1
|
Shibata Y, Tanaka Y, Mori S, Mitsuzumi K, Fujii S, Sasakura H, Morioka Y, Sugioka K, Takeuchi K, Nishiwaki K. Endogenous chondroitin extends lifespan by inhibiting VHA-7-mediated tubular lysosome formation. Sci Rep 2024; 14:29651. [PMID: 39609482 PMCID: PMC11605119 DOI: 10.1038/s41598-024-80242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Chondroitin extends lifespan and healthspan in C. elegans, but the relationship between extracellular chondroitin and intracellular anti-aging mechanisms is unknown. The basement membrane (BM) that contains chondroitin proteoglycans is anchored to cells via hemidesmosomes (HDs), and it accumulates damage with aging. In this study, we found that chondroitin regulates aging through the formation of HDs and inhibition of tubular lysosomes (TLs). Reduction of chondroitin due to a mutation in sqv-5/Chondroitin synthase (ChSy) causes the earlier and excessive formation of TLs and leakage of the lysosomal nuclease in a manner dependent on VHA-7, the a-subunit of V-type ATPase. VHA-7, whose mutation suppresses the short lifespan of the sqv-5 mutant, is initially localized to the basal side of the hypodermal cells and transported to lysosomes with aging. These results demonstrate that endogenous chondroitin suppresses aging by inhibiting the earlier excessive formation of TLs. This is a novel anti-aging mechanism that is controlled by the BM.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, Japan.
- Gakuen Uegahara, Sanda, 669-1330, Japan.
| | - Yuri Tanaka
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, Japan
| | - Shunsuke Mori
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, Japan
| | - Kaito Mitsuzumi
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, Japan
| | - Shion Fujii
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, Japan
| | - Hiroyuki Sasakura
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yuki Morioka
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Kosei Takeuchi
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kiyoji Nishiwaki
- Department of Biomedical Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, Japan
| |
Collapse
|
2
|
Moreno-Corona NC, de León-Bautista MP, León-Juárez M, Hernández-Flores A, Barragán-Gálvez JC, López-Ortega O. Rab GTPases, Active Members in Antigen-Presenting Cells, and T Lymphocytes. Traffic 2024; 25:e12950. [PMID: 38923715 DOI: 10.1111/tra.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.
Collapse
Affiliation(s)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia, Mexico
- Human Health, Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | | | - Juan Carlos Barragán-Gálvez
- División de Ciencias Naturales y Exactas, Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Mexico
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institute Necker Enfants Malades, Paris, France
| |
Collapse
|
3
|
Mulligan RJ, Magaj MM, Digilio L, Redemann S, Yap CC, Winckler B. Collapse of late endosomal pH elicits a rapid Rab7 response via the V-ATPase and RILP. J Cell Sci 2024; 137:jcs261765. [PMID: 38578235 PMCID: PMC11166203 DOI: 10.1242/jcs.261765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.
Collapse
Affiliation(s)
- Ryan J. Mulligan
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Magdalena M. Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Rao S, Huang P, Qian YY, Xia Y, Zhang H. Colonic epithelial cell-specific TFEB activation: a key mechanism promoting anti-bacterial defense in response to Salmonella infection. Front Microbiol 2024; 15:1369471. [PMID: 38711975 PMCID: PMC11070474 DOI: 10.3389/fmicb.2024.1369471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Colitis caused by infections, especially Salmonella, has long been a common disease, underscoring the urgency to understand its intricate pathogenicity in colonic tissues for the development of effective anti-bacterial approaches. Of note, colonic epithelial cells, which form the first line of defense against bacteria, have received less attention, and the cross-talk between epithelial cells and bacteria requires further exploration. In this study, we revealed that the critical anti-bacterial effector, TFEB, was primarily located in colonic epithelial cells rather than macrophages. Salmonella-derived LPS significantly promoted the expression and nuclear translocation of TFEB in colonic epithelial cells by inactivating the mTOR signaling pathway in vitro, and this enhanced nuclear translocation of TFEB was also confirmed in a Salmonella-infected mouse model. Further investigation uncovered that the infection-activated TFEB contributed to the augmentation of anti-bacterial peptide expression without affecting the intact structure of the colonic epithelium or inflammatory cytokine expression. Our findings identify the preferential distribution of TFEB in colonic epithelial cells, where TFEB can be activated by infection to enhance anti-bacterial peptide expression, holding promising implications for the advancement of anti-bacterial therapeutics.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Pathology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi-Yu Qian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfeng Zhang
- Department of Pathology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Li X, Xiang C, Zhu S, Guo J, Liu C, Wang A, Cao J, Lu Y, Neculai D, Xu P, Feng XH. SNX8 enables lysosome reformation and reverses lysosomal storage disorder. Nat Commun 2024; 15:2553. [PMID: 38519472 PMCID: PMC10959956 DOI: 10.1038/s41467-024-46705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Lysosomal Storage Disorders (LSDs), which share common phenotypes, including enlarged lysosomes and defective lysosomal storage, are caused by mutations in lysosome-related genes. Although gene therapies and enzyme replacement therapies have been explored, there are currently no effective routine therapies against LSDs. During lysosome reformation, which occurs when the functional lysosome pool is reduced, lysosomal lipids and proteins are recycled to restore lysosome functions. Here we report that the sorting nexin protein SNX8 promotes lysosome tubulation, a process that is required for lysosome reformation, and that loss of SNX8 leads to phenotypes characteristic of LSDs in human cells. SNX8 overexpression rescued features of LSDs in cells, and AAV-based delivery of SNX8 to the brain rescued LSD phenotypes in mice. Importantly, by screening a natural compound library, we identified three small molecules that enhanced SNX8-lysosome binding and reversed LSD phenotypes in human cells and in mice. Altogether, our results provide a potential solution for the treatment of LSDs.
Collapse
Affiliation(s)
- Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Cong Xiang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shilei Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chang Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ailian Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yan Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Cell Biology, and Department of General Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Cell Biology, and Department of General Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Mulligan R, Magaj M, Digilio L, Redemann S, Yap C, Winckler B. Collapse of late endosomal pH elicits a rapid Rab7 response via V-ATPase and RILP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563658. [PMID: 37961579 PMCID: PMC10634777 DOI: 10.1101/2023.10.24.563658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of proper pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). We used the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyper-activation of Rab7 and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR) recycling on pH-neutralized LEs. Either pH neutralization (NH4Cl) or Rab7 hyper-active mutants alone can phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds or in disease states.
Collapse
Affiliation(s)
- R.J. Mulligan
- Department of Cell Biology, University of Virginia, Charlottesville, VA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA
| | - M.M. Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA
| | - L. Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - S. Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA
| | - C.C. Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - B Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| |
Collapse
|
7
|
Inpanathan S, Ospina-Escobar E, Li VC, Adamji Z, Lackraj T, Cho YH, Porco N, Choy CH, McPhee JB, Botelho RJ. Salmonella actively modulates TFEB in murine macrophages in a growth-phase and time-dependent manner. Microbiol Spectr 2024; 12:e0498122. [PMID: 38051049 PMCID: PMC10783059 DOI: 10.1128/spectrum.04981-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Activation of the host transcription factor TFEB helps mammalian cells adapt to stresses such as starvation and infection by upregulating lysosome, autophagy, and immuno-protective gene expression. Thus, TFEB is generally thought to protect host cells. However, it may also be that pathogenic bacteria like Salmonella orchestrate TFEB in a spatio-temporal manner to harness its functions to grow intracellularly. Indeed, the relationship between Salmonella and TFEB is controversial since some studies showed that Salmonella actively promotes TFEB, while others have observed that Salmonella degrades TFEB and that compounds that promote TFEB restrict bacterial growth. Our work provides a path to resolve these apparent discordant observations since we showed that stationary-grown Salmonella actively delays TFEB after infection, while late-log Salmonella is permissive of TFEB activation. Nevertheless, the exact function of this manipulation remains unclear, but conditions that erase the conditional control of TFEB by Salmonella may be detrimental to the microbe.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Erika Ospina-Escobar
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Vanessa Cruz Li
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Zainab Adamji
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tracy Lackraj
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Youn Hee Cho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Natasha Porco
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Christopher H. Choy
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Joseph B. McPhee
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Roberto J. Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Yang J, Rong SJ, Zhou HF, Yang C, Sun F, Li JY. Lysosomal control of dendritic cell function. J Leukoc Biol 2023; 114:518-531. [PMID: 37774493 DOI: 10.1093/jleuko/qiad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Lysosomal compartments undergo extensive remodeling during dendritic cell (DC) activation to meet the dynamic functional requirements of DCs. Instead of being regarded as stationary and digestive organelles, recent studies have increasingly appreciated the versatile roles of lysosomes in regulating key aspects of DC biology. Lysosomes actively control DC motility by linking calcium efflux to the actomyosin contraction, while enhanced DC lysosomal membrane permeability contributes to the inflammasome activation. Besides, lysosomes provide a platform for the transduction of innate immune signaling and the intricate host-pathogen interplay. Lysosomes and lysosome-associated structures are also critically engaged in antigen presentation and cross-presentation processes, which are pivotal for the induction of antigen-specific adaptive immune response. Through the current review, we emphasize that lysosome targeting strategies serve as vital DC-based immunotherapies in fighting against tumor, infectious diseases, and autoinflammatory disorders.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Jiefang Avenue No.1095, 430000, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Ling Jiaohu Road No.11, 430000, Wuhan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Jiefang Avenue No.1095, 430000, Wuhan, China
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| |
Collapse
|
9
|
Pierga A, Matusiak R, Cauhapé M, Branchu J, Danglot L, Boutry M, Darios F. Spatacsin regulates directionality of lysosome trafficking by promoting the degradation of its partner AP5Z1. PLoS Biol 2023; 21:e3002337. [PMID: 37871017 PMCID: PMC10621996 DOI: 10.1371/journal.pbio.3002337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/02/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
The endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating lysosome positioning and motility. The movements of lysosomes are controlled by the attachment of molecular motors to their surface. However, the molecular mechanisms by which ER controls lysosome dynamics are still elusive. Here, using mouse brain extracts and mouse embryonic fibroblasts, we demonstrate that spatacsin is an ER-resident protein regulating the formation of tubular lysosomes, which are highly dynamic. Screening for spatacsin partners required for tubular lysosome formation showed spatacsin to act by regulating protein degradation. We demonstrate that spatacsin promotes the degradation of its partner AP5Z1, which regulates the relative amount of spastizin and AP5Z1 at lysosomes. Spastizin and AP5Z1 contribute to regulate tubular lysosome formation, as well as their trafficking by interacting with anterograde and retrograde motor proteins, kinesin KIF13A and dynein/dynactin subunit p150Glued, respectively. Ultimately, investigations in polarized mouse cortical neurons in culture demonstrated that spatacsin-regulated degradation of AP5Z1 controls the directionality of lysosomes trafficking. Collectively, our results identify spatacsin as a protein regulating the directionality of lysosome trafficking.
