1
|
Ma N, Zhang M, Zhou J, Jiang C, Ghonaim AH, Sun Y, Zhou P, Guo G, Evers A, Zhu H, He Q, Lebbink RJ, Bosch BJ, Li W. Genome-wide CRISPR/Cas9 library screen identifies C16orf62 as a host dependency factor for porcine deltacoronavirus infection. Emerg Microbes Infect 2024; 13:2400559. [PMID: 39222358 PMCID: PMC11404382 DOI: 10.1080/22221751.2024.2400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging pathogen that can cause severe diarrhoea and high mortality in suckling piglets. Moreover, evidence of PDCoV infection in humans has raised concerns regarding potential public health risks. To identify potential therapeutic targets for PDCoV, we performed a genome-wide CRISPR/Cas9 library screening to find key host factors important to PDCoV infection. Several host genes in this screen were enriched, including ANPEP, which encodes the PDCoV receptor aminopeptidase N (APN). Furthermore, we discovered C16orf62, also known as the VPS35 endosomal protein sorting factor like (VPS35L), as an important host factor required for PDCoV infection. C16orf62 is an important component of the multiprotein retriever complex involved in protein recycling in the endosomal compartment and its gene knockout led to a remarkable decrease in the binding and internalization of PDCoV into host cells. While we did not find evidence for direct interaction between C16orf62 and the viral s (spike) protein, C16orf62 gene knockout was shown to downregulate APN expression at the cell surface. This study marks the first instance of a genome-wide CRISPR/Cas9-based screen tailored for PDCoV, revealing C16orf62 as a host factor required for PDCoV replication. These insights may provide promising avenues for the development of antiviral drugs against PDCoV infection.
Collapse
Affiliation(s)
- Ningning Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jiaru Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Changsheng Jiang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, People's Republic of China
| | - Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Desert Research Center, Cairo, Egypt
| | - Yumei Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Pei Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Guanghao Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hongmei Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Berend Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission, and receptor recycling require FCHSD2 recruitment by MICAL-L1. Mol Biol Cell 2024; 35:ar144. [PMID: 39382837 DOI: 10.1091/mbc.e24-07-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homologue of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Because MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
Affiliation(s)
- Devin Frisby
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ajay B Murakonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bazella Ashraf
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kanika Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093, CA
| | - Leonardo Almeida-Souza
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
3
|
Cheng S, Long Y, Zhang X, Liu B, Song S, Li G, Hu Y, Du L, Wang Q, Jiang J, Xiong G. The Sorting and Transport of the Cargo Protein CcSnc1 by the Retromer Complex Regulate the Growth, Development, and Pathogenicity of Corynespora cassiicola. J Fungi (Basel) 2024; 10:714. [PMID: 39452666 PMCID: PMC11508248 DOI: 10.3390/jof10100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
In eukaryotes, the retromer complex is critical for the transport of cargo proteins from endosomes to the trans-Golgi network (TGN). Despite its importance, there is a lack of research on the retromer-mediated transport of cargo proteins regulating the growth, development, and pathogenicity of filamentous fungi. In the present study, transcriptome analysis showed that the expression levels of the retromer complex (CcVPS35, CcVPS29 and CcVPS26) were significantly elevated during the early stages of Corynespora cassiicola invasion. Gene knockout and complementation analyses further highlighted the critical role of the retromer complex in C. cassiicola infection. Subcellular localization analysis showed that the retromer complex was mainly localized to the vacuolar membrane and partially to endosomes and the TGN. Further research found that the retromer core subunit CcVps35 can interact with the cargo protein CcSnc1. Subcellular localization showed that CcSnc1 is mainly located at the hyphal tip and partially in endosomes and the Golgi apparatus. Deletion of CcVPS35 resulted in the missorting of CcSnc1 into the vacuolar degradation pathway, indicating that the retromer can sort CcSnc1 from endosomes and transport it to the TGN. Additionally, gene knockout and complementation analyses demonstrated that CcSnc1 is critical for the growth, development, and pathogenicity of C. cassiicola. In summary, the vesicular transport pathway involving the retromer complex regulates the sorting and transport of the cargo protein CcSnc1, which is important for the growth, development and pathogenicity of C. cassiicola.
Collapse
Affiliation(s)
- Shuyuan Cheng
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yunfei Long
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaoyang Zhang
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China;
| | - Bing Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuilin Song
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Genghua Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Yuzhuan Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Lei Du
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Quanxing Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
| | - Junxi Jiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (S.C.); (B.L.); (S.S.); (G.L.); (Y.H.); (L.D.); (Q.W.)
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Xu J, Liang Y, Li N, Dang S, Jiang A, Liu Y, Guo Y, Yang X, Yuan Y, Zhang X, Yang Y, Du Y, Shi A, Liu X, Li D, He K. Clathrin-associated carriers enable recycling through a kiss-and-run mechanism. Nat Cell Biol 2024; 26:1652-1668. [PMID: 39300312 DOI: 10.1038/s41556-024-01499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
Endocytosis and recycling control the uptake and retrieval of various materials, including membrane proteins and lipids, in all eukaryotic cells. These processes are crucial for cell growth, organization, function and environmental communication. However, the mechanisms underlying efficient, fast endocytic recycling remain poorly understood. Here, by utilizing a biosensor and imaging-based screening, we uncover a recycling mechanism that couples endocytosis and fast recycling, which we name the clathrin-associated fast endosomal recycling pathway (CARP). Clathrin-associated tubulovesicular carriers containing clathrin, AP1, Arf1, Rab1 and Rab11, while lacking the multimeric retrieval complexes, are generated at subdomains of early endosomes and then transported along actin to cell surfaces. Unexpectedly, the clathrin-associated recycling carriers undergo partial fusion with the plasma membrane. Subsequently, they are released from the membrane by dynamin and re-enter cells. Multiple receptors utilize and modulate CARP for fast recycling following endocytosis. Thus, CARP represents a previously unrecognized endocytic recycling mechanism with kiss-and-run membrane fusion.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiqun Liu
- National Center for Protein Sciences and Core Facilities of Life Sciences at Peking University, College of Life Sciences, Peking University, Beijing, China
| | - Yuting Guo
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Yang
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaran Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Chauhan H, Carruthers N, Stemmer P, Schneider BP, Moszczynska A. Neurotoxic Methamphetamine Doses Alter CDCel-1 Levels and Its Interaction with Vesicular Monoamine Transporter-2 in Rat Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604458. [PMID: 39091864 PMCID: PMC11291068 DOI: 10.1101/2024.07.21.604458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, methamphetamine METH misuse in the US has been rapidly increasing and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including dysfunction of the neuroprotective protein parkin. However, it is not known whether parkin loss of function within striatal dopaminergic (DAergic) terminals translates into a decrease in DA storage capacity. This study examined the relationship between parkin, its substrate cell division cycle related-1 (CDCrel-1), and vesicular monoamine transporter-2 (VMAT2) in METH neurotoxicity in male Sprague Dawley rats. To also assess individual differences in response to METH's neurotoxic effects, a large group of rats was treated with binge METH or saline and sacrificed 1h or 24h later. This study is the first to show that binge METH alters the levels and subcellular localization of CDCrel-1 and that CDCrel-1 interacts with VMAT2 and increases its levels at the plasma membrane. Furthermore, we found wide individual differences in the responses of measured indices to METH. Proteomic analysis of VMAT-2-associated proteins revealed upregulation of several proteins involved in the exocytosis/endocytosis cycle. The results suggest that at 1h after METH binge, DAergic neurons are engaged in counteracting METH-induced toxic effects, including oxidative stress- and hyperthermia-induced inhibition of synaptic vesicle cycling, with the responses varying between individual rats. Studying CDCrel-1, VMAT2, and other proteins in large groups of outbred rats can help define individual genetic and molecular differences in responses to METH neurotoxicity which, in turn, will aid treating humans suffering from METH use disorder and its neurological consequences.
