades, several NTLs have been identified from several species, and most of them are involved in both development and stress response. In this review, we review the reports and findings on NTLs in plants and highlight the mechanism of their nuclear import as well as their functions in regulating plant growth and stress response.
Collapse
Affiliation(s)
- Lin Shu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Longhui Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi province 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan province 450002, China.
| |
Collapse
|
11
|
Renziehausen T, Frings S, Schmidt-Schippers R. 'Against all floods': plant adaptation to flooding stress and combined abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1836-1855. [PMID: 38217848 DOI: 10.1111/tpj.16614] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024]
Abstract
Current climate change brings with it a higher frequency of environmental stresses, which occur in combination rather than individually leading to massive crop losses worldwide. In addition to, for example, drought stress (low water availability), also flooding (excessive water) can threaten the plant, causing, among others, an energy crisis due to hypoxia, which is responded to by extensive transcriptional, metabolic and growth-related adaptations. While signalling during flooding is relatively well understood, at least in model plants, the molecular mechanisms of combinatorial flooding stress responses, for example, flooding simultaneously with salinity, temperature stress and heavy metal stress or sequentially with drought stress, remain elusive. This represents a significant gap in knowledge due to the fact that dually stressed plants often show unique responses at multiple levels not observed under single stress. In this review, we (i) consider possible effects of stress combinations from a theoretical point of view, (ii) summarize the current state of knowledge on signal transduction under single flooding stress, (iii) describe plant adaptation responses to flooding stress combined with four other abiotic stresses and (iv) propose molecular components of combinatorial flooding (hypoxia) stress adaptation based on their reported dual roles in multiple stresses. This way, more future emphasis may be placed on deciphering molecular mechanisms of combinatorial flooding stress adaptation, thereby potentially stimulating development of molecular tools to improve plant resilience towards multi-stress scenarios.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| |
Collapse
|
12
|
Khan K, Tran HC, Mansuroglu B, Önsell P, Buratti S, Schwarzländer M, Costa A, Rasmusson AG, Van Aken O. Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis. Curr Biol 2024; 34:327-342.e4. [PMID: 38176418 DOI: 10.1016/j.cub.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Besides their central function in respiration, plant mitochondria play a crucial role in maintaining cellular homeostasis during stress by providing "retrograde" feedback to the nucleus. Despite the growing understanding of this signaling network, the nature of the signals that initiate mitochondrial retrograde regulation (MRR) in plants remains unknown. Here, we investigated the dynamics and causative relationship of a wide range of mitochondria-related parameters for MRR, using a combination of Arabidopsis fluorescent protein biosensor lines, in vitro assays, and genetic and pharmacological approaches. We show that previously linked physiological parameters, including changes in cytosolic ATP, NADH/NAD+ ratio, cytosolic reactive oxygen species (ROS), pH, free Ca2+, and mitochondrial membrane potential, may often be correlated with-but are not the primary drivers of-MRR induction in plants. However, we demonstrate that the induced production of mitochondrial ROS is the likely primary trigger for MRR induction in Arabidopsis. Furthermore, we demonstrate that mitochondrial ROS-mediated signaling uses the ER-localized ANAC017-pathway to induce MRR response. Finally, our data suggest that mitochondrially generated ROS can induce MRR without substantially leaking into other cellular compartments such as the cytosol or ER lumen, as previously proposed. Overall, our results offer compelling evidence that mitochondrial ROS elevation is the likely trigger of MRR.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Huy Cuong Tran
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Berivan Mansuroglu
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Pinar Önsell
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Stefano Buratti
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133 Milan, Italy
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden.
