1
|
Dawangpa A, Chitta P, Rodrigues GDS, Iadsee N, Noronha NY, Nonino CB, Bueno Júnior CR, Sae-Lee C. Impact of combined exercise on blood DNA methylation and physical health in older women with obesity. PLoS One 2024; 19:e0315250. [PMID: 39680552 DOI: 10.1371/journal.pone.0315250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study examined the effects of a 14-week combined exercise program on blood DNA methylation (DNAm) and its potential biological pathways in normal-weight, overweight, and obese older women. A total of 41 participants were assessed at baseline, 7 weeks, and 14 weeks into the training. Their whole-blood DNAm profiles were measured using the Infinitum MethylationEPIC BeadChip, alongside physical and biochemical health evaluations. The results showed notable health improvements, with decreases in blood pressure and cholesterol levels in the overweight and obese groups. Blood triglycerides were reduced only in the overweight group. Physical performance also improved across all groups. At 14 weeks, 1,043 differentially methylated positions (DMPs) were identified, affecting 744 genes. The genes were linked to biological processes, such as cellular metabolism, with significant pathway enrichment related to oxidative phosphorylation and chemical carcinogenesis. Additionally, the overweight group experienced significant reductions in methylation levels at eight lipogenesis-related genes. Protein EpiScore analysis revealed decreased levels of CCL11, VEGFA, and NTRK3 proteins at 14 weeks compared to baseline. Despite these significant molecular changes, there was no observable difference in DNAm age after the intervention. This study highlights how combined exercise can modify DNAm patterns in older women, particularly in lipogenesis-related genes, but suggests that further research is needed to understand the full implications for biological ageing.
Collapse
Affiliation(s)
- Atchara Dawangpa
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pitaksin Chitta
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nutta Iadsee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natália Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carla B Nonino
- Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carlos R Bueno Júnior
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Konopka A, Atkin JD. The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration. Front Cell Neurosci 2022; 16:836885. [PMID: 35813507 PMCID: PMC9259845 DOI: 10.3389/fncel.2022.836885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Damage to DNA is generally considered to be a harmful process associated with aging and aging-related disorders such as neurodegenerative diseases that involve the selective death of specific groups of neurons. However, recent studies have provided evidence that DNA damage and its subsequent repair are important processes in the physiology and normal function of neurons. Neurons are unique cells that form new neural connections throughout life by growth and re-organisation in response to various stimuli. This “plasticity” is essential for cognitive processes such as learning and memory as well as brain development, sensorial training, and recovery from brain lesions. Interestingly, recent evidence has suggested that the formation of double strand breaks (DSBs) in DNA, the most toxic form of damage, is a physiological process that modifies gene expression during normal brain activity. Together with subsequent DNA repair, this is thought to underlie neural plasticity and thus control neuronal function. Interestingly, neurodegenerative diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington’s disease, manifest by a decline in cognitive functions, which are governed by plasticity. This suggests that DNA damage and DNA repair processes that normally function in neural plasticity may contribute to neurodegeneration. In this review, we summarize current understanding about the relationship between DNA damage and neural plasticity in physiological conditions, as well as in the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
The active grandparent hypothesis: Physical activity and the evolution of extended human healthspans and lifespans. Proc Natl Acad Sci U S A 2021; 118:2107621118. [PMID: 34810239 DOI: 10.1073/pnas.2107621118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The proximate mechanisms by which physical activity (PA) slows senescence and decreases morbidity and mortality have been extensively documented. However, we lack an ultimate, evolutionary explanation for why lifelong PA, particularly during middle and older age, promotes health. As the growing worldwide epidemic of physical inactivity accelerates the prevalence of noncommunicable diseases among aging populations, integrating evolutionary and biomedical perspectives can foster new insights into how and why lifelong PA helps preserve health and extend lifespans. Building on previous life-history research, we assess the evidence that humans were selected not just to live several decades after they cease reproducing but also to be moderately physically active during those postreproductive years. We next review the longstanding hypothesis that PA promotes health by allocating energy away from potentially harmful overinvestments in fat storage and reproductive tissues and propose the novel hypothesis that PA also stimulates energy allocation toward repair and maintenance processes. We hypothesize that selection in humans for lifelong PA, including during postreproductive years to provision offspring, promoted selection for both energy allocation pathways which synergistically slow senescence and reduce vulnerability to many forms of chronic diseases. As a result, extended human healthspans and lifespans are both a cause and an effect of habitual PA, helping explain why lack of lifelong PA in humans can increase disease risk and reduce longevity.
Collapse
|
4
|
Abstract
Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA, which leads to neuronal death. In this way, DNA damage has been implicated in the pathogenesis of neurological disorders, cancer, and aging. Lifestyle factors, such as physical exercise, are neuroprotective and increase brain function by improving cognition, learning, and memory, in addition to regulating the cellular redox milieu. Several mechanisms are associated with the effects of exercise in the brain, such as reduced production of oxidants, up-regulation of antioxidant capacity, and a consequent decrease in nuclear DNA damage. Furthermore, physical exercise is a potential strategy for further DNA damage repair. However, the neuroplasticity molecules that respond to different aspects of physical exercise remain unknown. In this review, we discuss the influence of exercise on DNA damage and adjacent mechanisms in the brain. We discuss the results of several studies that focus on the effects of physical exercise on brain DNA damage.