Collapse
Affiliation(s)
- Heli Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, USA 48201
| | - Nick Carruthers
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202
| | - Paul Stemmer
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202
| | - Bernard P. Schneider
- Brain Mind Institute École Polytechnique Fédérale de Lausanne School of Life Sciences, Ch. Des Mines, 9, CH-1202 Geneve, Switzerland
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, USA 48201
| |
Collapse
|
6
|
Chandra M, Kendall AK, Ford MGJ, Jackson LP. VARP binds SNX27 to promote endosomal supercomplex formation on membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603126. [PMID: 39026782 PMCID: PMC11257539 DOI: 10.1101/2024.07.11.603126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multiple essential membrane trafficking pathways converge at endosomes to maintain cellular homeostasis by sorting critical transmembrane cargo proteins to the plasma membrane or the trans-Golgi network (TGN). The Retromer heterotrimer (VPS26/VPS35/VPS29 subunits) binds multiple sorting nexin (SNX) proteins on endosomal membranes, but molecular mechanisms regarding formation and regulation of metazoan SNX/Retromer complexes have been elusive. Here, we combine biochemical and biophysical approaches with AlphaFold2 Multimer modeling to identify a direct interaction between the VARP N-terminus and SNX27 PDZ domain. VARP and SNX27 interact with high nanomolar affinity using the binding pocket established for PDZ binding motif (PDZbm) cargo. Specific point mutations in VARP abrogate the interaction in vitro. We further establish a full biochemical reconstitution system using purified mammalian proteins to directly and systematically test whether multiple endosomal coat complexes are recruited to membranes to generate tubules. We successfully use purified coat components to demonstrate which combinations of Retromer with SNX27, ESCPE-1 (SNX2/SNX6), or both complexes can remodel membranes containing physiological cargo motifs and phospholipid composition. SNX27, alone and with Retromer, induces tubule formation in the presence of PI(3)P and PDZ cargo motifs. ESCPE-1 deforms membranes enriched with Folch I and CI-MPR cargo motifs, but surprisingly does not recruit Retromer. Finally, we find VARP is required to reconstitute a proposed endosomal "supercomplex" containing SNX27, ESCPE-1, and Retromer on PI(3)P-enriched membranes. These data suggest VARP functions as a key regulator in metazoans to promote cargo sorting out of endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Schubert T, Schaaf CP. MAGEL2 (patho-)physiology and Schaaf-Yang syndrome. Dev Med Child Neurol 2024. [PMID: 38950199 DOI: 10.1111/dmcn.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
Schaaf-Yang syndrome (SYS) is a complex neurodevelopmental disorder characterized by autism spectrum disorder, joint contractures, and profound hypothalamic dysfunction. SYS is caused by variants in MAGEL2, a gene within the Prader-Willi syndrome (PWS) locus on chromosome 15. In this review, we consolidate decades of research on MAGEL2 to elucidate its physiological functions. Moreover, we synthesize current knowledge on SYS, suggesting that while MAGEL2 loss-of-function seems to underlie several SYS and PWS phenotypes, additional pathomechanisms probably contribute to the distinct and severe phenotype observed in SYS. In addition, we highlight recent therapeutic advances and identify promising avenues for future investigation.
Collapse
Affiliation(s)
- Tim Schubert
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
8
|
Frisby D, Murakonda AB, Ashraf B, Dhawan K, Almeida-Souza L, Naslavsky N, Caplan S. Endosomal actin branching, fission and receptor recycling require FCHSD2 recruitment by MICAL-L1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601011. [PMID: 38979241 PMCID: PMC11230409 DOI: 10.1101/2024.06.27.601011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission. Here we have identified a novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human homolog of the Drosophila Nervous Wreck (Nwk) protein, FCH and double SH3 domains protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome fission and receptor recycling to the plasma membrane. Since MICAL-L1 first recruits FCHSD2 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1 orchestrates endosomal fission by connecting between the early actin-driven and subsequent nucleotide hydrolysis steps of the process.
Collapse
|
9
|
Van den Bossche F, Tevel V, Gilis F, Gaussin JF, Boonen M, Jadot M. Residence of the Nucleotide Sugar Transporter Family Members SLC35F1 and SLC35F6 in the Endosomal/Lysosomal Pathway. Int J Mol Sci 2024; 25:6718. [PMID: 38928424 PMCID: PMC11203873 DOI: 10.3390/ijms25126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.
Collapse
Affiliation(s)
- François Van den Bossche
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Virginie Tevel
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Florentine Gilis
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Jean-François Gaussin
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Marielle Boonen
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium;
| | - Michel Jadot
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (F.V.d.B.); (V.T.); (F.G.)
| |
Collapse
|
10
|
Laulumaa S, Kumpula EP, Huiskonen JT, Varjosalo M. Structure and interactions of the endogenous human Commander complex. Nat Struct Mol Biol 2024; 31:925-938. [PMID: 38459129 PMCID: PMC11189303 DOI: 10.1038/s41594-024-01246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
The Commander complex, a 16-protein assembly, plays multiple roles in cell homeostasis, cell cycle and immune response. It consists of copper-metabolism Murr1 domain proteins (COMMD1-10), coiled-coil domain-containing proteins (CCDC22 and CCDC93), DENND10 and the Retriever subcomplex (VPS26C, VPS29 and VPS35L), all expressed ubiquitously in the body and linked to various diseases. Here, we report the structure and key interactions of the endogenous human Commander complex by cryogenic-electron microscopy and mass spectrometry-based proteomics. The complex consists of a stable core of COMMD1-10 and an effector containing DENND10 and Retriever, scaffolded together by CCDC22 and CCDC93. We establish the composition of Commander and reveal major interaction interfaces. These findings clarify its roles in intracellular transport, and uncover a strong association with cilium assembly, and centrosome and centriole functions.
Collapse
Affiliation(s)
- Saara Laulumaa
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
12
|
Walia K, Sharma A, Paul S, Chouhan P, Kumar G, Ringe R, Sharma M, Tuli A. SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle. Nat Commun 2024; 15:2053. [PMID: 38448435 PMCID: PMC10918171 DOI: 10.1038/s41467-024-46417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, uses the host endolysosomal system for entry, replication, and egress. Previous studies have shown that the SARS-CoV-2 virulence factor ORF3a interacts with the lysosomal tethering factor HOPS complex and blocks HOPS-mediated late endosome and autophagosome fusion with lysosomes. Here, we report that SARS-CoV-2 infection leads to hyperactivation of the late endosomal and lysosomal small GTP-binding protein Rab7, which is dependent on ORF3a expression. We also observed Rab7 hyperactivation in naturally occurring ORF3a variants encoded by distinct SARS-CoV-2 variants. We found that ORF3a, in complex with Vps39, sequesters the Rab7 GAP TBC1D5 and displaces Rab7 from this complex. Thus, ORF3a disrupts the GTP hydrolysis cycle of Rab7, which is beneficial for viral production, whereas the Rab7 GDP-locked mutant strongly reduces viral replication. Hyperactivation of Rab7 in ORF3a-expressing cells impaired CI-M6PR retrieval from late endosomes to the trans-Golgi network, disrupting the biosynthetic transport of newly synthesized hydrolases to lysosomes. Furthermore, the tethering of the Rab7- and Arl8b-positive compartments was strikingly reduced upon ORF3a expression. As SARS-CoV-2 egress requires Arl8b, these findings suggest that ORF3a-mediated hyperactivation of Rab7 serves a multitude of functions, including blocking endolysosome formation, interrupting the transport of lysosomal hydrolases, and promoting viral egress.
