1
|
Hong BV, Rhodes CH, Agus JK, Tang X, Zhu C, Zheng JJ, Zivkovic AM. A single 36-h water-only fast vastly remodels the plasma lipidome. Front Cardiovasc Med 2023; 10:1251122. [PMID: 37745091 PMCID: PMC10513913 DOI: 10.3389/fcvm.2023.1251122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Prolonged fasting, characterized by restricting caloric intake for 24 h or more, has garnered attention as a nutritional approach to improve lifespan and support healthy aging. Previous research from our group showed that a single bout of 36-h water-only fasting in humans resulted in a distinct metabolomic signature in plasma and increased levels of bioactive metabolites, which improved macrophage function and lifespan in C. elegans. Objective This secondary outcome analysis aimed to investigate changes in the plasma lipidome associated with prolonged fasting and explore any potential links with markers of cardiometabolic health and aging. Method We conducted a controlled pilot study with 20 male and female participants (mean age, 27.5 ± 4.4 years; mean BMI, 24.3 ± 3.1 kg/m2) in four metabolic states: (1) overnight fasted (baseline), (2) 2-h postprandial fed state (fed), (3) 36-h fasted state (fasted), and (4) 2-h postprandial refed state 12 h after the 36-h fast (refed). Plasma lipidomic profiles were analyzed using liquid chromatography and electrospray ionization mass spectrometry. Results Several lipid classes, including lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylethanolamine, and triacylglycerol were significantly reduced in the 36-h fasted state, while free fatty acids, ceramides, and sphingomyelin were significantly increased compared to overnight fast and fed states (P < 0.05). After correction for multiple testing, 245 out of 832 lipid species were significantly altered in the fasted state compared to baseline (P < 0.05). Random forest models revealed that several lipid species, such as LPE(18:1), LPC(18:2), and FFA(20:1) were important features in discriminating the fasted state from both the overnight fasted and postprandial state. Conclusion Our findings indicate that prolonged fasting vastly remodels the plasma lipidome and markedly alters the concentrations of several lipid species, which may be sensitive biomarkers of prolonged fasting. These changes in lipid metabolism during prolonged fasting have important implications for the management of cardiometabolic health and healthy aging, and warrant further exploration and validation in larger cohorts and different population groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Lee J, Savage H, Maegawa S, Ballarò R, Pareek S, Guerrouahen BS, Gopalakrishnan V, Schadler K. Exercise Promotes Pro-Apoptotic Ceramide Signaling in a Mouse Melanoma Model. Cancers (Basel) 2022; 14:cancers14174306. [PMID: 36077841 PMCID: PMC9454537 DOI: 10.3390/cancers14174306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Exercise has been shown to improve the efficacy of chemotherapy against several tumor models using mice through modulating tumor vascular perfusion, immune function, circulating growth factors, hypoxia, and metabolism in tumor cells and their surrounding microenvironment. However, little is known about the effect of exercise on tumor-cell-intrinsic death mechanisms, such as apoptosis. Ceramide is a bioactive lipid that can promote cell death. The strategy of increasing intracellular ceramide has potential as an anticancer treatment for melanoma with dysregulated ceramide metabolism, but there is not yet a clinically relevant method to do so. We found that moderate aerobic exercise increases pro-apoptotic ceramide in melanoma in mice, and activates p53 signaling, promoting tumor cell apoptosis. This finding suggests that exercise may be most effective as an adjuvant therapy to sensitize cancer cells to anticancer treatments in tumors that exhibit downregulated ceramide generation to evade cell death. Abstract Ceramides are essential sphingolipids that mediate cell death and survival. Low ceramide content in melanoma is one mechanism of drug resistance. Thus, increasing the ceramide content in tumor cells is likely to increase their sensitivity to cytotoxic therapy. Aerobic exercise has been shown to modulate ceramide metabolism in healthy tissue, but the relationship between exercise and ceramide in tumors has not been evaluated. Here, we demonstrate that aerobic exercise causes tumor cell apoptosis and accumulation of pro-apoptotic ceramides in B16F10 but not BP melanoma models using mice. B16F10 tumor-bearing mice were treated with two weeks of moderate treadmill exercise, or were control, unexercised mice. A reverse-phase protein array was used to identify canonical p53 apoptotic signaling as a key pathway upregulated by exercise, and we demonstrate increased apoptosis in tumors from exercised mice. Consistent with this finding, pro-apoptotic C16-ceramide, and the ceramide generating enzyme ceramide synthase 6 (CerS6), were higher in B16F10 tumors from exercised mice, while pro-survival sphingosine kinase 1 (Sphk1) was lower. These data suggest that exercise contributes to B16F10 tumor cell death, possibly by modulating ceramide metabolism toward a pro-apoptotic ceramide/sphingosine-1-phosphate balance. However, these results are not consistent in BP tumors, demonstrating that exercise can have different effects on tumors of different patient or mouse origin with the same diagnosis. This work indicates that exercise might be most effective as a therapeutic adjuvant with therapies that kill tumor cells in a ceramide-dependent manner.
Collapse
Affiliation(s)
- Jonghae Lee
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hannah Savage
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shinji Maegawa
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Riccardo Ballarò
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sumedha Pareek
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bella Samia Guerrouahen
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keri Schadler
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-794-1035
| |
Collapse
|
3
|
Brusatori M, Wood MH, Tucker SC, Maddipati KR, Koya SK, Auner GW, Honn KV, Seyoum B. Ceramide changes in abdominal subcutaneous and visceral adipose tissue among diabetic and nondiabetic patients. J Diabetes 2022; 14:271-281. [PMID: 35470585 PMCID: PMC9060146 DOI: 10.1111/1753-0407.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND This study profiles ceramides extracted from visceral and subcutaneous adipose tissue of human subjects by liquid chromatography-mass spectrometry to determine a correlation with status of diabetes and gender. METHODS Samples of visceral and abdominal wall subcutaneous adipose tissue (n = 36 and n = 31, respectively) were taken during laparoscopic surgery from 36 patients (14 nondiabetic, 22 diabetic and prediabetic) undergoing bariatric surgery with a body mass index (BMI) >35 kg/m2 with ≥1 existing comorbidity or BMI ≥40 kg/m2 . Sphingolipids were extracted and analyzed using liquid chromatography-mass spectrometry. RESULTS After logarithm 2 conversion, paired analysis of visceral to subcutaneous tissue showed differential accumulation of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in visceral tissue of prediabetic/diabetic female subjects, but not in males. Within-tissue analysis showed higher mean levels of ceramide species linked to insulin resistance, such as Cer(d18:1/18:0) and Cer(d18:1/16:0), in visceral tissue of prediabetic/diabetic patients compared with nondiabetic subjects and higher content of Cer(d18:1/14:0) in subcutaneous tissue of insulin-resistant female patients compared with prediabetic/diabetic males. Statistically significant differences in mean levels of ceramide species between insulin-resistant African American and insulin-resistant Caucasian patients were not evident in visceral or subcutaneous tissue. CONCLUSIONS Analysis of ceramides is important for developing a better understanding of biological processes underlying type 2 diabetes, metabolic syndrome, and obesity. Knowledge of the accumulated ceramides/dihydroceramides may reflect on the prelipolytic state that leads the lipotoxic phase of insulin resistance and may shed light on the predisposition to insulin resistance by gender.
Collapse
Affiliation(s)
- Michelle Brusatori
- Michael and Marian Ilitch Department of SurgerySchool of Medicine, Wayne State UniversityDetroitMichiganUSA
- Smart Sensors and Integrated Microsystems ProgramWayne State UniversityDetroitMichiganUSA
| | - Michael H. Wood
- Michael and Marian Ilitch Department of SurgerySchool of Medicine, Wayne State UniversityDetroitMichiganUSA
- Harper Bariatric Medicine InstituteHarper University Hospital, Detroit Medical CenterDetroitMichiganUSA
| | - Stephanie C. Tucker
- Department of PathologyBioactive Lipids Research Program and Lipidomics Core Facility, Wayne State UniversityDetroitMichiganUSA
| | - Krishna Rao Maddipati
- Department of PathologyBioactive Lipids Research Program and Lipidomics Core Facility, Wayne State UniversityDetroitMichiganUSA
| | - S. Kiran Koya
- Michael and Marian Ilitch Department of SurgerySchool of Medicine, Wayne State UniversityDetroitMichiganUSA
- Smart Sensors and Integrated Microsystems ProgramWayne State UniversityDetroitMichiganUSA
| | - Gregory W. Auner
- Michael and Marian Ilitch Department of SurgerySchool of Medicine, Wayne State UniversityDetroitMichiganUSA
- Smart Sensors and Integrated Microsystems ProgramWayne State UniversityDetroitMichiganUSA
| | - Kenneth V. Honn
- Department of PathologyBioactive Lipids Research Program and Lipidomics Core Facility, Wayne State UniversityDetroitMichiganUSA
| | - Berhane Seyoum
- Division of EndocrinologyWayne State University, School of MedicineDetroitMichiganUSA
| |
Collapse
|
4
|
Carrard J, Gallart-Ayala H, Weber N, Colledge F, Streese L, Hanssen H, Schmied C, Ivanisevic J, Schmidt-Trucksäss A. How Ceramides Orchestrate Cardiometabolic Health-An Ode to Physically Active Living. Metabolites 2021; 11:metabo11100675. [PMID: 34677390 PMCID: PMC8538837 DOI: 10.3390/metabo11100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Cardiometabolic diseases (CMD) represent a growing socioeconomic burden and concern for healthcare systems worldwide. Improving patients’ metabolic phenotyping in clinical practice will enable clinicians to better tailor prevention and treatment strategy to individual needs. Recently, elevated levels of specific lipid species, known as ceramides, were shown to predict cardiometabolic outcomes beyond traditional biomarkers such as cholesterol. Preliminary data showed that physical activity, a potent, low-cost, and patient-empowering means to reduce CMD-related burden, influences ceramide levels. While a single bout of physical exercise increases circulating and muscular ceramide levels, regular exercise reduces ceramide content. Additionally, several ceramide species have been reported to be negatively associated with cardiorespiratory fitness, which is a potent health marker reflecting training level. Thus, regular exercise could optimize cardiometabolic health, partly by reversing altered ceramide profiles. This short review provides an overview of ceramide metabolism and its role in cardiometabolic health and diseases, before presenting the effects of exercise on ceramides in humans.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
- Correspondence:
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Nadia Weber
- Medical School, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Universitätstrasse 2, 8092 Zurich, Switzerland;
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| | - Christian Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| |
Collapse
|
5
|
Bergman BC, Goodpaster BH. Exercise and Muscle Lipid Content, Composition, and Localization: Influence on Muscle Insulin Sensitivity. Diabetes 2020; 69:848-858. [PMID: 32312901 DOI: 10.2337/dbi18-0042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022]
Abstract
Accumulation of lipid in skeletal muscle is thought to be related to the development of insulin resistance and type 2 diabetes. Initial work in this area focused on accumulation of intramuscular triglyceride; however, bioactive lipids such as diacylglycerols and sphingolipids are now thought to play an important role. Specific species of these lipids appear to be more negative toward insulin sensitivity than others. Adding another layer of complexity, localization of lipids within the cell appears to influence the relationship between these lipids and insulin sensitivity. This article summarizes how accumulation of total lipids, specific lipid species, and localization of lipids influence insulin sensitivity in humans. We then focus on how these aspects of muscle lipids are impacted by acute and chronic aerobic and resistance exercise training. By understanding how exercise alters specific species and localization of lipids, it may be possible to uncover specific lipids that most heavily impact insulin sensitivity.