Collapse
Affiliation(s)
- Thais Ceresér Vilela
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
5
|
Chromosomal stability in buccal cells was linked to age but not affected by exercise and nutrients - Vienna Active Ageing Study (VAAS), a randomized controlled trial. Redox Biol 2019; 28:101362. [PMID: 31675674 PMCID: PMC6838791 DOI: 10.1016/j.redox.2019.101362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to investigate the effect of six months strength training with or without supplementing protein and vitamins, on chromosomal integrity of buccal cells in institutionalized elderly. One hundred seventeen women and men (65–98 years) performed either resistance training (RT), RT combined with a nutritional supplement (RTS) or cognitive training (CT) twice per week for six months. Participants’ fitness was measured using the 6 min walking, the chair rise, and the handgrip strength test. Genotoxicity and cytotoxicity parameters were investigated with the Buccal Micronucleus Cytome (BMcyt) assay. Six minutes walking and chair rise performance improved significantly, however, no changes of the parameters of the BMcyt were detected. Age and micronuclei (MN) frequency correlated significantly, for both women (r = 0.597, p = 0.000) and men (r = 0.508, p = 0.000). Squared regressions revealed a significant increase in the MN frequency of buccal cells with age (R2 = 0.466, p = 0.000). Interestingly and contrary to what was shown in blood lymphocytes, chromosomal damage in buccal cells increases until very old age, which might qualify them as a valid biomarker for aging. Unexpectedly, in this group of institutionalized elderly, resistance training using elastic bands had no effect on chromosomal damage in buccal cells. Mutation in buccal cells increased until very old age – a new aging biomarker? Chromosomal damage in buccal cells was age-dependent and equal for women and men. Strength training improved fitness but not mutagenicity in buccal cells of elderly.
Collapse
|
6
|
Mota MP, Dos Santos ZA, Soares JFP, de Fátima Pereira A, João PV, O'Neil Gaivão I, Oliveira MM. Intervention with a combined physical exercise training to reduce oxidative stress of women over 40 years of age. Exp Gerontol 2019; 123:1-9. [PMID: 31102617 DOI: 10.1016/j.exger.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022]
Abstract
Exercise training has been shown to be one of the most important lifestyle factor for improving functional performance and health status. Nevertheless, and although some evidence exists about the effects of aerobic training on oxidative stress, there is scarce information concerning the effects of combined exercise training (aerobic and strength training) in oxidative stress. Considering this, the aim of this study was to verify the effects of a combined exercise training in oxidative stress parameters of women over 40 years of age. At baseline, 67 women enrolled in the study and were divided into three groups: younger group (YG, n = 28: 40 to 49 years), middle-aged group (MAG, n = 21: 50 to 59 years) and oldest group (OG, n = 18: above 60 years). These women engaged in a combined exercise training program for 16 weeks, 3 sessions of 60 min per week. At the end of the program, only 31 women (YG: 15; MAG: 8 and OG: 8) were remained in the study and were considered for analysis. Physical assessments (weight, height, body mass index and waist circumference), health and functional parameters (systolic and diastolic blood pressure, fitness tests: supine, latissimus, squat jump, 8 foot up and go test, 30 second chair stand test, and 6 min walk test) and measures of DNA damage (DNA SBs, DNA netFPG), lipid peroxidation (MDA), total antioxidant capacity (TAC) and catalase activity (CAT) were performed before and after the 16-week intervention with combined exercise. The results showed an improvement of overall physical and functional performance as well as a significant decrease in waist perimeter and systolic blood pressure after the exercise program intervention. Regarding the biochemical measures, the exercise training induced a significant decrease in oxidative damage, and a significant increase in the TAC (p < 0.05). The results indicate that combined exercise training induces benefits in functional capacity and reduce damage caused by oxidative stress.
Collapse
Affiliation(s)
- Maria Paula Mota
- Research Center in Sports Sciences, Health and Human Development, CIDESD, UTAD, Quinta Prados, P-5001-801 Vila Real, Portugal
| | | | - Jorge Frederico Pinto Soares
- Research Center in Sports Sciences, Health and Human Development, CIDESD, UTAD, Quinta Prados, P-5001-801 Vila Real, Portugal
| | - Ana de Fátima Pereira
- Research Center in Sports Sciences, Health and Human Development, CIDESD, UTAD, Quinta Prados, P-5001-801 Vila Real, Portugal; Research Center in Education, CIEF-IPS, Polythecnic Institute of Setubal, Estefanilha, P-2914-504 Setúbal, Portugal.
| | - Paulo Vicente João
- Research Center in Sports Sciences, Health and Human Development, CIDESD, UTAD, Quinta Prados, P-5001-801 Vila Real, Portugal
| | - Isabel O'Neil Gaivão
- Animal and Veterinary Research Center, CECAV, UTAD, Quinta Prados, P-5001-801 Vila Real, Portugal
| | - Maria Manuel Oliveira
- Chemistry Center of Vila Real, CQVR, UTAD, Quinta Prados, P-5001-801 Vila Real, Portugal
| |
Collapse
|
7
|
Abstract
The interest about circulating cell-free DNA (cfDNA) concentration increased from several years because of its correlation with various conditions like osteoarthritis, cancers, stroke, and sepsis; recently it has become an important marker for overtraining syndrome or performance diagnostics.Several studies have demonstrated that cfDNA increases in vigorous and exhausting exercise but also endurance exercise. Acute effect of exercise on cfDNA concentration seems to be correlated to stress factor, while chronic effect is associated with necrosis and apoptosis.The intensity and duration seem to have effects on the variation of cfDNA concentration that is strongly correlated with other metabolic markers like acid lactate and creatine kinase, recognized as markers of muscle damage. Variation of cfDNA value could be used to predict overtraining syndrome.
Collapse
Affiliation(s)
- Leydi Natalia Vittori
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | |
Collapse
|
8
|
Netto AO, Gelaleti RB, Corvino SB, Serrano RG, Hernández SC, Volpato GT, Rudge MVC, Braz MG, Damasceno DC. Small-for-pregnancy-age rats submitted to exercise: DNA damage in mothers and newborns, measured by the comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 835:11-15. [PMID: 30249476 DOI: 10.1016/j.mrgentox.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fetal impairment caused by a deleterious intrauterine environment may have long-term consequences, such as oxidative stress and genetic damage. Rats born as small-for-gestational-age (SPA) were submitted to exercise (swimming) before and during pregnancy. The animals exhibited glucose intolerance, reduced general adiposity, and increased maternal and offspring organ weight, showing the benefit of exercise for these rats. We hypothesised that regular exercise in SPA during gestation could prevent DNA damage in these animals and in their offspring, contributing to altered fetal programming of metabolism in the offspring. Severe diabetes was induced by streptozotocin treatment, to obtain SPA newborns. At adulthood, pregnant SPA rats were randomly distributed into two groups: exercised (SPAex - submitted to swimming program) or not-exercised (SPA - sedentary rats). Post-partum, blood was collected for analysis of DNA damage (comet assay) and oxidative stress. SPAex rats presented lower DNA damage levels, decreased lipid peroxidation, and a lower rate of newborns classified as large-for-pregnancy-age. DNA damage was also lower in SPAex newborns. We conclude that swimming applied to SPA pregnant rats contributes to decreased DNA damage and lipid peroxidation in the dams, and decreased DNA damage and macrosomia in their offspring.