Collapse
Affiliation(s)
- Alexandre Pierga
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Raphaël Matusiak
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Julien Branchu
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Lydia Danglot
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Scientific director of NeurImag facility, Université Paris Cité, Paris, France
| | - Maxime Boutry
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Frédéric Darios
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| |
Collapse
|
10
|
Noureddine A, Marwedel B, Tang L, Medina LY, Serda RE. Specific Tumor Localization of Immunogenic Lipid-Coated Mesoporous Silica Nanoparticles following Intraperitoneal Administration in a Mouse Model of Serous Epithelial Ovarian Cancer. Cancers (Basel) 2023; 15:4626. [PMID: 37760595 PMCID: PMC10526288 DOI: 10.3390/cancers15184626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immunogenic lipid-coated mesoporous silica nanoparticles (ILM) present pathogen-associated molecular patterns (PAMPs) on the nanoparticle surface to engage pathogen-associated receptors on immune cells. The mesoporous core is capable of loading additional immunogens, antigens or drugs. In this study, the impact of lipid composition, surface potential and intercalation of lipophilic monophosphoryl lipid A (MPL-A) in the lipid coat on nanoparticle properties and cellular interactions is presented. Loading and retention of the model antigen ovalbumin into the mesoporous silica core were found to be similar for all nanoparticle formulations, with presentation of ova peptide (SIINFEKL) by major histocompatibility complex (MHC) evaluated to facilitate the selection of an anionic nanoparticle composition. ILM were able to induce lysosomal tubulation and streaming of lysosomes towards the cell surface in dendritic cells, leading to an enhanced surface presentation of MHC. Myeloid cells robustly internalized all ILM formulations; however, non-myeloid cells selectively internalized cationic ILM in vitro in the presence of 20% serum. Interestingly, ILM administration to the peritoneal cavity of mice with disseminated ovarian cancer resulted in selective accumulation of ILM in tumor-associated tissues (>80%), regardless of nanoparticle surface charge or the presence of MPL-A. Immunofluorescence analysis of the omental tumor showed that ILMs, regardless of surface charge, were localized within clusters of CD11b+ myeloid cells 24 h post administration. Selective uptake of ILMs by myeloid cells in vivo indicates that these cells outcompete other cell populations in the ovarian tumor microenvironment, making them a strong target for therapeutic interventions.
Collapse
Affiliation(s)
- Achraf Noureddine
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (L.T.)
| | - Benjamin Marwedel
- Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (B.M.); (L.Y.M.)
| | - Lien Tang
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA; (A.N.); (L.T.)
| | - Lorel Y. Medina
- Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (B.M.); (L.Y.M.)
| | - Rita E. Serda
- Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA; (B.M.); (L.Y.M.)
| |
Collapse
|
11
|
Soha SA, Santhireswaran A, Huq S, Casimir-Powell J, Jenkins N, Hodgson GK, Sugiyama M, Antonescu CN, Impellizzeri S, Botelho RJ. Improved imaging and preservation of lysosome dynamics using silver nanoparticle-enhanced fluorescence. Mol Biol Cell 2023; 34:ar96. [PMID: 37405751 PMCID: PMC10551705 DOI: 10.1091/mbc.e22-06-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
The dynamics of living cells can be studied by live-cell fluorescence microscopy. However, this requires the use of excessive light energy to obtain good signal-to-noise ratio, which can then photobleach fluorochromes, and more worrisomely, lead to phototoxicity. Upon light excitation, noble metal nanoparticles such as silver nanoparticles (AgNPs) generate plasmons, which can then amplify excitation in direct proximity of the nanoparticle's surface and couple to the oscillating dipole of nearby radiating fluorophores, modifying their rate of emission and thus, enhancing their fluorescence. Here, we show that AgNPs fed to cells to accumulate within lysosomes enhanced the fluorescence of lysosome-targeted Alexa488-conjugated dextran, BODIPY-cholesterol, and DQ-BSA. Moreover, AgNP increased the fluorescence of GFP fused to the cytosolic tail of LAMP1, showing that metal enhanced fluorescence can occur across the lysosomal membrane. The inclusion of AgNPs in lysosomes did not disturb lysosomal properties such as lysosomal pH, degradative capacity, autophagy and autophagic flux, and membrane integrity, though AgNP seemed to increase basal lysosome tubulation. Importantly, by using AgNP, we could track lysosome motility with reduced laser power without damaging and altering lysosome dynamics. Overall, AgNP-enhanced fluorescence may be a useful tool to study the dynamics of the endo-lysosomal pathway while minimizing phototoxicity.
Collapse
Affiliation(s)
- Sumaiya A. Soha
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Araniy Santhireswaran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Saaimatul Huq
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Jayde Casimir-Powell
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Nicala Jenkins
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Gregory K. Hodgson
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Michael Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Costin N. Antonescu
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Stefania Impellizzeri
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| | - Roberto J. Botelho
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3
| |
Collapse
|
12
|
Char R, Liu Z, Jacqueline C, Davieau M, Delgado MG, Soufflet C, Fallet M, Chasson L, Chapuy R, Camosseto V, Strock E, Rua R, Almeida CR, Su B, Lennon-Duménil AM, Nal B, Roquilly A, Liang Y, Méresse S, Gatti E, Pierre P. RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes. Nat Commun 2023; 14:4290. [PMID: 37463962 PMCID: PMC10354229 DOI: 10.1038/s41467-023-40062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons. iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the pericentriolar organelles cloud of LPS-activated macrophages. We show that iRUFY3 controls macrophages migration, MHC II presentation and responses to Interferon-γ, while being important for intracellular Salmonella replication. Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in mouse upon LPS injection or bacterial pneumonia. This study highlights the role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to phagocyte activation and immune response regulation.
Collapse
Affiliation(s)
- Rémy Char
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Zhuangzhuang Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Maria-Graciela Delgado
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Clara Soufflet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Mathieu Fallet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Raphael Chapuy
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Voahirana Camosseto
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Eva Strock
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Rejane Rua
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Catarina R Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | | | - Beatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Stéphane Méresse
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
13
|
Szinyákovics J, Keresztes F, Kiss EA, Falcsik G, Vellai T, Kovács T. Potent New Targets for Autophagy Enhancement to Delay Neuronal Ageing. Cells 2023; 12:1753. [PMID: 37443788 PMCID: PMC10341134 DOI: 10.3390/cells12131753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a lysosomal-dependent degradation process of eukaryotic cells responsible for breaking down unnecessary and damaged intracellular components. Autophagic activity gradually declines with age due to genetic control, and this change contributes to the accumulation of cellular damage at advanced ages, thereby causing cells to lose their functionality and viability. This could be particularly problematic in post-mitotic cells including neurons, the mass destruction of which leads to various neurodegenerative diseases. Here, we aim to uncover new regulatory points where autophagy could be specifically activated and test these potential drug targets in neurodegenerative disease models of Drosophila melanogaster. One possible way to activate autophagy is by enhancing autophagosome-lysosome fusion that creates the autolysosome in which the enzymatic degradation happens. The HOPS (homotypic fusion and protein sorting) and SNARE (Snap receptor) protein complexes regulate the fusion process. The HOPS complex forms a bridge between the lysosome and autophagosome with the assistance of small GTPase proteins. Thus, small GTPases are essential for autolysosome maturation, and among these proteins, Rab2 (Ras-associated binding 2), Rab7, and Arl8 (Arf-like 8) are required to degrade the autophagic cargo. For our experiments, we used Drosophila melanogaster as a model organism. Nerve-specific small GTPases were silenced and overexpressed. We examined the effects of these genetic interventions on lifespan, climbing ability, and autophagy. Finally, we also studied the activation of small GTPases in a Parkinson's disease model. Our results revealed that GTP-locked, constitutively active Rab2 (Rab2-CA) and Arl8 (Arl8-CA) expression reduces the levels of the autophagic substrate p62/Ref(2)P in neurons, extends lifespan, and improves the climbing ability of animals during ageing. However, Rab7-CA expression dramatically shortens lifespan and inhibits autophagy. Rab2-CA expression also increases lifespan in a Parkinson's disease model fly strain overexpressing human mutant (A53T) α-synuclein protein. Data provided by this study suggests that Rab2 and Arl8 serve as potential targets for autophagy enhancement in the Drosophila nervous system. In the future, it might be interesting to assess the effect of Rab2 and Arl8 coactivation on autophagy, and it would also be worthwhile to validate these findings in a mammalian model and human cell lines. Molecules that specifically inhibit Rab2 or Arl8 serve as potent drug candidates to modulate the activity of the autophagic process in treating neurodegenerative pathologies. In the future, it would be reasonable to investigate which GAP enzyme can inhibit Rab2 or Arl8 specifically, but not affect Rab7, with similar medical purposes.