Collapse
Affiliation(s)
- Kshitiz Walia
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abhishek Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sankalita Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Priya Chouhan
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Kumar
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Rajesh Ringe
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Amit Tuli
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
13
|
Shiraishi T, Bono K, Hiraki H, Manome Y, Oka H, Iguchi Y, Okano HJ. The impact of VPS35 D620N mutation on alternative autophagy and its reversal by estrogen in Parkinson's disease. Cell Mol Life Sci 2024; 81:103. [PMID: 38409392 PMCID: PMC10896810 DOI: 10.1007/s00018-024-05123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/28/2024]
Abstract
VPS35 plays a key role in neurodegenerative processes in Alzheimer's disease and Parkinson's disease (PD). Many genetic studies have shown a close relationship between autophagy and PD pathophysiology, and specifically, the PD-causing D620N mutation in VPS35 has been shown to impair autophagy. However, the molecular mechanisms underlying neuronal cell death and impaired autophagy in PD are debated. Notably, increasing evidence suggests that Rab9-dependent "alternative" autophagy, which is driven by a different molecular mechanism that driving ATG5-dependent "conventional" autophagy, also contributes to neurodegenerative process. In this study, we investigated the relationship between alternative autophagy and VPS35 D620N mutant-related PD pathogenesis. We isolated iPSCs from the blood mononuclear cell population of two PD patients carrying the VPS35 D620N mutant. In addition, we used CRISPR-Cas9 to generate SH-SY5Y cells carrying the D620N variant of VPS35. We first revealed that the number of autophagic vacuoles was significantly decreased in ATG5-knockout Mouse Embryonic Fibroblast or ATG5-knockdown patient-derived dopaminergic neurons carrying the VPS35 D620N mutant compared with that of the wild type VPS35 control cells. Furthermore, estrogen, which activates alternative autophagy pathways, increased the number of autophagic vacuoles in ATG5-knockdown VPS35 D620N mutant dopaminergic neurons. Estrogen induces Rab9 phosphorylation, mediated through Ulk1 phosphorylation, ultimately regulating alternative autophagy. Moreover, estrogen reduced the apoptosis rate of VPS35 D620N neurons, and this effect of estrogen was diminished under alternative autophagy knockdown conditions. In conclusion, alternative autophagy might be important for maintaining neuronal homeostasis and may be associated with the neuroprotective effect of estrogen in PD with VPS35 D620N.
Collapse
Affiliation(s)
- Tomotaka Shiraishi
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Keiko Bono
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Hiromi Hiraki
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Yoko Manome
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
| | - Hisayoshi Oka
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan.
| |
Collapse
|
14
|
Chen J, Su YH, Wang M, Zhang YC. Emerging Role of Sorting Nexin 17 in Human Health and Disease. Curr Protein Pept Sci 2024; 25:814-825. [PMID: 38874037 DOI: 10.2174/0113892037284582240522155112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
The distortion of the cellular membrane transport pathway has a profound impact on cell dynamics and can drive serious physiological consequences during the process of cell sorting. SNX17 is a member of the Sorting Nexin (SNX) family and plays a crucial role in protein sorting and transport in the endocytic pathway. SNX17, SNX27, and SNX31 belong to the SNX-FERM subfamily and possess the FERM domain, which can assist in endocytic transport and lysosomal degradation. The binding partners of SNX27 have been discovered to number over 100, and SNX27 has been linked to the development of Alzheimer's disease progression, tumorigenesis, cancer progression, and metastasis. However, the role and potential mechanisms of SNX17 in human health and disease remain poorly understood, and the function of SNX17 has not been fully elucidated. In this review, we summarize the structure and basic functions of SNX protein, focusing on providing current evidence of the role and possible mechanism of SNX17 in human neurodegenerative diseases and cardiovascular diseases.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Yan-Hong Su
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Meng Wang
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Yi-Chen Zhang
- Key Laboratory of Sports Human Science, College of Physical Education, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
15
|
Chen Q, Sun M, Han X, Xu H, Liu Y. Structural determinants specific for retromer protein sorting nexin 5 in regulating subcellular retrograde membrane trafficking. J Biomed Res 2023; 37:492-506. [PMID: 37964759 PMCID: PMC10687533 DOI: 10.7555/jbr.37.20230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 11/16/2023] Open
Abstract
The endosomal trafficking of signaling membrane proteins, such as receptors, transporters and channels, is mediated by the retromer-mediated sorting machinery, composed of a cargo-selective vacuolar protein sorting trimer and a membrane-deforming subunit of sorting nexin proteins. Recent studies have shown that the isoforms, sorting nexin 5 (SNX5) and SNX6, have played distinctive regulatory roles in retrograde membrane trafficking. However, the molecular insight determined functional differences within the proteins remains unclear. We reported that SNX5 and SNX6 had distinct binding affinity to the cargo protein vesicular monoamine transporter 2 (VMAT2). SNX5, but not SNX6, specifically interacted with VMAT2 through the Phox domain, which contains an alpha-helix binding motif. Using chimeric mutagenesis, we identified that several key residues within this domain were unique in SNX5, but not SNX6, and played an auxiliary role in its binding to VMAT2. Importantly, we generated a set of mutant SNX6, in which the corresponding key residues were mutated to those in SNX5. In addition to the gain in binding affinity to VMAT2, their overexpression functionally rescued the altered retrograde trafficking of VMAT2 induced by siRNA-mediated depletion of SNX5. These data strongly suggest that SNX5 and SNX6 have different functions in retrograde membrane trafficking, which is determined by the different structural elements within the Phox domain of two proteins. Our work provides a new information on the role of SNX5 and SNX6 in the molecular regulation of retrograde membrane trafficking and vesicular membrane targeting in monoamine neurotransmission and neurological diseases.
Collapse
Affiliation(s)
- Qing Chen
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meiheng Sun
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongfei Xu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Neuroscience, University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA
| |
Collapse
|
16
|
Komori T, Kuwahara T. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Biomolecules 2023; 13:1645. [PMID: 38002327 PMCID: PMC10669493 DOI: 10.3390/biom13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Zhao L, Deng H, Yang Q, Tang Y, Zhao J, Li P, Zhang S, Yong X, Li T, Billadeau DD, Jia D. FAM91A1-TBC1D23 complex structure reveals human genetic variations susceptible for PCH. Proc Natl Acad Sci U S A 2023; 120:e2309910120. [PMID: 37903274 PMCID: PMC10636324 DOI: 10.1073/pnas.2309910120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) is a group of rare neurodevelopmental disorders with limited diagnostic and therapeutic options. Mutations in WDR11, a subunit of the FAM91A1 complex, have been found in patients with PCH-like symptoms; however, definitive evidence that the mutations are causal is still lacking. Here, we show that depletion of FAM91A1 results in developmental defects in zebrafish similar to that of TBC1D23, an established PCH gene. FAM91A1 and TBC1D23 directly interact with each other and cooperate to regulate endosome-to-Golgi trafficking of KIAA0319L, a protein known to regulate axonal growth. Crystal structure of the FAM91A1-TBC1D23 complex reveals that TBC1D23 binds to a conserved surface on FAM91A1 by assuming a Z-shaped conformation. More importantly, the interaction between FAM91A1 and TBC1D23 can be used to predict the risk of certain TBC1D23-associated mutations to PCH. Collectively, our study provides a molecular basis for the interaction between TBC1D23 and FAM91A1 and suggests that disrupted endosomal trafficking underlies multiple PCH subtypes.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Huaqing Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Qing Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Jia Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Ping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Tianxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN55905
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| |
Collapse
|
18
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
19
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
20
|
McDougal MB, De Maria AM, Ohlson MB, Kumar A, Xing C, Schoggins JW. Interferon inhibits a model RNA virus via a limited set of inducible effector genes. EMBO Rep 2023; 24:e56901. [PMID: 37497756 PMCID: PMC10481653 DOI: 10.15252/embr.202356901] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors-ZAP, IFIT3, and IFIT1-together constitute the majority of interferon-mediated restriction of VEEV, while accounting for < 0.5% of the interferon-induced transcriptome. Together, our data suggest a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.