Collapse
|
6
|
Søgaard D, Baranowski M, Dela F, Helge JW. The Influence of Age and Cardiorespiratory Fitness on Bioactive Lipids in Muscle. J Gerontol A Biol Sci Med Sci 2020; 74:778-786. [PMID: 30252030 DOI: 10.1093/gerona/gly214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 01/21/2023] Open
Abstract
Reduced insulin sensitivity is observed with aging and often explained by decreased physical activity. The mechanisms involved are not clarified, but bioactive lipids may play a role. We aimed to evaluate the influence of age and cardiorespiratory fitness on ceramide and diacylglycerol content in muscle and key proteins in lipid metabolism and insulin signaling. Healthy males were stratified by age into trained and untrained groups including 27 young (23.2 ± 0.3 years) and 33 aged (65.2 ± 0.6 years). Maximal oxygen uptake and body composition were measured and fasting blood samples and muscle biopsies obtained. Muscle ceramide and diacylglycerol were determined by thin-layer and gas-liquid chromatography and proteins by western blotting. We show that HOMA-IR was higher and VO2 peak lower in aged compared with young. Total, saturated, C16:0 and C18:0 ceramide content were lower in muscle from aged compared with young. Intramuscular C18:1n9 and C20:4n6 content were higher in trained versus untrained. Content of total unsaturated and C16:1n7 diacylglycerol fatty acids were higher and C24:0 lower in muscle of aged versus young. Cardiorespiratory fitness had no impact on total diacylglycerol content. In conclusion, these data argue against intramuscular ceramide or diacylglycerol accumulation as driver of age-related insulin resistance in lean individuals.
Collapse
Affiliation(s)
- Ditte Søgaard
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | - Flemming Dela
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Reidy PT, Mahmassani ZS, McKenzie AI, Petrocelli JJ, Summers SA, Drummond MJ. Influence of Exercise Training on Skeletal Muscle Insulin Resistance in Aging: Spotlight on Muscle Ceramides. Int J Mol Sci 2020; 21:ijms21041514. [PMID: 32098447 PMCID: PMC7073171 DOI: 10.3390/ijms21041514] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Intramuscular lipid accumulation has been associated with insulin resistance (IR), aging, diabetes, dyslipidemia, and obesity. A substantial body of evidence has implicated ceramides, a sphingolipid intermediate, as potent antagonists of insulin action that drive insulin resistance. Indeed, genetic mouse studies that lower ceramides are potently insulin sensitizing. Surprisingly less is known about how physical activity (skeletal muscle contraction) regulates ceramides, especially in light that muscle contraction regulates insulin sensitivity. The purpose of this review is to critically evaluate studies (rodent and human) concerning the relationship between skeletal muscle ceramides and IR in response to increased physical activity. Our review of the literature indicates that chronic exercise reduces ceramide levels in individuals with obesity, diabetes, or hyperlipidemia. However, metabolically healthy individuals engaged in increased physical activity can improve insulin sensitivity independent of changes in skeletal muscle ceramide content. Herein we discuss these studies and provide context regarding the technical limitations (e.g., difficulty assessing the myriad ceramide species, the challenge of obtaining information on subcellular compartmentalization, and the paucity of flux measurements) and a lack of mechanistic studies that prevent a more sophisticated assessment of the ceramide pathway during increased contractile activity that lead to divergences in skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Paul T. Reidy
- Department of Kinesiology and Health, Miami University, 420 S Oak St, Oxford, OH 45056, USA;
| | - Ziad S. Mahmassani
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Alec I. McKenzie
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Jonathan J. Petrocelli
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 250 1850 E, Salt Lake City, UT 84112, USA;
| | - Micah J. Drummond
- Departments of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84018, USA; (Z.S.M.); (A.I.M.); (J.J.P.)
- Correspondence:
| |
Collapse
|
8
|
Tan-Chen S, Guitton J, Bourron O, Le Stunff H, Hajduch E. Sphingolipid Metabolism and Signaling in Skeletal Muscle: From Physiology to Physiopathology. Front Endocrinol (Lausanne) 2020; 11:491. [PMID: 32849282 PMCID: PMC7426366 DOI: 10.3389/fendo.2020.00491] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids represent one of the major classes of eukaryotic lipids. They play an essential structural role, especially in cell membranes where they also possess signaling properties and are capable of modulating multiple cell functions, such as apoptosis, cell proliferation, differentiation, and inflammation. Many sphingolipid derivatives, such as ceramide, sphingosine-1-phosphate, and ganglioside, have been shown to play many crucial roles in muscle under physiological and pathological conditions. This review will summarize our knowledge of sphingolipids and their effects on muscle fate, highlighting the role of this class of lipids in modulating muscle cell differentiation, regeneration, aging, response to insulin, and contraction. We show that modulating sphingolipid metabolism may be a novel and interesting way for preventing and/or treating several muscle-related diseases.
Collapse
Affiliation(s)
- Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Jeanne Guitton
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Olivier Bourron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Diabétologie et Maladies Métaboliques, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hervé Le Stunff
- Université Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Orsay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
- *Correspondence: Eric Hajduch
| |
Collapse
|
9
|
Al-Khelaifi F, Diboun I, Donati F, Botrè F, Abraham D, Hingorani A, Albagha O, Georgakopoulos C, Suhre K, Yousri NA, Elrayess MA. Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Sci Rep 2019; 9:19889. [PMID: 31882771 PMCID: PMC6934758 DOI: 10.1038/s41598-019-56496-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic research of elite athletic performance has been hindered by the complex phenotype and the relatively small effect size of the identified genetic variants. The aims of this study were to identify genetic predisposition to elite athletic performance by investigating genetically-influenced metabolites that discriminate elite athletes from non-elite athletes and to identify those associated with endurance sports. By conducting a genome wide association study with high-resolution metabolomics profiling in 490 elite athletes, common variant metabolic quantitative trait loci (mQTLs) were identified and compared with previously identified mQTLs in non-elite athletes. Among the identified mQTLs, those associated with endurance metabolites were determined. Two novel genetic loci in FOLH1 and VNN1 are reported in association with N-acetyl-aspartyl-glutamate and Linoleoyl ethanolamide, respectively. When focusing on endurance metabolites, one novel mQTL linking androstenediol (3alpha, 17alpha) monosulfate and SULT2A1 was identified. Potential interactions between the novel identified mQTLs and exercise are highlighted. This is the first report of common variant mQTLs linked to elite athletic performance and endurance sports with potential applications in biomarker discovery in elite athletic candidates, non-conventional anti-doping analytical approaches and therapeutic strategies.
Collapse
Affiliation(s)
- Fatima Al-Khelaifi
- Anti Doping Laboratory Qatar, Sports City, Doha, Qatar.,Division of Medicine, University College London, London, NW3 2PF, United Kingdom
| | - Ilhame Diboun
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197, Rome, Italy
| | - David Abraham
- Division of Medicine, University College London, London, NW3 2PF, United Kingdom
| | - Aroon Hingorani
- UCL Institute of Cardiovascular Science, University College London, London, WC1E 6BT, United Kingdom
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Center for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar
| | - Noha A Yousri
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Qatar-Foundation, P.O. Box 24144, Doha, Qatar.,Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
10
|
Changes in Membrane Ceramide Pools in Rat Soleus Muscle in Response to Short-Term Disuse. Int J Mol Sci 2019; 20:ijms20194860. [PMID: 31574943 PMCID: PMC6801848 DOI: 10.3390/ijms20194860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
Lipid raft disruption is an early event during skeletal muscle unloading. Ceramide (Cer) serves as a signaling lipid that can contribute to lipid raft disturbance and muscle atrophy. Using biochemical and fluorescent approaches, the distribution of Cer and related molecules in the rat soleus muscle subjected to 12 h of hindlimb suspension (HS) was studied. HS led to upregulation of TNFα receptor 1 (TNFR1), Cer-producing enzymes, and acid and neutral sphingomyelinase (SMase) in detergent-resistant membranes (lipid rafts), which was accompanied by an increase in Cer and a decrease in sphingomyelin in this membrane fraction. Fluorescent labeling indicated increased Cer in the sarcoplasm as well as the junctional (synaptic) and extrajunctional compartments of the suspended muscles. Also, a loss of membrane asymmetry (a hallmark of membrane disturbance) was induced by HS. Pretreatment with clomipramine, a functional inhibitor of acid SMase, counteracted HS-mediated changes in the Cer/sphingomyelin ratio and acid SMase abundance as well as suppressed Cer accumulation in the intracellular membranes of junctional and extrajunctional regions. However, the elevation of plasma membrane Cer and disturbance of the membrane asymmetry were suppressed only in the junctional compartment. We suggest that acute HS leads to TNFR1 and SMase upregulation in the lipid raft fraction and deposition of Cer throughout the sarcolemma and intracellularly. Clomipramine-mediated downregulation of acid SMase can suppress Cer accumulation in all compartments, excluding the extrajunctional plasma membrane.