Collapse
Affiliation(s)
- Janka Szinyákovics
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Fanni Keresztes
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Eszter Anna Kiss
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Gergő Falcsik
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| |
Collapse
|
14
|
De Pace R, Bonifacino JS. Phagocytosis: Phagolysosome vesiculation promotes cell corpse degradation. Curr Biol 2023; 33:R143-R146. [PMID: 36854271 PMCID: PMC11071328 DOI: 10.1016/j.cub.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Cutting up food into small pieces is well known to improve digestion. New work now shows that this concept also applies in the cellular world, by demonstrating that phagolysosome vesiculation promotes cell corpse degradation in Caenorhabditis elegans blastomeres.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Mamais A, Wallings R, Rocha EM. Disease mechanisms as subtypes: Lysosomal dysfunction in the endolysosomal Parkinson's disease subtype. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:33-51. [PMID: 36803821 DOI: 10.1016/b978-0-323-85555-6.00009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Rebecca Wallings
- Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative disease, University of Florida, Gainesville, FL, United States
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
16
|
Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts. Nat Commun 2023; 14:906. [PMID: 36810735 PMCID: PMC9945426 DOI: 10.1038/s41467-023-36484-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.
Collapse
|
17
|
Piper B, Bogamuwa S, Hossain T, Farkas D, Rosas L, Green A, Newcomb G, Sun N, Horowitz JC, Bhagwani AR, Yang H, Kudryashova TV, Rojas M, Mora AL, Yan P, Mallampalli RK, Goncharova EA, Eckmann DM, Farkas L. RAB7 deficiency impairs pulmonary artery endothelial function and promotes pulmonary hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526842. [PMID: 36778418 PMCID: PMC9915659 DOI: 10.1101/2023.02.03.526842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with limited treatment options. Endothelial dysfunction plays a central role in development and progression of PAH, yet the underlying mechanisms are incompletely understood. The endosome-lysosome system is important to maintain cellular health and the small GTPase RAB7 regulates many functions of this system. Here, we explored the role of RAB7 in endothelial cell (EC) function and lung vascular homeostasis. We found reduced expression of RAB7 in ECs from PAH patients. Endothelial haploinsufficiency of RAB7 caused spontaneous PH in mice. Silencing of RAB7 in ECs induced broad changes in gene expression revealed via RNA sequencing and RAB7 silenced ECs showed impaired angiogenesis, expansion of a senescent cell fraction, combined with impaired endolysosomal trafficking and degradation, which suggests inhibition of autophagy at the pre-degradation level. Further, mitochondrial membrane potential and oxidative phosphorylation were decreased, and glycolysis was enhanced. Treatment with the RAB7 activator ML-098 reduced established PH in chronic hypoxia/SU5416 rats. In conclusion, we demonstrate here for the first time the fundamental impairment of EC function by loss of RAB7 that leads to PH and show RAB7 activation as a potential therapeutic strategy in a preclinical model of PH.
Collapse
|
18
|
Chen LJ, Cai ZB, Li SL, Liu SS, Ding L, He QJ, Chen LJ, Ye Q, Tian YP. Novel red light-emitting two-photon absorption compounds with large Stokes shifts for living cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121660. [PMID: 35932604 DOI: 10.1016/j.saa.2022.121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Three novel donor-π-acceptor two-photon absorption compounds (1PZPy, 2PZIm, 3CZPy) bearing the 10-butyl-10H-phenothiazine (9-butyl-9H-carbazole) donor, the pyridinium (benzimidazolium) acceptor, and the 2,5-divinylthiophene π-bridge were synthesized and fully characterized by 1H NMR, 13C NMR, FT-IR, and HRMS. The linear and nonlinear photophysical properties were systematically investigated. Their absorption properties show a strong solvent dependence, while the emission properties are nearly independent of solvent polarity. All of them possess large Stokes shifts (Δλ=149-190 nm in H2O). 1PZPy and 3CZPy exhibit red fluorescence emission centered at about 635 and 660 nm, respectively. The two-photon absorption cross-sections measured by the open aperture Z-scan technique are determined to be 486 (1PZPy), 601 (2PZIm), and 753 GM (3CZPy) in DMF. The density functional theory calculations were further carried out to reveal their electronic structures. All the target compounds are verified to have low cytotoxicity in the working solution and good capability for one- and two-photon excitation fluorescence imaging, suggesting their potential application in bioimaging. Moreover, they show the organelle targeting ability in living cells with the high Pearson's coefficients above 0.94 for the endoplasmic reticulum.
Collapse
Affiliation(s)
- Lin-Jie Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Bin Cai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Sheng-Li Li
- Department of Chemistry, Anhui Province Key Laboratory of Functional Inorganic Materials, Anhui University, Hefei 230039, PR China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Ling Ding
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiao-Jun He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Li-Jun Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qing Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu-Peng Tian
- Department of Chemistry, Anhui Province Key Laboratory of Functional Inorganic Materials, Anhui University, Hefei 230039, PR China
| |
Collapse
|
19
|
Sun X, Zhou L, Wang X, Li Y, Liu X, Chen Y, Zhong Z, Chen J. FYCO1 regulates migration, invasion, and invadopodia formation in HeLa cells through CDC42/N-WASP/Arp2/3 signaling pathway. Biochem Cell Biol 2022; 100:458-472. [PMID: 36342046 DOI: 10.1139/bcb-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
FYCO1, an autophagy adaptor, plays an essential role in the trafficking toward the plus-end of microtubules and the fusion of autophagosomes. Autophagic dysfunction is involved in numerous disease states, including cancers. Previous studies have implicated FYCO1 as one of the critical genes involved in the adenoma to carcinoma transition, but the biological function and mechanism of FYCO1 in carcinogenesis remain unclear. This study aims to elucidate the role and mechanism of up- and downregulation of FYCO1 in mediating tumor effects in HeLa cells. Functionally, FYCO1 promotes cellular migration, invasion, epithelial-mesenchymal transition, invadopodia formation, and matrix degradation, which are detected through wound healing, transwell, immunofluorescence, and Western blot approaches. Interestingly, the data show that although FYCO1 does not affect HeLa cell proliferation, cell cycle distribution, nor vessels' formation, FYCO1 can block the apoptotic function. FYCO1 inhibits cleavage of PARP, caspase3, and caspase9 and increases Bcl-2/Bax ratio. Then, we used CK666, an Arp2/3 specific inhibitor, to confirm that FYCO1 may promote the migration and invasion of HeLa cells through the CDC42/N-WASP/Arp2/3 signaling pathway. Taken together, these results provide a new insight that FYCO1, an autophagy adaptor, may also be a new regulator of tumor metastasis.
Collapse
Affiliation(s)
- Xuejiao Sun
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Linlin Zhou
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xinyao Wang
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yuying Li
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xiangyuan Liu
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yu Chen
- Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zilin Zhong
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
20
|
Jongsma MLM, Bakker N, Neefjes J. Choreographing the motor-driven endosomal dance. J Cell Sci 2022; 136:282885. [PMID: 36382597 PMCID: PMC9845747 DOI: 10.1242/jcs.259689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The endosomal system orchestrates the transport of lipids, proteins and nutrients across the entire cell. Along their journey, endosomes mature, change shape via fusion and fission, and communicate with other organelles. This intriguing endosomal choreography, which includes bidirectional and stop-and-go motions, is coordinated by the microtubule-based motor proteins dynein and kinesin. These motors bridge various endosomal subtypes to the microtubule tracks thanks to their cargo-binding domain interacting with endosome-associated proteins, and their motor domain interacting with microtubules and associated proteins. Together, these interactions determine the mobility of different endosomal structures. In this Review, we provide a comprehensive overview of the factors regulating the different interactions to tune the fascinating dance of endosomes along microtubules.