Collapse
Affiliation(s)
- Matthew B McDougal
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Anthony M De Maria
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Maikke B Ohlson
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Ashwani Kumar
- Bioinformatics Core, McDermott CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Chao Xing
- Bioinformatics Core, McDermott CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - John W Schoggins
- Department of MicrobiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
21
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
22
|
Rivero-Ríos P, Tsukahara T, Uygun T, Chen A, Chavis GD, Giridharan SSP, Iwase S, Sutton MA, Weisman LS. Recruitment of the SNX17-Retriever recycling pathway regulates synaptic function and plasticity. J Cell Biol 2023; 222:e202207025. [PMID: 37141105 PMCID: PMC10165670 DOI: 10.1083/jcb.202207025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Trafficking of cell-surface proteins from endosomes to the plasma membrane is a key mechanism to regulate synaptic function. In non-neuronal cells, proteins recycle to the plasma membrane either via the SNX27-Retromer-WASH pathway or via the recently discovered SNX17-Retriever-CCC-WASH pathway. While SNX27 is responsible for the recycling of key neuronal receptors, the roles of SNX17 in neurons are less understood. Here, using cultured hippocampal neurons, we demonstrate that the SNX17 pathway regulates synaptic function and plasticity. Disruption of this pathway results in a loss of excitatory synapses and prevents structural plasticity during chemical long-term potentiation (cLTP). cLTP drives SNX17 recruitment to synapses, where its roles are in part mediated by regulating the surface expression of β1-integrin. SNX17 recruitment relies on NMDAR activation, CaMKII signaling, and requires binding to the Retriever and PI(3)P. Together, these findings provide molecular insights into the regulation of SNX17 at synapses and define key roles for SNX17 in synaptic maintenance and in regulating enduring forms of synaptic plasticity.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Takao Tsukahara
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tunahan Uygun
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alex Chen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Garrett D. Chavis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Molecular and Integrative Physiology Graduate Program, University, Ann Arbor, MI, USA
| | - Sai Srinivas Panapakkam Giridharan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Michael A. Sutton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Molecular and Integrative Physiology Graduate Program, University, Ann Arbor, MI, USA
| | - Lois S. Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
24
|
Simonetti B, Daly JL, Cullen PJ. Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction. Traffic 2023; 24:234-250. [PMID: 37089068 PMCID: PMC10768393 DOI: 10.1111/tra.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.
Collapse
Affiliation(s)
- Boris Simonetti
- Charles River Laboratories, Discovery House, Quays Office ParkConference Avenue, PortisheadBristolUK
| | - James L. Daly
- Department of Infectious DiseasesSchool of Immunology and Microbial Sciences, Guy's Hospital, King's College LondonLondonUK
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
25
|
Yin K, Tong M, Suttapitugsakul S, Xu S, Wu R. Global quantification of newly synthesized proteins reveals cell type- and inhibitor-specific effects on protein synthesis inhibition. PNAS NEXUS 2023; 2:pgad168. [PMID: 37275259 PMCID: PMC10235912 DOI: 10.1093/pnasnexus/pgad168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Manipulation of protein synthesis is commonly applied to uncover protein functions and cellular activities. Multiple inhibitors with distinct mechanisms have been widely investigated and employed in bio-related research, but it is extraordinarily challenging to measure and evaluate the synthesis inhibition efficiencies of individual proteins by different inhibitors at the proteome level. Newly synthesized proteins are the immediate and direct products of protein synthesis, and thus their comprehensive quantification provides a unique opportunity to study protein inhibition. Here, we systematically investigate protein inhibition and evaluate different popular inhibitors, i.e. cycloheximide, puromycin, and anisomycin, through global quantification of newly synthesized proteins in several types of human cells (A549, MCF-7, Jurkat, and THP-1 cells). The inhibition efficiencies of protein synthesis are comprehensively measured by integrating azidohomoalanine-based protein labeling, selective enrichment, a boosting approach, and multiplexed proteomics. The same inhibitor results in dramatic variation of the synthesis inhibition efficiencies for different proteins in the same cells, and each inhibitor exhibits unique preferences. Besides cell type- and inhibitor-specific effects, some universal rules are unraveled. For instance, nucleolar and ribosomal proteins have relatively higher inhibition efficiencies in every type of cells treated with each inhibitor. Moreover, proteins intrinsically resistant or sensitive to the inhibition are identified and found to have distinct functions. Systematic investigation of protein synthesis inhibition in several types of human cells by different inhibitors provides valuable information about the inhibition of protein synthesis, advancing our understanding of inhibiting protein synthesis.
Collapse
Affiliation(s)
| | | | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ronghu Wu
- To whom correspondence should be addressed:
| |
Collapse
|
26
|
Adeniyi OO, Medugorac I, Grochowska E, Düring RA, Lühken G. Single-Locus and Multi-Locus Genome-Wide Association Studies Identify Genes Associated with Liver Cu Concentration in Merinoland Sheep. Genes (Basel) 2023; 14:genes14051053. [PMID: 37239413 DOI: 10.3390/genes14051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Economic losses due to copper intoxication or deficiency is a problem encountered by sheep farmers. The aim of this study was to investigate the ovine genome for genomic regions and candidate genes responsible for variability in liver copper concentration. Liver samples were collected from slaughtered lambs of the Merinoland breed from two farms, and used for measurement of copper concentration and genome-wide association study (GWAS). A total of 45,511 SNPs and 130 samples were finally used for analysis, in which single-locus and several multi-locus GWAS (SL-GWAS; ML-GWAS) methods were employed. Gene enrichment analysis was performed for identified candidate genes to detect gene ontology (GO) terms significantly associated with hepatic copper levels. The SL-GWAS and a minimum of two ML-GWAS identified two and thirteen significant SNPs, respectively. Within genomic regions surrounding identified SNPs, we observed nine promising candidate genes such as DYNC1I2, VPS35, SLC38A9 and CHMP1A. GO terms such as lysosomal membrane, mitochondrial inner membrane and sodium:proton antiporter activity were significantly enriched. Genes involved in these identified GO terms mediate multivesicular body (MVB) fusion with lysosome for degradation and control mitochondrial membrane permeability. This reveals the polygenic status of this trait and candidate genes for further studies on breeding for copper tolerance in sheep.
Collapse
Affiliation(s)
- Olusegun O Adeniyi
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, Ludwigstrasse 21, 35390 Giessen, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Ewa Grochowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28 St., 85-084 Bydgoszcz, Poland
| | - Rolf-Alexander Düring
- Institute of Soil Science and Soil Conservation, Interdisciplinary Research Center for Biosystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, Ludwigstrasse 21, 35390 Giessen, Germany
| |
Collapse
|
27
|
El-Bazzal L, Ghata A, Estève C, Gadacha J, Quintana P, Castro C, Roeckel-Trévisiol N, Lembo F, Lenfant N, Mégarbané A, Borg JP, Lévy N, Bartoli M, Poitelon Y, Roubertoux PL, Delague V, Bernard-Marissal N. Imbalance of NRG1-ERBB2/3 signalling underlies altered myelination in Charcot-Marie-Tooth disease 4H. Brain 2023; 146:1844-1858. [PMID: 36314052 PMCID: PMC10151191 DOI: 10.1093/brain/awac402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/30/2022] [Accepted: 10/02/2022] [Indexed: 11/12/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.
Collapse
Affiliation(s)
- Lara El-Bazzal
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Adeline Ghata
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | | | - Jihane Gadacha
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | | | | | | | - Frédérique Lembo
- Aix Marseille Univ, INSERM, CNRS, CRCM, Institut Paoli-Calmettes, Marseille, France
| | | | - André Mégarbané
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Jean-Paul Borg
- Aix Marseille Univ, INSERM, CNRS, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
28
|
Dellin M, Rohrbeck I, Asrani P, Schreiber JA, Ritter N, Glorius F, Wünsch B, Budde T, Temme L, Strünker T, Stallmeyer B, Tüttelmann F, Meuth SG, Spehr M, Matschke J, Steinbicker A, Gatsogiannis C, Stoll R, Strutz-Seebohm N, Seebohm G. The second PI(3,5)P 2 binding site in the S0 helix of KCNQ1 stabilizes PIP 2-at the primary PI1 site with potential consequences on intermediate-to-open state transition. Biol Chem 2023; 404:241-254. [PMID: 36809224 DOI: 10.1515/hsz-2022-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/13/2022] [Indexed: 02/23/2023]
Abstract
The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.