| |
Collapse
|
13
|
Li B, Hua W, Zhang S, Xu L, Yang C, Zhu Z, Guo Y, Zhou M, Jiao C, Xu Y. Physiological, Epigenetic, and Transcriptome Analyses Provide Insights into the Responses of Wheat Seedling Leaves to Different Water Depths under Flooding Conditions. Int J Mol Sci 2023; 24:16785. [PMID: 38069108 PMCID: PMC10706670 DOI: 10.3390/ijms242316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Flooding stress, including waterlogging and submergence, is one of the major abiotic stresses that seriously affects the growth and development of plants. In the present study, physiological, epigenetic, and transcriptomic analyses were performed in wheat seedling leaves under waterlogging (WL), half submergence (HS), and full submergence (FS) treatments. The results demonstrate that FS increased the leaves' hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents and reduced their chlorophyll contents (SPAD), photosynthetic efficiency (Fv/Fm), and shoot dry weight more than HS and WL. In addition, FS increased catalase (CAT) and peroxidase (POD) activities more than HS and WL. However, there were no significant differences in the contents of H2O2, MDA, SPAD, and Fv/Fm, and the activities of superoxide dismutase (SOD) and POD between the HS and WL treatments. The changes in DNA methylation were related to stress types, increasing under the WL and HS treatments and decreasing under the FS treatment. Additionally, a total of 9996, 10,619, and 24,949 genes were differentially expressed under the WL, HS, and FS treatments, respectively, among which the 'photosynthesis', 'phenylpropanoid biosynthesis', and 'plant hormone signal transduction' pathways were extensively enriched under the three flooding treatments. The genes involved in these pathways showed flooding-type-specific expression. Moreover, flooding-type-specific responses were observed in the three conditions, including the enrichment of specific TFs and response pathways. These results will contribute to a better understanding of the molecular mechanisms underlying the responses of wheat seedling leaves to flooding stress and provide valuable genetic and epigenetic information for breeding flood-tolerant varieties of wheat.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Wei Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Le Xu
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Caixian Yang
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhanwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7250, Australia
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| |
Collapse
|
14
|
Ugalde JM, Cardoso AA. When roots talk to shoots about flooding. PLANT PHYSIOLOGY 2023; 193:1729-1731. [PMID: 37607252 PMCID: PMC10602600 DOI: 10.1093/plphys/kiad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Affiliation(s)
- José Manuel Ugalde
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | - Amanda A Cardoso
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
15
|
Peláez-Vico MÁ, Tukuli A, Singh P, Mendoza-Cózatl DG, Joshi T, Mittler R. Rapid systemic responses of Arabidopsis to waterlogging stress. PLANT PHYSIOLOGY 2023; 193:2215-2231. [PMID: 37534775 DOI: 10.1093/plphys/kiad433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Waterlogging stress (WLS) negatively impacts the growth and yield of crops resulting in heavy losses to agricultural production. Previous studies have revealed that WLS induces a systemic response in shoots that is partially dependent on the plant hormones ethylene and abscisic acid. However, the role of rapid cell-to-cell signaling pathways, such as the reactive oxygen species (ROS) and calcium waves, in systemic responses of plants to WLS is unknown at present. Here, we reveal that an abrupt WLS treatment of Arabidopsis (Arabidopsis thaliana) plants growing in peat moss triggers systemic ROS and calcium wave responses and that the WLS-triggered ROS wave response of Arabidopsis is dependent on the ROS-generating RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), calcium-permeable channels GLUTAMATE-LIKE RECEPTOR 3.3 and 3.6 (GLR3.3 and GLR3.6), and aquaporin PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (PIP2;1) proteins. We further show that WLS is accompanied by a rapid systemic transcriptomic response that is evident as early as 10 min following waterlogging initiation, includes many hypoxia-response transcripts, and is partially dependent on RBOHD. Interestingly, the abrupt WLS of Arabidopsis resulted in the triggering of a rapid hydraulic wave response and the transient opening of stomata on leaves. In addition, it induced in plants a heightened state of tolerance to a subsequent submergence stress. Taken together, our findings reveal that the initiation of WLS in plants is accompanied by rapid systemic physiological and transcriptomic responses that involve the ROS, calcium, and hydraulic waves, as well as the induction of hypoxia acclimation mechanisms in systemic tissues.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Adama Tukuli
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Pallav Singh
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - David G Mendoza-Cózatl
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Institute for Data Science and Informatics and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
16
|
Kanno T, Chiou P, Wu MT, Lin WD, Matzke A, Matzke M. A GFP splicing reporter in a coilin mutant background reveals links between alternative splicing, siRNAs, and coilin function in Arabidopsis thaliana. G3 (BETHESDA, MD.) 2023; 13:jkad175. [PMID: 37539868 PMCID: PMC10542627 DOI: 10.1093/g3journal/jkad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/25/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Coilin is a scaffold protein essential for the structure of Cajal bodies, which are nucleolar-associated, nonmembranous organelles that coordinate the assembly of nuclear ribonucleoproteins (RNPs) including spliceosomal snRNPs. To study coilin function in plants, we conducted a genetic suppressor screen using a coilin (coi1) mutant in Arabidopsis thaliana and performed an immunoprecipitation-mass spectrometry analysis on coilin protein. The coi1 mutations modify alternative splicing of a GFP reporter gene, resulting in a hyper-GFP phenotype in young coi1 seedlings relative to the intermediate wild-type level. As shown here, this hyper-GFP phenotype is extinguished in older coi1 seedlings by posttranscriptional gene silencing triggered by siRNAs derived from aberrant splice variants of GFP pre-mRNA. In the coi1 suppressor screen, we identified suppressor mutations in WRAP53, a putative coilin-interacting protein; SMU2, a predicted splicing factor; and ZCH1, an incompletely characterized zinc finger protein. These suppressor mutations return the hyper-GFP fluorescence of young coi1 seedlings to the intermediate wild-type level. Additionally, coi1 zch1 mutants display more extensive GFP silencing and elevated levels of GFP siRNAs, suggesting the involvement of wild-type ZCH1 in siRNA biogenesis or stability. The immunoprecipitation-mass spectrometry analysis reinforced the roles of coilin in pre-mRNA splicing, nucleolar chromatin structure, and rRNA processing. The participation of coilin in these processes, at least some of which incorporate small RNAs, supports the hypothesis that coilin provides a chaperone for small RNA trafficking. Our study demonstrates the usefulness of the GFP splicing reporter for investigating alternative splicing, ribosome biogenesis, and siRNA-mediated silencing in the context of coilin function.