Collapse
Affiliation(s)
- A O Netto
- Postgraduate Course on Gynecology, Obstetrics and Mastology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo State, Brazil
| | - R B Gelaleti
- Postgraduate Course on Gynecology, Obstetrics and Mastology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo State, Brazil
| | - S B Corvino
- Postgraduate Course on Gynecology, Obstetrics and Mastology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo State, Brazil
| | - R G Serrano
- Postgraduate Course on Gynecology, Obstetrics and Mastology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo State, Brazil
| | - S C Hernández
- Biochemical Department, Havana Medical Science University, ICBP Victoria de Girón, Havana, Cuba
| | - G T Volpato
- Postgraduate Course on Gynecology, Obstetrics and Mastology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo State, Brazil; Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso State, Brazil
| | - M V C Rudge
- Postgraduate Course on Gynecology, Obstetrics and Mastology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo State, Brazil
| | - M G Braz
- Department of Anesthesiology, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo State, Brazil
| | - D C Damasceno
- Postgraduate Course on Gynecology, Obstetrics and Mastology, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo State, Brazil.
| |
Collapse
|
9
|
Vilela TC, Effting PS, Dos Santos Pedroso G, Farias H, Paganini L, Rebelo Sorato H, Nesi RT, de Andrade VM, de Pinho RA. Aerobic and strength training induce changes in oxidative stress parameters and elicit modifications of various cellular components in skeletal muscle of aged rats. Exp Gerontol 2018; 106:21-27. [PMID: 29471131 DOI: 10.1016/j.exger.2018.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Abstract
Skeletal muscle aging is associated with loss of mass, function, and strength-a condition known as sarcopenia. It has been reported that sarcopenia can be attenuated by physical exercise. Therefore, we investigated whether 2 different physical exercise protocols could modulate and induce changes in oxidative and inflammatory parameters, as well as in BDNF and DNA repair enzyme levels in skeletal muscle tissue of aged rats. Aging Wistar rats performed treadmill or strength training for 50 min 3 to 4 times a week for 8 weeks. Strength training decreased 2',7'-dichlorofluorescein (DCFH) oxidation (P = 0.0062); however, nitric oxide, protein deglycase DJ-1, and tumor necrosis factor alpha (TNF-α) levels increased after aerobic training (P = 0.04, P = 0.027 and P = 0.009, respectively). Both exercise protocols increased superoxide dismutase (SOD) and catalase (CAT) activity (P = 0.0017 and P = 0.0326) whereas the activity of glutathione (GSH) (P = 0.0001) was decreased. Brain-derived neurotropic factor (BDNF) levels were not affected by exercise, but 8-oxoguanine glycosylase (OGG1) decreased after strength training (P = 0.0007). In conclusion, oxidative parameters showed that skeletal muscle adapt to increased ROS levels, reducing the risk of free radical damage to the tissue after both exercise protocols. These results show that the effects of physical exercise on skeletal muscle are mediated in an exercise type-dependent manner.
Collapse
Affiliation(s)
- Thais Ceresér Vilela
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil.
| | - Pauline Souza Effting
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Giulia Dos Santos Pedroso
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Hemelin Farias
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Lara Paganini
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Helen Rebelo Sorato
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Renata Tiescoski Nesi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
10
|
Park HS, Cho HS, Kim TW. Physical exercise promotes memory capability by enhancing hippocampal mitochondrial functions and inhibiting apoptosis in obesity-induced insulin resistance by high fat diet. Metab Brain Dis 2018; 33:283-292. [PMID: 29185193 DOI: 10.1007/s11011-017-0160-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
A high-fat diet induces obesity in mice, leading to insulin resistance, decreased mitochondrial function, and increased apoptosis in the hippocampus, which eventually result in memory loss. The present study investigated the effect of physical exercise on memory, hippocampal mitochondrial function, and apoptosis in mice with in insulin resistance caused by obesity due to high-fat diet. Mice were randomly divided into four groups: control (CON), control and exercise (CON + EX), high fat diet (HFD), and high fat diet and exercise (HFD + EX). After receiving a high-fat (60%) diet for 20 weeks to induce obesity, the animals were subjected to an exercise routine 6 times per week, for 12 weeks. The exercise duration and intensity gradually increased over 4-week intervals. Hippocampal memory was examined using the step-down avoidance task. Mitochondrial function and apoptosis were also examined in the hippocampus and dentate gyrus. We found that obesity owing to a high-fat diet induced insulin resistance and caused a decrease in memory function. Insulin resistance also caused a decrease in mitochondrial function in the hippocampus by reducing Ca2+ retention and O2, respiration, increasing the levels of H2O2, and Cyp-D, and mPTP opening. In addition, apoptosis in the hippocampus increased owing to decreased expression of Bcl-2 and increased expression of Bax, cytochrome c, and caspase-3 and TUNEL-positive cells. In contrast, physical exercise led to reduced insulin resistance, improved mitochondrial function, and reduced apoptosis in the hippocampus. The results suggest that physiological stimulations such as exercise improve hippocampal function and suppress apoptosis, potentially preventing the memory loss associated with obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Hye-Sang Park
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea
| | - Han-Sam Cho
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea.
- Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, SangMyung University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Bloomer RJ, Butawan M, Smith NJG. Chronic Marijuana Smoking Does Not Negatively Impact Select Blood Oxidative Stress Biomarkers in Young, Physically Active Men and Women. Health (London) 2018. [DOI: 10.4236/health.2018.107071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Kara M, Ozcagli E, Fragkiadaki P, Kotil T, Stivaktakis PD, Spandidos DA, Tsatsakis AM, Alpertunga B. Determination of DNA damage and telomerase activity in stanozolol-treated rats. Exp Ther Med 2017; 13:614-618. [PMID: 28352339 PMCID: PMC5348646 DOI: 10.3892/etm.2016.3974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023] Open
Abstract
Anabolic androgenic steroids (AAS) are performance-enhancing drugs commonly abused by atheletes. Stanozolol is a synthetic testosterone-derived anabolic steroid. Although it is well known that AAS have several side-effects, there are only few toxicological studies available on the toxic effects and mechanisms of action of stanozolol. The aim of this study was to investigate the genotoxic effects of stanozolol and to determine its effects on telomerase activity in Sprague-Dawley male rats. For this purpose, 34 male rats were divided into 5 groups as follows: i) the control group (n=5); ii) the propylene glycol (PG)-treated group (n=5); iii) the stanozolol-treated group (n=8); iv) the PG-treated group subjected to exercise (n=8); and v) the stanozolol-treated group subjected to exercise (n=8). PG is used as a solvent control in our study. Stanozolol (5 mg/kg) and PG (1 ml/kg) were injected subcutaneously 5 days/week for 28 days. After 28 days, the animals were sacrificed, and DNA damage evaluation (comet assay) and telomerase activity assays were then performed using peripheral blood mononuclear cells (PBMCs). Telomerase activity was measured by using the TeloTAGGG Telomerase PCR ELISA PLUS kit. The results of this study revealed that stanozolol treatment induced DNA damage, while exercise exerted a protective effect. Stanozolol treatment without exercise stimulation was associated with a significant increase in telomerase activity in the PBMCs.
Collapse
Affiliation(s)
- Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| | - Eren Ozcagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| | - Persefoni Fragkiadaki
- Center of Toxicology Science and Research, Medical School, University of Crete, Heraklion 71003, Greece
| | - Tugba Kotil
- Department of Histology and Embryology, School of Medicine, Istanbul University, Istanbul 34116, Turkey
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Aristides M. Tsatsakis
- Center of Toxicology Science and Research, Medical School, University of Crete, Heraklion 71003, Greece
| | - Buket Alpertunga
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| |
Collapse
|
13
|
Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh I, Koltai E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic Biol Med 2016; 98:187-196. [PMID: 26828019 DOI: 10.1016/j.freeradbiomed.2016.01.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/13/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
Regular exercise has systemic beneficial effects, including the promotion of brain function. The adaptive response to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling. Exercise, via intensity-dependent modulation of metabolism and/or directly activated ROS generating enzymes, regulates the cellular redox state of the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and the exercise-mediated neurogenesis could be partly associated with ROS production. Exercise has strong effects on the immune system and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-α, IL-18 and IFN gamma, are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS-mediated alteration of lipids, protein, and DNA could directly affect brain function, while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules can activate signaling processes, membrane remodeling, and gene transcription. The well known neuroprotective effects of exercise are partly due to redox-associated adaptation.
Collapse
Affiliation(s)
- Zsolt Radak
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary; Graduate School of Sport Sciences, Waseda University, Saitama, Japan.
| | - Katsuhiko Suzuki
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Mitsuru Higuchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Laszlo Balogh
- Institute of Physical Education and Sport Science, University of Szeged, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erika Koltai
- Institute of Sport Science, University of Physical Education, Alkotas u. 44, TF, Budapest, Hungary
| |
Collapse
|
14
|
Lippi G, Buonocore R, Tarperi C, Montagnana M, Festa L, Danese E, Benati M, Salvagno GL, Bonaguri C, Roggenbuck D, Schena F. DNA injury is acutely enhanced in response to increasing bulks of aerobic physical exercise. Clin Chim Acta 2016; 460:146-51. [PMID: 27374303 DOI: 10.1016/j.cca.2016.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/07/2023]
Abstract
The aim of this study was to evaluate DNA damage in response to increasing bulks of aerobic physical exercise. Fifteen adult and trained athletes performed four sequential trials with increasing running distance (5-, 10-, 21- and 42-km) in different periods of the year. The γ-H2AX foci parameters were analyzed before and 3h after the end of each trial. The values of all γ-H2AX foci parameters were enhanced after the end of each trial, with values gradually increasing from the 5- to the 42-km trial. Interestingly, a minor increase of γ-H2AX foci was still evident after 5- to 10-km running, but a much higher increase occurred when the running distance exceeded 21km. The generation of DNA injury was then magnified by running up to 42-km. The increase of each γ-H2AX foci parameter was then found to be associated with both running distance and average intensity. In multivariate linear regression analysis, the running distance was significantly associated with average intensity and post-run variation in the percentage of cells with γ-H2AX foci. We can hence conclude that aerobic exercise may generate an acute DNA damage in trained athletes, which is highly dependent upon running distance and average intensity.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy.
| | - Ruggero Buonocore
- Laboratory of Clinical Chemistry and Hematology, University Hospital of Parma, Italy
| | - Cantor Tarperi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Luca Festa
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Marco Benati
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | | - Chiara Bonaguri
- Laboratory of Clinical Chemistry and Hematology, University Hospital of Parma, Italy
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty 2, Brandenburg Technical University, Senftenberg, Germany and Medipan GmbH, Dahlewitz/Berlin, Germany
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Center for Research in Mountain, Sport and Health (CeRISM), Rovereto, Italy
| |
Collapse
|
15
|
Oktay S, Chukkapalli SS, Rivera-Kweh MF, Velsko IM, Holliday LS, Kesavalu L. Periodontitis in rats induces systemic oxidative stress that is controlled by bone-targeted antiresorptives. J Periodontol 2016; 86:137-45. [PMID: 25101489 DOI: 10.1902/jop.2014.140302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease-induced oxidative stress during oral infection. METHODS Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bis-enoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. RESULTS Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. CONCLUSION To the best of the authors' knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives.