Collapse
Affiliation(s)
- Marlieke L. M. Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, 2333 ZC Leiden, The Netherlands,Author for correspondence ()
| |
Collapse
|
21
|
Sun Y, Wang X, Chen B, Huang M, Ma P, Xiong L, Huang J, Chen J, Huang S, Liu Y. TFEB-Mediated Lysosomal Restoration Alleviates High Glucose-Induced Cataracts Via Attenuating Oxidative Stress. Invest Ophthalmol Vis Sci 2022; 63:26. [PMID: 35758908 PMCID: PMC9248753 DOI: 10.1167/iovs.63.6.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Diabetic cataract (DC) is a visual disorder arising from diabetes mellitus (DM). Autophagy, a prosurvival intracellular process through lysosomal fusion and degradation, has been implicated in multiple diabetic complications. Herein, we performed in vivo and in vitro assays to explore the specific roles of the autophagy-lysosome pathway in DC. Methods Streptozotocin-induced DM and incubation in high glucose (HG) led to rat lens opacification. Protein Simple Wes, Western blot, and immunoassay were utilized to investigate autophagic changes in lens epithelial cells (LECs) and lens fiber cells (LFCs). RNA-sequencing (RNA-seq) was performed to explore genetic changes in the lenses of diabetic rats. Moreover, autophagy-lysosomal functions were examined using lysotracker, Western blot, and immunofluorescence analyses in HG-cultured primary rabbit LECs. Results First, DM and HG culture led to fibrotic LECs, swelling LFCs, and eventually cataracts. Further analysis showed aberrant autophagic degradation in LECs and LFCs during cataract formation. RNA-seq data revealed that the differentially expressed genes (DEGs) were enriched in the lysosome pathway. In primary LECs, HG treatment resulted in decreased transcription factor EB (TFEB) and cathepsin B (CTSB) activity, and increased lysosomal size and pH values. Moreover, TFEB-mediated dysfunctional lysosomes resulted from excessive oxidative stress in LECs under HG conditions. Furthermore, TFEB activation by curcumin analog C1 alleviated HG-induced cataracts through enhancing lysosome biogenesis and activating protective autophagy, thereby attenuating HG-mediated oxidative damage. Conclusions In summary, we first identified that ROS-TFEB-dependent lysosomal dysfunction contributed to autophagy blockage in HG-induced cataracts. Additionally, TFEB-mediated lysosomal restoration might be a promising therapeutic method for preventing and treating DC through mitigating oxidative stress.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Baoxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Mi Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Pengjuan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jingqi Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jieping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Bohnert KA, Johnson AE. Branching Off: New Insight Into Lysosomes as Tubular Organelles. Front Cell Dev Biol 2022; 10:863922. [PMID: 35646899 PMCID: PMC9130654 DOI: 10.3389/fcell.2022.863922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Lysosomes are acidic, membrane-bound organelles that play essential roles in cellular quality control, metabolism, and signaling. The lysosomes of a cell are commonly depicted as vesicular organelles. Yet, lysosomes in fact show a high degree of ultrastructural heterogeneity. In some biological contexts, lysosome membranes naturally transform into tubular, non-vesicular morphologies. Though the purpose and regulation of tubular lysosomes has been historically understudied, emerging evidence suggests that tubular lysosomes may carry out unique activities, both degradative and non-degradative, that are critical to cell behavior, function, and viability. Here, we discuss recent advances in understanding the biological significance of tubular lysosomes in cellular physiology, and we highlight a growing number of examples that indicate the centrality of this special class of lysosomes to health and disease.
Collapse
Affiliation(s)
- K. Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Alyssa E. Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
23
|
Kumar G, Chawla P, Dhiman N, Chadha S, Sharma S, Sethi K, Sharma M, Tuli A. RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning. Nat Commun 2022; 13:1540. [PMID: 35314681 PMCID: PMC8938454 DOI: 10.1038/s41467-022-29077-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
The bidirectional movement of lysosomes on microtubule tracks regulates their whole-cell spatial arrangement. Arl8b, a small GTP-binding (G) protein, promotes lysosome anterograde trafficking mediated by kinesin-1. Herein, we report an Arl8b effector, RUFY3, which regulates the retrograde transport of lysosomes. We show that RUFY3 interacts with the JIP4-dynein-dynactin complex and facilitates Arl8b association with the retrograde motor complex. Accordingly, RUFY3 knockdown disrupts the positioning of Arl8b-positive endosomes and reduces Arl8b colocalization with Rab7-marked late endosomal compartments. Moreover, we find that RUFY3 regulates nutrient-dependent lysosome distribution, although autophagosome-lysosome fusion and autophagic cargo degradation are not impaired upon RUFY3 depletion. Interestingly, lysosome size is significantly reduced in RUFY3 depleted cells, which could be rescued by inhibition of the lysosome reformation regulatory factor PIKFYVE. These findings suggest a model in which the perinuclear cloud arrangement of lysosomes regulates both the positioning and size of these proteolytic compartments.
Collapse
Affiliation(s)
- Gaurav Kumar
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Prateek Chawla
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Neha Dhiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Sanya Chadha
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sheetal Sharma
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Kanupriya Sethi
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Amit Tuli
- Divison of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India.
| |
Collapse
|
24
|
Keren-Kaplan T, Sarić A, Ghosh S, Williamson CD, Jia R, Li Y, Bonifacino JS. RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin. Nat Commun 2022; 13:1506. [PMID: 35314674 PMCID: PMC8938451 DOI: 10.1038/s41467-022-28952-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
The small GTPase ARL8 associates with endolysosomes, leading to the recruitment of several effectors that couple endolysosomes to kinesins for anterograde transport along microtubules, and to tethering factors for eventual fusion with other organelles. Herein we report the identification of the RUN- and FYVE-domain-containing proteins RUFY3 and RUFY4 as ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin for retrograde transport along microtubules. Using various methodologies, we find that RUFY3 and RUFY4 interact with both GTP-bound ARL8 and dynein-dynactin. In addition, we show that RUFY3 and RUFY4 promote concentration of endolysosomes in the juxtanuclear area of non-neuronal cells, and drive redistribution of endolysosomes from the axon to the soma in hippocampal neurons. The function of RUFY3 in retrograde transport contributes to the juxtanuclear redistribution of endolysosomes upon cytosol alkalinization. These studies thus identify RUFY3 and RUFY4 as ARL8-dependent, dynein-dynactin adaptors or regulators, and highlight the role of ARL8 in the control of both anterograde and retrograde endolysosome transport.
Collapse
Affiliation(s)
- Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amra Sarić
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rui Jia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Fang Z, Méresse S. Endomembrane remodeling and dynamics in Salmonella infection. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:24-41. [PMID: 35127930 PMCID: PMC8796136 DOI: 10.15698/mic2022.02.769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Salmonellae are bacteria that cause moderate to severe infections in humans, depending on the strain and the immune status of the infected host. These pathogens have the particularity of residing in the cells of the infected host. They are usually found in a vacuolar compartment that the bacteria shape with the help of effector proteins. Following invasion of a eukaryotic cell, the bacterial vacuole undergoes maturation characterized by changes in localization, composition and morphology. In particular, membrane tubules stretching over the microtubule cytoskeleton are formed from the bacterial vacuole. Although these tubules do not occur in all infected cells, they are functionally important and promote intracellular replication. This review focuses on the role and significance of membrane compartment remodeling observed in infected cells and the bacterial and host cell pathways involved.
Collapse
Affiliation(s)
- Ziyan Fang
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | |
Collapse
|
26
|
Reed S, Chen W, Bergstein V, He B. Toll-Dorsal signaling regulates the spatiotemporal dynamics of yolk granule tubulation during Drosophila cleavage. Dev Biol 2022; 481:64-74. [PMID: 34627795 PMCID: PMC10835099 DOI: 10.1016/j.ydbio.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
The Toll-Dorsal signaling pathway controls dorsal-ventral (DV) patterning in early Drosophila embryos, which defines specific cell fates along the DV axis and controls morphogenetic behavior of cells during gastrulation and beyond. The extent by which DV patterning information regulates subcellular organization in pre-gastrulation embryos remains unclear. We find that during Drosophila cleavage, the late endosome marker Rab7 is increasingly recruited to the yolk granules and promotes the formation of dynamic membrane tubules. The biogenesis of yolk granule tubules is positively regulated by active Rab7 and its effector complex HOPS, but negatively regulated by the Rab7 effector retromer. The occurrence of tubules is strongly biased towards the ventral side of the embryo, which we show is controlled by the Toll-Dorsal signaling pathway. Our work provides the first evidence for the formation and regulation of yolk granule tubulation in oviparous embryos and elucidates an unexpected role of Toll-Dorsal signaling in regulating this process.
Collapse
Affiliation(s)
- Samuel Reed
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Victoria Bergstein
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
27
|
Guardia CM, Jain A, Mattera R, Friefeld A, Li Y, Bonifacino JS. RUSC2 and WDR47 oppositely regulate kinesin-1-dependent distribution of ATG9A to the cell periphery. Mol Biol Cell 2021; 32:ar25. [PMID: 34432492 PMCID: PMC8693955 DOI: 10.1091/mbc.e21-06-0295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023] Open
Abstract
Autophagy-related protein 9 (ATG9) is a transmembrane protein component of the autophagy machinery that cycles between the trans-Golgi network (TGN) in the perinuclear area and other compartments in the peripheral area of the cell. In mammalian cells, export of the ATG9A isoform from the TGN into ATG9A-containing vesicles is mediated by the adaptor protein 4 (AP-4) complex. However, the mechanisms responsible for the subsequent distribution of these vesicles to the cell periphery are unclear. Herein we show that the AP-4-accessory protein RUSC2 couples ATG9A-containing vesicles to the plus-end-directed microtubule motor kinesin-1 via an interaction between a disordered region of RUSC2 and the kinesin-1 light chain. This interaction is counteracted by the microtubule-associated protein WDR47. These findings uncover a mechanism for the peripheral distribution of ATG9A-containing vesicles involving the function of RUSC2 as a kinesin-1 adaptor and WDR47 as a negative regulator of this function.