Collapse
|
11
|
Reidy PT, McKenzie AI, Mahmassani Z, Morrow VR, Yonemura NM, Hopkins PN, Marcus RL, Rondina MT, Lin YK, Drummond MJ. Skeletal muscle ceramides and relationship with insulin sensitivity after 2 weeks of simulated sedentary behaviour and recovery in healthy older adults. J Physiol 2018; 596:5217-5236. [PMID: 30194727 PMCID: PMC6209761 DOI: 10.1113/jp276798] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Insulin sensitivity (as determined by a hyperinsulinaemic-euglyceamic clamp) decreased 15% after reduced activity. Despite not fully returning to baseline physical activity levels, insulin sensitivity unexpectedly, rebounded above that recorded before 2 weeks of reduced physical activity by 14% after the recovery period. Changes in insulin sensitivity in response to reduced activity were primarily driven by men but, not women. There were modest changes in ceramides (nuclear/myofibrillar fraction and serum) following reduced activity and recovery but, in the absence of major changes to body composition (i.e. fat mass), ceramides were not related to changes in inactivity-induced insulin sensitivity in healthy older adults. ABSTRACT Older adults are at risk of physical inactivity as they encounter debilitating life events. It is not known how insulin sensitivity is affected by modest short-term physical inactivity and recovery in healthy older adults, nor how insulin sensitivity is related to changes in serum and muscle ceramide content. Healthy older adults (aged 64-82 years, five females, seven males) were assessed before (PRE), after 2 weeks of reduced physical activity (RA) and following 2 weeks of recovery (REC). Insulin sensitivity (hyperinsulinaemic-euglyceamic clamp), lean mass, muscle function, skeletal muscle subfraction, fibre-specific, and serum ceramide content and indices of skeletal muscle inflammation were assessed. Insulin sensitivity decreased by 15 ± 6% at RA (driven by men) but rebounded above PRE by 14 ± 5% at REC. Mid-plantar flexor muscle area and leg strength decreased with RA, although only muscle size returned to baseline levels following REC. Body fat did not change and only minimal changes in muscle inflammation were noted across the intervention. Serum and intramuscular ceramides (nuclear/myofibrillar fraction) were modestly increased at RA and REC. However, ceramides were not related to changes in inactivity-induced insulin sensitivity in healthy older adults. Short-term inactivity induced insulin resistance in older adults in the absence of significant changes in body composition (i.e. fat mass) are not related to changes in ceramides.
Collapse
Affiliation(s)
- Paul T. Reidy
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Alec I. McKenzie
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Ziad Mahmassani
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Vincent R. Morrow
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Nikol M. Yonemura
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Paul N. Hopkins
- Cardiovascular GeneticsDepartment of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Robin L. Marcus
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| | - Matthew T. Rondina
- Department of Internal Medicine & Molecular Medicine ProgramUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Yu Kuei Lin
- Department of Internal Medicine, Division of EndocrinologyMetabolism and DiabetesUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
12
|
Lewis LS, Huffman KM, Smith IJ, Donahue MP, Slentz CA, Houmard JA, Hubal MJ, Hoffman EP, Hauser ER, Siegler IC, Kraus WE. Genetic Variation in Acid Ceramidase Predicts Non-completion of an Exercise Intervention. Front Physiol 2018; 9:781. [PMID: 30008672 PMCID: PMC6034073 DOI: 10.3389/fphys.2018.00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022] Open
Abstract
Genetic variation is associated with a number of lifestyle behaviours; it may be associated with adherence and individual responses to exercise training. We tested single nucleotide polymorphisms (SNPs) in the acid ceramidase gene (ASAH1) for association with subject adherence and physiologic benefit with exercise training in two well-characterised randomised, controlled 8-month exercise interventions: STRRIDE I (n = 239) and STRRIDE II (n = 246). Three ASAH1 non-coding SNPs in a linkage disequilibrium block were associated with non-completion: rs2898458(G/T), rs7508(A/G), and rs3810(A/G) were associated with non-completion in both additive (OR = 1.8, 1.8, 2.0; P < 0.05 all) and dominant (OR = 2.5, 2.6, 3.5; P < 0.05 all) models; with less skeletal muscle ASAH expression (p < 0.01) in a subset (N = 60); and poorer training response in cardiorespiratory fitness (peak VO2 change rs3810 r2 = 0.29, P = 0.04; rs2898458 r2 = 0.29, P = 0.08; rs7508 r2 = 0.28, p = 0.09); and similar in direction and magnitude in both independent exploratory and replication studies. Adherence to exercise may be partly biologically and genetically moderated through metabolic regulatory pathways participating in skeletal muscle adaptation to exercise training.
Collapse
Affiliation(s)
- Lauren S Lewis
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, United States
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ira J Smith
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Mark P Donahue
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Cris A Slentz
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Joseph A Houmard
- Human Performance Laboratory, East Carolina University, Greenville, NC, United States
| | - Monica J Hubal
- Children's Genetic Medical Research Center, Children's National Medical Center, Washington, DC, United States
| | - Eric P Hoffman
- Children's Genetic Medical Research Center, Children's National Medical Center, Washington, DC, United States
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Cooperative Studies Program-Epidemiology Center Durham, Veterans Administration Medical Center, Durham, NC, United States
| | - Ilene C Siegler
- Division of Behavioral Medicine, Department of Psychiatry, Duke University School of Medicine, Durham, NC, United States
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
13
|
Palmnäs MSA, Kopciuk KA, Shaykhutdinov RA, Robson PJ, Mignault D, Rabasa-Lhoret R, Vogel HJ, Csizmadi I. Serum Metabolomics of Activity Energy Expenditure and its Relation to Metabolic Syndrome and Obesity. Sci Rep 2018; 8:3308. [PMID: 29459697 PMCID: PMC5818610 DOI: 10.1038/s41598-018-21585-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Modifiable lifestyle factors, including exercise and activity energy expenditure (AEE), may attenuate the unfavorable health effects of obesity, such as risk factors of metabolic syndrome (MetS). However, the underlying mechanisms are not clear. In this study we sought to investigate whether the metabolite profiles of MetS and adiposity assessed by body mass index (BMI) and central obesity are inversely correlated with AEE and physical activity. We studied 35 men and 47 women, aged 30-60 years, using doubly labeled water to derive AEE and the Sedentary Time and Activity Reporting Questionnaire (STAR-Q) to determine the time spent in moderate and vigorous physical activity. Proton nuclear magnetic resonance spectroscopy was used for serum metabolomics analysis. Serine and glycine were found in lower concentrations in participants with more MetS risk factors and greater adiposity. However, serine and glycine concentrations were higher with increasing activity measures. Metabolic pathway analysis and recent literature suggests that the lower serine and glycine concentrations in the overweight/obese state could be a consequence of serine entering de novo sphingolipid synthesis. Taken together, higher levels of AEE and physical activity may play a crucial part in improving metabolic health in men and women with and without MetS risk factors.
Collapse
Affiliation(s)
- Marie S A Palmnäs
- University of Calgary, Department of Biochemistry and Molecular Biology, Calgary, T2N 1N4, Canada
- University of Calgary, Department of Biological Sciences, Calgary, T2N 1N4, Canada
| | - Karen A Kopciuk
- University of Calgary, Department of Oncology, Calgary, T2N 1N4, Canada
- University of Calgary, Department of Mathematics and Statistics, Calgary, T2N 1N4, Canada
| | | | - Paula J Robson
- C-MORE, CancerControl Alberta, Alberta Health Services, Calgary, T5J 3H1, Canada
| | - Diane Mignault
- Institut de Recherches Cliniques de Montréal, Montréal, H2W 1R7, Canada
- Université de Montréal, Département de Nutrition, Montréal, H3T 1J4, Canada
| | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montréal, H2W 1R7, Canada
- Université de Montréal, Département de Nutrition, Montréal, H3T 1J4, Canada
| | - Hans J Vogel
- University of Calgary, Department of Biochemistry and Molecular Biology, Calgary, T2N 1N4, Canada.
- University of Calgary, Department of Biological Sciences, Calgary, T2N 1N4, Canada.
| | - Ilona Csizmadi
- University of Calgary, Department of Oncology, Calgary, T2N 1N4, Canada.
- University of Calgary, Community Health Sciences, Calgary, T2N 1N4, Canada.
| |
Collapse
|
14
|
Perreault L, Newsom SA, Strauss A, Kerege A, Kahn DE, Harrison KA, Snell-Bergeon JK, Nemkov T, D'Alessandro A, Jackman MR, MacLean PS, Bergman BC. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight 2018; 3:96805. [PMID: 29415895 DOI: 10.1172/jci.insight.96805] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Accumulation of diacylglycerol (DAG) and sphingolipids is thought to promote skeletal muscle insulin resistance by altering cellular signaling specific to their location. However,the subcellular localization of bioactive lipids in human skeletal muscle is largely unknown. METHODS We evaluated subcellular localization of skeletal muscle DAGs and sphingolipids in lean individuals (n = 15), endurance-trained athletes (n = 16), and obese men and women with (n = 12) and without type 2 diabetes (n = 15). Muscle biopsies were fractionated into sarcolemmal, cytosolic, mitochondrial/ER, and nuclear compartments. Lipids were measured using liquid chromatography tandem mass spectrometry, and insulin sensitivity was measured using hyperinsulinemic-euglycemic clamp. RESULTS Sarcolemmal 1,2-DAGs were not significantly related to insulin sensitivity. Sarcolemmal ceramides were inversely related to insulin sensitivity, with a significant relationship found for the C18:0 species. Sarcolemmal sphingomyelins were also inversely related to insulin sensitivity, with the strongest relationships found for the C18:1, C18:0, and C18:2 species. In the mitochondrial/ER and nuclear fractions, 1,2-DAGs were positively related to, while ceramides were inversely related to, insulin sensitivity. Cytosolic lipids as well as 1,3-DAG, dihydroceramides, and glucosylceramides in any compartment were not related to insulin sensitivity. All sphingolipids but only specific DAGs administered to isolated mitochondria decreased mitochondrial state 3 respiration. CONCLUSION These data reveal previously unknown differences in subcellular localization of skeletal muscle DAGs and sphingolipids that relate to whole-body insulin sensitivity and mitochondrial function in humans. These data suggest that whole-cell concentrations of lipids obscure meaningful differences in compartmentalization and suggest that subcellular localization of lipids should be considered when developing therapeutic interventions to treat insulin resistance. FUNDING National Institutes of Health General Clinical Research Center (RR-00036), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01DK089170), NIDDK (T32 DK07658), and Colorado Nutrition Obesity Research Center (P30DK048520).