Collapse
Affiliation(s)
- Tatsuo Kanno
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Phebe Chiou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Ming-Tsung Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Genenet Technology (UK) Limited, 128 City Road, London EC1V 2NX, UK
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Antonius Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
17
|
Lu Y, Xiang P, Zhang S, Lu Z, Zhou Z, Yin Y, Hua J, Shi Q, Yu W, Yu C. Physiological and transcriptional regulation in Taxodium hybrid 'Zhongshanshan' leaves in acclimation to prolonged partial submergence. PLANTA 2023; 258:66. [PMID: 37592053 DOI: 10.1007/s00425-023-04225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
MAIN CONCLUSION Taxodium 703 leaves activate fermentation, amino acids metabolism and ROS detoxification, and reduce TCA cycle and ABA biosynthesis in acclimation to prolonged partial submergence stress. Taxodium hybrid 'Zhongshanshan 703' (T. mucronatum × T. distichum; Taxodium 703) is a highly flooding-tolerant woody plant. To investigate the physiological and transcriptional regulatory mechanisms underlying its leaves in acclimation to long-term flooding, we exposed cuttings of Taxodium 703 to either non-flooding (control) or partial submergence for 2 months. The leaf tissues above (AL) and below (BL) flooding-water were separately harvested. Partial submergence decreased concentrations of chlorophyll (a + b) and dehydroascorbate (DHA) and lactate dehydrogenase (LDH) activity in AL, and reduced biomass, concentrations of succinic acid, fumaric acid and malic acid, and transcript levels of genes involved in tricarboxylic acid (TCA) cycle in BL. Under partial submergence, concentrations of starch, malondialdehyde and abscisic acid (ABA) decreased, and also mRNA levels of nine-cis-epoxycarotenoid dioxygenases that are involved in ABA biosynthesis in AL and BL of Taxodium 703. Partial submergence increased O2- content in AL, and improved concentrations of pyruvate and soluble sugars and activities of LDH and peroxidase in BL. In addition, partial submergence increased concentrations of ethanol, lactate, alanine, γ-aminobutyric acid, total amino acids and ascorbic acid (ASA), and ASA/DHA, activities of alcohol dehydrogenases (ADH) and ascorbate peroxidase, as well as transcript levels of ADH1A, ADH1B and genes involved in alanine biosynthesis and starch degradation in AL and BL of Taxodium 703. Overall, these results suggest that Taxodium 703 leaves activate fermentation, amino acids metabolism and reactive oxygen species detoxification, and maintain a steady supply of sugars, and reduce TCA cycle and ABA biosynthesis in acclimation to prolonged partial submergence stress.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Peng Xiang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuqing Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiguo Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhidong Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jianfeng Hua
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Qin Shi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Wanwen Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
18
|
Zubrycka A, Dambire C, Dalle Carbonare L, Sharma G, Boeckx T, Swarup K, Sturrock CJ, Atkinson BS, Swarup R, Corbineau F, Oldham NJ, Holdsworth MJ. ERFVII action and modulation through oxygen-sensing in Arabidopsis thaliana. Nat Commun 2023; 14:4665. [PMID: 37537157 PMCID: PMC10400637 DOI: 10.1038/s41467-023-40366-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.
Collapse
Affiliation(s)
- Agata Zubrycka
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Laura Dalle Carbonare
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
- Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Tinne Boeckx
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Kamal Swarup
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Craig J Sturrock
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Brian S Atkinson
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Ranjan Swarup
- School of Biosciences, University of Nottingham, LE12 5RD, Loughborough, UK
| | - Françoise Corbineau
- UMR 7622 CNRS-UPMC, Biologie du développement, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
19
|
Jethva J, Lichtenauer S, Schmidt-Schippers R, Steffen-Heins A, Poschet G, Wirtz M, van Dongen JT, Eirich J, Finkemeier I, Bilger W, Schwarzländer M, Sauter M. Mitochondrial alternative NADH dehydrogenases NDA1 and NDA2 promote survival of reoxygenation stress in Arabidopsis by safeguarding photosynthesis and limiting ROS generation. THE NEW PHYTOLOGIST 2023; 238:96-112. [PMID: 36464787 DOI: 10.1111/nph.18657] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plant submergence stress is a growing problem for global agriculture. During desubmergence, rising O2 concentrations meet a highly reduced mitochondrial electron transport chain (mETC) in the cells. This combination favors the generation of reactive oxygen species (ROS) by the mitochondria, which at excess can cause damage. The cellular mechanisms underpinning the management of reoxygenation stress are not fully understood. We investigated the role of alternative NADH dehydrogenases (NDs), as components of the alternative mETC in Arabidopsis, in anoxia-reoxygenation stress management. Simultaneous loss of the matrix-facing NDs, NDA1 and NDA2, decreased seedling survival after reoxygenation, while overexpression increased survival. The absence of NDAs led to reduced maximum potential quantum efficiency of photosystem II linking the alternative mETC to photosynthetic function in the chloroplast. NDA1 and NDA2 were induced upon reoxygenation, and transcriptional activation of NDA1 was controlled by the transcription factors ANAC016 and ANAC017 that bind to the mitochondrial dysfunction motif (MDM) in the NDA1 promoter. The absence of NDA1 and NDA2 did not alter recovery of cytosolic ATP levels and NADH : NAD+ ratio at reoxygenation. Rather, the absence of NDAs led to elevated ROS production, while their overexpression limited ROS. Our observations indicate that the control of ROS formation by the alternative mETC is important for photosynthetic recovery and for seedling survival of anoxia-reoxygenation stress.