Collapse
Affiliation(s)
- Carlos M. Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Akansha Jain
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Alex Friefeld
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| |
Collapse
|
28
|
Tubular lysosomes harbor active ion gradients and poise macrophages for phagocytosis. Proc Natl Acad Sci U S A 2021; 118:2113174118. [PMID: 34607961 PMCID: PMC8522270 DOI: 10.1073/pnas.2113174118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are organelles that also act as cell-signaling hubs. They regulate functions ranging from antigen presentation to autophagy. Spherical lysosomes can spontaneously elongate into tubules in starving or inflamed immune cells. We describe a DNA-based reagent, denoted Tudor, that tubulates lysosomes in macrophages without triggering either an immune response or autophagy. Chemical imaging revealed that tubular lysosomes differ from vesicular ones in terms of their pH, calcium, and proteolytic activity. Tudor revealed a role for tubular lysosomes in that they enhance MMP9 secretion and phagocytosis in resting macrophages. The ability to tubulate lysosomes in resting immune cells without starving or inflaming them may help reveal new insights into how tubular lysosomes function. Lysosomes adopt dynamic, tubular states that regulate antigen presentation, phagosome resolution, and autophagy. Tubular lysosomes are studied either by inducing autophagy or by activating immune cells, both of which lead to cell states where lysosomal gene expression differs from the resting state. Therefore, it has been challenging to pinpoint the biochemical properties lysosomes acquire upon tubulation that could drive their functionality. Here we describe a DNA-based assembly that tubulates lysosomes in macrophages without activating them. Proteolytic activity maps at single-lysosome resolution revealed that tubular lysosomes were less degradative and showed proximal to distal luminal pH and Ca2+ gradients. Such gradients had been predicted but never previously observed. We identify a role for tubular lysosomes in promoting phagocytosis and activating MMP9. The ability to tubulate lysosomes without starving or activating immune cells may help reveal new roles for tubular lysosomes.
Collapse
|
29
|
Characterisation of Aspergillus fumigatus Endocytic Trafficking within Airway Epithelial Cells Using High-Resolution Automated Quantitative Confocal Microscopy. J Fungi (Basel) 2021; 7:jof7060454. [PMID: 34200399 PMCID: PMC8229978 DOI: 10.3390/jof7060454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
The precise characterization of the mechanisms modulating Aspergillus fumigatus survival within airway epithelial cells has been impaired by the lack of live-cell imaging technologies and user-friendly quantification approaches. Here we described the use of an automated image analysis pipeline to estimate the proportion of A. fumigatus spores taken up by airway epithelial cells, those contained within phagolysosomes or acidified phagosomes, along with the fungal factors contributing to these processes. Coupling the use of fluorescent A. fumigatus strains and fluorescent epithelial probes targeting lysosomes, acidified compartments and cell membrane, we found that both the efficacy of lysosome recruitment to phagosomes and phagosome acidification determines the capacity of airway epithelial cells to contain A. fumigatus growth. Overall, the capability of the airway epithelium to prevent A. fumigatus survival was higher in bronchial epithelial than alveolar epithelial cells. Certain A. fumigatus cell wall mutants influenced phagosome maturation in airway epithelial cells. Taken together, this live-cell 4D imaging approach allows observation and measurement of the very early processes of A. fumigatus interaction within live airway epithelial monolayers.
Collapse
|
30
|
Morgan AJ, Davis LC, Galione A. Choreographing endo-lysosomal Ca 2+ throughout the life of a phagosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119040. [PMID: 33872669 DOI: 10.1016/j.bbamcr.2021.119040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
The emergence of endo-lysosomes as ubiquitous Ca2+ stores with their unique cohort of channels has resulted in their being implicated in a growing number of processes in an ever-increasing number of cell types. The architectural and regulatory constraints of these acidic Ca2+ stores distinguishes them from other larger Ca2+ sources such as the ER and influx across the plasma membrane. In view of recent advances in the understanding of the modes of operation, we discuss phagocytosis as a template for how endo-lysosomal Ca2+ signals (generated via TPC and TRPML channels) can be integrated in multiple sophisticated ways into biological processes. Phagocytosis illustrates how different endo-lysosomal Ca2+ signals drive different phases of a process, and how these can be altered by disease or infection.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| |
Collapse
|
31
|
Pedersen NM, Wenzel EM, Wang L, Antoine S, Chavrier P, Stenmark H, Raiborg C. Protrudin-mediated ER-endosome contact sites promote MT1-MMP exocytosis and cell invasion. J Cell Biol 2021; 219:151827. [PMID: 32479595 PMCID: PMC7401796 DOI: 10.1083/jcb.202003063] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer cells break tissue barriers by use of small actin-rich membrane protrusions called invadopodia. Complete invadopodia maturation depends on protrusion outgrowth and the targeted delivery of the matrix metalloproteinase MT1-MMP via endosomal transport by mechanisms that are not known. Here, we show that the ER protein Protrudin orchestrates invadopodia maturation and function. Protrudin formed contact sites with MT1-MMP-positive endosomes that contained the RAB7-binding Kinesin-1 adaptor FYCO1, and depletion of RAB7, FYCO1, or Protrudin inhibited MT1-MMP-dependent extracellular matrix degradation and cancer cell invasion by preventing anterograde translocation and exocytosis of MT1-MMP. Moreover, when endosome translocation or exocytosis was inhibited by depletion of Protrudin or Synaptotagmin VII, respectively, invadopodia were unable to expand and elongate. Conversely, when Protrudin was overexpressed, noncancerous cells developed prominent invadopodia-like protrusions and showed increased matrix degradation and invasion. Thus, Protrudin-mediated ER-endosome contact sites promote cell invasion by facilitating translocation of MT1-MMP-laden endosomes to the plasma membrane, enabling both invadopodia outgrowth and MT1-MMP exocytosis.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sandra Antoine
- Research Center, Institut Curie, Membrane and Cytoskeleton Dynamics and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR 144, Paris, France
| | - Philippe Chavrier
- Research Center, Institut Curie, Membrane and Cytoskeleton Dynamics and Cell and Tissue Imaging Facility, Centre National de la Recherche Scientifique UMR 144, Paris, France
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Patel NM, Siva MSA, Kumari R, Shewale DJ, Rai A, Ritt M, Sharma P, Setty SRG, Sivaramakrishnan S, Soppina V. KIF13A motors are regulated by Rab22A to function as weak dimers inside the cell. SCIENCE ADVANCES 2021; 7:7/6/eabd2054. [PMID: 33536208 PMCID: PMC7857691 DOI: 10.1126/sciadv.abd2054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/16/2020] [Indexed: 05/04/2023]
Abstract
Endocytic recycling is a complex itinerary, critical for many cellular processes. Membrane tubulation is a hallmark of recycling endosomes (REs), mediated by KIF13A, a kinesin-3 family motor. Understanding the regulatory mechanism of KIF13A in RE tubulation and cargo recycling is of fundamental importance but is overlooked. Here, we report a unique mechanism of KIF13A dimerization modulated by Rab22A, a small guanosine triphosphatase, during RE tubulation. A conserved proline between neck coil-coiled-coil (NC-CC1) domains of KIF13A creates steric hindrance, rendering the motors as inactive monomers. Rab22A plays an unusual role by binding to NC-CC1 domains of KIF13A, relieving proline-mediated inhibition and facilitating motor dimerization. As a result, KIF13A motors produce balanced motility and force against multiple dyneins in a molecular tug-of-war to regulate RE tubulation and homeostasis. Together, our findings demonstrate that KIF13A motors are tuned at a single-molecule level to function as weak dimers on the cellular cargo.
Collapse
Affiliation(s)
- Nishaben M Patel
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | | | - Ruchi Kumari
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Dipeshwari J Shewale
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Ashim Rai
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Prerna Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Virupakshi Soppina
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.
| |
Collapse
|
33
|
Saric A, Freeman SA. Endomembrane Tension and Trafficking. Front Cell Dev Biol 2021; 8:611326. [PMID: 33490077 PMCID: PMC7820182 DOI: 10.3389/fcell.2020.611326] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells employ diverse uptake mechanisms depending on their specialized functions. While such mechanisms vary widely in their defining criteria: scale, molecular machinery utilized, cargo selection, and cargo destination, to name a few, they all result in the internalization of extracellular solutes and fluid into membrane-bound endosomes. Upon scission from the plasma membrane, this compartment is immediately subjected to extensive remodeling which involves tubulation and vesiculation/budding of the limiting endomembrane. This is followed by a maturation process involving concomitant retrograde transport by microtubule-based motors and graded fusion with late endosomes and lysosomes, organelles that support the degradation of the internalized content. Here we review an important determinant for sorting and trafficking in early endosomes and in lysosomes; the control of tension on the endomembrane. Remodeling of endomembranes is opposed by high tension (caused by high hydrostatic pressure) and supported by the relief of tension. We describe how the timely and coordinated efflux of major solutes along the endocytic pathway affords the cell control over such tension. The channels and transporters that expel the smallest components of the ingested medium from the early endocytic fluid are described in detail as these systems are thought to enable endomembrane deformation by curvature-sensing/generating coat proteins. We also review similar considerations for the lysosome where resident hydrolases liberate building blocks from luminal macromolecules and transporters flux these organic solutes to orchestrate trafficking events. How the cell directs organellar trafficking based on the luminal contents of organelles of the endocytic pathway is not well-understood, however, we propose that the control over membrane tension by solute transport constitutes one means for this to ensue.