Collapse
Affiliation(s)
- Leigh Perreault
- Endocrinology, Diabetes, and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Sean A Newsom
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Allison Strauss
- Endocrinology, Diabetes, and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Anna Kerege
- Endocrinology, Diabetes, and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Darcy E Kahn
- Endocrinology, Diabetes, and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Kathleen A Harrison
- Endocrinology, Diabetes, and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Matthew R Jackman
- Endocrinology, Diabetes, and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Paul S MacLean
- Endocrinology, Diabetes, and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Bryan C Bergman
- Endocrinology, Diabetes, and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
15
|
Morville T, Rosenkilde M, Munch-Andersen T, Andersen PR, Kjær Groenbæk K, Helbo S, Kristensen M, Vigelsø Hansen A, Mattsson N, Rasmusen HK, Guadalupe-Grau A, Fago A, Neigaard Hansen C, Twelkmeyer B, Løvind Andersen J, Dela F, Wulff Helge J. Repeated Prolonged Exercise Decreases Maximal Fat Oxidation in Older Men. Med Sci Sports Exerc 2017; 49:308-316. [PMID: 27685008 DOI: 10.1249/mss.0000000000001107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION/PURPOSE Fat metabolism and muscle adaptation was investigated in six older trained men (age, 61 ± 4 yr; V˙O2max, 48 ± 2 mL·kg·min) after repeated prolonged exercise). METHODS A distance of 2706 km (1681 miles) cycling was performed over 14 d, and a blood sample and a muscle biopsy were obtained at rest after an overnight fast before and 30 h after the completion of the cycling. V˙O2max and maximal fat oxidation were measured using incremental exercise tests. HR was continuously sampled during cycling to estimate exercise intensity. RESULTS The daily duration of exercise was 10 h and 31 ± 37 min, and the mean intensity was 53% ± 1% of V˙O2max. Body weight remained unchanged. V˙O2max and maximal fat oxidation rate decreased by 6% ± 2% (P = 0.04) and 32% ± 8% (P < 0.01), respectively. The exercise intensity that elicits maximal fat oxidation was not significantly decreased. Plasma free fatty acid (FA) concentration decreased (P < 0.002) from 500 ± 77 μmol·L to 160 ± 38 μmol·L. Plasma glucose concentration as well as muscle glycogen, myoglobin, and triacylglycerol content remained unchanged. Muscle citrate synthase and ß-hydroxy-acyl-CoA-dehydrogenase activities were unchanged, but the protein expression of HKII, GLUT4, and adipose triacylglycerol lipase were significantly increased. CONCLUSIONS Overall, the decreased maximal fat oxidation was probably due to lower exogenous plasma fatty acid availability and the muscle adaptation pattern indicates an increased glucose transport capacity and an increased muscle lipolysis capacity supporting an increased contribution of exogenous glucose and endogenous fat during exercise.
Collapse
Affiliation(s)
- Thomas Morville
- 1Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, DENMARK; 2Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, DENMARK; 3Department of Cardiology, University Hospital of Bispebjerg, Copenhagen, DENMARK; 4Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, SWEDEN; 5Department of Anaesthesia and Intensive Care, Karolinska University Hospital, Huddinge, Stockholm, SWEDEN; and 6Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, DENMARK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
17
|
Laurens C, Moro C. Intramyocellular fat storage in metabolic diseases. Horm Mol Biol Clin Investig 2017; 26:43-52. [PMID: 26741351 DOI: 10.1515/hmbci-2015-0045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Abstract
Over the past decades, obesity and its metabolic co-morbidities such as type 2 diabetes (T2D) developed to reach an endemic scale. However, the mechanisms leading to the development of T2D are still poorly understood. One main predictor for T2D seems to be lipid accumulation in "non-adipose" tissues, best known as ectopic lipid storage. A growing body of data suggests that these lipids may play a role in impairing insulin action in metabolic tissues, such as liver and skeletal muscle. This review aims to discuss recent literature linking ectopic lipid storage and insulin resistance, with emphasis on lipid deposition in skeletal muscle. The link between skeletal muscle lipid content and insulin sensitivity, as well as the mechanisms of lipid-induced insulin resistance and potential therapeutic strategies to alleviate lipotoxic lipid pressure in skeletal muscle will be discussed.
Collapse
|
18
|
Evaluation of treadmill exercise effect on muscular lipid profiles of diabetic fatty rats by nanoflow liquid chromatography-tandem mass spectrometry. Sci Rep 2016; 6:29617. [PMID: 27388225 PMCID: PMC4937420 DOI: 10.1038/srep29617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
We compare comprehensive quantitative profiling of lipids at the molecular level from skeletal muscle tissues (gastrocnemius and soleus) of Zucker diabetic fatty rats and Zucker lean control rats during treadmill exercise by nanoflow liquid chromatography-tandem mass spectrometry. Because type II diabetes is caused by decreased insulin sensitivity due to excess lipids accumulated in skeletal muscle tissue, lipidomic analysis of muscle tissues under treadmill exercise can help unveil the mechanism of lipid-associated insulin resistance. In total, 314 lipid species, including phospholipids, sphingolipids, ceramides, diacylglycerols (DAGs), and triacylglycerols (TAGs), were analyzed to examine diabetes-related lipid species and responses to treadmill exercise. Most lysophospholipid levels increased with diabetes. While DAG levels (10 from the gastrocnemius and 13 from the soleus) were >3-fold higher in diabetic rats, levels of most of these decreased after exercise in soleus but not in gastrocnemius. Levels of 5 highly abundant TAGs (52:1 and 54:3 in the gastrocnemius and 48:2, 50:2, and 52:4 in the soleus) displaying 2-fold increases in diabetic rats decreased after exercise in the soleus but not in the gastrocnemius in most cases. Thus, aerobic exercise has a stronger influence on lipid levels in the soleus than in the gastrocnemius in type 2 diabetic rats.
Collapse
|
19
|
Bergman BC, Brozinick JT, Strauss A, Bacon S, Kerege A, Bui HH, Sanders P, Siddall P, Wei T, Thomas MK, Kuo MS, Perreault L. Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans. Diabetologia 2016; 59:785-98. [PMID: 26739815 DOI: 10.1007/s00125-015-3850-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESES Ceramides and other sphingolipids comprise a family of lipid molecules that accumulate in skeletal muscle and promote insulin resistance. Chronic endurance exercise training decreases muscle ceramides and other sphingolipids, but less is known about the effects of a single bout of exercise. METHODS We measured basal relationships and the effect of acute exercise (1.5 h at 50% [Formula: see text]) and recovery on muscle sphingolipid content in obese volunteers, endurance trained athletes and individuals with type 2 diabetes. RESULTS Muscle C18:0 ceramide (p = 0.029), dihydroceramide (p = 0.06) and glucosylceramide (p = 0.03) species were inversely related to insulin sensitivity without differences in total ceramide, dihydroceramide, and glucosylceramide concentration. Muscle C18:0 dihydroceramide correlated with markers of muscle inflammation (p = 0.04). Transcription of genes encoding sphingolipid synthesis enzymes was higher in athletes, suggesting an increased capacity for sphingolipid synthesis. The total concentration of muscle ceramides and sphingolipids increased during exercise and then decreased after recovery, during which time ceramide levels reduced to significantly below basal levels. CONCLUSIONS/INTERPRETATION These data suggest ceramide and other sphingolipids containing stearate (18:0) are uniquely related to insulin resistance in skeletal muscle. Recovery from an exercise bout decreased muscle ceramide concentration; this may represent a mechanism promoting the insulin-sensitising effects of acute exercise.
Collapse
Affiliation(s)
- Bryan C Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, PO Box 6511, MS 8106, Aurora, CO, 80045, USA.
| | | | - Allison Strauss
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, PO Box 6511, MS 8106, Aurora, CO, 80045, USA
| | - Samantha Bacon
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, PO Box 6511, MS 8106, Aurora, CO, 80045, USA
| | - Anna Kerege
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, PO Box 6511, MS 8106, Aurora, CO, 80045, USA
| | | | | | | | - Tao Wei
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Leigh Perreault
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, PO Box 6511, MS 8106, Aurora, CO, 80045, USA
| |
Collapse
|
20
|
Søgaard D, Østergård T, Blachnio-Zabielska AU, Baranowski M, Vigelsø AH, Andersen JL, Dela F, Helge JW. Training Does Not Alter Muscle Ceramide and Diacylglycerol in Offsprings of Type 2 Diabetic Patients Despite Improved Insulin Sensitivity. J Diabetes Res 2016; 2016:2372741. [PMID: 27777958 PMCID: PMC5061984 DOI: 10.1155/2016/2372741] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Ceramide and diacylglycerol (DAG) may be involved in the early phase of insulin resistance but data are inconsistent in man. We evaluated if an increase in insulin sensitivity after endurance training was accompanied by changes in these lipids in skeletal muscle. Nineteen first-degree type 2 diabetes Offsprings (Offsprings) (age: 33.1 ± 1.4 yrs; BMI: 26.4 ± 0.4 kg/m2) and sixteen matched Controls (age: 31.3 ± 1.5 yrs; BMI: 25.3 ± 0.7 kg/m2) performed 10 weeks of endurance training three times a week at 70% of VO2max on a bicycle ergometer. Before and after the intervention a hyperinsulinemic-euglycemic clamp and VO2max test were performed and muscle biopsies obtained. Insulin sensitivity was significantly lower in Offsprings compared to control subjects (p < 0.01) but improved in both groups after 10 weeks of endurance training (Off: 17 ± 6%; Con: 12 ± 9%, p < 0.01). The content of muscle ceramide, DAG, and their subspecies were similar between groups and did not change in response to the endurance training except for an overall reduction in C22:0-Cer (p < 0.05). Finally, the intervention induced an increase in AKT protein expression (Off: 27 ± 11%; Con: 20 ± 24%, p < 0.05). This study showed no relation between insulin sensitivity and ceramide or DAG content suggesting that ceramide and DAG are not major players in the early phase of insulin resistance in human muscle.