Collapse
Affiliation(s)
- Jay Jethva
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118, Kiel, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | | - Anja Steffen-Heins
- Institute of Human Nutrition and Food Science, University of Kiel, 24118, Kiel, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | | | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | - Wolfgang Bilger
- Ecophysiology of Plants, University of Kiel, 24118, Kiel, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118, Kiel, Germany
| |
Collapse
|
20
|
Dalle Carbonare L, Jiménez JDLC, Lichtenauer S, van Veen H. Plant responses to limited aeration: Advances and future challenges. PLANT DIRECT 2023; 7:e488. [PMID: 36993903 PMCID: PMC10040318 DOI: 10.1002/pld3.488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.
Collapse
Affiliation(s)
| | | | - Sophie Lichtenauer
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Hans van Veen
- Plant Stress Resilience, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
21
|
Bakshi A, Gilroy S. Analysis of plant flooding response. Methods Enzymol 2023; 680:461-491. [PMID: 36710023 DOI: 10.1016/bs.mie.2022.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Flooding represents an environmental stress that has widespread effects on plants in natural ecosystems as well as causing major crop losses. As climate change leads to more severe weather extremes, severe flooding events are likely to become even more frequent. Thus, there is intense interest in understanding how flooding affects plants and in identifying cellular and molecular targets for engineering flood resilience into crop species. Such research requires well controlled, highly reproducible flooding protocols for use in the laboratory. However, there are many ways that a plant can be flooded. For example, waterlogging of the soil, where water levels reach the soil surface, generally generates a hypoxic environment around the root system. In contrast, full submergence of the plant adds effects on the aerial organs such as impaired photosynthesis from the combination of lowered CO2 availability and the reduced light penetration into often turbid flood waters. In this chapter, approaches to imposing controlled flooding conditions to the model plant Arabidopsis thaliana are discussed. A series of straight-forward assays are then described to document the effects of stress-related changes in growth patterns, pigment accumulation and levels of oxidative stress. These assays are complemented by monitoring the expression of a series of molecular markers of flood response by qPCR.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
22
|
He C, Berkowitz O, Hu S, Zhao Y, Qian K, Shou H, Whelan J, Wang Y. Co-regulation of mitochondrial and chloroplast function: Molecular components and mechanisms. PLANT COMMUNICATIONS 2023; 4:100496. [PMID: 36435968 PMCID: PMC9860188 DOI: 10.1016/j.xplc.2022.100496] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The metabolic interdependence, interactions, and coordination of functions between chloroplasts and mitochondria are established and intensively studied. However, less is known about the regulatory components that control these interactions and their responses to external stimuli. Here, we outline how chloroplastic and mitochondrial activities are coordinated via common components involved in signal transduction pathways, gene regulatory events, and post-transcriptional processes. The endoplasmic reticulum emerges as a point of convergence for both transcriptional and post-transcriptional pathways that coordinate chloroplast and mitochondrial functions. Although the identification of molecular components and mechanisms of chloroplast and mitochondrial signaling increasingly suggests common players, this raises the question of how these allow for distinct organelle-specific downstream pathways. Outstanding questions with respect to the regulation of post-transcriptional pathways and the cell and/or tissue specificity of organelle signaling are crucial for understanding how these pathways are integrated at a whole-plant level to optimize plant growth and its response to changing environmental conditions.
Collapse
Affiliation(s)
- Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shanshan Hu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yang Zhao
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
23
|
Sherwood OL, Carroll R, Burke S, McCabe PF, Kacprzyk J. A simple and cost-effective method for studying anoxia tolerance in plants. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11509. [PMID: 36818780 PMCID: PMC9934590 DOI: 10.1002/aps3.11509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 06/18/2023]
Abstract
Premise We developed a novel, cost-effective protocol that facilitates testing anoxia tolerance in plants without access to specialized equipment. Methods and Results Arabidopsis thaliana and barley (Hordeum vulgare) seedlings were treated in airtight 2-L Kilner jars. An anoxic atmosphere was generated using Oxoid AnaeroGen 2.5-L sachets placed on in-house, custom-built wire stands. The performed experiments confirmed a higher sensitivity to low oxygen stress previously observed in anac017 A. thaliana mutants and the positive effect of exogenous sucrose on anoxia tolerance reported by previous studies in A. thaliana. Barley seedlings displayed typical responses to anoxia treatment, including shoot growth cessation and the induction of marker genes for anaerobic metabolism and ethylene biosynthesis in root tissue. Conclusions The results validate the novel method as an inexpensive, simple alternative for testing anoxia tolerance in plants, where access to an anaerobic workstation is not possible. The novel protocol requires minimum investment and is easily adaptable.