Collapse
Affiliation(s)
- Maurice Dellin
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Ina Rohrbeck
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Purva Asrani
- Faculty of Chemistry and Biochemistry, Biomolecular NMR Spectroscopy and RUBiospek|NMR, Ruhr University of Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Julian A Schreiber
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nadine Ritter
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Frank Glorius
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Louisa Temme
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Timo Strünker
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstraße 11, D-48149, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, D-48149, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, D-48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Worringerweg 3, D-52074, Aachen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Andrea Steinbicker
- Goethe University Frankfurt and University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Busso-Peus Strasse 10, D-48149, Germany
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Biomolecular NMR Spectroscopy and RUBiospek|NMR, Ruhr University of Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Nathalie Strutz-Seebohm
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Guiscard Seebohm
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
29
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
30
|
Wang S, Liu Y, Li S, Chen Y, Liu Y, Yan J, Wu J, Li J, Wang L, Xiang R, Shi Y, Qin X, Yang S. COMMD3-Mediated Endosomal Trafficking of HER2 Inhibits the Progression of Ovarian Carcinoma. Mol Cancer Res 2023; 21:199-213. [PMID: 36445330 DOI: 10.1158/1541-7786.mcr-22-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The dysregulated endocytic traffic of oncogenic receptors, such as the EGFR family especially HER2, contributes to the uncontrolled activation of the downstream oncogenic signaling and progression of various carcinomas, including 90% of ovarian carcinoma. However, the key regulators in the intracellular trafficking of HER2 and their impacts for cancer progression remain largely unknown. In this study, through a genome-wide CRISPR/Cas9 screening for key genes affecting the peritoneal disseminated metastasis of ovarian carcinoma, we identified a member of COMMD family, that is, COMMD3, as a key regulator in the endosomal trafficking of HER2. In the patients with high-grade serous ovarian carcinoma (HGSOC), the expression of COMMD3 is dramatically decreased in the peritoneal disseminated ovarian carcinoma cells comparing with that in the primary ovarian carcinoma cells. COMMD3 greatly inhibits the proliferation, migration, and epithelial-mesenchymal transition (EMT) of HGSOC cells, and dramatically suppresses the tumor growth, the formation of malignant ascites, and the peritoneal dissemination of cancer cells in the orthotopic murine model of HGSOC. Further transcriptome analysis reveals that silencing COMMD3 boosts the activation of HER2 downstream signaling. As a component in the Retriever-associated COMMD/CCDC22/CCDC93 complex responsible for the recognition and recycling of membrane receptors, COMMD3 physically interacts with HER2 for directing it to the slow recycling pathway, leading to the attenuated downstream tumor-promoting signaling. IMPLICATIONS Collectively, this study reveals a novel HER2 inactivation mechanism with a high value for the clinic diagnosis of new ovarian carcinoma types and the design of new therapeutic strategy.
Collapse
Affiliation(s)
- Shiqing Wang
- The School of Medicine, Nankai University, Tianjin, China
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxin Liu
- The School of Medicine, Nankai University, Tianjin, China
| | - Siyu Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Yanan Chen
- The School of Medicine, Nankai University, Tianjin, China
| | - Yanhua Liu
- The School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- The School of Medicine, Nankai University, Tianjin, China
| | - Jiayi Wu
- The School of Medicine, Nankai University, Tianjin, China
| | - Jia Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Longlong Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- The School of Medicine, Nankai University, Tianjin, China
| | - Xuan Qin
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shuang Yang
- The School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Zhou X, Gan G, Sun Y, Ou M, Geng J, Wang J, Yang X, Huang S, Jia D, Xie W, He H. GTPase-activating protein TBC1D5 coordinates with retromer to constrain synaptic growth by inhibiting BMP signaling. J Genet Genomics 2023; 50:163-177. [PMID: 36473687 DOI: 10.1016/j.jgg.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Formation and plasticity of neural circuits rely on precise regulation of synaptic growth. At Drosophila neuromuscular junction (NMJ), Bone Morphogenetic Protein (BMP) signaling is critical for many aspects of synapse formation and function. The evolutionarily conserved retromer complex and its associated GTPase-activating protein TBC1D5 are critical regulators of membrane trafficking and cellular signaling. However, their functions in regulating the formation of NMJ are less understood. Here, we report that TBC1D5 is required for inhibition of synaptic growth, and loss of TBC1D5 leads to abnormal presynaptic terminal development, including excessive satellite boutons and branch formation. Ultrastructure analysis reveals that the size of synaptic vesicles and the density of subsynaptic reticulum are increased in TBC1D5 mutant boutons. Disruption of interactions of TBC1D5 with Rab7 and retromer phenocopies the loss of TBC1D5. Unexpectedly, we find that TBC1D5 is functionally linked to Rab6, in addition to Rab7, to regulate synaptic growth. Mechanistically, we show that loss of TBC1D5 leads to upregulated BMP signaling by increasing the protein level of BMP type II receptor Wishful Thinking (Wit) at NMJ. Overall, our data establish that TBC1D5 in coordination with retromer constrains synaptic growth by regulating Rab7 activity, which negatively regulates BMP signaling through inhibiting Wit level.
Collapse
Affiliation(s)
- Xiu Zhou
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guangming Gan
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China; The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yichen Sun
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Mengzhu Ou
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junhua Geng
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xi Yang
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Huang
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Haihuai He
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
32
|
McDougal MB, De Maria AM, Ohlson MB, Kumar A, Xing C, Schoggins JW. Interferon inhibits a model RNA virus via a limited set of inducible effector genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529297. [PMID: 36865157 PMCID: PMC9980057 DOI: 10.1101/2023.02.21.529297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors - ZAP, IFIT3, and IFIT1 - together constitute the majority of interferon-mediated restriction of VEEV, while accounting for less than 0.5% of the interferon-induced transcriptome. Together, our data suggests a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.
Collapse
|
33
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
34
|
Vos M, Klein C, Hicks AA. Role of Ceramides and Sphingolipids in Parkinson's Disease. J Mol Biol 2023:168000. [PMID: 36764358 DOI: 10.1016/j.jmb.2023.168000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Sphingolipids, including the basic ceramide, are a subset of bioactive lipids that consist of many different species. Sphingolipids are indispensable for proper neuronal function, and an increasing number of studies have emerged on the complexity and importance of these lipids in (almost) all biological processes. These include regulation of mitochondrial function, autophagy, and endosomal trafficking, which are affected in Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Currently, PD cannot be cured due to the lack of knowledge of the exact pathogenesis. Nonetheless, important advances have identified molecular changes in mitochondrial function, autophagy, and endosomal function. Furthermore, recent studies have identified ceramide alterations in patients suffering from PD, and in PD models, suggesting a critical interaction between sphingolipids and related cellular processes in PD. For instance, autosomal recessive forms of PD cause mitochondrial dysfunction, including energy production or mitochondrial clearance, that is directly influenced by manipulating sphingolipids. Additionally, endo-lysosomal recycling is affected by genes that cause autosomal dominant forms of the disease, such as VPS35 and SNCA. Furthermore, endo-lysosomal recycling is crucial for transporting sphingolipids to different cellular compartments where they will execute their functions. This review will discuss mitochondrial dysfunction, defects in autophagy, and abnormal endosomal activity in PD and the role sphingolipids play in these vital molecular processes.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany.
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine (affiliated to the University of Luebeck, Luebeck, Germany), Eurac Research, 39100 Bolzano, Italy. https://twitter.com/andrewhicks
| |
Collapse
|
35
|
You G, Zhou C, Wang L, Liu Z, Fang H, Yao X, Zhang X. COMMD proteins function and their regulating roles in tumors. Front Oncol 2023; 13:1067234. [PMID: 36776284 PMCID: PMC9910083 DOI: 10.3389/fonc.2023.1067234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The COMMD proteins are a highly conserved protein family with ten members that play a crucial role in a variety of biological activities, including copper metabolism, endosomal sorting, ion transport, and other processes. Recent research have demonstrated that the COMMD proteins are closely associated with a wide range of disorders, such as hepatitis, myocardial ischemia, cerebral ischemia, HIV infection, and cancer. Among these, the role of COMMD proteins in tumors has been thoroughly explored; they promote or inhibit cancers such as lung cancer, liver cancer, gastric cancer, and prostate cancer. COMMD proteins can influence tumor proliferation, invasion, metastasis, and tumor angiogenesis, which are strongly related to the prognosis of tumors and are possible therapeutic targets for treating tumors. In terms of molecular mechanism, COMMD proteins in tumor cells regulate the oncogenes of NF-κB, HIF, c-MYC, and others, and are related to signaling pathways including apoptosis, autophagy, and ferroptosis. For the clinical diagnosis and therapy of malignancies, additional research into the involvement of COMMD proteins in cancer is beneficial.