Collapse
Affiliation(s)
- Ditte Søgaard
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Ditte Søgaard:
| | - Torben Østergård
- Department of Endocrinology and Diabetes M, Aarhus University Hospital, Aarhus Sygehus, Aarhus, Denmark
- Department of Internal Medicine, Regional Hospital Viborg, Viborg, Denmark
| | | | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Andreas Hansen Vigelsø
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Flemming Dela
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn Wulff Helge
- Xlab, Centre of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Salaun E, Lefeuvre-Orfila L, Cavey T, Martin B, Turlin B, Ropert M, Loreal O, Derbré F. Myriocin prevents muscle ceramide accumulation but not muscle fiber atrophy during short-term mechanical unloading. J Appl Physiol (1985) 2015; 120:178-87. [PMID: 26542521 DOI: 10.1152/japplphysiol.00720.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/04/2015] [Indexed: 01/24/2023] Open
Abstract
Bedridden patients in intensive care unit or after surgery intervention commonly develop skeletal muscle weakness. The latter is promoted by a variety of prolonged hospitalization-associated conditions. Muscle disuse is the most ubiquitous and contributes to rapid skeletal muscle atrophy and progressive functional strength reduction. Disuse causes a reduction in fatty acid oxidation, leading to its accumulation in skeletal muscle. We hypothesized that muscle fatty acid accumulation could stimulate ceramide synthesis and promote skeletal muscle weakness. Therefore, the present study was designed to determine the effects of sphingolipid metabolism on skeletal muscle atrophy induced by 7 days of disuse. For this purpose, male Wistar rats were treated with myriocin, an inhibitor of de novo synthesis of ceramides, and subjected to hindlimb unloading (HU) for 7 days. Soleus muscles were assayed for fiber diameter, ceramide levels, protein degradation, and apoptosis signaling. Serum and liver were removed to evaluate the potential hepatoxicity of myriocin treatment. We found that HU increases content of saturated C16:0 and C18:0 ceramides and decreases soleus muscle weight and fiber diameter. HU increased the level of polyubiquitinated proteins and induced apoptosis in skeletal muscle. Despite a prevention of C16:0 and C18:0 muscle accumulation, myriocin treatment did not prevent skeletal muscle atrophy and concomitant induction of apoptosis and proteolysis. Moreover, myriocin treatment increased serum transaminases and induced hepatocyte necrosis. These data highlight that inhibition of de novo synthesis of ceramides during immobilization is not an efficient strategy to prevent skeletal muscle atrophy and exerts adverse effects like hepatotoxicity.
Collapse
Affiliation(s)
- Erwann Salaun
- Laboratory "Movement Sport and Health Sciences," University Rennes 2-ENS Rennes, Bruz, France
| | - Luz Lefeuvre-Orfila
- Laboratory "Movement Sport and Health Sciences," University Rennes 2-ENS Rennes, Bruz, France
| | - Thibault Cavey
- INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France; Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Brice Martin
- Laboratory "Movement Sport and Health Sciences," University Rennes 2-ENS Rennes, Bruz, France
| | - Bruno Turlin
- INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France; Department of Pathology, University Hospital Pontchaillou, Rennes, France
| | - Martine Ropert
- INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France; Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Olivier Loreal
- INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences," University Rennes 2-ENS Rennes, Bruz, France;
| |
Collapse
|
22
|
Li Y, Xu S, Zhang X, Yi Z, Cichello S. Skeletal intramyocellular lipid metabolism and insulin resistance. BIOPHYSICS REPORTS 2015; 1:90-98. [PMID: 26942223 PMCID: PMC4762133 DOI: 10.1007/s41048-015-0013-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/10/2015] [Indexed: 12/24/2022] Open
Abstract
Lipids stored in skeletal muscle cells are known as intramyocellular lipid (IMCL). Disorders involving IMCL and its causative factor, circulatory free fatty acids (FFAs), induce a toxic state and ultimately result in insulin resistance (IR) in muscle tissue. On the other hand, intramuscular triglyceride (IMTG), the most abundant component of IMCL and an essential energy source for active skeletal muscle, is different from other IMCLs, as it is stored in lipid droplets and plays a pivotal role in skeletal muscle energy homeostasis. This review discusses the association of FFA-induced ectopic lipid accumulation and IR, with specific emphasis on the relationship between IMCL/IMTG metabolism and IR.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biological Science and Biotechnology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shimeng Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuelin Zhang
- Capital University of Physical Education and Sport, Beijing, 100191 China
| | - Zongchun Yi
- Department of Biological Science and Biotechnology, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Simon Cichello
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
| |
Collapse
|
23
|
Kasumov T, Solomon TP, Hwang C, Huang H, Haus JM, Zhang R, Kirwan JP. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes. Obesity (Silver Spring) 2015; 23:1414-21. [PMID: 25966363 PMCID: PMC4482773 DOI: 10.1002/oby.21117] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To assess the effect of exercise training on insulin sensitivity and plasma ceramides in obesity and type 2 diabetes (T2D). METHODS Twenty-four adults with obesity and normal glucose tolerance (NGT, n = 14) or diabetes (n = 10) were studied before and after a 12-week supervised exercise-training program (5 days/week, 1 h/day, 80-85% of maximum heart rate). Changes in body composition were assessed using hydrostatic weighing and computed tomography. Peripheral tissue insulin sensitivity was assessed by a 40 mU/m(2) /min hyperinsulinemic euglycemic clamp. Plasma ceramides (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0, and C24:1) were quantified using electrospray ionization tandem mass spectrometry after separation with HPLC. RESULTS Plasma ceramides were similar for the subjects with obesity and NGT and the subjects with diabetes, despite differences in glucose tolerance. Exercise significantly reduced body weight and adiposity and increased peripheral insulin sensitivity in both groups (P < 0.05). In addition, plasma C14:0, C16:0, C18:1, and C24:0 ceramide levels were reduced in all subjects following the intervention (P < 0.05). Decreases in total (r = -0.51, P = 0.02) and C14:0 (r = -0.56, P = 0.009) ceramide were negatively correlated with the increase in insulin sensitivity. CONCLUSIONS Ceramides are linked to exercise training-induced improvements in insulin sensitivity, and plasma C14:0 ceramide may provide a specific target for investigating lipid-related insulin resistance in obesity and T2D.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH
| | | | - Calvin Hwang
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH
| | - Hazel Huang
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH
| | - Jacob M. Haus
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH
| | - Renliang Zhang
- Department of Cardiovascular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, OH
| | - John P. Kirwan
- Department of Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH
- Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
24
|
Moylan JS, Smith JD, Wolf Horrell EM, McLean JB, Deevska GM, Bonnell MR, Nikolova-Karakashian MN, Reid MB. Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle. Redox Biol 2014; 2:910-20. [PMID: 25180167 PMCID: PMC4143815 DOI: 10.1016/j.redox.2014.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022] Open
Abstract
Aims Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. Results We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. Innovation These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Conclusion Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity. First measures of endogenous nSMase3 protein in muscle. Detection of nSMase3 splice variant proteins. Identification of a functional role for nSMase3 in redox signaling. Identification of an intermediate in TNF/redox signaling.
Collapse
Affiliation(s)
- Jennifer S Moylan
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Jeffrey D Smith
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Erin M Wolf Horrell
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA ; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Julie B McLean
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Gergana M Deevska
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Mark R Bonnell
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | | | - Michael B Reid
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
25
|
Verma MK, Yateesh AN, Neelima K, Pawar N, Sandhya K, Poornima J, Lakshmi MN, Yogeshwari S, Pallavi PM, Oommen AM, Somesh BP, Jagannath MR. Inhibition of neutral sphingomyelinases in skeletal muscle attenuates fatty-acid induced defects in metabolism and stress. SPRINGERPLUS 2014; 3:255. [PMID: 24892004 PMCID: PMC4039661 DOI: 10.1186/2193-1801-3-255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/12/2014] [Indexed: 12/25/2022]
Abstract
Background Chronic metabolic overload leads to insulin resistance in a variety of tissues. It has been shown that exposure to saturated fatty acid palmitate can cause insulin resistance in skeletal muscle cells. Fatty acid induced synthesis of ceramide is considered to be one of the major causes for insulin resistance. Both de novo synthesis and sphingomyelin hydrolysis by sphingomyelinase are implicated for ceramide generation. Aim of this study was to evaluate the impact of neutral sphingomyelinase (nSMase) inhibition on saturated fatty acid induced lipotoxicity and insulin resistance in skeletal muscle myotubes. Results Treatment of saturated fatty acid (palmitate) but not unsaturated fatty acid (oleate) caused an up-regulation in expression of various nSMase genes which are associated with ceramide synthesis through the salvage pathway. Inhibition of nSMase by a pharmacological inhibitor (GW4869) partially reverted the palmitate induced insulin resistance in C2C12 myotubes. Inhibition of nSMase improved metabolic functions of myotubes as measured by improved oxidative capacity in terms of increased mitochondrial number, PGC1α expression and ATP levels with concomitant decrease in intramyocellular triglyceride levels. Palmitate induced inflammatory response was also reduced by nSMase inhibitor. GW4869 treatment reduced palmitate induced oxidative and endoplasmic reticulum stress and improved cell survival. Conclusion In this study, we provide evidences that inhibition of nSMase can protect skeletal muscles from saturated fatty acid induced insulin resistance, metabolic dysfunction, cellular stress and inflammation. Electronic supplementary material The online version of this article (doi:10.1186/2193-1801-3-255) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahesh Kumar Verma
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Aggunda Nagaraju Yateesh
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Korrapati Neelima
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Niketa Pawar
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Kandoor Sandhya
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Jayaram Poornima
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Mudigere N Lakshmi
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Sivakumaran Yogeshwari
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Puttrevana M Pallavi
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Anup M Oommen
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Baggavalli P Somesh
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| | - Madanahalli R Jagannath
- Connexios Life Sciences Private Ltd., No. 49, First Main road, 3rd phase, JP Nagar, Bangalore, 560 078 India
| |
Collapse
|
26
|
Obanda DN, Ribnicky DM, Raskin I, Cefalu WT. Bioactives of Artemisia dracunculus L. enhance insulin sensitivity by modulation of ceramide metabolism in rat skeletal muscle cells. Nutrition 2014; 30:S59-66. [PMID: 24985108 DOI: 10.1016/j.nut.2014.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE An increase in ectopic lipids in peripheral tissues has been implicated in attenuating insulin action. The botanical extract of Artemisia dracunculus L. (PMI 5011) improves insulin action, yet the precise mechanism is unknown. The aim of this study was to determine whether the mechanism by which the bioactive compounds in PMI 5011 improve insulin signaling is through regulation of ceramide metabolism. METHODS L6 Myotubes were separately preincubated with 250 μM palmitic acid with or without PMI 5011 or four bioactive compounds isolated from PMI 5011 and postulated to be responsible for the effect. The effects on insulin signaling, ceramide, and glucosylceramide profiles were determined. RESULTS Treatment of L6 myotubes with palmitic acid resulted in increased levels of total ceramides and glucosylceramides, and cell surface expression of gangliosides. Palmitic acid also inhibited insulin-stimulated phosphorylation of protein kinase B/Akt and reduced glycogen accumulation. Bioactives from PMI 5011 had no effect on ceramide formation but one active compound (DMC-2) and its synthetic analog significantly reduced glucosylceramide accumulation and increased insulin sensitivity via restoration of Akt phosphorylation. CONCLUSIONS The observations suggest that insulin sensitization by PMI 5011 is partly mediated through moderation of glycosphingolipid accumulation.