Collapse
Affiliation(s)
- Orla L. Sherwood
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Rebecca Carroll
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Stephen Burke
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Paul F. McCabe
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Joanna Kacprzyk
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| |
Collapse
|
24
|
Santiago-Velasco M, Ortiz-López E, Flores-Méndez A, Barrera-Figueroa BE, García-López E, Peña-Castro JM. Transformation efficiency of Arabidopsis thaliana ecotypes with differential tolerance to submergence stress. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2124315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Mayra Santiago-Velasco
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Oaxaca, México
- División de Estudios de Posgrado, Universidad del Papaloapan, Oaxaca, México
| | - Erick Ortiz-López
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Oaxaca, México
| | - Alexis Flores-Méndez
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Oaxaca, México
| | | | | | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Oaxaca, México
| |
Collapse
|
25
|
Khan K, Van Aken O. The colonization of land was a likely driving force for the evolution of mitochondrial retrograde signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7182-7197. [PMID: 36055768 PMCID: PMC9675596 DOI: 10.1093/jxb/erac351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Most retrograde signalling research in plants was performed using Arabidopsis, so an evolutionary perspective on mitochondrial retrograde regulation (MRR) is largely missing. Here, we used phylogenetics to track the evolutionary origins of factors involved in plant MRR. In all cases, the gene families can be traced to ancestral green algae or earlier. However, the specific subfamilies containing factors involved in plant MRR in many cases arose during the transition to land. NAC transcription factors with C-terminal transmembrane domains, as observed in the key regulator ANAC017, can first be observed in non-vascular mosses, and close homologs to ANAC017 can be found in seed plants. Cyclin-dependent kinases (CDKs) are common to eukaryotes, but E-type CDKs that control MRR also diverged in conjunction with plant colonization of land. AtWRKY15 can be traced to the earliest land plants, while AtWRKY40 only arose in angiosperms and AtWRKY63 even more recently in Brassicaceae. Apetala 2 (AP2) transcription factors are traceable to algae, but the ABI4 type again only appeared in seed plants. This strongly suggests that the transition to land was a major driver for developing plant MRR pathways, while additional fine-tuning events have appeared in seed plants or later. Finally, we discuss how MRR may have contributed to meeting the specific challenges that early land plants faced during terrestrialization.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
26
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
27
|
Morales A, de Boer HJ, Douma JC, Elsen S, Engels S, Glimmerveen T, Sajeev N, Huber M, Luimes M, Luitjens E, Raatjes K, Hsieh C, Teapal J, Wildenbeest T, Jiang Z, Pareek A, Singla-Pareek S, Yin X, Evers J, Anten NPR, van Zanten M, Sasidharan R. Effects of sublethal single, simultaneous and sequential abiotic stresses on phenotypic traits of Arabidopsis thaliana. AOB PLANTS 2022; 14:plac029. [PMID: 35854681 PMCID: PMC9291396 DOI: 10.1093/aobpla/plac029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/21/2022] [Indexed: 05/24/2023]
Abstract
Plant responses to abiotic stresses are complex and dynamic, and involve changes in different traits, either as the direct consequence of the stress, or as an active acclimatory response. Abiotic stresses frequently occur simultaneously or in succession, rather than in isolation. Despite this, most studies have focused on a single stress and single or few plant traits. To address this gap, our study comprehensively and categorically quantified the individual and combined effects of three major abiotic stresses associated with climate change (flooding, progressive drought and high temperature) on 12 phenotypic traits related to morphology, development, growth and fitness, at different developmental stages in four Arabidopsis thaliana accessions. Combined sublethal stresses were applied either simultaneously (high temperature and drought) or sequentially (flooding followed by drought). In total, we analysed the phenotypic responses of 1782 individuals across these stresses and different developmental stages. Overall, abiotic stresses and their combinations resulted in distinct patterns of effects across the traits analysed, with both quantitative and qualitative differences across accessions. Stress combinations had additive effects on some traits, whereas clear positive and negative interactions were observed for other traits: 9 out of 12 traits for high temperature and drought, 6 out of 12 traits for post-submergence and drought showed significant interactions. In many cases where the stresses interacted, the strength of interactions varied across accessions. Hence, our results indicated a general pattern of response in most phenotypic traits to the different stresses and stress combinations, but it also indicated a natural genetic variation in the strength of these responses. This includes novel results regarding the lack of a response to drought after submergence and a decoupling between leaf number and flowering time after submergence. Overall, our study provides a rich characterization of trait responses of Arabidopsis plants to sublethal abiotic stresses at the phenotypic level and can serve as starting point for further in-depth physiological research and plant modelling efforts.