Collapse
Affiliation(s)
- Amra Saric
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Center for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
López-Haber C, Levin-Konigsberg R, Zhu Y, Bi-Karchin J, Balla T, Grinstein S, Marks MS, Mantegazza AR. Phosphatidylinositol-4-kinase IIα licenses phagosomes for TLR4 signaling and MHC-II presentation in dendritic cells. Proc Natl Acad Sci U S A 2020; 117:28251-28262. [PMID: 33109721 PMCID: PMC7668187 DOI: 10.1073/pnas.2001948117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor (TLR) recruitment to phagosomes in dendritic cells (DCs) and downstream TLR signaling are essential to initiate antimicrobial immune responses. However, the mechanisms underlying TLR localization to phagosomes are poorly characterized. We show herein that phosphatidylinositol-4-kinase IIα (PI4KIIα) plays a key role in initiating phagosomal TLR4 responses in murine DCs by generating a phosphatidylinositol-4-phosphate (PtdIns4P) platform conducive to the binding of the TLR sorting adaptor Toll-IL1 receptor (TIR) domain-containing adaptor protein (TIRAP). PI4KIIα is recruited to maturing lipopolysaccharide (LPS)-containing phagosomes in an adaptor protein-3 (AP-3)-dependent manner, and both PI4KIIα and PtdIns4P are detected on phagosomal membrane tubules. Knockdown of PI4KIIα-but not the related PI4KIIβ-impairs TIRAP and TLR4 localization to phagosomes, reduces proinflammatory cytokine secretion, abolishes phagosomal tubule formation, and impairs major histocompatibility complex II (MHC-II) presentation. Phagosomal TLR responses in PI4KIIα-deficient DCs are restored by reexpression of wild-type PI4KIIα, but not of variants lacking kinase activity or AP-3 binding. Our data indicate that PI4KIIα is an essential regulator of phagosomal TLR signaling in DCs by ensuring optimal TIRAP recruitment to phagosomes.
Collapse
Affiliation(s)
- Cynthia López-Haber
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Roni Levin-Konigsberg
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yueyao Zhu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
35
|
Murakawa T, Kiger AA, Sakamaki Y, Fukuda M, Fujita N. An autophagy-dependent tubular lysosomal network synchronizes degradative activity required for muscle remodeling. J Cell Sci 2020; 133:jcs248336. [PMID: 33077556 PMCID: PMC7673362 DOI: 10.1242/jcs.248336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022] Open
Abstract
Lysosomes are compartments for the degradation of both endocytic and autophagic cargoes. The shape of lysosomes changes with cellular degradative demands; however, there is limited knowledge about the mechanisms or significance that underlies distinct lysosomal morphologies. Here, we found an extensive tubular autolysosomal network in Drosophila abdominal muscle remodeling during metamorphosis. The tubular network transiently appeared and exhibited the capacity to degrade autophagic cargoes. The tubular autolysosomal network was uniquely marked by the autophagic SNARE protein Syntaxin17 and its formation depended on both autophagic flux and degradative function, with the exception of the Atg12 and Atg8 ubiquitin-like conjugation systems. Among ATG-deficient mutants, the efficiency of lysosomal tubulation correlated with the phenotypic severity in muscle remodeling. The lumen of the tubular network was continuous and homogeneous across a broad region of the remodeling muscle. Altogether, we revealed that the dynamic expansion of a tubular autolysosomal network synchronizes the abundant degradative activity required for developmentally regulated muscle remodeling.
Collapse
Affiliation(s)
- Tadayoshi Murakawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Amy A Kiger
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naonobu Fujita
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-11 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Precursory Research for Embryonic Science & Technology (PRESTO), Japan Science & Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
36
|
Wu PH, Onodera Y, Giaccia AJ, Le QT, Shimizu S, Shirato H, Nam JM. Lysosomal trafficking mediated by Arl8b and BORC promotes invasion of cancer cells that survive radiation. Commun Biol 2020; 3:620. [PMID: 33110168 PMCID: PMC7591908 DOI: 10.1038/s42003-020-01339-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Enhanced invasiveness, a critical determinant of metastasis and poor prognosis, has been observed in cancer cells that survive cancer therapy, including radiotherapy. Here, we show that invasiveness in radiation-surviving cancer cells is associated with alterations in lysosomal exocytosis caused by the enhanced activation of Arl8b, a small GTPase that regulates lysosomal trafficking. The binding of Arl8b with its effector, SKIP, is increased after radiation through regulation of BORC-subunits. Knockdown of Arl8b or BORC-subunits decreases lysosomal exocytosis and the invasiveness of radiation-surviving cells. Notably, high expression of ARL8B and BORC-subunit genes is significantly correlated with poor prognosis in breast cancer patients. Sp1, an ATM-regulated transcription factor, is found to increase BORC-subunit genes expression after radiation. In vivo experiments show that ablation of Arl8b decreases IR-induced invasive tumor growth and distant metastasis. These findings suggest that BORC-Arl8b-mediated lysosomal trafficking is a target for improving radiotherapy by inhibiting invasive tumor growth and metastasis.
Collapse
Affiliation(s)
- Ping-Hsiu Wu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shinichi Shimizu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, 060-8638, Sapporo, Hokkaido, Japan.
| |
Collapse
|
37
|
Zhou CX, Wang Y, Shi LY, Wang ZB, Ma Y, Li CR, Zhang NN, Zhang YX, Zhang F, Zhang D, Xia ZR. GTPases Arf5 and Arl2 function partially distinctly during oocyte meiosis. J Cell Biochem 2020; 122:198-208. [PMID: 32985032 DOI: 10.1002/jcb.29839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 01/11/2023]
Abstract
Mammalian female meiosis must be tightly regulated to produce high-quality mature oocytes for subsequent regular fertilization and healthy live birth of the next generation. GTPases control many important signal pathways involved in diverse cellular activities. ADP-ribosylation factor family members (Arfs) in mice possess GTPase activities, and some members have been found to function in meiosis. However, whether other Arfs play a role in meiosis is unknown. In this study, we found that Arl2 and Arf5 are the richest among Arfs in mouse oocytes, and they are more abundant in oocytes than in granular cells. Furthermore, Arl2 and Arf5 depletion both impeded meiotic progression, but by affecting spindles and microfilaments, respectively. Moreover, Arl2 and Arf5 depletion both significantly increased regular reactive oxygen species levels and decreased mitochondrial membrane potential and autophagy, indicating that oocyte quality was damaged by Arl2 and Arf5 depletion. These results suggest that Arl2 and Arf5 are two novel essential GTPases required for oocyte meiosis and quality control.
Collapse
Affiliation(s)
- Chun-Xiang Zhou
- Drum Tower Hospital Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu, China
| | - Yang Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li-Ya Shi
- Tongji University School of Medicine, Shanghai East Hospital, Shanghai, Pudong, China
| | - Zi-Bin Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Ma
- The Second Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Cong-Rong Li
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na-Na Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Fenli Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Dong Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | | |
Collapse
|
38
|
Char R, Pierre P. The RUFYs, a Family of Effector Proteins Involved in Intracellular Trafficking and Cytoskeleton Dynamics. Front Cell Dev Biol 2020; 8:779. [PMID: 32850870 PMCID: PMC7431699 DOI: 10.3389/fcell.2020.00779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking is essential for cell structure and function. In order to perform key tasks such as phagocytosis, secretion or migration, cells must coordinate their intracellular trafficking, and cytoskeleton dynamics. This relies on certain classes of proteins endowed with specialized and conserved domains that bridge membranes with effector proteins. Of particular interest are proteins capable of interacting with membrane subdomains enriched in specific phosphatidylinositol lipids, tightly regulated by various kinases and phosphatases. Here, we focus on the poorly studied RUFY family of adaptor proteins, characterized by a RUN domain, which interacts with small GTP-binding proteins, and a FYVE domain, involved in the recognition of phosphatidylinositol 3-phosphate. We report recent findings on this protein family that regulates endosomal trafficking, cell migration and upon dysfunction, can lead to severe pathology at the organismal level.