Collapse
Affiliation(s)
- Diana N Obanda
- Diabetes and Nutrition Research Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, USA
| | - David M Ribnicky
- Department of Plant Biology and Pathology, Rutgers University, The State University of New Jersey, The Biotech Center, New Brunswick, New Jersey, USA
| | - Ilya Raskin
- Department of Plant Biology and Pathology, Rutgers University, The State University of New Jersey, The Biotech Center, New Brunswick, New Jersey, USA
| | - William T Cefalu
- Diabetes and Nutrition Research Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, USA.
| |
Collapse
|
27
|
Larsen PJ, Tennagels N. On ceramides, other sphingolipids and impaired glucose homeostasis. Mol Metab 2014; 3:252-60. [PMID: 24749054 PMCID: PMC3986510 DOI: 10.1016/j.molmet.2014.01.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 12/24/2022] Open
Abstract
In most people with type 2 diabetes, progression from obesity to diabetes is accompanied by elevated tissue exposures to a variety of lipids. Among these lipid species, ceramides and more complex sphingolipids have gained recent attention as being pathophysiologically relevant for the development of insulin resistance and impaired glycemic control. Upon excess intake of saturated fat, ceramides accumulate in insulin sensitive tissues either as a consequence of de novo synthesis or through mobilization from complex sphingolipids. Clinical studies have confirmed positive correlation between plasma and tissue levels of several ceramide species and insulin resistance. At the cellular level, it has been demonstrated that ceramides impair insulin signaling and intracellular handling of glucose and lipids with resulting deleterious effects on cellular metabolism. Hence, we are reviewing whether therapeutic interventions aiming at reducing tissue exposure to ceramides or other sphingolipids represent viable therapeutic approaches to improve glucose metabolism in people with diabetes.
Collapse
|
28
|
Bays H, Blonde L, Rosenson R. Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in overweight patients? Expert Rev Cardiovasc Ther 2014; 4:871-95. [PMID: 17173503 DOI: 10.1586/14779072.4.6.871] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An increase in bodyweight is generally associated with an increased risk of excessive fat-related metabolic diseases (EFRMD), including Type 2 diabetes mellitus, hypertension and dyslipidemia. However, not all patients who are overweight have EFRMD, and not all patients with EFRMD are significantly overweight. The adipocentric paradigm provides the basis for a unifying, pathophysiological process whereby fat gain in susceptible patients leads to fat dysfunction ('sick fat'), and wherein pathological abnormalities in fat function (adiposopathy) are more directly related to the onset of EFRMD than increases in fat mass (adiposity) alone. But just as worsening fat function worsens EFRMD, improved fat function improves EFRMD. Peroxisome proliferator-activated receptor-gamma agonists increase the recruitment, proliferation and differentiation of preadipocytes ('healthy fat') and cause apoptosis of hypertrophic and dysfunctional (including visceral) adipocytes resulting in improved fat function and improved metabolic parameters associated with EFRMD. Weight loss interventions, such as a hypocaloric diet and physical exercise, in addition to agents such as orlistat, sibutramine and cannabinoid receptor antagonists, may have favorable effects upon fat storage (lipogenesis and fat distribution), nutrient metabolism (such as free fatty acids), favorable effects upon adipose tissue factors involved in metabolic processes and inflammation, and enhanced 'cross-talk' with other major organ systems. In some cases, weight loss therapeutic agents may even affect metabolic parameters and adipocyte function independently of weight loss alone, suggesting that the benefit of these agents in improving EFRMD may go beyond their efficacy in weight reduction. This review describes how adiposopathy interventions may affect fat function, and thus improve EFRMD.
Collapse
Affiliation(s)
- Harold Bays
- L-MARC Research Center, Medical Director/President, 3288 Illinois Avenue, Louisville, KY 40213, USA.
| | | | | |
Collapse
|
29
|
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 2013; 3:1-58. [PMID: 23720280 DOI: 10.1002/cphy.c110062] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Regardless of the true definition, based on current population estimates, nearly 100 million have MS. It is often characterized by insulin resistance, which some have suggested is a major underpinning link between physical inactivity and MS. The purpose of this review is to: (i) provide an overview of the history, causes and clinical aspects of MS, (ii) review the molecular mechanisms of insulin action and the causes of insulin resistance, and (iii) discuss the epidemiological and intervention data on the effects of exercise on MS and insulin sensitivity.
Collapse
Affiliation(s)
- Christian K Roberts
- Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | |
Collapse
|
30
|
Kristensen D, Prats C, Larsen S, Ara I, Dela F, Helge JW. Ceramide content is higher in type I compared to type II fibers in obesity and type 2 diabetes mellitus. Acta Diabetol 2013; 50:705-12. [PMID: 22350135 DOI: 10.1007/s00592-012-0379-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 01/30/2012] [Indexed: 01/03/2023]
Abstract
This study investigated fiber-type-specific muscle ceramide content in obese subjects and type 2 diabetes patients. Two substudies, one which compared type 2 diabetes patients to both lean- and obese BMI-matched subjects and the other study which compared lean body-matched post-obese, obese, and control subjects, were performed. A fasting blood sample was obtained and plasma insulin and glucose determined. A muscle biopsy was obtained from deltoideus and vastus lateralis, and fiber-type ceramide content was determined by fluorescence immunohistochemistry. Insulin sensitivity estimated by Quicki index was higher in lean compared to type 2 diabetes patients and obese controls. Also in control and post-obese subjects, a higher insulin sensitivity was observed compared to obese subjects. Ceramide content was consistently higher in type I than in type II muscle fibers and higher in deltoideus than vastus lateralis across all groups. No significant differences between groups were observed in ceramide content in either of the two substudies. In human skeletal muscle, ceramide content was higher in type I than in type II fibers in patients with type 2 diabetes and in obese subjects, but overall ceramide muscle fiber content was not different compared to controls.
Collapse
Affiliation(s)
- Ditte Kristensen
- Center of Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Role of ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis 2013; 12:98. [PMID: 23835113 PMCID: PMC3716967 DOI: 10.1186/1476-511x-12-98] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with multiple complications that causes serious diseases over the years. The condition leads to severe economic consequences and is reaching pandemic level globally. Much research is being carried out to address this disease and its underlying molecular mechanism. This review focuses on the diverse role and mechanism of ceramide, a prime sphingolipid signaling molecule, in the pathogenesis of type 1 and type 2 diabetes and its complications. Studies using cultured cells, animal models, and human subjects demonstrate that ceramide is a key player in the induction of β-cell apoptosis, insulin resistance, and reduction of insulin gene expression. Ceramide induces β-cell apoptosis by multiple mechanisms namely; activation of extrinsic apoptotic pathway, increasing cytochrome c release, free radical generation, induction of endoplasmic reticulum stress and inhibition of Akt. Ceramide also modulates many of the insulin signaling intermediates such as insulin receptor substrate, Akt, Glut-4, and it causes insulin resistance. Ceramide reduces the synthesis of insulin hormone by attenuation of insulin gene expression. Better understanding of this area will increase our understanding of the contribution of ceramide to the pathogenesis of diabetes, and further help in identifying potential therapeutic targets for the management of diabetes mellitus and its complications.
Collapse
|
32
|
Chabowski A, Zendzian-Piotrowska M, Mikłosz A, Łukaszuk B, Kurek K, Górski J. Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats. Lipids 2013; 48:697-704. [PMID: 23467817 PMCID: PMC3690184 DOI: 10.1007/s11745-013-3769-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 01/22/2013] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, with diverse fiber compositions: soleus (slow-twitch oxidative), red (fast-twitch oxidative-glycolytic) and white (fast-twitch glycolytic) section of gastrocnemius. We demonstrated that T3 induced accumulation of sphinganine, ceramide, sphingosine, as well as sphingomyelin, mostly in soleus and in red, but not white section of gastrocnemius. Concomitantly, the activity of serine palmitoyltransferase and acid/neutral ceramidase was increased in more oxidative muscles. In conclusion, hyperthyroidism induced fiber specific changes in the content of sphingolipids that were relatively more related to de novo synthesis of ceramide rather than to its generation via hydrolysis of sphingomyelin.
Collapse
Affiliation(s)
- A Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Rivas DA, Morris EP, Haran PH, Pasha EP, Morais MDS, Dolnikowski GG, Phillips EM, Fielding RA. Increased ceramide content and NFκB signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged males. J Appl Physiol (1985) 2012; 113:1727-36. [PMID: 23042913 DOI: 10.1152/japplphysiol.00412.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the most fundamental adaptive physiological events is the response of skeletal muscle to high-intensity resistance exercise, resulting in increased protein synthesis and ultimately larger muscle mass. However, muscle growth in response to contraction is attenuated in older humans. Impaired contractile-induced muscle growth may contribute to sarcopenia: the age-associated loss of muscle mass and function that is manifested by loss of strength, contractile capacity, and endurance. We hypothesized that the storage of ceramide would be increased in older individuals and this would be associated with increases in NFκB signaling and a decreased anabolic response to exercise. To test this hypothesis we measured ceramides at rest and anabolic and NFκB signaling after an acute bout of high-intensity resistance exercise in young and older males. Using lipidomics analysis we show there was a 156% increase in the accumulation of C16:0-ceramide (P < 0.05) and a 30% increase in C20:0-ceramide (P < 0.05) in skeletal muscle with aging, although there was no observable difference in total ceramide. C16:0-ceramide content was negatively correlated (P = 0.008) with lower leg lean mass. Aging was associated with a ~60% increase in the phosphorylation of the proinflammatory transcription factor NFκB in the total and nuclear cell fractions (P < 0.05). Furthermore, there was an attenuated activation of anabolic signaling molecules such as Akt (P < 0.05), FOXO1 (P < 0.05), and S6K1 (P < 0.05) after an acute bout of high-intensity resistance exercise in older males. We conclude that ceramide may have a significant role in the attenuation of contractile-induced skeletal muscle adaptations and atrophy that is observed with aging.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Insulin resistance and mitochondrial function in skeletal muscle. Int J Biochem Cell Biol 2012; 45:11-5. [PMID: 23036788 DOI: 10.1016/j.biocel.2012.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 09/14/2012] [Accepted: 09/25/2012] [Indexed: 12/28/2022]
Abstract
The mechanism(s) behind the decreased ability of insulin to facilitate glucose uptake in insulin sensitive tissues as seen in type 2 diabetes is not resolved. With the rapidly increasing prevalence of this disease world-wide, and the many complications that follow the disease, large resources are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin resistance. Complementary to this also specific defects of components in the respiratory chain in the mitochondria have been suggested to play a role in insulin resistance. A key element in these mechanistic suggestions is inability to handle substrate fluxes and subsequently an accumulation of ectopic intramyocellular lipids, interfering with insulin signaling. In this review we will present the prevailing view-points and argue for the unlikelihood of this scenario being instrumental in human insulin resistance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction.