Collapse
Affiliation(s)
| | - Hugo J de Boer
- Copernicus Institute of Sustainable Development, Utrecht University, 3584CB Utrecht, The Netherlands
| | - Jacob C Douma
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Saskia Elsen
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Sophie Engels
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Tobias Glimmerveen
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Nikita Sajeev
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Martina Huber
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Mathijs Luimes
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Emma Luitjens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Kevin Raatjes
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Chenyun Hsieh
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Juliane Teapal
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Tessa Wildenbeest
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Zhang Jiang
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Jochem Evers
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Niels P R Anten
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | | | | |
Collapse
|
28
|
Tao Y, Wan JX, Liu YS, Yang XZ, Shen RF, Zhu XF. The NAC transcription factor ANAC017 regulates aluminum tolerance by regulating the cell wall-modifying genes. PLANT PHYSIOLOGY 2022; 189:2517-2534. [PMID: 35512200 PMCID: PMC9342997 DOI: 10.1093/plphys/kiac197] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 05/06/2023]
Abstract
Aluminum (Al) toxicity is one of the key factors limiting crop production in acid soils; however, little is known about its transcriptional regulation in plants. In this study, we characterized the role of a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factors (TFs), ANAC017, in the regulation of Al tolerance in Arabidopsis (Arabidopsis thaliana). ANAC017 was localized in the nucleus and exhibited constitutive expression in the root, stem, leaf, flower, and silique, although its expression and protein accumulation were repressed by Al stress. Loss of function of ANAC017 enhanced Al tolerance when compared with wild-type Col-0 and was accompanied by lower root and root cell wall Al content. Furthermore, both hemicellulose and xyloglucan content decreased in the anac017 mutants, indicating the possible interaction between ANAC017 and xyloglucan endotransglucosylase/hydrolase (XTH). Interestingly, the expression of XTH31, which is responsible for xyloglucan modification, was downregulated in the anac017 mutants regardless of Al supply, supporting the possible interaction between ANAC017 and XTH31. Yeast one-hybrid, dual-luciferase reporter assay, and chromatin immunoprecipitation-quantitative PCR analysis revealed that ANAC017 positively regulated the expression of XTH31 through directly binding to the XTH31 promoter region, and overexpression of XTH31 in the anac017 mutant background rescued its Al-tolerance phenotype. In conclusion, we identified that the tTF ANAC017 acts upstream of XTH31 to regulate Al tolerance in Arabidopsis.
Collapse
Affiliation(s)
| | | | - Yu Song Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zheng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
29
|
Wang X, Komatsu S. The Role of Phytohormones in Plant Response to Flooding. Int J Mol Sci 2022; 23:6383. [PMID: 35742828 PMCID: PMC9223812 DOI: 10.3390/ijms23126383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Climatic variations influence the morphological, physiological, biological, and biochemical states of plants. Plant responses to abiotic stress include biochemical adjustments, regulation of proteins, molecular mechanisms, and alteration of post-translational modifications, as well as signal transduction. Among the various abiotic stresses, flooding stress adversely affects the growth of plants, including various economically important crops. Biochemical and biological techniques, including proteomic techniques, provide a thorough understanding of the molecular mechanisms during flooding conditions. In particular, plants can cope with flooding conditions by embracing an orchestrated set of morphological adaptations and physiological adjustments that are regulated by an elaborate hormonal signaling network. With the help of these findings, the main objective is to identify plant responses to flooding and utilize that information for the development of flood-tolerant plants. This review provides an insight into the role of phytohormones in plant response mechanisms to flooding stress, as well as different mitigation strategies that can be successfully administered to improve plant growth during stress exposure. Ultimately, this review will expedite marker-assisted genetic enhancement studies in crops for developing high-yield lines or varieties with flood tolerance.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
30
|
Zhang Y, Lu Y, El Sayyed H, Bian J, Lin J, Li X. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging. PLANT PHYSIOLOGY 2022; 189:23-36. [PMID: 35134239 PMCID: PMC9070795 DOI: 10.1093/plphys/kiac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Biochemical and genetic approaches have been extensively used to study transcription factor (TF) functions, but their dynamic behaviors and the complex ways in which they regulate transcription in plant cells remain unexplored, particularly behaviors such as translocation and binding to DNA. Recent developments in labeling and imaging techniques provide the necessary sensitivity and resolution to study these behaviors in living cells. In this review, we present an up-to-date portrait of the dynamics and regulation of TFs under physiologically relevant conditions and then summarize recent advances in fluorescent labeling strategies and imaging techniques. We then discuss future prospects and challenges associated with the application of these techniques to examine TFs' intricate dance in living plants.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Hafez El Sayyed
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
31
|
Fuchs P, Bohle F, Lichtenauer S, Ugalde JM, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. THE PLANT CELL 2022; 34:1375-1395. [PMID: 35078237 PMCID: PMC9125394 DOI: 10.1093/plcell/koac017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/18/2021] [Indexed: 05/16/2023]
Abstract
Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elias Feitosa Araujo
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Berivan Mansuroglu
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| |
Collapse
|
32
|
Mishra V, Singh A, Gandhi N, Sarkar Das S, Yadav S, Kumar A, Sarkar AK. A unique miR775- GALT9 module regulates leaf senescence in Arabidopsis during post-submergence recovery by modulating ethylene and the abscisic acid pathway. Development 2022; 149:274011. [DOI: 10.1242/dev.199974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here, we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates GALACTOSYLTRANSFERASE 9 (GALT9) and their expression is inversely affected at 24 h of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild-type and MIM775 Arabidopsis shoot. A similar recovery phenotype in the galt9 mutant indicates the role of the miR775-GALT9 module in post-submergence recovery. We predicted that Golgi-localized GALT9 is potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29 and ORE1), ethylene signalling (EIN2 and EIN3) and abscisic acid (ABA) biosynthesis (NCED3) pathway genes occurs in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role for the miR775-GALT9 module in post-submergence recovery through a crosstalk between the ethylene signalling and ABA biosynthesis pathways.