Collapse
Affiliation(s)
- Guangqiang You
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - Chen Zhou
- Department of General Affairs, First Hospital of Jilin University (the Eastern Division), Jilin University, Changchun, China
| | - Lei Wang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoxao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Xiaoxao Yao, ; Xuewen Zhang,
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Jilin University, Jilin University, Changchun, China,*Correspondence: Xiaoxao Yao, ; Xuewen Zhang,
| |
Collapse
|
36
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
37
|
Integrin receptor trafficking in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:271-302. [PMID: 36813362 DOI: 10.1016/bs.pmbts.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Integrins are a family of 24 different heterodimers that are indispensable for multicellular life. Cell polarity, adhesion and migration are controlled by integrins delivered to the cell surface which in turn is regulated by the exo- and endocytic trafficking of integrins. The deep integration between trafficking and cell signaling determines the spatial and temporal output from any biochemical cue. Integrin trafficking plays a key role in development and many pathological conditions, especially cancer. Several novel regulators of integrin traffic have been discovered in recent times, including a novel class of integrin carrying vesicles, the intracellular nanovesicles (INVs). The tight regulation of trafficking pathways by cell signaling, where kinases phosphorylate key small GTPases in the trafficking pathway enable coordination of cell response to the extracellular milieu. Integrin heterodimer expression and trafficking differ in different tissues and contexts. In this Chapter, we discuss recent studies on integrin trafficking and its contribution to normal physiological and pathophysiological states.
Collapse
|
38
|
Vos DY, Wijers M, Smit M, Huijkman N, Kloosterhuis NJ, Wolters JC, Tissink JJ, Pronk ACM, Kooijman S, Rensen PCN, Kuivenhoven JA, van de Sluis B. Cargo-Specific Role for Retriever Subunit VPS26C in Hepatocyte Lipoprotein Receptor Recycling to Control Postprandial Triglyceride-Rich Lipoproteins. Arterioscler Thromb Vasc Biol 2023; 43:e29-e45. [PMID: 36353989 DOI: 10.1161/atvbaha.122.318169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The copper metabolism MURR1 domains/coiled-coil domain containing 22/coiled-coil domain containing 93 (CCC) complex is required for the transport of low-density lipoprotein receptor (LDLR) and LRP1 (LDLR-related protein 1) from endosomes to the cell surface of hepatocytes. Impaired functioning of hepatocytic CCC causes hypercholesterolemia in mice, dogs, and humans. Retriever, a protein complex consisting of subunits VPS26C, VPS35L, and VPS29, is associated with CCC, but its role in endosomal lipoprotein receptor transport is unclear. We here investigated the contribution of retriever to hepatocytic lipoprotein receptor recycling and plasma lipids regulation. METHODS Using somatic CRISPR/Cas9 gene editing, we generated liver-specific VPS35L or VPS26C-deficient mice. We determined total and surface levels of LDLR and LRP1 and plasma lipids. In addition, we studied the protein levels and composition of CCC and retriever. RESULTS Hepatocyte VPS35L deficiency reduced VPS26C levels but had minimal impact on CCC composition. VPS35L deletion decreased hepatocytic surface expression of LDLR and LRP1, accompanied by a 21% increase in plasma cholesterol levels. Hepatic VPS26C ablation affected neither levels of VPS35L and CCC subunits, nor plasma lipid concentrations. However, VPS26C deficiency increased hepatic LDLR protein levels by 2-fold, probably compensating for reduced LRP1 functioning, as we showed in VPS26C-deficient hepatoma cells. Upon PCSK9 (proprotein convertase subtilisin/kexin type 9)-mediated LDLR elimination, VPS26C ablation delayed postprandial triglyceride clearance and increased plasma triglyceride levels by 26%. CONCLUSIONS Our study suggests that VPS35L is shared between retriever and CCC to facilitate LDLR and LRP1 transport from endosomes to the cell surface. Conversely, retriever subunit VPS26C selectively transports LRP1, but not LDLR, and thereby may control hepatic uptake of postprandial triglyceride-rich lipoprotein remnants.
Collapse
Affiliation(s)
- Dyonne Y Vos
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands (D.Y.V., M.W., M.S., N.H., N.J.K., J.C.W., J.AK., B.v.d.S.)
| | - Melinde Wijers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands (D.Y.V., M.W., M.S., N.H., N.J.K., J.C.W., J.AK., B.v.d.S.)
| | - Marieke Smit
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands (D.Y.V., M.W., M.S., N.H., N.J.K., J.C.W., J.AK., B.v.d.S.)
| | - Nicolette Huijkman
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands (D.Y.V., M.W., M.S., N.H., N.J.K., J.C.W., J.AK., B.v.d.S.)
| | - Niels J Kloosterhuis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands (D.Y.V., M.W., M.S., N.H., N.J.K., J.C.W., J.AK., B.v.d.S.)
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands (D.Y.V., M.W., M.S., N.H., N.J.K., J.C.W., J.AK., B.v.d.S.)
| | - Joël J Tissink
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany. Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Germany (J.J.T.).,German Center for Diabetes Research (DZD), Neuherberg, Germany (J.J.T.)
| | - Amanda C M Pronk
- Department of Medicine, Division of Endocrinology (A.C.M.P., S.K., P.C.N.R.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine (A.C.M.P., S.K., P.C.N.R.), Leiden University Medical Center, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology (A.C.M.P., S.K., P.C.N.R.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine (A.C.M.P., S.K., P.C.N.R.), Leiden University Medical Center, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology (A.C.M.P., S.K., P.C.N.R.), Leiden University Medical Center, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine (A.C.M.P., S.K., P.C.N.R.), Leiden University Medical Center, the Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands (D.Y.V., M.W., M.S., N.H., N.J.K., J.C.W., J.AK., B.v.d.S.)
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands (D.Y.V., M.W., M.S., N.H., N.J.K., J.C.W., J.AK., B.v.d.S.)
| |
Collapse
|
39
|
Bañuelos C, Betanzos A, Javier-Reyna R, Galindo A, Orozco E. Molecular interplays of the Entamoeba histolytica endosomal sorting complexes required for transport during phagocytosis. Front Cell Infect Microbiol 2022; 12:855797. [PMID: 36389174 PMCID: PMC9647190 DOI: 10.3389/fcimb.2022.855797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/06/2022] [Indexed: 08/23/2024] Open
Abstract
Entamoeba histolytica, the causative agent of human amoebiasis, exhibits a continuous membrane remodelling to exert its virulence properties. During this dynamic process, the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is a key player, particularly in phagocytosis, a virulence hallmark of this parasite. In addition to ESCRT, other molecules contribute to membrane remodelling, including the EhADH adhesin, EhRabs, actin, and the lysobisphosphatidic acid (LBPA). The endocytosis of a prey or molecules induces membrane invaginations, resulting in endosome and multivesicular bodies (MVBs) formation for cargo delivery into lysosomes. Alternatively, some proteins are recycled or secreted. Most of these pathways have been broadly characterized in other biological systems, but poorly described in protozoan parasites. Here, we encompass 10 years of ESCRT research in E. histolytica, highlighting the role of the ESCRT-I and ESCRT-III components and the EhADH and EhVps4-ATPase accessory proteins during phagocytosis. In particular, EhADH exhibits a multifunctional role along the endocytic pathway, from cargo recognition to endosome maturation and lysosomal degradation. Interestingly, the interaction of EhADH with EhVps32 seems to shape a concurrent route to the conventional one for MVBs biogenesis, that could optimize their formation. Furthermore, this adhesin is secreted, but its role in this event remains under study. Other components from the endosomal pathway, such as EhVps23 and LBPA, are also secreted. A proteomic approach performed here, using an anti-LBPA antibody, revealed that some proteins related to membrane trafficking, cellular transport, cytoskeleton dynamics, and transcriptional and translational functions are secreted and associated to LBPA. Altogether, the accumulated knowledge around the ESCRT machinery in E. histolytica, points it out as a dynamic platform facilitating the interaction of molecules participating in different cellular events. Seen as an integrated system, ESCRTs lead to a better understanding of E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Abigail Betanzos
- Investigadores por Mexico, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
40
|
Liu D, Tsarouhas V, Samakovlis C. WASH activation controls endosomal recycling and EGFR and Hippo signaling during tumor-suppressive cell competition. Nat Commun 2022; 13:6243. [PMID: 36271083 PMCID: PMC9587002 DOI: 10.1038/s41467-022-34067-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Cell competition is a conserved homeostatic mechanism whereby epithelial cells eliminate neighbors with lower fitness. Cell communication at the interface of wild-type "winner" cells and polarity-deficient (scrib-/-) "losers" is established through Sas-mediated Ptp10D activation in polarity-deficient cells. This tumor-suppressive cell competition restrains EGFR and Hippo signaling and enables Eiger-JNK mediated apoptosis in scrib-/- clones. Here, we show that the activation state of the endosomal actin regulator WASH is a central node linking EGFR and Hippo signaling activation. The tyrosine kinase Btk29A and its substrate WASH are required downstream of Ptp10D for "loser" cell elimination. Constitutively active, phosphomimetic WASH is sufficient to induce both EGFR and Yki activation leading to overgrowth. On the mechanistic level we show that Ptp10D is recycled by the WASH/retromer complex, while EGFR is recycled by the WASH/retriever complex. Constitutive WASH activation selectively interferes with retromer function leading to Ptp10D mistargeting while promoting EGFR recycling and signaling activation. Phospho-WASH also activates aberrant Arp2/3 actin polymerization, leading to cytoskeletal imbalance, Yki activation and reduced apoptosis. Selective manipulation of WASH phosphorylation on sorting endosomes may restrict epithelial tumorous growth.