Collapse
|
36
|
Obanda DN, Hernandez A, Ribnicky D, Yu Y, Zhang XH, Wang ZQ, Cefalu WT. Bioactives of Artemisia dracunculus L. mitigate the role of ceramides in attenuating insulin signaling in rat skeletal muscle cells. Diabetes 2012; 61:597-605. [PMID: 22315320 PMCID: PMC3282822 DOI: 10.2337/db11-0396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ectopic lipids in peripheral tissues have been implicated in attenuating insulin action in vivo. The botanical extract of Artemisia dracunculus L. (PMI 5011) improves insulin action, yet the precise mechanism is not known. We sought to determine whether the mechanism by which PMI 5011 improves insulin signaling is through regulation of lipid metabolism. After differentiation, cells were separately preincubated with free fatty acids (FFAs) and ceramide C2, and the effects on glycogen content, insulin signaling, and ceramide profiles were determined. The effect of PMI 5011 on ceramide accumulation and ceramide-induced inhibition of insulin signaling was evaluated. FFAs resulted in increased levels of total ceramides and ceramide species in L6 myotubes. Saturated FFAs and ceramide C2 inhibited insulin-stimulated phosphorylation of protein kinase B/Akt and reduced glycogen content. PMI 5011 had no effect on ceramide formation or accumulation but increased insulin sensitivity via restoration of Akt phosphorylation. PMI 5011 also attenuated the FFA-induced upregulation of a negative inhibitor of insulin signaling, i.e., protein tyrosine phosphatase 1B (PTP1B), and increased phosphorylation of PTP1B. PMI 5011 attenuates the reduction in insulin signaling induced by ceramide accumulation, but the mechanism of improved insulin signaling is independent of ceramide formation.
Collapse
Affiliation(s)
- Diana N Obanda
- Botanical Research Center, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Baranowski M, Charmas M, Długołęcka B, Górski J. Exercise increases plasma levels of sphingoid base-1 phosphates in humans. Acta Physiol (Oxf) 2011; 203:373-80. [PMID: 21535416 DOI: 10.1111/j.1748-1716.2011.02322.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM In recent years, blood sphingolipids attracted much attention and have been implicated in both pathophysiology and prevention of cardiovascular diseases and insulin resistance. However, factors affecting concentration and metabolism of sphingolipids in blood remain poorly recognized. We have previously found that exercise alters skeletal muscle sphingolipid metabolism. This finding prompted us to examine whether physical activity induces similar effects in blood. METHODS Twenty healthy male patients were assigned to either untrained (UT, n = 10) or endurance trained (ET, n = 10) group. The patients performed either a 30 (UT group) or 60 (ET group) min exercise on a cycloergometer at a workload corresponding to 70% of VO(2max) . Blood samples were taken just before exercise, after 30 and 60 (ET group only) min of pedalling and following a 30-min rest. RESULTS ET patients were characterized by higher basal plasma sphingosine-1-phosphate (S1P) concentration and decreased content of sphingosine, S1P, sphinganine-1-phosphate (SA1P) and ceramide in erythrocytes. In ET group, plasma concentrations of all measured sphingolipids remained stable both during and after exercise. On the other hand, in UT patients, the post-exercise levels of S1P and SA1P were markedly higher compared with the baseline values and this effect was accompanied by decreased erythrocyte ceramide content. CONCLUSION It is likely that single bout of exercise and endurance training enhances production and release of S1P by erythrocytes. We speculate that exercise-induced increase in plasma S1P concentration might be one of the mechanisms underlying beneficial effects of physical activity on cardiovascular health and insulin sensitivity.
Collapse
Affiliation(s)
- M Baranowski
- Department of Physiology, Medical University of Białystok, Poland.
| | | | | | | |
Collapse
|
38
|
Nikolova-Karakashian MN, Reid MB. Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle. Antioxid Redox Signal 2011; 15:2501-17. [PMID: 21453197 PMCID: PMC3176343 DOI: 10.1089/ars.2011.3940] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Sphingolipids are a class of bioactive lipids that regulate diverse cell functions. Ceramide, sphingosine, and sphingosine-1-phosphate accumulate in tissues such as liver, brain, and lung under conditions of cellular stress, including oxidative stress. The activity of some sphingolipid metabolizing enzymes, chiefly the sphingomyelinases, is stimulated during inflammation and in response to oxidative stress. Ceramide, the sphingomyelinase product, as well as the ceramide metabolite, sphingosine-1-phosphate, can induce the generation of more reactive oxygen species, propagating further inflammation. RECENT ADVANCES This review article summarizes information on sphingolipid biochemistry and signaling pertinent to skeletal muscle and describes the potential influence of sphingolipids on contractile function. CRITICAL ISSUES It encompasses topics related to (1) the pathways for complex sphingolipid biosynthesis and degradation, emphasizing sphingolipid regulation in various muscle fiber types and subcellular compartments; (2) the emerging evidence that implicates ceramide, sphingosine, and sphingosine-1-phosphate as regulators of muscle oxidant activity, and (3) sphingolipid effects on contractile function and fatigue. FUTURE DIRECTIONS We propose that prolonged inflammatory conditions alter ceramide, sphingosine, and sphingosine-1-phosphate levels in skeletal muscle and that these changes promote the weakness, premature fatigue, and cachexia that plague individuals with heart failure, cancer, diabetes, and other chronic inflammatory diseases.
Collapse
|
39
|
Amati F, Dubé JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P, Coen PM, Switzer GE, Bickel PE, Stefanovic-Racic M, Toledo FG, Goodpaster BH. Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes 2011; 60:2588-97. [PMID: 21873552 PMCID: PMC3178290 DOI: 10.2337/db10-1221] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance.
Collapse
Affiliation(s)
- Francesca Amati
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Physiology, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - John J. Dubé
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elvis Alvarez-Carnero
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin M. Edreira
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter Chomentowski
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul M. Coen
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Galen E. Switzer
- Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Perry E. Bickel
- Center for Diabetes and Obesity Research, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Maja Stefanovic-Racic
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frederico G.S. Toledo
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bret H. Goodpaster
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Corresponding author: Bret H. Goodpaster,
| |
Collapse
|
40
|
Helge JW, Tobin L, Drachmann T, Hellgren LI, Dela F, Galbo H. Muscle ceramide content is similar after 3 weeks’ consumption of fat or carbohydrate diet in a crossover design in patients with type 2 diabetes. Eur J Appl Physiol 2011; 112:911-8. [DOI: 10.1007/s00421-011-2041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/03/2011] [Indexed: 12/25/2022]
|
41
|
Helge JW, Stallknecht B, Drachmann T, Hellgren LI, Jiménez-Jiménez R, Andersen JL, Richelsen B, Bruun JM. Improved glucose tolerance after intensive life style intervention occurs without changes in muscle ceramide or triacylglycerol in morbidly obese subjects. Acta Physiol (Oxf) 2011; 201:357-64. [PMID: 20726847 DOI: 10.1111/j.1748-1716.2010.02180.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM This study investigated the effect of a 15-week life style intervention (hypocaloric diet and regular exercise) on glucose tolerance, skeletal muscle lipids and muscle metabolic adaptations in 14 female and 9 male morbidly obese subjects (age: 32.5±2.3 years, body mass index: 46.1±1.9 kg m(-2) ). METHOD Before and after the life style intervention, an oral glucose tolerance test was performed and a muscle biopsy was obtained in the fasted state. Maximal oxygen uptake was measured by an indirect test. RESULTS After the intervention, body weight was decreased (P<0.05) by 11±1%, maximal oxygen uptake increased (P<0.05) by 18±5% and glucose tolerance increased (P<0.05) by 12±3%. Muscle glycogen was significantly increased by 47±14%, but muscle ceramide and triacylglycerol content remained completely unchanged. No sex difference was observed for any of these parameters, but during submaximal exercise a marked decrease (P<0.05) of 15±2% in respiratory exchange ratio was seen only in females indicating an enhanced fat oxidation. CONCLUSION Despite a marked weight loss and an improved aerobic capacity muscle ceramide and triacylglycerol remained unchanged after intensive life style intervention, and muscle lipids hence do not seem to play a major role for the improved glucose tolerance in these morbidly obese subjects. Interestingly, only the females improved fat oxidation during submaximal exercise after the intervention implying the presence of a sex-dependent response to intensive life style adaptation.
Collapse
Affiliation(s)
- J W Helge
- Center of Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Aerobic training in rats increases skeletal muscle sphingomyelinase and serine palmitoyltransferase activity, while decreasing ceramidase activity. Lipids 2010; 46:229-38. [PMID: 21181285 PMCID: PMC3058424 DOI: 10.1007/s11745-010-3515-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 12/01/2010] [Indexed: 01/25/2023]
Abstract
Sphingolipids are important components of cell membranes that may also serve as cell signaling molecules; ceramide plays a central role in sphingolipid metabolism. The aim of this study was to examine the effect of 5 weeks of aerobic training on key enzymes and intermediates of ceramide metabolism in skeletal muscles. The experiments were carried out on rats divided into two groups: (1) sedentary and (2) trained for 5 weeks (on a treadmill). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of sphingolipids was determined in three types of skeletal muscle. We also measured the fasting plasma insulin and glucose concentration for calculating HOMA-IR (homeostasis model assessment) for estimating insulin resistance. We found that the activities of aSMase and SPT increase in muscle in the trained group. These changes were followed by elevation in the content of sphinganine. The activities of both isoforms of ceramidase were reduced in muscle in the trained group. Although the activities of SPT and SMases increased and the activity of CDases decreased, the ceramide content did not change in any of the studied muscle. Although ceramide level did not change, we noticed increased insulin sensitivity in trained animals. It is concluded that training affects the activity of key enzymes of ceramide metabolism but also activates other metabolic pathways which affect ceramide metabolism in skeletal muscles.