Collapse
Affiliation(s)
- Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| | - Nidhi Gandhi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabari Sarkar Das
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal 721104, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananda K. Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| |
Collapse
|
33
|
Barreto P, Dambire C, Sharma G, Vicente J, Osborne R, Yassitepe J, Gibbs DJ, Maia IG, Holdsworth MJ, Arruda P. Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway. Curr Biol 2022; 32:1403-1411.e4. [PMID: 35114096 PMCID: PMC8967405 DOI: 10.1016/j.cub.2022.01.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial retrograde signaling is an important component of intracellular stress signaling in eukaryotes. UNCOUPLING PROTEIN (UCP)1 is an abundant plant inner-mitochondrial membrane protein with multiple functions including uncoupled respiration and amino-acid transport1,2 that influences broad abiotic stress responses. Although the mechanism(s) through which this retrograde function acts is unknown, overexpression of UCP1 activates expression of hypoxia (low oxygen)-associated nuclear genes.3,4 Here we show in Arabidopsis thaliana that UCP1 influences nuclear gene expression and physiological response by inhibiting the cytoplasmic PLANT CYSTEINE OXIDASE (PCO) branch of the PROTEOLYSIS (PRT)6 N-degron pathway, a major mechanism of oxygen and nitric oxide (NO) sensing.5 Overexpression of UCP1 (UCP1ox) resulted in the stabilization of an artificial PCO N-degron pathway substrate, and stability of this reporter protein was influenced by pharmacological interventions that control UCP1 activity. Hypoxia and salt-tolerant phenotypes observed in UCP1ox lines resembled those observed for the PRT6 N-recognin E3 ligase mutant prt6-1. Genetic analysis showed that UCP1 regulation of hypoxia responses required the activity of PCO N-degron pathway ETHYLENE RESPONSE FACTOR (ERF)VII substrates. Transcript expression analysis indicated that UCP1 regulation of hypoxia-related gene expression is a normal component of seedling development. Our results show that mitochondrial retrograde signaling represses the PCO N-degron pathway, enhancing substrate function, thus facilitating downstream stress responses. This work reveals a novel mechanism through which mitochondrial retrograde signaling influences nuclear response to hypoxia by inhibition of an ancient cytoplasmic pathway of eukaryotic oxygen sensing. UCP1 inhibits the PCO branch of the PRT6 N-degron pathway Inhibition leads to substrate stabilization and altered gene expression Inhibition transduces UCP1 function during development and in response to stress
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências de Botucatu, UNESP, Botucatu 18618-970, SP, Brazil
| | - Charlene Dambire
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Gunjan Sharma
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Jorge Vicente
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK
| | - Rory Osborne
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, SP, Brazil
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ivan G Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências de Botucatu, UNESP, Botucatu 18618-970, SP, Brazil
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, UK.
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, SP, Brazil; Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Centro de Biologia Molecular e Engenharia Genetica, Universidade Estadual de Campinas, Campinas 13083-875, SP, Brazil.
| |
Collapse
|
34
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
35
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
36
|
Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, Sasidharan R. Age-Dependent Abiotic Stress Resilience in Plants. TRENDS IN PLANT SCIENCE 2021; 26:692-705. [PMID: 33509699 DOI: 10.1016/j.tplants.2020.12.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Developmental age is a strong determinant of stress responses in plants. Differential susceptibility to various environmental stresses is widely observed at both the organ and whole-plant level. While it is clear that age determines stress susceptibility, the causes, regulatory mechanisms, and functions are only now beginning to emerge. Compared with concepts on age-related biotic stress resilience, advancements in the abiotic stress field are relatively limited. In this review, we focus on current knowledge of ontogenic resistance to abiotic stresses, highlighting examples at the organ (leaf) and plant level, preceded by an overview of the relevant concepts in plant aging. We also discuss age-related abiotic stress resilience mechanisms, speculate on their functional relevance, and outline outstanding questions.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
37
|
Oxidative signalling in seed germination and early seedling growth: an emerging role for ROS trafficking and inter-organelle communication. Biochem J 2021; 478:1977-1984. [PMID: 34047788 DOI: 10.1042/bcj20200934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Underground early development of higher plants includes two distinct developmental processes, seed germination and then skotomorphogenesis, a mechanism which favours elongation of the hypocotyl and helps the seedling to find light. Interestingly, both processes, which are regulated by plant hormones, have been shown to depend on reactive oxygen species metabolism and to be related to mitochondrial retrograde signalling. Here we review the recent outcomes in this field of research and highlight the emerging role of ROS communication between organelles and cell compartments. We point out the role of mitochondria as an environmental and developmental sensor organelle that regulates ROS homeostasis and downstream events and we propose future directions of research that should help better understanding the roles of ROS in germination and seedling emergence.
