1
|
Chattergoon N, Louey S, Jonker SS, Thornburg KL. Thyroid hormone increases fatty acid use in fetal ovine cardiac myocytes. Physiol Rep 2023; 11:e15865. [PMID: 38010207 PMCID: PMC10680578 DOI: 10.14814/phy2.15865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiac metabolic substrate preference shifts at parturition from carbohydrates to fatty acids. We hypothesized that thyroid hormone (T3 ) and palmitic acid (PA) stimulate fetal cardiomyocyte oxidative metabolism capacity. T3 was infused into fetal sheep to a target of 1.5 nM. Dispersed cardiomyocytes were assessed for lipid uptake and droplet formation with BODIPY-labeled fatty acids. Myocardial expression levels were assessed PCR. Cardiomyocytes from naïve fetuses were exposed to T3 and PA, and oxygen consumption was measured with the Seahorse Bioanalyzer. Cardiomyocytes (130-day gestational age) exposed to elevated T3 in utero accumulated 42% more long-chain fatty acid droplets than did cells from vehicle-infused fetuses. In utero T3 increased myocardial mRNA levels of CD36, CPT1A, CPT1B, LCAD, VLCAD, HADH, IDH, PDK4, and caspase 9. In vitro exposure to T3 increased maximal oxygen consumption rate in cultured cardiomyocytes in the absence of fatty acids, and when PA was provided as an acute (30 min) supply of cellular energy. Longer-term exposure (24 and 48 h) to PA abrogated increased oxygen consumption rates stimulated by elevated levels of T3 in cultured cardiomyocytes. T3 contributes to metabolic maturation of fetal cardiomyocytes. Prolonged exposure of fetal cardiomyocytes to PA, however, may impair oxidative capacity.
Collapse
Affiliation(s)
- Natasha Chattergoon
- Center for Developmental Health, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Sonnet S. Jonker
- Center for Developmental Health, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Kent L. Thornburg
- Center for Developmental Health, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
2
|
Fowden AL, Vaughan OR, Murray AJ, Forhead AJ. Metabolic Consequences of Glucocorticoid Exposure before Birth. Nutrients 2022; 14:nu14112304. [PMID: 35684104 PMCID: PMC9182938 DOI: 10.3390/nu14112304] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids have an important role in development of the metabolic phenotype in utero. They act as environmental and maturational signals in adapting feto-placental metabolism to maximize the chances of survival both before and at birth. They influence placental nutrient handling and fetal metabolic processes to support fetal growth, fuel storage and energy production with respect to nutrient availability. More specifically, they regulate the transport, utilization and production of a range of nutrients by the feto-placental tissues that enables greater metabolic flexibility in utero while minimizing any further drain on maternal resources during periods of stress. Near term, the natural rise in fetal glucocorticoid concentrations also stimulates key metabolic adaptations that prepare tissues for the new energy demanding functions after birth. Glucocorticoids, therefore, have a central role in the metabolic communication between the mother, placenta and fetus that optimizes offspring metabolic phenotype for survival to reproductive age. This review discusses the effects of maternal and fetal glucocorticoids on the supply and utilization of nutrients by the feto-placental tissues with particular emphasis on studies using quantitative methods to assess metabolism in rodents and sheep in vivo during late pregnancy. It considers the routes of glucocorticoid overexposure in utero, including experimental administration of synthetic glucocorticoids, and the mechanisms by which these hormones control feto-placental metabolism at the molecular, cellular and systems levels. It also briefly examines the consequences of intrauterine glucocorticoid overexposure for postnatal metabolic health and the generational inheritance of metabolic phenotype.
Collapse
Affiliation(s)
- Abigail L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Correspondence:
| | - Owen R. Vaughan
- EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK;
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
| | - Alison J. Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.J.M.); (A.J.F.)