Collapse
|
43
|
Jung HL, Kang HY. Effects of endurance exercise and high-fat diet on insulin resistance and ceramide contents of skeletal muscle in sprague-dawley rats. KOREAN DIABETES JOURNAL 2010; 34:244-52. [PMID: 20835342 PMCID: PMC2932894 DOI: 10.4093/kdj.2010.34.4.244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/24/2010] [Indexed: 11/23/2022]
Abstract
Background We evaluated the effects of endurance exercise and a high-fat diet on insulin resistance and ceramide contents of skeletal muscle in Sprague-Dawley rats. Methods We randomly divided 32 rats into four groups: control (CON, n = 8), high fat diet (HF, n = 8), exercise (Ex, 24 m/min for 2 hours, 5 days/wk, n = 8), HF/Ex (n = 8). After 4-week treatments, plasma lipid profiles, glucose and insulin concentrations were measured. The triglycerides (TG), ceramide, and glucose transporter 4 (GLUT-4) contents were measured in the skeletal muscle. The rate of glucose transport was determined under submaximal insulin concentration during the muscle incubation. Results Free fatty acid levels were significantly higher in CON and HF than Ex (P = 0.032). Plasma glucose levels in HF were significantly higher than the two Ex groups (P = 0.002), and insulin levels were significantly higher in HF than in other three groups (P = 0.021). Muscular TG concentrations were significantly higher in HF than CON and Ex and also in HF/Ex than Ex, respectively (P = 0.005). Hepatic TG concentrations were significantly higher in HF than other three groups but Ex was significantly lower than HF/Ex (P = 0.000). Muscular ceramide content in HF was significantly greater than that in either Ex or HF/Ex (P = 0.031). GLUT-4 levels in CON and HF were significantly lower than those in Ex and HF/Ex (P = 0.009, P = 0.003). The glucose transport rate in submaximal insulin concentration was lower in CON than in either Ex or HF/Ex (P = 0.043), but not different from HF. Conclusion This study suggests that high fat diet for 4 weeks selectively impairs insulin resistance, but not glucose transport rate, GLUT-4 and ceramide content in skeletal muscle per se. However, endurance exercise markedly affects the content of ceramide and insulin resistance in muscle.
Collapse
Affiliation(s)
- Hyun Lyung Jung
- Exercise Metabolism Laboratory, Department of Physical Education, Kyungpook National University, Daegu, Korea
| | | |
Collapse
|
44
|
Fukami H, Tachimoto H, Kishi M, Kaga T, Waki H, Iwamoto M, Tanaka Y. Preparation of (13)C-labeled ceramide by acetic acid bacteria and its incorporation in mice. J Lipid Res 2010; 51:3389-95. [PMID: 20656918 DOI: 10.1194/jlr.d009191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We prepared 2-hydroxypalmitoyl-sphinganine (dihydroceramide) labeled with a stable isotope by culturing acetic acid bacteria with (13)C-labeled acetic acid. The GC/MS spectrum of the trimethylsilyl derivative of (13)C-labeled dihydroceramide gave molecular ions with an increased mass of 12-17 Da over that of nonlabeled dihydroceramide. The fragment ions derived from both sphinganine base and 2-hydroxypalmitate were confirmed to be labeled with the stable isotope in the spectrum. Therefore, (13)C-labeled dihydroceramide can be an extremely useful tool for analyzing sphingolipid metabolism. The purified [(13)C]dihydroceramide was administered orally to mice for 12 days, and the total sphingoid base fractions in various tissues were analyzed by GC/MS. The spectrum patterns specific to (13)C-labeled sphingoids were detected in the tissues tested. Sphinganine pools in skin epidermis, liver, skeletal muscle, and synapse membrane in brain were replaced by [(13)C]sphinganine at about 4.5, 4.0, 1.0, and 0.3%, respectively. Moreover, about 1.0% of the sphingosine pool in the liver was replaced by [(13)C]sphingosine, implying that exogenous dihydroceramide can be converted to sphingosine. These results clearly indicate that ingested dihydroceramide can be incorporated into various tissues, including brain, and metabolized to other sphingolipids.
Collapse
Affiliation(s)
- Hiroyuki Fukami
- Central Research Institute, Mizkan Group Corporation, Handa, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cowart LA. A novel role for sphingolipid metabolism in oxidant-mediated skeletal muscle fatigue. Focus on "Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue". Am J Physiol Cell Physiol 2010; 299:C549-51. [PMID: 20573998 DOI: 10.1152/ajpcell.00236.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Ferreira LF, Moylan JS, Gilliam LAA, Smith JD, Nikolova-Karakashian M, Reid MB. Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue. Am J Physiol Cell Physiol 2010; 299:C552-60. [PMID: 20519448 DOI: 10.1152/ajpcell.00065.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingomyelinase (SMase) hydrolyzes membrane sphingomyelin into ceramide, which increases oxidants in nonmuscle cells. Serum SMase activity is elevated in sepsis and heart failure, conditions where muscle oxidants are increased, maximal muscle force is diminished, and fatigue is accelerated. We tested the hypotheses that exogenous SMase and accumulation of ceramide in muscle increases oxidants in muscle cells, depresses specific force of unfatigued muscle, and accelerates the fatigue process. We also anticipated that the antioxidant N-acetylcysteine (NAC) would prevent SMase effects on muscle function. We studied the responses of C2C12 myotubes and mouse diaphragm to SMase treatment in vitro. We observed that SMase caused a 2.8-fold increase in total ceramide levels in myotubes. Exogenous ceramide and SMase elevated oxidant activity in C2C12 myotubes by 15-35% (P < 0.05) and in diaphragm muscle fiber bundles by 58-120% (P < 0.05). The SMase-induced increase in diaphragm oxidant activity was prevented by NAC. Exogenous ceramide depressed diaphragm force by 55% (P < 0.05), while SMase depressed maximal force by 30% (P < 0.05) and accelerated fatigue--effects opposed by treatment with NAC. In conclusion, our findings suggest that SMase stimulates a ceramide-oxidant signaling pathway that results in muscle weakness and fatigue.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Department of Physiology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
47
|
Muscle ceramide content in man is higher in type I than type II fibers and not influenced by glycogen content. Eur J Appl Physiol 2010; 109:935-43. [DOI: 10.1007/s00421-010-1428-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
|
48
|
Bhuiyan MIH, Islam MN, Jung SY, Yoo HH, Lee YS, Jin C. Involvement of Ceramide in Ischemic Tolerance Induced by Preconditioning with Sublethal Oxygen-Glucose Deprivation in Primary Cultured Cortical Neurons of Rats. Biol Pharm Bull 2010; 33:11-7. [DOI: 10.1248/bpb.33.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mohammad Iqbal Hossain Bhuiyan
- Doping Control Center, Research Coordination Division, Korea Institute of Science and Technology (KIST)
- Department of Biomolecular Science, University of Science and Technology (UST)
| | - Mohammad Nurul Islam
- Doping Control Center, Research Coordination Division, Korea Institute of Science and Technology (KIST)
| | - Seo Yun Jung
- Department of Pharmaceutical Sciences, College of Pharmacy and Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Hye Hyun Yoo
- Doping Control Center, Research Coordination Division, Korea Institute of Science and Technology (KIST)
| | - Yong Sup Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Changbae Jin
- Doping Control Center, Research Coordination Division, Korea Institute of Science and Technology (KIST)
| |
Collapse
|
49
|
Błachnio-Zabielska A, Baranowski M, Zabielski P, Górski J. Effect of exercise duration on the key pathways of ceramide metabolism in rat skeletal muscles. J Cell Biochem 2008; 105:776-84. [PMID: 18680146 DOI: 10.1002/jcb.21877] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ceramide is the key compound on crossroads of sphingolipid metabolism. The content and composition of ceramides in skeletal muscles have been shown to be affected by prolonged exercise. The aim of this study was to examine the effect of exercise on the activity of key enzymes of ceramide metabolism in skeletal muscles. The experiments were carried out on male Wistar rats (200-250 g) divided into four groups: sedentary, exercised for 30 min, 90 min, and until exhaustion. The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of ceramide, sphingosine, sphinganine and sphingosine-1-phosphate were determined in three types of muscle. We have found that the activity and expression of SPT increase gradually in each muscle with duration of exercise. These changes were followed by elevation in the content of sphinganine. These data indicate that exercise increases de novo synthesis of ceramide. The aSMase activity gradually decreased with duration of exercise in each type of muscle. After exhaustive exercise the activity of both isoforms of ceramidase were reduced in each muscle. The ceramide level depends both on duration of exercise and muscle type. The ceramide level in the soleus and white gastrocnemius decreased after 30 min of running. After exhaustive exercise it was elevated in the soleus and red gastrocnemius. It is concluded that exercise strongly affects the activity of key enzymes involved in ceramide metabolism and in consequence the level of sphingolipid intermediates in skeletal muscles.
Collapse
|
50
|
Abstract
The purpose of this review is to provide information about the role of exercise in the prevention of skeletal muscle insulin resistance, that is, the inability of insulin to properly cause glucose uptake into skeletal muscle. Insulin resistance is associated with high levels of stored lipids in skeletal muscle cells. Aerobic exercise training decreases the amounts of these lipid products and increases the lipid oxidative capacity of muscle cells. Thus, aerobic exercise training may prevent insulin resistance by correcting a mismatch between fatty acid uptake and fatty acid oxidation in skeletal muscle. Additionally, a single session of aerobic exercise increases glucose uptake by muscle during exercise, increases the ability of insulin to promote glucose uptake, and increases glycogen accumulation after exercise, all of which are important to blood glucose control. There also is some indication that resistance exercise may be effective in preventing insulin resistance. The information provided is intended to help clinicians understand and explain the roles of exercise in reducing insulin resistance.
Collapse
|