Collapse
|
38
|
Sasidharan R, Schippers JHM, Schmidt RR. Redox and low-oxygen stress: signal integration and interplay. PLANT PHYSIOLOGY 2021; 186:66-78. [PMID: 33793937 PMCID: PMC8154046 DOI: 10.1093/plphys/kiaa081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants are aerobic organisms relying on oxygen to serve their energy needs. The amount of oxygen available to sustain plant growth can vary significantly due to environmental constraints or developmental programs. In particular, flooding stress, which negatively impacts crop productivity, is characterized by a decline in oxygen availability. Oxygen fluctuations result in an altered redox balance and the formation of reactive oxygen/nitrogen species (ROS/RNS) during the onset of hypoxia and upon re-oxygenation. In this update, we provide an overview of the current understanding of the impact of redox and ROS/RNS on low-oxygen signaling and adaptation. We first focus on the formation of ROS and RNS during low-oxygen conditions. Following this, we examine the impact of hypoxia on cellular and organellar redox systems. Finally, we describe how redox and ROS/RNS participate in signaling events during hypoxia through potential post-translational modifications (PTMs) of hypoxia-relevant proteins. The aim of this update is to define our current understanding of the field and to provide avenues for future research directions.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland 06466, Germany
| | - Romy R Schmidt
- Faculty of Biology, Plant Biotechnology Group, Bielefeld University, Bielefeld 33615, Germany
- Author for communication:
| |
Collapse
|
39
|
Pucciariello C, Perata P. The Oxidative Paradox in Low Oxygen Stress in Plants. Antioxidants (Basel) 2021; 10:332. [PMID: 33672303 PMCID: PMC7926446 DOI: 10.3390/antiox10020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) are part of aerobic environments, and variations in the availability of oxygen (O2) in the environment can lead to altered ROS levels. In plants, the O2 sensing machinery guides the molecular response to low O2, regulating a subset of genes involved in metabolic adaptations to hypoxia, including proteins involved in ROS homeostasis and acclimation. In addition, nitric oxide (NO) participates in signaling events that modulate the low O2 stress response. In this review, we summarize recent findings that highlight the roles of ROS and NO under environmentally or developmentally defined low O2 conditions. We conclude that ROS and NO are emerging regulators during low O2 signalling and key molecules in plant adaptation to flooding conditions.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | | |
Collapse
|
40
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
41
|
Jia W, Ma M, Chen J, Wu S. Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms22031088. [PMID: 33499312 PMCID: PMC7865476 DOI: 10.3390/ijms22031088] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is expected to be even more serious in many parts of the world due to climatic anomaly in the future. Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants adaptation to flooding stress at the morphological, physiological and anatomical scale systemically, such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers. Then molecular mechanisms underlying the adaptive strategies are summarized, and more than thirty identified functional genes or proteins associated with flooding-tolerance are searched out and expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant tolerance to flooding stress were collected and analyzed according to sequence similarity, which can provide references for screening flooding-tolerant genes more precisely. Finally, the potential research directions in the future were summarized and discussed. Through this review, we aim to provide references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant crops in the future.
Collapse
|
42
|
González-Guzmán M, Gómez-Cadenas A, Arbona V. Abscisic Acid as an Emerging Modulator of the Responses of Plants to Low Oxygen Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:661789. [PMID: 33981326 PMCID: PMC8107475 DOI: 10.3389/fpls.2021.661789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 05/11/2023]
Abstract
Different environmental and developmental cues involve low oxygen conditions, particularly those associated to abiotic stress conditions. It is widely accepted that plant responses to low oxygen conditions are mainly regulated by ethylene (ET). However, interaction with other hormonal signaling pathways as gibberellins (GAs), auxin (IAA), or nitric oxide (NO) has been well-documented. In this network of interactions, abscisic acid (ABA) has always been present and regarded to as a negative regulator of the development of morphological adaptations to soil flooding: hyponastic growth, adventitious root emergence, or formation of secondary aerenchyma in different plant species. However, recent evidence points toward a positive role of this plant hormone on the modulation of plant responses to hypoxia and, more importantly, on the ability to recover during the post-hypoxic period. In this work, the involvement of ABA as an emerging regulator of plant responses to low oxygen conditions alone or in interaction with other hormones is reviewed and discussed.
Collapse
|