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
3
|
Fowden AL, Forhead AJ. Endocrine regulation of fetal metabolism towards term. Domest Anim Endocrinol 2022; 78:106657. [PMID: 34525421 DOI: 10.1016/j.domaniend.2021.106657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Hormones have an important role in regulating fetal metabolism in relation to the prevailing nutritional conditions both in late gestation and during the prepartum period as the fetus prepares for birth. In particular, the pancreatic, thyroid and adrenal hormones all affect fetal uptake and utilization of nutrients for oxidative metabolism, tissue accretion and fuel storage. These hormones also influence the fetal metabolic preparations for the nutritional transition from intra- to extra-uterine life. This review discusses the role of insulin, glucagon, thyroxine, tri-iodothyronine, cortisol and the catecholamines in these processes during normal intrauterine conditions and in response to maternal undernutrition with particular emphasis on the sheep fetus. It also considers the metabolic interactions between these hormones and their role in the maturation of key tissues, such as the liver, skeletal muscle and adipose tissue, in readiness for their new metabolic functions after birth. Endocrine regulation of fetal metabolism is shown to be multifactorial and dynamic with a central role in optimizing metabolic fitness for survival both in utero and at birth.
Collapse
Affiliation(s)
- Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
4
|
Spiroski AM, Oliver MH, Jaquiery AL, Prickett TCR, Espiner EA, Harding JE, Bloomfield FH. Postnatal effects of intrauterine treatment of the growth-restricted ovine fetus with intra-amniotic insulin-like growth factor-1. J Physiol 2018; 596:5925-5945. [PMID: 29235113 PMCID: PMC6265545 DOI: 10.1113/jp274999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/22/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Fetal growth restriction increases the risk of fetal and neonatal mortality and morbidity, and contributes to increased risk of chronic disease later in life. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of the growth-restricted ovine fetus improves fetal growth, but postnatal effects are unknown. Here we report that intra-amniotic IGF1 treatment of the growth-restricted ovine fetus alters size at birth and mechanisms of early postnatal growth in a sex-specific manner. We also show that maternal plasma C-type natriuretic peptide (CNP) products are related to fetal oxygenation and size at birth, and hence may be useful for non-invasive monitoring of fetal growth restriction. Intrauterine IGF1 treatment in late gestation is a potentially clinically relevant intervention that may ameliorate the postnatal complications of fetal growth restriction. ABSTRACT Placental insufficiency-mediated fetal growth restriction (FGR) is associated with altered postnatal growth and metabolism, which are, in turn, associated with increased risk of adult disease. Intra-amniotic insulin-like growth factor-1 (IGF1) treatment of ovine FGR increases growth rate in late gestation, but the effects on postnatal growth and metabolism are unknown. We investigated the effects of intra-amniotic IGF1 administration to ovine fetuses with uteroplacental embolisation-induced FGR on phenotypical and physiological characteristics in the 2 weeks after birth. We measured early postnatal growth velocity, amino-terminal propeptide of C-type natriuretic peptide (NTproCNP), body composition, tissue-specific mRNA expression, and milk intake in singleton lambs treated weekly with 360 μg intra-amniotic IGF1 (FGRI; n = 13 females, 19 males) or saline (FGRS; n = 18 females, 12 males) during gestation, and in controls (CON; n = 15 females, 22 males). There was a strong positive correlation between maternal NTproCNP and fetal oxygenation, and size at birth in FGR lambs. FGR lambs were ∼20% lighter at birth and demonstrated accelerated postnatal growth velocity. IGF1 treatment did not alter perinatal mortality, partially abrogated the reduction in newborn size in females, but not males, and reduced accelerated growth in both sexes. IGF1-mediated upregulation of somatotrophic genes in males during the early postnatal period could suggest that treatment effects are associated with delayed axis maturation, whilst treatment outcomes in females may rely on the reprogramming of nutrient-dependent mechanisms of growth. These data suggest that the growth-restricted fetus is responsive to intra-amniotic intervention with IGF1, and that sex-specific somatotrophic effects persist in the early postnatal period.