Collapse
Affiliation(s)
- Sehkar Oktay
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | | | | | | | | | | |
Collapse
|
16
|
Soares JP, Silva AI, Silva AM, Almeida V, Teixeira JP, Matos M, Gaivão I, Mota MP. Effects of physical exercise training in DNA damage and repair activity in humans with different genetic polymorphisms of hOGG1 (Ser326Cys). Cell Biochem Funct 2015; 33:519-24. [PMID: 26592168 DOI: 10.1002/cbf.3134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/06/2023]
Abstract
The main purpose of this pilot study was to investigate the possible influence of genetic polymorphisms of the hOGG1 (Ser326Cys) gene in DNA damage and repair activity by 8-oxoguanine DNA glycosylase 1 (OGG1 enzyme) in response to 16 weeks of combined physical exercise training. Thirty-two healthy Caucasian men (40-74 years old) were enrolled in this study. All the subjects were submitted to a training of 16 weeks of combined physical exercise. The subjects with Ser/Ser genotype were considered as wild-type group (WTG), and Ser/Cys and Cys/Cys genotype were analysed together as mutant group (MG). We used comet assay in conjunction with formamidopyrimidine DNA glycoslyase (FPG) to analyse both strand breaks and FPG-sensitive sites. DNA repair activity were also analysed with the comet assay technique. Our results showed no differences between DNA damage (both strand breaks and FPG-sensitive sites) and repair activity (OGG1) between genotype groups (in the pre-training condition). Regarding the possible influence of genotype in the response to 16 weeks of physical exercise training, the results revealed a decrease in DNA strand breaks in both groups, a decrease in FPG-sensitive sites and an increase in total antioxidant capacity in the WTG, but no changes were found in MG. No significant changes in DNA repair activity was observed in both genotype groups with physical exercise training. This preliminary study suggests the possibility of different responses in DNA damage to the physical exercise training, considering the hOGG1 Ser326Cys polymorphism.
Collapse
Affiliation(s)
- Jorge Pinto Soares
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Research Center in Sports Sciences, Health and Human Development, CIDESD, UTAD, Vila Real, Portugal
| | - Ana Inês Silva
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Amélia M Silva
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Vila Real, Portugal
| | - Vanessa Almeida
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Research Center in Sports Sciences, Health and Human Development, CIDESD, UTAD, Vila Real, Portugal
| | - João Paulo Teixeira
- Department of Environment Health, Portuguese National Institute of Health, Rua Alexandre Herculano 321, Porto 4000-055, Portugal
| | - Manuela Matos
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Centre of Agricultural Genomics and Biotechnology, CGBA, UTAD, Vila Real, Portugal
| | - Isabel Gaivão
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Animal and Veterinary Research Centre, CECAV, UTAD, Vila Real, Portugal
| | - Maria Paula Mota
- University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Research Center in Sports Sciences, Health and Human Development, CIDESD, UTAD, Vila Real, Portugal
| |
Collapse
|
17
|
Franzke B, Neubauer O, Wagner KH. Super DNAging—New insights into DNA integrity, genome stability and telomeres in the oldest old. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:48-57. [DOI: 10.1016/j.mrrev.2015.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023]
|
18
|
Franzke B, Halper B, Hofmann M, Oesen S, Jandrasits W, Baierl A, Tosevska A, Strasser EM, Wessner B, Wagner KH. The impact of six months strength training, nutritional supplementation or cognitive training on DNA damage in institutionalised elderly. Mutagenesis 2015; 30:147-53. [PMID: 25527737 DOI: 10.1093/mutage/geu074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging and its aligned loss of muscle mass are associated with higher levels of DNA damage and deteriorated antioxidant defence. To improve the body's overall resistance against DNA damage, maintaining a healthy and active lifestyle is desirable, especially in the elderly. As people age, many have to change their residence from home living to an institution, which is often accompanied by malnutrition, depression and inactivity. The current study aimed at investigating the effect of a 6-month progressive resistance training (RT), with or without protein and vitamin supplementation (RTS), or cognitive training (CT), on DNA strand breaks in 105 Austrian institutionalised women and men (65-98 years). DNA damage was detected by performing the single cell gel electrophoresis (comet) assay. Physical fitness was assessed using the chair rise, the 6-min-walking and the handgrip strength test. In addition, antioxidant enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were analysed. Basal DNA damage (lysis) increased significantly after 3 months of intervention in the RT group (T1 - T2 + 20%, P = 0.001) and the RTS group (T1 - T2 + 17%, P = 0.002) and showed a similar tendency in the CT group (T1 - T2 + 21%, P = 0.059). %DNA in tail decreased in cells exposed to H2O2 significantly in the RT (T1 - T2 - 24%, P = 0.030; T1 - T3 - 18%, P = 0.019) and CT (T1 - T2 - 21%, P = 0.004; T1 - T3 - 13%, P = 0.038) groups. Only RT and RTS groups showed significant differences overtime in enzyme activity (RT + 22% CAT-activity T1 - T3, P = 0.013; RTS + 6% SOD-activity T2 - T3, P = 0.005). Contrary to the time effects, no difference between groups was detected for any parameter at any time point. Our results suggest that both CT and RT improve resistance against H2O2 induced DNA damage and that a nutritional supplement has no further protective effect in institutionalised elderly.