Collapse
Affiliation(s)
- Rémy Char
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Philippe Pierre
- Aix Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,Institute for Research in Biomedicine and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Xie X, Yang C, Duan C, Chen H, Zeng T, Huang S, Li H, Ren M, Lin WJ, Yan L. Advanced glycation end products reduce macrophage-mediated killing of Staphylococcus aureus by ARL8 upregulation and inhibition of autolysosome formation. Eur J Immunol 2020; 50:1174-1186. [PMID: 32250445 DOI: 10.1002/eji.201948477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/03/2025]
Abstract
Staphylococcus aureus, a pathogen most frequently found in diabetic foot ulcer infection, was recently suggested as an intracellular pathogen. Autophagy in professional phagocytes like macrophages allows selective destruction of intracellular pathogens, and its dysfunction can increase the survival of internalized pathogens, causing infections to worsen and spread. Previous works have shown that S. aureus infections in diabetes appeared more severe and invasive, and coincided with the suppressed autophagy in dermal tissues of diabetic rat, but the exact mechanisms are unclear. Here, we demonstrated that accumulation of advanced glycation end products (AGEs) contributed to the diminished autophagy-mediated clearance of S. aureus in the macrophages differentiated from PMA-treated human monocytic cell line THP-1. Importantly, infected macrophages showed increased S. aureus containing autophagosome, but the subsequent fusion of S. aureus containing autophagosome and lysosome was suppressed in AGEs-pretreated cells, suggesting AGEs blocked the autophagic flux and enabled S. aureus survival and escape. At the molecular level, elevated lysosomal ARL8 expression in AGEs-treated macrophages was required for AGEs-mediated inhibition of autophagosome-lysosome fusion. Silencing ARL8 in AGEs-treated macrophages restored autophagic flux and increased S. aureus clearance. Our results therefore demonstrate a new mechanism, in which AGEs accelerate S. aureus immune evasion in macrophages by ARL8-dependent suppression of autophagosome-lysosome fusion and bactericidal capability.
Collapse
Affiliation(s)
- Xiaoying Xie
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuan Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Songyin Huang
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Li
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meng Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
40
|
Abstract
Neurodegenerative diseases are, at present, major socio-economic burdens without effective treatments and their increasing prevalence means that these diseases will be a challenge for future generations. Neurodegenerative diseases may differ in etiology and pathology but are often caused by the accumulation of dysfunctional and aggregation-prone proteins. Autophagy, a conserved cellular mechanism, deals with cellular stress and waste product build-up and has been shown to reduce the accumulation of dysfunctional proteins in animal models of neurodegenerative diseases. Historically, progress in understanding the precise function of lipids has traditionally been far behind other biological molecules (like proteins) but emerging works demonstrate the importance of lipids in the autophagy pathway and how the disturbance of lipid metabolism is connected to neurodegeneration. Here we review how altered autophagy and the disturbance of lipid metabolism, particularly of phosphoinositols and sphingolipids, feature in neurodegenerative diseases and address work from the field that suggests that these potentially offer an opportunity of therapeutic intervention.
Collapse
Affiliation(s)
- Sergio Hernandez-Diaz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | - Sandra-Fausia Soukup
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| |
Collapse
|
41
|
Srdić M, Ovčina I, Fotschki B, Haros CM, Laparra Llopis JM. C. quinoa and S. hispanica L. Seeds Provide Immunonutritional Agonists to Selectively Polarize Macrophages. Cells 2020; 9:E593. [PMID: 32131465 PMCID: PMC7140429 DOI: 10.3390/cells9030593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Diet-related immunometabolic-based diseases are associated with chronic inflammation in metabolic tissues, and infiltrated macrophages have been suggested as mediators for tissue- damaging inflammation. Growing evidence implicates Chenopodium quinoa and Salvia hispanica L. as important contributors to immunonutritional health. However, the functional roles of the immunonutritional protease inhibitors (PPIs) found in these crops on the macrophages' metabolic and phenotypic adaptation remain to be elucidated. The salt soluble fraction of proteins was extracted and analyzed confirming the presence of 11S and 2S albumin. The <30 kDa fraction of the extract from both crops was subjected to simulated gastrointestinal digestion, where (RP-LC-MS/MS analyses) polypeptides from 2S-type of proteins were found, along with the 2S albumin (13 kDa) for S. hispanica in the bioaccessible fraction (BAF). Using human-like macrophage cells to deepen our understanding of the modulatory effects of this BAF, FACS analyses revealed their potential as TLR4 agonists, favoring increased phenotypic CD68/CD206 ratios. The results of mitochondrial stress tests showed that cells increased oxygen consumption rates and non-mitochondrial respiration, confirming negligible deleterious effects on mitochondrial function. At molecular-level, adaptation responses shed light on changes showing biological correlation with TLR4 signaling. The resulting immunometabolic effects triggered by PPIs can be a part of a tailored nutritional intervention strategy in immunometabolic-based diseases.
Collapse
Affiliation(s)
- Maša Srdić
- Madrid Institute for Advanced Studies in Food (IMDEA Food). Ctra. Cantoblanco 8, 28049 Madrid, Spain; (M.S.); (I.O.)
| | - Ivana Ovčina
- Madrid Institute for Advanced Studies in Food (IMDEA Food). Ctra. Cantoblanco 8, 28049 Madrid, Spain; (M.S.); (I.O.)
| | - Bartosz Fotschki
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Claudia Monika Haros
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Paterna, Valencia, Spain;
| | - Jose Moises Laparra Llopis
- Madrid Institute for Advanced Studies in Food (IMDEA Food). Ctra. Cantoblanco 8, 28049 Madrid, Spain; (M.S.); (I.O.)
| |
Collapse
|
42
|
Jongsma ML, Bakker J, Cabukusta B, Liv N, van Elsland D, Fermie J, Akkermans JL, Kuijl C, van der Zanden SY, Janssen L, Hoogzaad D, van der Kant R, Wijdeven RH, Klumperman J, Berlin I, Neefjes J. SKIP-HOPS recruits TBC1D15 for a Rab7-to-Arl8b identity switch to control late endosome transport. EMBO J 2020; 39:e102301. [PMID: 32080880 PMCID: PMC7073467 DOI: 10.15252/embj.2019102301] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
The endolysosomal system fulfils a myriad of cellular functions predicated on regulated membrane identity progressions, collectively termed maturation. Mature or “late” endosomes are designated by small membrane‐bound GTPases Rab7 and Arl8b, which can either operate independently or collaborate to form a joint compartment. Whether, and how, Rab7 and Arl8b resolve this hybrid identity compartment to regain functional autonomy is unknown. Here, we report that Arl8b employs its effector SKIP to instigate inactivation and removal of Rab7 from select membranes. We find that SKIP interacts with Rab7 and functions as its negative effector, delivering the cognate GAP, TBC1D15. Recruitment of TBC1D15 to SKIP occurs via the HOPS complex, whose assembly is facilitated by contacts between Rab7 and the KMI motif of SKIP. Consequently, SKIP mediates reinstatement of single identity Arl8b sub‐compartment through an ordered Rab7‐to‐Arl8b handover, and, together with Rab7's positive effector RILP, enforces spatial, temporal and morphological compartmentalization of endolysosomal organelles.
Collapse
Affiliation(s)
- Marlieke Lm Jongsma
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Bakker
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daphne van Elsland
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Job Fermie
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jimmy Ll Akkermans
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Coenraad Kuijl
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Denise Hoogzaad
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Rik van der Kant
- Center for Neurogenomics and Cognitive Research, Faculty of Sciences, VU Amsterdam, Amsterdam, The Netherlands
| | - Ruud H Wijdeven
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Abstract
Autophagy is a major intracellular degradation system that derives its degradative abilities from the lysosome. The most well-studied form of autophagy is macroautophagy, which delivers cytoplasmic material to lysosomes via the double-membraned autophagosome. Other forms of autophagy, namely chaperone-mediated autophagy and microautophagy, occur directly on the lysosome. Besides providing the means for degradation, lysosomes are also involved in autophagy regulation and can become substrates of autophagy when damaged. During autophagy, they exhibit notable changes, including increased acidification, enhanced enzymatic activity, and perinuclear localization. Despite their importance to autophagy, details on autophagy-specific regulation of lysosomes remain relatively scarce. This review aims to provide a summary of current understanding on the behaviour of lysosomes during autophagy and outline unexplored areas of autophagy-specific lysosome research.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
44
|
Samanta D, Clemente TM, Schuler BE, Gilk SD. Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth. PLoS Pathog 2019; 15:e1007855. [PMID: 31869379 PMCID: PMC6953889 DOI: 10.1371/journal.ppat.1007855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/10/2020] [Accepted: 12/05/2019] [Indexed: 01/24/2023] Open
Abstract
Upon host cell infection, the obligate intracellular bacterium Coxiella burnetii resides and multiplies within the Coxiella–Containing Vacuole (CCV). The nascent CCV progresses through the endosomal maturation pathway into a phagolysosome, acquiring endosomal and lysosomal markers, as well as acidic pH and active proteases and hydrolases. Approximately 24–48 hours post infection, heterotypic fusion between the CCV and host endosomes/lysosomes leads to CCV expansion and bacterial replication in the mature CCV. Initial CCV acidification is required to activate C. burnetii metabolism and the Type 4B Secretion System (T4BSS), which secretes effector proteins required for CCV maturation. However, we found that the mature CCV is less acidic (pH~5.2) than lysosomes (pH~4.8). Further, inducing CCV acidification to pH~4.8 causes C. burnetii lysis, suggesting C. burnetii actively regulates pH of the mature CCV. Because heterotypic fusion with host endosomes/lysosomes may influence CCV pH, we investigated endosomal maturation in cells infected with wildtype (WT) or T4BSS mutant (ΔdotA) C. burnetii. In WT-infected cells, we observed a significant decrease in proteolytically active, LAMP1-positive endolysosomal vesicles, compared to mock or ΔdotA-infected cells. Using a ratiometric assay to measure endosomal pH, we determined that the average pH of terminal endosomes in WT-infected cells was pH~5.8, compared to pH~4.75 in mock and ΔdotA-infected cells. While endosomes progressively acidified from the periphery (pH~5.5) to the perinuclear area (pH~4.7) in both mock and ΔdotA-infected cells, endosomes did not acidify beyond pH~5.2 in WT-infected cells. Finally, increasing lysosomal biogenesis by overexpressing the transcription factor EB resulted in smaller, more proteolytically active CCVs and a significant decrease in C. burnetii growth, indicating host lysosomes are detrimental to C. burnetii. Overall, our data suggest that C. burnetii inhibits endosomal maturation to reduce the number of proteolytically active lysosomes available for heterotypic fusion with the CCV, possibly as a mechanism to regulate CCV pH. The obligate intracellular bacterium Coxiella burnetii causes human Q fever, which manifests as a flu-like illness but can develop into a life-threatening and difficult to treat endocarditis. C. burnetii, in contrast to many other intracellular bacteria, thrives within a lysosome-like vacuole in host cells. However, we previously found that the C. burnetii vacuole is not as acidic as lysosomes and increased acidification kills the bacteria, suggesting that C. burnetii regulates the pH of its vacuole. Here, we discovered that C. burnetii blocks endolysosomal maturation and acidification during host cell infection, resulting in fewer lysosomes in the host cell. Moreover, increasing lysosomes in the host cells inhibited C. burnetii growth. Together, our study suggests that C. burnetii regulates vacuole acidity and blocks endosomal maturation in order to produce a permissive intracellular niche.