Collapse
Affiliation(s)
- A. M. Spiroski
- The Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - M. H. Oliver
- The Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - A. L. Jaquiery
- The Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | | | - E. A. Espiner
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - J. E. Harding
- The Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | | |
Collapse
|
5
|
López-Gambero AJ, Martínez F, Salazar K, Cifuentes M, Nualart F. Brain Glucose-Sensing Mechanism and Energy Homeostasis. Mol Neurobiol 2018; 56:769-796. [PMID: 29796992 DOI: 10.1007/s12035-018-1099-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
The metabolic and energy state of the organism depends largely on the availability of substrates, such as glucose for ATP production, necessary for maintaining physiological functions. Deregulation in glucose levels leads to the appearance of pathological signs that result in failures in the cardiovascular system and various diseases, such as diabetes, obesity, nephropathy, and neuropathy. Particularly, the brain relies on glucose as fuel for the normal development of neuronal activity. Regions adjacent to the cerebral ventricles, such as the hypothalamus and brainstem, exercise central control in energy homeostasis. These centers house nuclei of neurons whose excitatory activity is sensitive to changes in glucose levels. Determining the different detection mechanisms, the phenotype of neurosecretion, and neural connections involving glucose-sensitive neurons is essential to understanding the response to hypoglycemia through modulation of food intake, thermogenesis, and activation of sympathetic and parasympathetic branches, inducing glucagon and epinephrine secretion and other hypothalamic-pituitary axis-dependent counterregulatory hormones, such as glucocorticoids and growth hormone. The aim of this review focuses on integrating the current understanding of various glucose-sensing mechanisms described in the brain, thereby establishing a relationship between neuroanatomy and control of physiological processes involved in both metabolic and energy balance. This will advance the understanding of increasingly prevalent diseases in the modern world, especially diabetes, and emphasize patterns that regulate and stimulate intake, thermogenesis, and the overall synergistic effect of the neuroendocrine system.
Collapse
Affiliation(s)
- A J López-Gambero
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain
| | - F Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - K Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - M Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain.
| | - F Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile. .,Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
6
|
De Blasio MJ, Boije M, Kempster SL, Smith GCS, Charnock-Jones DS, Denyer A, Hughes A, Wooding FBP, Blache D, Fowden AL, Forhead AJ. Leptin Matures Aspects of Lung Structure and Function in the Ovine Fetus. Endocrinology 2016; 157:395-404. [PMID: 26479186 PMCID: PMC4701894 DOI: 10.1210/en.2015-1729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In human and ovine fetuses, glucocorticoids stimulate leptin secretion, although the extent to which leptin mediates the maturational effects of glucocorticoids on pulmonary development is unclear. This study investigated the effects of leptin administration on indices of lung structure and function before birth. Chronically catheterized singleton sheep fetuses were infused iv for 5 days with either saline or recombinant ovine leptin (0.5 mg/kg · d leptin (LEP), 0.5 LEP or 1.0 mg/kg · d, 1.0 LEP) from 125 days of gestation (term ∼145 d). Over the infusion, leptin administration increased plasma leptin, but not cortisol, concentrations. On the fifth day of infusion, 0.5 LEP reduced alveolar wall thickness and increased the volume at closing pressure of the pressure-volume deflation curve, interalveolar septal elastin content, secondary septal crest density, and the mRNA abundance of the leptin receptor (Ob-R) and surfactant protein (SP) B. Neither treatment influenced static lung compliance, maximal lung volume at 40 cmH2O, lung compartment volumes, alveolar surface area, pulmonary glycogen, protein content of the long form signaling Ob-Rb or phosphorylated signal transducers and activators of transcription-3, or mRNA levels of SP-A, C, or D, elastin, vascular endothelial growth factor-A, the vascular endothelial growth factor receptor 2, angiotensin-converting enzyme, peroxisome proliferator-activated receptor γ, or parathyroid hormone-related peptide. Leptin administration in the ovine fetus during late gestation promotes aspects of lung maturation, including up-regulation of SP-B.