Collapse
Affiliation(s)
- Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Barbara Halper
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Marlene Hofmann
- Department of Sport and Exercise Physiology, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| | - Stefan Oesen
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Waltraud Jandrasits
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Andreas Baierl
- Institute for Statistics and Operations Research, University of Vienna, Grillparzerstraße 7, 1010 Vienna, Austria and
| | - Anela Tosevska
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Eva-Maria Strasser
- Karl Landsteiner Institute for Remobilization and Functional Health/Institute for Physical Medicine and Rehabilitation, Kaiser Franz Joseph Spital, SMZ-Süd, Kundratstraße 3, 1100 Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria, Department of Sport and Exercise Physiology, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6, 1150 Vienna, Austria
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Althanstraße 14, 1090 Vienna, Austria, Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria,
| | | |
Collapse
|
19
|
Soares JP, Silva AM, Oliveira MM, Peixoto F, Gaivão I, Mota MP. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9799. [PMID: 26044257 PMCID: PMC4456486 DOI: 10.1007/s11357-015-9799-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/28/2015] [Indexed: 05/30/2023]
Abstract
Regular physical exercise has been shown to be one of the most important lifestyle influences on improving functional performance, decreasing morbidity and all causes of mortality among older people. However, it is known that acute physical exercise may induce an increase in oxidative stress and oxidative damage in several structures, including DNA. Considering this, the purpose of this study was to identify the effects of 16 weeks of combined physical exercise in DNA damage and repair capacity in lymphocytes. In addition, we aimed to investigate the role of oxidative stress involved in those changes. Fifty-seven healthy men (40 to 74 years) were enrolled in this study. The sample was divided into two groups: the experimental group (EG), composed of 31 individuals, submitted to 16 weeks of combined physical exercise training; and the control group (CG), composed of 26 individuals, who did not undergo any specifically orientated physical activity. We observed an improvement of overall physical performance in the EG, after the physical exercise training. A significant decrease in DNA strand breaks and FPG-sensitive sites was found after the physical exercise training, with no significant changes in 8-oxoguanine DNA glycosylase enzyme activity. An increase was observed in antioxidant activity, and a decrease was found in lipid peroxidation levels after physical exercise training. These results suggest that physical exercise training induces protective effects against DNA damage in lymphocytes possibly related to the increase in antioxidant capacity.
Collapse
Affiliation(s)
- Jorge Pinto Soares
- Research Center in Sports Sciences, Health and Human Development (CIDESD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, P-5001-801, Vila Real, Portugal,
| | | | | | | | | | | |
Collapse
|
20
|
Gelaleti RB, Damasceno DC, Salvadori DMF, Marcondes JPC, Lima PHO, Morceli G, Calderon IMP, Rudge MVC. IRS-1 gene polymorphism and DNA damage in pregnant women with diabetes or mild gestational hyperglycemia. Diabetol Metab Syndr 2015; 7:30. [PMID: 25859280 PMCID: PMC4391297 DOI: 10.1186/s13098-015-0026-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pregnant women with mild gestational hyperglycemia present a high risk for hypertension and obesity, and appear to reproduce the model of metabolic syndrome in pregnancy, including hyperinsulinemia and insulin resistance. Diabetic patients have a higher frequency of the IRS-1 Gly972Arg variant and this polymorphism is directly related to insulin resistance and subsequent hyperglycemia. In diabetes, hyperglycemia and other associated factors generate reactive oxygen species that increase DNA damage. The aims of this study were to evaluate the presence of the IRS-1 Arg972 polymorphism in pregnant women with diabetes or mild gestational hyperglycemia, and in their newborns. Additionally, we evaluated the level of primary DNA damage in lymphocytes of Brazilian pregnant women and the relationship between the amount of genetic damage and presence of the polymorphism. METHODS A based on the oral glucose tolerance test (OGTT) results and on glycemic profiles (GP), as follows: non-diabetic group, mild gestational hyperglycemia (MGH) and diabetic group. Eighty-five newborns were included in the study. Maternal peripheral blood samples and umbilical cord blood samples (5-10 mL) were collected for genotyping by PCR-RFLP and for comet assays. RESULTS The prevalence of genotype Gly/Arg in pregnant women groups was not statistically significant. In newborns, the frequency of Gly/Arg was significantly higher in the MGH and diabetic groups than in the non-diabetic group. Taken together, groups IIA and IIB (IIA + IIB; diabetes) presented lower amounts of DNA damage than the non-diabetic group (p = 0.064). No significant association was detected between genetic damage and the presence of the Arg972 genotype in pregnant women. CONCLUSION The polymorphism was more prevalent in newborns of diabetic and MGH women. We believe that it is necessary to increase the number of subjects to be examined in order to better determine the biological role of the Arg972 polymorphism in these patients. Despite being classified as low-risk, pregnant women with mild gestational hyperglycemia characterize a population of maternal and perinatal adverse outcomes, and that, together with their newborns, require better monitoring by professionals and health services.
Collapse
Affiliation(s)
- Rafael B Gelaleti
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Débora C Damasceno
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Daisy M F Salvadori
- />Department of Pathology, Laboratory of Toxigenomics and Nutrigenomics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Botucatu, Brazil
| | - João Paulo C Marcondes
- />Department of Pathology, Laboratory of Toxigenomics and Nutrigenomics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Botucatu, Brazil
| | - Paula H O Lima
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Glilciane Morceli
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Iracema M P Calderon
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Marilza V C Rudge
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| |
Collapse
|
21
|
Ziolkowski W, Flis DJ, Halon M, Vadhana DMS, Olek RA, Carloni M, Antosiewicz J, Kaczor JJ, Gabbianelli R. Prolonged swimming promotes cellular oxidative stress and p66Shc phosphorylation, but does not induce oxidative stress in mitochondria in the rat heart. Free Radic Res 2014; 49:7-16. [DOI: 10.3109/10715762.2014.968147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Meira LB, Calvo JA, Shah D, Klapacz J, Moroski-Erkul CA, Bronson RT, Samson LD. Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst) 2014; 21:78-86. [PMID: 24994062 PMCID: PMC4125484 DOI: 10.1016/j.dnarep.2014.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O(6)-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm(-/-) mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.
Collapse
Affiliation(s)
- Lisiane B Meira
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jennifer A Calvo
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Dharini Shah
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Joanna Klapacz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Catherine A Moroski-Erkul
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Roderick T Bronson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States
| | - Leona D Samson
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States.
| |
Collapse
|
23
|
Abstract
Concerns have been expressed recently regarding the observed increased DNA damage from activities such as thinking and exercise. Such concerns have arisen from an incomplete accounting of the full effects of the increased oxidative damage. When the effects of the induced adaptive protective responses such as increased antioxidants and DNA repair enzymes are taken into consideration, there would be less endogenous DNA damage during the subsequent period of enhanced defenses, resulting in improved health from the thinking and exercise activities. Low dose radiation (LDR), which causes oxidative stress and increased DNA damage, upregulates adaptive protection systems that may decrease diseases in an analogous manner. Though there are ongoing debates regarding LDR's carcinogenicity, with two recent advisory committee reports coming to opposite conclusions, data published since the time of the reports have overwhelmingly ruled out its carcinogenicity, paving the way for consideration of its potential use for disease reduction. LDR adaptive protection is a promising approach to control neurodegenerative diseases, for which there are no methods of prevention or cure. Preparation of a compelling ethics case would pave the way for LDR clinical studies and progress in dealing with neurodegenerative diseases.