Collapse
Affiliation(s)
- Dan Liu
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Vasilios Tsarouhas
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Christos Samakovlis
- grid.10548.380000 0004 1936 9377Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden ,grid.8664.c0000 0001 2165 8627Cardiopulmonary Institute, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
41
|
Garcia-Vilanova A, Olmo-Fontánez AM, Moliva JI, Allué-Guardia A, Singh H, Merritt RE, Maselli DJ, Peters JI, Restrepo BI, Wang Y, Schlesinger LS, Turner J, Weintraub ST, Torrelles JB. The Aging Human Lung Mucosa: A Proteomics Study. J Gerontol A Biol Sci Med Sci 2022; 77:1969-1974. [PMID: 35460553 PMCID: PMC9536443 DOI: 10.1093/gerona/glac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The older adult population, estimated to double by 2050, is at increased risk of respiratory infections and other pulmonary diseases. Biochemical changes in the lung alveolar lining fluid (ALF) and in alveolar compartment cells can alter local immune responses as we age, generating opportunities for invading pathogens to establish successful infections. Indeed, the lung alveolar space of older adults is a pro-inflammatory, pro-oxidative, dysregulated environment that remains understudied. We performed an exploratory, quantitative proteomic profiling of the soluble proteins present in ALF, developing insight into molecular fingerprints, pathways, and regulatory networks that characterize the alveolar space in old age, comparing it to that of younger individuals. We identified 457 proteins that were significantly differentially expressed in older adult ALF, including increased production of matrix metalloproteinases, markers of cellular senescence, antimicrobials, and proteins of neutrophilic granule origin, among others, suggesting that neutrophils in the lungs of older adults could be potential contributors to the dysregulated alveolar environment with increasing age. Finally, we describe a hypothetical regulatory network mediated by the serum response factor that could explain the neutrophilic profile observed in the older adult population.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Angélica M Olmo-Fontánez
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Integrated Biomedical Sciences Program, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Allué-Guardia
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Harjinder Singh
- Division of Pulmonary and Critical Care Medicine, School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Robert E Merritt
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Diego J Maselli
- Division of Pulmonary and Critical Care Medicine, School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Jay I Peters
- Division of Pulmonary and Critical Care Medicine, School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | | | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, UTSA, San Antonio, Texas, USA
| | - Larry S Schlesinger
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne Turner
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, Texas, USA
| | - Jordi B Torrelles
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
42
|
Yarmohammadi F, Hayes AW, Karimi G. Sorting nexins as a promising therapeutic target for cardiovascular disorders: An updated overview. Exp Cell Res 2022; 419:113304. [PMID: 35931142 DOI: 10.1016/j.yexcr.2022.113304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Sorting nexins (SNXs) are involved in sorting the protein cargo within the endolysosomal system. Recently, several studies have shown the role of SNXs in cardiovascular pathology. SNXs exert both physiologic and pathologic functions in the cardiovascular system by regulating protein sorting and trafficking, maintaining protein homeostasis, and participating in multiple signaling pathways. SNX deficiency results in blood pressure response to dopamine 5 receptor [D5R] stimulation. SNX knockout protected against atherosclerosis lesions by suppressing foam cell formation. Moreover, SNXs can act as endogenous anti-arrhythmic agents via maintenance of calcium homeostasis. Overexpression SNXs also can reduce cardiac fibrosis in atrial fibrillation. The SNX-STAT3 interaction in cardiac cells promoted heart failure. SNXs may have the potential to act as a pharmacological target against specific cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL,, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Dhawan K, Naslavsky N, Caplan S. Coronin2A links actin-based endosomal processes to the EHD1 fission machinery. Mol Biol Cell 2022; 33:ar107. [PMID: 35921168 DOI: 10.1091/mbc.e21-12-0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fission of transport vesicles from endosomes is a crucial step in the recycling of lipids and receptors to the plasma membrane, but this process remains poorly understood. Although key components of the fission machinery, including the actin cytoskeleton and the ATPase Eps15 homology domain protein 1 (EHD1), have been implicated in endosomal fission, how this process is coordinately regulated is not known. We have identified the actin regulatory protein Coronin2A (CORO2A) as a novel EHD1 interaction partner. CORO2A localizes to stress fibers and actin microfilaments but also can be observed in partial overlap with EHD1 on endosomal structures. siRNA knockdown of CORO2A led to enlarged lamellae-like actin-rich protrusions, consistent with a role of other Coronin family proteins in attenuating actin-branching. Moreover, CORO2A depletion also caused a marked decrease in the internalization of clathrin-dependent cargo but had little impact on the uptake of clathrin-independent cargo, highlighting key differences in the role of branched actin for different modes of endocytosis. However, CORO2A was required for recycling of clathrin-independent cargo, and its depletion led to enlarged endosomes, supporting a role for CORO2A in the fission of endosomal vesicles. Our data support a novel role for CORO2A in coordinating endosomal fission and recycling with EHD1. [Media: see text].
Collapse
Affiliation(s)
- Kanika Dhawan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha NE 68198
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha NE 68198
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha NE 68198.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE 68198
| |
Collapse
|
44
|
Neri S, Maia N, Fortuna AM, Damasio J, Coale E, Willis M, Jorge P, Højte AF, Fenger CD, Møller RS, Bayat A. Expanding the pre- and postnatal phenotype of WASHC5 and CCDC22 -related Ritscher-Schinzel syndromes. Eur J Med Genet 2022; 65:104624. [PMID: 36130690 DOI: 10.1016/j.ejmg.2022.104624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Ritscher-Schinzel syndrome (RTSCS) is a rare genetic condition characterized by peculiar craniofacial features and cerebellar and cardiovascular malformations. To date, four genes are implicated in this condition. The first two genes described were the autosomal recessive inherited gene WASHC5 associated with Ritscher-Schinzel syndrome 1 (RTSCS1), and CCDC22, an X-linked recessive gene causing Ritscher-Schinzel syndrome 2 (RTSCS2). In recent years, two other genes have been identified: VPS35L (RTSCS3) and DPYSL5 (RTSCS4). Only few patients with a molecular diagnosis of RTSCS have been reported, leaving the phenotypical spectrum and genotype-phenotype correlations ill-defined. We expand the number of genetically confirmed patients with RTSCS1 and 2; reporting three live born and three terminated pregnancies from two unrelated families. Four siblings carried compound heterozygous variants in WASHC5 while two siblings harboured a hemizygous CCDC22 variant. The most common findings in all patients were craniofacial dysmorphism, particularly macrocephaly, down slanted palpebral fissures and low set-ears. Developmental delay, intellectual disability and ataxic gait were present in all patients. One of the patients with the CCDC22 variant presented pubertas tarda. Elevation of nuchal translucency was observed in the first trimester ultrasound in three foetuses with compound heterozygous variants in WASHC5. None of the patients had epilepsy. The pre- and postnatal findings of this cohort expand the known phenotype of RTSCS1 and 2, with direct impact on postnatal outcome, management, and familial counseling.