Collapse
Affiliation(s)
- Miles J De Blasio
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Maria Boije
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Sarah L Kempster
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gordon C S Smith
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - D Stephen Charnock-Jones
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alice Denyer
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alexandra Hughes
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - F B Peter Wooding
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Dominique Blache
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience (M.J.D.B., M.B., A.D., A.H., F.B.P.W., A.L.F., A.J.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Medicine (S.L.K.), University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Obstetrics and Gynaecology (G.C.S.S., D.S.C.-J.), University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, United Kingdom; School of Animal Biology (D.B.), University of Western Australia, Crawley, Perth, Western Australia, Australia 60095; and Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
7
|
More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology. Dev Biol 2015; 408:188-95. [DOI: 10.1016/j.ydbio.2015.02.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
|
8
|
Forhead AJ, Jellyman JK, De Blasio MJ, Johnson E, Giussani DA, Broughton Pipkin F, Fowden AL. Maternal Dexamethasone Treatment Alters Tissue and Circulating Components of the Renin-Angiotensin System in the Pregnant Ewe and Fetus. Endocrinology 2015; 156:3038-46. [PMID: 26039155 PMCID: PMC4511127 DOI: 10.1210/en.2015-1197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antenatal synthetic glucocorticoids promote fetal maturation in pregnant women at risk of preterm delivery and their mechanism of action may involve other endocrine systems. This study investigated the effect of maternal dexamethasone treatment, at clinically relevant doses, on components of the renin-angiotensin system (RAS) in the pregnant ewe and fetus. From 125 days of gestation (term, 145 ± 2 d), 10 ewes carrying single fetuses of mixed sex (3 female, 7 male) were injected twice im, at 10-11 pm, with dexamethasone (2 × 12 mg, n = 5) or saline (n = 5) at 24-hour intervals. At 10 hours after the second injection, maternal dexamethasone treatment increased angiotensin-converting enzyme (ACE) mRNA levels in the fetal lungs, kidneys, and heart and ACE concentration in the circulation and lungs, but not kidneys, of the fetuses. Fetal cardiac mRNA abundance of angiotensin II (AII) type 2 receptor decreased after maternal dexamethasone treatment. Between the two groups of fetuses, there were no significant differences in plasma angiotensinogen or renin concentrations; in transcript levels of renal renin, or AII type 1 or 2 receptors in the lungs and kidneys; or in pulmonary, renal or cardiac protein content of the AII receptors. In the pregnant ewes, dexamethasone administration increased pulmonary ACE and plasma angiotensinogen, and decreased plasma renin, concentrations. Some of the effects of dexamethasone treatment on the maternal and fetal RAS were associated with altered insulin and thyroid hormone activity. Changes in the local and circulating RAS induced by dexamethasone exposure in utero may contribute to the maturational and tissue-specific actions of antenatal glucocorticoid treatment.
Collapse
Affiliation(s)
- Alison J Forhead
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Juanita K Jellyman
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Miles J De Blasio
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Emma Johnson
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Fiona Broughton Pipkin
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience (A.J.F., J.K.J., M.J.D.B., E.J., D.A.G., A.L.F.), University of Cambridge, Cambridge CB2 3EG, United Kingdom; Department of Biological and Medical Sciences (A.J.F.), Oxford Brookes University, Oxford OX3 0BP, United Kingdom; and Department of Obstetrics and Gynaecology (F.B.P.), University of Nottingham, Nottingham NG5 1PB, United Kingdom
| |
Collapse
|
9
|
Yao X, Hou S, Zhang D, Xia H, Wang YC, Jiang J, Yin H, Ying H. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell Biosci 2014; 4:38. [PMID: 25105012 PMCID: PMC4124172 DOI: 10.1186/2045-3701-4-38] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/15/2014] [Indexed: 12/20/2022] Open
Abstract
Background Thyroid hormones (THs) are potent hormones modulating liver lipid homeostasis. The perturbation of lipid homeostasis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a very common liver disorder. It was reported that NAFLD patients were associated with higher incidence of hypothyroidism. However, whether abnormal thyroid function contributes to the pathogenesis of NAFLD remains unclear. Results We used in vivo models to investigate the influence of hypothyroidism and TH on hepatic lipid homeostasis. We did not observe hepatic triglyceride accumulation in the liver of hypothyroid mice, although the liver was enlarged. We then characterized the hepatic fatty acid composition with gas chromatography–mass spectrometry in mice under different thyroid states. We found that hypothyroidism decreased saturated fatty acid (SFA) content while TH treatment restored the level of SFA. In agreement with this finding, we observed that the expression of acetyl-CoA carboxylase 1 and fatty acid synthase, the rate-limit enzymes for de novo lipogenesis (DNL), decreased in hypothyroid mice while increased after TH treatment. We also found that the ratio of C18:1n-9/C18:0 and C16:1n-7/C16:0 was decreased by TH treatment, suggesting the activity of stearoyl-CoA desaturase-1 was suppressed. This finding indicated that TH is able to suppress triglyceride accumulation by reducing fatty acid desaturation. Additionally, we found that hepatic glycogen content was substantially influenced by TH status, which was associated with glycogen synthase expression. The increased glycogen storage might explain the enlarged liver we observed in hypothyroid mice. Conclusions Taken together, our study here suggested that hypothyroidism in mice might not lead to the development of NAFLD although the liver became enlarged. However, disturbed TH levels led to altered hepatic fatty acid composition and glycogen accumulation.