Collapse
|
24
|
Stefani GP, Nunes RB, Dornelles AZ, Alves JP, Piva MO, Domenico MD, Rhoden CR, Lago PD. Effects of creatine supplementation associated with resistance training on oxidative stress in different tissues of rats. J Int Soc Sports Nutr 2014; 11:11. [PMID: 24655435 PMCID: PMC3994392 DOI: 10.1186/1550-2783-11-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/18/2014] [Indexed: 01/09/2023] Open
Abstract
Background Creatine supplementation is known to exert an effect by increasing strength in high intensity and short duration exercises. There is a hypothesis which suggests that creatine supplementation may provide antioxidant activity by scavenging Reactive Oxygen Species. However, the antioxidant effect of creatine supplementation associated with resistance training has not yet been described in the literature. Therefore, we investigated the effect of creatine monohydrate supplementation associated with resistance training over maximum strength gain and oxidative stress in rats. Methods Forty male Wistar rats (250-300 g, 90 days old) were randomly allocated into 4 groups: Sedentary (SED, n = 10), Sedentary + Creatine (SED-Cr, n = 10), Resistance Training (RT, n = 10) and Resistance Training + Creatine (RT-Cr, n = 10). Trained animals were submitted to the RT protocol (4 series of 10–12 repetitions, 90 second interval, 4 times per week, 65% to 75% of 1MR, for 8 weeks). Results In this study, greater strength gain was observed in the SED-Cr, RT and RT-Cr groups compared to the SED group (P < 0.001). The RT-Cr group showed a higher maximum strength gain when compared to other groups (P < 0.001). Creatine supplementation associated with resistance training was able to reduce lipoperoxidation in the plasma (P < 0.05), the heart (P < 0.05), the liver (P < 0.05) and the gastrocnemius (P < 0.05) when compared to control groups. However, the supplementation had no influence on catalase activity (CAT) in the analyzed organs. Only in the heart was the CAT activity higher in the RT-Cr group (P < 0.05). The activity of superoxide dismutase (SOD) was lower in all of the analyzed organs in the SED-Cr group (P < 0.05), while SOD activity was lower in the trained group and sedentary supplemented group (P < 0.05). Conclusions Creatine was shown to be an effective non-enzymatic antioxidant with supplementation alone and also when it was associated with resistance training in rats.
Collapse
Affiliation(s)
| | - Ramiro Barcos Nunes
- Laboratório de Fisiologia - UFCSPA/Porto Alegre, Rua Sarmento Leite, 245, 900050-170 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
25
|
Magbanua MJM, Richman EL, Sosa EV, Jones LW, Simko J, Shinohara K, Haqq CM, Carroll PR, Chan JM. Physical activity and prostate gene expression in men with low-risk prostate cancer. Cancer Causes Control 2014; 25:515-23. [PMID: 24504435 DOI: 10.1007/s10552-014-0354-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE Vigorous physical activity after diagnosis of localized prostate cancer may reduce the risk of disease progression and prostate cancer-specific mortality. The molecular mechanisms by which physical activity may exert protective effects in the prostate remain unknown. METHODS We examined the associations between self-reported physical activity and gene expression patterns in morphologically normal prostate tissue of 71 men with low-risk prostate cancer on active surveillance. Differential gene expression, gene set, and pathway analyses were conducted comparing dichotomous groups defined by type, intensity, and amount of physical activity reported. RESULTS Cell cycling and DNA repair pathways were up-regulated in men who participated in ≥ 3 h/week vigorous activity compared with men who did not. In addition, canonical pathways involved in cell signaling and metabolism, the cellular effects of sildenafil (Viagra), and the Nrf2-mediated oxidative stress response were modulated in men who reported ≥ 3 h/week of vigorous activity. Differential expression analysis at the individual gene level revealed modest differences between men who performed vigorous activity for ≥ 3 h/week and those who did not. There were no differences in prostate gene expression in comparisons with exercise groupings that did not consider both duration and intensity of activity. CONCLUSIONS Prostate gene expression and pathway analyses revealed sets of transcripts that may be modulated in normal prostate tissue by participating in ≥ 3 h/week of vigorous activity after diagnosis of low-risk prostate cancer. These findings suggest potential biological mechanisms by which vigorous activity may reduce risk of prostate cancer progression and warrant further study and validation.
Collapse
Affiliation(s)
- Mark Jesus M Magbanua
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pereira BC, Pauli JR, Antunes LMG, de Freitas EC, de Almeida MR, de Paula Venâncio V, Ropelle ER, de Souza CT, Cintra DE, Papoti M, da Silva ASR. Overtraining is associated with DNA damage in blood and skeletal muscle cells of Swiss mice. BMC PHYSIOLOGY 2013; 13:11. [PMID: 24099482 PMCID: PMC3852772 DOI: 10.1186/1472-6793-13-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 10/03/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND The alkaline version of the single-cell gel (comet) assay is a useful method for quantifying DNA damage. Although some studies on chronic and acute effects of exercise on DNA damage measured by the comet assay have been performed, it is unknown if an aerobic training protocol with intensity, volume, and load clearly defined will improve performance without leading to peripheral blood cell DNA damage. In addition, the effects of overtraining on DNA damage are unknown. Therefore, this study aimed to examine the effects of aerobic training and overtraining on DNA damage in peripheral blood and skeletal muscle cells in Swiss mice. To examine possible changes in these parameters with oxidative stress, we measured reduced glutathione (GSH) levels in total blood, and GSH levels and lipid peroxidation in muscle samples. RESULTS Performance evaluations (i.e., incremental load and exhaustive tests) showed significant intra and inter-group differences. The overtrained (OTR) group showed a significant increase in the percentage of DNA in the tail compared with the control (C) and trained (TR) groups. GSH levels were significantly lower in the OTR group than in the C and TR groups. The OTR group had significantly higher lipid peroxidation levels compared with the C and TR groups. CONCLUSIONS Aerobic and anaerobic performance parameters can be improved in training at maximal lactate steady state during 8 weeks without leading to DNA damage in peripheral blood and skeletal muscle cells or to oxidative stress in skeletal muscle cells. However, overtraining induced by downhill running training sessions is associated with DNA damage in peripheral blood and skeletal muscle cells, and with oxidative stress in skeletal muscle cells and total blood.