Collapse
Affiliation(s)
- Dhritiman Samanta
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Tatiana M. Clemente
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Baleigh E. Schuler
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stacey D. Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kraut RS, Knust E. Changes in endolysosomal organization define a pre-degenerative state in the crumbs mutant Drosophila retina. PLoS One 2019; 14:e0220220. [PMID: 31834921 PMCID: PMC6910688 DOI: 10.1371/journal.pone.0220220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mutations in the epithelial polarity gene crumbs (crb) lead to retinal degeneration in Drosophila and in humans. The overall morphology of the retina and its deterioration in Drosophila crb mutants has been well-characterized, but the cell biological origin of the degeneration is not well understood. Degenerative conditions in the retina and elsewhere in the nervous system often involve defects in degradative intracellular trafficking pathways. So far, however, effects of crb on the endolysosomal system, or on the spatial organization of these compartments in photoreceptor cells have not been described. We therefore asked whether photoreceptors in crb mutants exhibit alterations in endolysosomal compartments under pre-degenerative conditions, where the retina is still morphologically intact. Data presented here show that, already well before the onset of degeneration, Arl8, Rab7, and Atg8-carrying endolysosomal and autophagosomal compartments undergo changes in morphology and positioning with respect to each other in crb mutant retinas. We propose that these changes may be early signs of the degeneration-prone condition in crb retinas.
Collapse
Affiliation(s)
- Rachel S. Kraut
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse, Dresden, Germany
- * E-mail:
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse, Dresden, Germany
| |
Collapse
|
46
|
Hipolito VEB, Diaz JA, Tandoc KV, Oertlin C, Ristau J, Chauhan N, Saric A, Mclaughlan S, Larsson O, Topisirovic I, Botelho RJ. Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation. PLoS Biol 2019; 17:e3000535. [PMID: 31800587 PMCID: PMC6913987 DOI: 10.1371/journal.pbio.3000535] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/16/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that govern organelle adaptation and remodelling remain poorly defined. The endo-lysosomal system degrades cargo from various routes, including endocytosis, phagocytosis, and autophagy. For phagocytes, endosomes and lysosomes (endo-lysosomes) are kingpin organelles because they are essential to kill pathogens and process and present antigens. During phagocyte activation, endo-lysosomes undergo a morphological transformation, going from a collection of dozens of globular structures to a tubular network in a process that requires the phosphatidylinositol-3-kinase-AKT-mechanistic target of rapamycin (mTOR) signalling pathway. Here, we show that the endo-lysosomal system undergoes an expansion in volume and holding capacity during phagocyte activation within 2 h of lipopolysaccharides (LPS) stimulation. Endo-lysosomal expansion was paralleled by an increase in lysosomal protein levels, but this was unexpectedly largely independent of the transcription factor EB (TFEB) and transcription factor E3 (TFE3), which are known to scale up lysosome biogenesis. Instead, we demonstrate a hitherto unappreciated mechanism of acute organelle expansion via mTOR Complex 1 (mTORC1)-dependent increase in translation, which appears to be mediated by both S6Ks and 4E-BPs. Moreover, we show that stimulation of RAW 264.7 macrophage cell line with LPS alters translation of a subset but not all of mRNAs encoding endo-lysosomal proteins, thereby suggesting that endo-lysosome expansion is accompanied by functional remodelling. Importantly, mTORC1-dependent increase in translation activity was necessary for efficient and rapid antigen presentation by dendritic cells. Collectively, we identified a previously unknown and functionally relevant mechanism for endo-lysosome expansion that relies on mTORC1-dependent translation to stimulate endo-lysosome biogenesis in response to an infection signal. Activation of phagocytes rapidly expands the endo-lysosomal system and promotes antigen presentation. Endo-lysosome expansion was driven by mTORC1-dependent enhanced translation, revealing regulated translation as a mechanism to remodel membrane organelles in response to external signals and stresses.
Collapse
Affiliation(s)
- Victoria E. B. Hipolito
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Jacqueline A. Diaz
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Kristofferson V. Tandoc
- Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- The Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Christian Oertlin
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Johannes Ristau
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Neha Chauhan
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Amra Saric
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Shannon Mclaughlan
- The Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Topisirovic
- Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- The Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Roberto J. Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
47
|
Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 2019; 21:101-118. [DOI: 10.1038/s41580-019-0185-4] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
|
48
|
Wang Z, Wheeler RJ, Sunter JD. Lysosome assembly and disassembly changes endocytosis rate through the Leishmania cell cycle. Microbiologyopen 2019; 9:e969. [PMID: 31743959 PMCID: PMC7002101 DOI: 10.1002/mbo3.969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/03/2023] Open
Abstract
The Leishmania lysosome has an atypical structure, consisting of an elongated vesicle‐filled tubule running along the anterior–posterior axis of the cell, which is termed the multivesicular tubule (MVT) lysosome. Alongside, the MVT lysosome is one or more microtubules, the lysosomal microtubule(s). Previous work indicated there were cell cycle‐related changes in MVT lysosome organization; however, these only provided snapshots and did not connect the changes in the lysosomal microtubule(s) or lysosomal function. Using mNeonGreen tagged cysteine peptidase A and SPEF1 as markers of the MVT lysosome and lysosomal microtubule(s), we examined the dynamics of these structures through the cell cycle. Both the MVT lysosome and lysosomal microtubule(s) elongated at the beginning of the cell cycle before plateauing and then disassembling in late G2 before cytokinesis. Moreover, the endocytic rate in cells where the MVT lysosome and lysosomal microtubule(s) had disassembled was extremely low. The dynamic nature of the MVT lysosome and lysosomal microtubule(s) parallels that of the Trypanosoma cruzi cytostome/cytopharynx, which also has a similar membrane tubule structure with associated microtubules. As the cytostome/cytopharynx is an ancestral feature of the kinetoplastids, this suggests that the Leishmania MVT lysosome and lysosomal microtubule(s) are a reduced cytostome/cytopharynx‐like feature.
Collapse
Affiliation(s)
- Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Richard J Wheeler
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
49
|
Inpanathan S, Botelho RJ. The Lysosome Signaling Platform: Adapting With the Times. Front Cell Dev Biol 2019; 7:113. [PMID: 31281815 PMCID: PMC6595708 DOI: 10.3389/fcell.2019.00113] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are the terminal degradative compartment of autophagy, endocytosis and phagocytosis. What once was viewed as a simple acidic organelle in charge of macromolecular digestion has emerged as a dynamic organelle capable of integrating cellular signals and producing signal outputs. In this review, we focus on the concept that the lysosome surface serves as a platform to assemble major signaling hubs like mTORC1, AMPK, GSK3 and the inflammasome. These molecular assemblies integrate and facilitate cross-talk between signals such as amino acid and energy levels, membrane damage and infection, and ultimately enable responses such as autophagy, cell growth, membrane repair and microbe clearance. In particular, we review how molecular machinery like the vacuolar-ATPase proton pump, sestrins, the GATOR complexes, and the Ragulator, modulate mTORC1, AMPK, GSK3 and inflammation. We then elaborate how these signals control autophagy initiation and resolution, TFEB-mediated lysosome adaptation, lysosome remodeling, antigen presentation, inflammation, membrane damage repair and clearance. Overall, by being at the cross-roads for several membrane pathways, lysosomes have emerged as the ideal surveillance compartment to sense, integrate and elicit cellular behavior and adaptation in response to changing environmental and cellular conditions.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
50
|
Miyake K, Saitoh S, Sato R, Shibata T, Fukui R, Murakami Y. Endolysosomal compartments as platforms for orchestrating innate immune and metabolic sensors. J Leukoc Biol 2019; 106:853-862. [DOI: 10.1002/jlb.mr0119-020r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Shin‐ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| | - Yusuke Murakami
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical ScienceThe University of Tokyo Minato‐ku Tokyo Japan
| |
Collapse
|