Collapse
Affiliation(s)
- Xuan Yao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sarina Hou
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Duo Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongfeng Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Cheng Wang
- Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Nutrition, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
10
|
Abstract
The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal growth and development of the fetus. Their bioavailability in utero depends on development of the fetal hypothalamic-pituitary-thyroid gland axis and the abundance of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and differentiation near term, fetal thyroid hormones ensure activation of physiological processes essential for survival at birth such as pulmonary gas exchange, thermogenesis, hepatic glucogenesis, and cardiac adaptations. This review examines the developmental control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal growth and development with particular emphasis on maturation of somatic tissues critical for survival immediately at birth.
Collapse
Affiliation(s)
- A J Forhead
- Department of PhysiologyDevelopment and Neuroscience, University of Cambridge, Physiology Building, Downing Street, Cambridge CB2 3EG, UKDepartment of Biological and Medical SciencesOxford Brookes University, Oxford OX3 0BP, UKDepartment of PhysiologyDevelopment and Neuroscience, University of Cambridge, Physiology Building, Downing Street, Cambridge CB2 3EG, UKDepartment of Biological and Medical SciencesOxford Brookes University, Oxford OX3 0BP, UK
| | - A L Fowden
- Department of PhysiologyDevelopment and Neuroscience, University of Cambridge, Physiology Building, Downing Street, Cambridge CB2 3EG, UKDepartment of Biological and Medical SciencesOxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
11
|
Sferruzzi-Perri AN, Vaughan OR, Forhead AJ, Fowden AL. Hormonal and nutritional drivers of intrauterine growth. Curr Opin Clin Nutr Metab Care 2013; 16:298-309. [PMID: 23340010 DOI: 10.1097/mco.0b013e32835e3643] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW Size at birth is critical in determining life expectancy with both small and large neonates at risk of shortened life spans. This review examines the hormonal and nutritional drivers of intrauterine growth with emphasis on the role of foetal hormones as nutritional signals in utero. RECENT FINDINGS Nutrients drive intrauterine growth by providing substrate for tissue accretion, whereas hormones regulate nutrient distribution between foetal oxidative metabolism and mass accumulation. The main hormonal drivers of intrauterine growth are insulin, insulin-like growth factors and thyroid hormones. Together with leptin and cortisol, these hormones control cellular nutrient uptake and the balance between accretion and differentiation in regulating tissue growth. They also act indirectly via the placenta to alter the materno-foetal supply of nutrients and oxygen. By responding to nutrient and oxygen availability, foetal hormones optimize the survival and growth of the foetus with respect to its genetic potential, particularly during adverse conditions. However, changes in the intrauterine growth of individual tissues may alter their function permanently. SUMMARY In both normal and compromised pregnancies, intrauterine growth is determined by multiple hormonal and nutritional drivers which interact to produce a specific pattern of intrauterine development with potential lifelong consequences for health.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
12
|
Hombach-Klonisch S, Danescu A, Begum F, Amezaga MR, Rhind SM, Sharpe RM, Evans NP, Bellingham M, Cotinot C, Mandon-Pepin B, Fowler PA, Klonisch T. Peri-conceptional changes in maternal exposure to sewage sludge chemicals disturbs fetal thyroid gland development in sheep. Mol Cell Endocrinol 2013; 367:98-108. [PMID: 23291342 PMCID: PMC3581773 DOI: 10.1016/j.mce.2012.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 11/24/2022]
Abstract
Ewes were exposed to sewage sludge-fertilized pastures in a study designed investigate pre-conceptual and/or gestational exposure to environmental chemicals. The in utero impact on fetal thyroid morphology and function at day 110 (of 145) of pregnancy was then determined. Pre-conceptual exposure increased the relative thyroid organ weights in male fetuses. The number of thyroid follicles in thyroids of fetuses after pre-conceptual or gestational exposure was reduced. This correlated with an increase in Ki67 positive cells. Pre-conceptual exposure to sewage sludge reduced small blood vessels in fetal thyroids. Thyroid tissues of exposed fetuses contained regions where mature angio-follicular units were reduced exhibiting decreased immunostaining for sodium-iodide symporter (NIS). Fetal plasma levels of fT3 and fT4 in exposed animals, however, were not different from controls suggesting compensatory changes in the thyroid gland to maintain homeostasis in exposed fetuses. The regional aberrations in thyroid morphology may impact on the post-natal life of the exposed offspring.