Collapse
Affiliation(s)
- Bruno Cesar Pereira
- Universidade de São Paulo (USP), Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP), Ribeirão Preto, São Paulo, Brasil
| | - José Rodrigo Pauli
- Universidade Estadual Paulista (UNESP), Curso de Pós-graduação em Ciências da Motricidade Humana, Rio Claro, São Paulo, Brasil
| | - Lusânia Maria Greggi Antunes
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Ribeirão Preto, São Paulo, Brasil
| | - Ellen Cristini de Freitas
- Universidade de São Paulo (USP), Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP), Ribeirão Preto, São Paulo, Brasil
| | - Mara Ribeiro de Almeida
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Ribeirão Preto, São Paulo, Brasil
| | - Vinícius de Paula Venâncio
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Ribeirão Preto, São Paulo, Brasil
| | - Eduardo Rochete Ropelle
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Aplicadas, Curso de Pós-graduação em Nutrição, Esporte e Metabolismo, Limeira, São Paulo, Brasil
| | - Claudio Teodoro de Souza
- Universidade do Extremo Sul Catarinense, Laboratório de Bioquímica e Fisiologia, Criciúma, Santa Catarina, Brasil
| | - Dennys Esper Cintra
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Aplicadas, Curso de Pós-graduação em Nutrição, Esporte e Metabolismo, Limeira, São Paulo, Brasil
| | - Marcelo Papoti
- Universidade de São Paulo (USP), Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP), Ribeirão Preto, São Paulo, Brasil
| | - Adelino Sanchez Ramos da Silva
- Universidade de São Paulo (USP), Escola de Educação Física e Esporte de Ribeirão Preto (EEFERP), Ribeirão Preto, São Paulo, Brasil
| |
Collapse
|
27
|
|
28
|
McCullough LE, Santella RM, Cleveland RJ, Bradshaw PT, Millikan RC, North KE, Olshan AF, Eng SM, Ambrosone CB, Ahn J, Steck SE, Teitelbaum SL, Neugut AI, Gammon MD. Polymorphisms in oxidative stress genes, physical activity, and breast cancer risk. Cancer Causes Control 2012; 23:1949-58. [PMID: 23053794 PMCID: PMC3796339 DOI: 10.1007/s10552-012-0072-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
PURPOSE The mechanisms driving the physical activity-breast cancer association are unclear. Exercise both increases reactive oxygen species production, which may transform normal epithelium to a malignant phenotype, and enhances antioxidant capacity, which could protect against subsequent oxidative insult. Given the paradoxical effects of physical activity, the oxidative stress pathway is of interest. Genetic variation in CAT or antioxidant-related polymorphisms may mediate the physical activity-breast cancer association. METHODS We investigated the main and joint effects of three previously unreported polymorphisms in CAT on breast cancer risk. We also estimated interactions between recreational physical activity (RPA) and 13 polymorphisms in oxidative stress-related genes. Data were from the Long Island Breast Cancer Study Project, with interview and biomarker data available on 1,053 cases and 1,102 controls. RESULTS Women with ≥1 variant allele in CAT rs4756146 had a 23 % reduced risk of postmenopausal breast cancer compared with women with the common TT genotype (OR = 0.77; 95 % CI = 0.59-0.99). We observed two statistical interactions between RPA and genes in the antioxidant pathway (p = 0.043 and 0.006 for CAT and GSTP1, respectively). Highly active women harboring variant alleles in CAT rs1001179 were at increased risk of breast cancer compared with women with the common CC genotype (OR = 1.61; 95 % CI, 1.06-2.45). Risk reductions were observed among moderately active women carrying variant alleles in GSTP1 compared with women homozygous for the major allele (OR = 0.56; 95 % CI, 0.38-0.84). CONCLUSIONS Breast cancer risk may be jointly influenced by RPA and genes involved in the antioxidant pathway, but our findings require confirmation.
Collapse
Affiliation(s)
- Lauren E McCullough
- Department of Epidemiology, University of North Carolina, CB #7435, McGavran-Greenberg Hall, Chapel Hill, NC 27599-7435, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hine CM, Mitchell JR. NRF2 and the Phase II Response in Acute Stress Resistance Induced by Dietary Restriction. JOURNAL OF CLINICAL & EXPERIMENTAL PATHOLOGY 2012; S4:7329. [PMID: 23505614 PMCID: PMC3595563 DOI: 10.4172/2161-0681.s4-004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dietary restriction (DR) as a means to increase longevity is well-established in a number of model organisms from yeast to primates. DR also improves metabolic fitness and increases resistance to acute oxidative, carcinogenic and toxicological stressors - benefits with more immediate potential for clinical translation than increased lifespan. While the detailed mechanism of DR action remains unclear, a conceptual framework involving an adaptive, or hormetic response to the stress of nutrient/energy deprivation has been proposed. A key prediction of the hormesis hypothesis of DR is that beneficial adaptations occur in response to an increase in reactive oxygen/nitrogen species (ROS). These ROS may be derived either from increased mitochondrial respiration or increased xenobiotic metabolism in the case of some DR mimetics. This review will focus on the potential role of the redox-sensing transcription factor NF-E2-related factor 2 (NRF2) and its control of the evolutionarily conserved antioxidant/redox cycling and detoxification systems, collectively known as the Phase II response, in the adaptive response to DR.
Collapse
Affiliation(s)
- Christopher M. Hine
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|