Collapse
Affiliation(s)
- Sabrina Neri
- Danish Epilepsy Centre, Department of Epilepsy Genetics and Personalized Medicine, DK-4293, Dianalund, Denmark; Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Nuno Maia
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal, and ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Ana M Fortuna
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal, and ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; Unidade de Genética Médica, Centro de Genética Médica Doutor Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
| | - Joana Damasio
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal, and ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; Serviço de Neurologia, Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal; CGPP and UnIGENE, Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elizabeth Coale
- Department of Maternal-Fetal Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Mary Willis
- Department of Pediatrics, Naval Medical Center San Diego, San Diego, CA, USA
| | - Paula Jorge
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal; UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal, and ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Anne F Højte
- Danish Epilepsy Centre, Department of Epilepsy Genetics and Personalized Medicine, DK-4293, Dianalund, Denmark
| | - Christina D Fenger
- Danish Epilepsy Centre, Department of Epilepsy Genetics and Personalized Medicine, DK-4293, Dianalund, Denmark; Amplexa Genetics A/S, Odense, Denmark
| | - Rikke S Møller
- Danish Epilepsy Centre, Department of Epilepsy Genetics and Personalized Medicine, DK-4293, Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Allan Bayat
- Danish Epilepsy Centre, Department of Epilepsy Genetics and Personalized Medicine, DK-4293, Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|
45
|
Mikhailov KV, Karpov SA, Letcher PM, Lee PA, Logacheva MD, Penin AA, Nesterenko MA, Pozdnyakov IR, Potapenko EV, Sherbakov DY, Panchin YV, Aleoshin VV. Genomic analysis reveals cryptic diversity in aphelids and sheds light on the emergence of Fungi. Curr Biol 2022; 32:4607-4619.e7. [PMID: 36126656 DOI: 10.1016/j.cub.2022.08.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/26/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Over the past decade, molecular phylogenetics has reshaped our understanding of the fungal tree of life by unraveling a hitherto elusive diversity of the protistan relatives of Fungi. Aphelida constitutes one of these novel deep branches that precede the emergence of osmotrophic fungal lifestyle and hold particular significance as the pathogens of algae. Here, we obtain and analyze the genomes of aphelid species Amoeboaphelidium protococcarum and Amoeboaphelidium occidentale. Genomic data unmask the vast divergence between these species, hidden behind their morphological similarity, and reveal hybrid genomes with a complex evolutionary history in two strains of A. protococcarum. We confirm the proposed sister relationship between Aphelida and Fungi using phylogenomic analysis and chart the reduction of characteristic proteins involved in phagocytic activity in the evolution of Holomycota. Annotation of aphelid genomes demonstrates the retention of actin nucleation-promoting complexes associated with phagocytosis and amoeboid motility and also reveals a conspicuous expansion of receptor-like protein kinases, uncharacteristic of fungal lineages. We find that aphelids possess multiple carbohydrate-processing enzymes that are involved in fungal cell wall synthesis but do not display rich complements of algal cell-wall-processing enzymes, suggesting an independent origin of fungal plant-degrading capabilities. Aphelid genomes show that the emergence of Fungi from phagotrophic ancestors relied on a common cell wall synthetic machinery but required a different set of proteins for digestion and interaction with the environment.
Collapse
Affiliation(s)
- Kirill V Mikhailov
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation.
| | - Sergey A Karpov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation; Biological Faculty, St. Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Peter M Letcher
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - Philip A Lee
- Allegheny Science and Technology, Bridgeport, WV 26330, USA
| | - Maria D Logacheva
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russian Federation
| | - Aleksey A Penin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation
| | - Maksim A Nesterenko
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation; Biological Faculty, St. Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Igor R Pozdnyakov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russian Federation
| | - Evgenii V Potapenko
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel; Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Dmitry Y Sherbakov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russian Federation; Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Yuri V Panchin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russian Federation
| |
Collapse
|
46
|
The LDL receptor: Traffic and function in trophoblast cells under normal and pathological conditions. Placenta 2022; 127:12-19. [DOI: 10.1016/j.placenta.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
|
47
|
ITRAQ-based quantitative proteomic analysis reveals that VPS35 promotes the expression of MCM2-7 genes in HeLa cells. Sci Rep 2022; 12:9700. [PMID: 35690672 PMCID: PMC9188599 DOI: 10.1038/s41598-022-13934-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex that regulates endosomal trafficking in eukaryotic cells. Recent studies have shown that VPS35 promotes tumor cell proliferation and affects the nuclear accumulation of its interacting partner. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to measure the changes in nuclear protein abundance in VPS35-depleted HeLa cells. A total of 47 differentially expressed proteins were identified, including 27 downregulated and 20 upregulated proteins. Gene ontology (GO) analysis showed that the downregulated proteins included several minichromosome maintenance (MCM) proteins described as cell proliferation markers, and these proteins were present in the MCM2-7 complex, which is essential for DNA replication. Moreover, we validated that loss of VPS35 reduced the mRNA and protein expression of MCM2-7 genes. Notably, re-expression of VPS35 in VPS35 knockout HeLa cells rescued the expression of these genes. Functionally, we showed that VPS35 contributes to cell proliferation and maintenance of genomic stability of HeLa cells. Therefore, these findings reveal that VPS35 is involved in the regulation of MCM2-7 gene expression and establish a link between VPS35 and cell proliferation.
Collapse
|
48
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
49
|
Abstract
Complex mechanisms govern the sorting of membrane (cargo) proteins at endosomes to ensure that protein localization to the post-Golgi endomembrane system is accurately maintained. Endosomal retrieval complexes mediate sorting by recognizing specific motifs and signals in the cytoplasmic domains of cargo proteins transiting through endosomes. In this review, the recent progress in understanding the molecular mechanisms of how the retromer complex, in conjunction with sorting nexin (SNX) proteins, operates in cargo recognition and sorting is discussed. New data revealing the importance of different SNX proteins and detailing how post-translational modifications can modulate cargo sorting to respond to changes in the environment are highlighted along with the key role that endosomal protein sorting plays in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Matthew N J Seaman
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Xie S, Dierlam C, Smith E, Duran R, Williams A, Davis A, Mathew D, Naslavsky N, Iyer J, Caplan S. The retromer complex regulates C. elegans development and mammalian ciliogenesis. J Cell Sci 2022; 135:jcs259396. [PMID: 35510502 PMCID: PMC9189432 DOI: 10.1242/jcs.259396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
The mammalian retromer consists of subunits VPS26 (either VPS26A or VPS26B), VPS29 and VPS35, and a loosely associated sorting nexin (SNX) heterodimer or a variety of other SNX proteins. Despite involvement in yeast and mammalian cell trafficking, the role of retromer in development is poorly understood, and its impact on primary ciliogenesis remains unknown. Using CRISPR/Cas9 editing, we demonstrate that vps-26-knockout worms have reduced brood sizes, impaired vulval development and decreased body length, all of which have been linked to ciliogenesis defects. Although preliminary studies did not identify worm ciliary defects, and impaired development limited additional ciliogenesis studies, we turned to mammalian cells to investigate the role of retromer in ciliogenesis. VPS35 localized to the primary cilium of mammalian cells, and depletion of VPS26, VPS35, VPS29, SNX1, SNX2, SNX5 or SNX27 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the centriolar protein, CP110 (also known as CCP110), and was required for its removal from the mother centriole. Herein, we characterize new roles for retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, suggesting a novel role for retromer in CP110 removal from the mother centriole.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carter Dierlam
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Ellie Smith
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Ramon Duran
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Allana Williams
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Angelina Davis
- School of Science and Mathematics, Tulsa Community College, Tulsa, OK 74115, USA
| | - Danita Mathew
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jyoti Iyer
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|