Collapse
Key Words
- ecs, environmental chemicals
- edcs, endocrine-disrupting compounds
- nis, sodium-iodide symporter
- ft3, free triiodothyronine
- ft4, free thyroxine
- th, thyroid hormone
- tsh, thyroid stimulating hormone
- tr, thyroid hormone receptor
- ttr, transthyretin
- hpt, hypothalamic-pituitary-thyroid axis
- pcbs, polychlorinated biphenyls
- pbde, polybrominated diphenyl ether
- dehp, di(2-ethylhexyl) phthalate
- cv, coefficient of variation
- dab, 3,3′-diaminobenzidine tetrahydrochloride
- hrp, horseradish peroxidase
- rt, room temperature
- he, hematoxylin-eosin
- gnrh, gonadotropin releasing hormone
- gd, gestational day
- tunel, terminal deoxynucleotidyl transferase dutp nick end labeling
- endocrine disruptors
- thyroid gland
- sheep
- fetal
- sewage sludge
- development
Collapse
Affiliation(s)
- Sabine Hombach-Klonisch
- Department of Human Anatomy & Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hammon HM, Steinhoff-Wagner J, Flor J, Schönhusen U, Metges CC. Lactation Biology Symposium: role of colostrum and colostrum components on glucose metabolism in neonatal calves. J Anim Sci 2012; 91:685-95. [PMID: 23100594 DOI: 10.2527/jas.2012-5758] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In neonatal calves, nutrient intake shifts from continuous glucose supply via the placenta to discontinuous colostrum and milk intake with lactose and fat as main energy sources. Calves are often born hypoglycemic and have to establish endogenous glucose production (eGP) and gluconeogenesis, because lactose intake by colostrum and milk does not meet glucose demands. Besides establishing a passive immunity, colostrum intake stimulates maturation and function of the neonatal gastrointestinal tract (GIT). Nutrients and nonnutritive factors, such as hormones and growth factors, which are present in high amounts in colostrum of first milking after parturition, affect intestinal growth and function and enhance the absorptive capacity of the GIT. Likely as a consequence of that, colostrum feeding improves the glucose status in neonatal calves by increasing glucose absorption, which results in elevated postprandial plasma glucose concentrations. Hepatic glycogen concentrations rise much greater when colostrum instead of a milk-based colostrum replacer (formula with same nutrient composition as colostrum but almost no biologically active substances, such as hormones and growth factors) is fed. In contrast, first-pass glucose uptake in the splanchnic tissue tended to be greater in calves fed formula. The greater plasma glucose rise and improved energy status in neonatal calves after colostrum intake lead to greater insulin secretion and accelerated stimulation of anabolic processes indicated by enhanced maturation of the postnatal somatotropic axis in neonatal calves. Hormones involved in stimulation of eGP, such as glucagon and cortisol, depend on neonatal diet, but their effects on eGP stimulation seem to be impaired. Although colostrum feeding affects systemic insulin, IGF-I, and leptin concentrations, evidence for systemic action of colostral insulin, IGF-I, and leptin in neonatal calves is weak. Studies so far indicate no absorption of insulin, IGF-I, and leptin from colostrum in neonatal calves, unlike in rodents where systemic effects of colostral leptin are demonstrated. Therefore, glucose availability in neonatal calves is promoted by perinatal maturation of eGP and colostrum intake. There may be long-lasting effects of an improved colostrum supply and glucose status on postnatal growth and development, and colostrum supply may contribute to neonatal programming of performance (milk and growth) in later life, but data proving this concept are missing.
Collapse
Affiliation(s)
- H M Hammon
- Department of Nutritional Physiology Oskar Kellner, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| | | | | | | | | |
Collapse
|
14
|
Morel O, Laporte-Broux B, Tarrade A, Chavatte-Palmer P. The use of ruminant models in biomedical perinatal research. Theriogenology 2012; 78:1763-73. [PMID: 22925634 DOI: 10.1016/j.theriogenology.2012.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 06/05/2012] [Accepted: 06/10/2012] [Indexed: 01/21/2023]
Abstract
Animal models are of critical importance in biomedical research. Although rodents and lagomorphs are the most commonly used species, larger species are required, especially when surgical approaches or new medical devices have to be evaluated. In particular, in the field of perinatal medicine, they are critical for the evaluation of new pharmacologic treatments and the development of new invasive procedures in fetuses. In some areas, such as developmental genetics, reproductive biotechnologies and metabolic programming, the contribution of ruminants is essential. The current report focuses on some of the most outstanding examples of great biomedical advances carried out with ruminant models in the field of perinatal research. Experiments recently carried in our research unit using ruminants are also briefly described.
Collapse
Affiliation(s)
- O Morel
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
15
|
Hammon HM, Steinhoff-Wagner J, Schönhusen U, Metges CC, Blum JW. Energy metabolism in the newborn farm animal with emphasis on the calf: endocrine changes and responses to milk-born and systemic hormones. Domest Anim Endocrinol 2012; 43:171-85. [PMID: 22480719 DOI: 10.1016/j.domaniend.2012.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 01/10/2023]
Abstract
Neonatal mammals need adaption to changes in nutrient supply because energy intake shifts from continuous parenteral supply of nutrients (mainly glucose, lactate, and amino acids) via the placenta to discontinuous colostrum and milk intake with lactose and fat as main energy sources. Besides ingested lactose, endogenous glucose production is essential in the neonate to assure sufficient glucose availability. Fetal endogenous glucose production is low, but endocrine changes (especially the prenatal rise of glucocorticoid production) promote maturation of metabolic pathways that enable marked glycogen synthesis before and enhanced gluconeogenesis after birth to establish an adequate glucose status during postnatal maturation. In preterm born farm animals gluconeogenic activity is low, mainly because of a low glucocorticoid and thyroid status. In full-term neonates, endogenous glucose production increases with age. Colostral bioactive components (such as growth factors, hormones, bioactive peptides, and cytokines) do not have a direct effect on endogenous glucose production. However, colostrum feeding stimulates intestinal growth and development, an effect at least in part mediated by bioactive substances. Increased nutrient and glucose absorption thus allows increased glucose supply and hepatic glycogen storage, which improves the glucose status. The improved energetic status of colostrum-fed neonates is reflected by an accelerated maturation of the somatotropic axis, leading especially to enhanced production of IGF-I in the neonate. Secretion and production of hormones involved in the regulation of glucose and fat metabolism in neonates depend on the developmental stage and the response to feeding. In addition, many such hormones have actions in the neonate that differ from adult animals. Endocrine action to support endogenous energy supply in neonates is probably not fully established, and therefore, needs postnatal maturation. Therefore, our knowledge on energy metabolism in the neonate needs to be extended to better understand the function and the failure and to assess endocrine responses during the neonatal period.
Collapse
Affiliation(s)
- H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| | | | | | | | | |
Collapse
|
16
|
Abstract
It has long been known that thyroid hormone has profound direct effects on metabolism and cardiovascular function. More recently, it was shown that the hormone also modulates these systems by actions on the central autonomic control. Recent studies that either manipulated thyroid hormone signalling in anatomical areas of the brain or analysed seasonal models with an endogenous fluctuation in hypothalamic thyroid hormone levels revealed that the hormone controls energy turnover. However, most of these studies did not progress beyond the level of anatomical nuclei; thus, the neuronal substrates as well as the molecular mechanisms remain largely enigmatic. This review summarises the evidence for a role of thyroid hormone in the central autonomic control of peripheral homeostasis and advocates novel strategies to address thyroid hormone action in the brain on a cellular level.
Collapse
Affiliation(s)
- Amy Warner
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
17
|
Affiliation(s)
- Anita Boelen
- Department of Endocrinology & Metabolism, F5-165, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|