1
|
Borkum JM. Cluster Headache and Hypoxia: Breathing New Life into an Old Theory, with Novel Implications. Neurol Int 2024; 16:1691-1716. [PMID: 39728749 DOI: 10.3390/neurolint16060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Cluster headache is a severe, poorly understood disorder for which there are as yet virtually no rationally derived treatments. Here, Lee Kudrow's 1983 theory, that cluster headache is an overly zealous response to hypoxia, is updated according to current understandings of hypoxia detection, signaling, and sensitization. It is shown that the distinctive clinical characteristics of cluster headache (circadian timing of attacks and circannual patterning of bouts, autonomic symptoms, and agitation), risk factors (cigarette smoking; male gender), triggers (alcohol; nitroglycerin), genetic findings (GWAS studies), anatomical substrate (paraventricular nucleus of the hypothalamus, solitary tract nucleus/NTS, and trigeminal nucleus caudalis), neurochemical features (elevated levels of galectin-3, nitric oxide, tyramine, and tryptamine), and responsiveness to treatments (verapamil, lithium, melatonin, prednisone, oxygen, and histamine desensitization) can all be understood in terms of hypoxic signaling. Novel treatment directions are hypothesized, including repurposing pharmacological antagonists of hypoxic signaling molecules (HIF-2; P2X3) for cluster headache, breath training, physical exercise, high-dose thiamine, carnosine, and the flavonoid kaempferol. The limits of current knowledge are described, and a program of basic and translational research is proposed.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, 301 Williams Hall, Orono, ME 04469-5742, USA
| |
Collapse
|
2
|
Tejeda‐Chavez HR, Montero S, Saavedra‐Molina A, Lemus M, Tejeda‐Luna JB, Roces de Alvarez‐Buylla E. Reductive stress in mitochondria isolated from the carotid body of type 1 diabetic male Wistar rats. Physiol Rep 2024; 12:e70016. [PMID: 39294856 PMCID: PMC11410552 DOI: 10.14814/phy2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
The carotid body (CB) senses changes in arterial O2 partial pressure (pO2) and glucose levels; therefore, it is key for the detection of hypoxia and hypoglycemia. The CB has been suggested to detect pO2 through an increase in reactive oxygen species (ROS) in the mitochondria. However, the mechanism protecting the chemoreceptor cells and their mitochondria from ROS and hyperglycemia is poorly understood. Here we measured glutathione levels in CB mitochondria of control and in streptozotocin (STZ)-induced type 1 diabetic male Wistar rats. We found a dramatic reduction in total glutathione from 11.45 ± 1.30 μmol/mg protein in control rats to 1.45 ± 0.31 μmol/mg protein in diabetic rats. However, the ratio of reduced to oxidized glutathione, a measure of the redox index, was increased in diabetic rats compared to controls. We conclude that the mitochondria of CB chemoreceptor cells in type 1 diabetic male Wistar rats were likely under glutathione-reducing stress.
Collapse
Affiliation(s)
| | - Sergio Montero
- Faculty of MedicineColima of UniversityColimaMexico
- Department of Neuroendocrinology, University Center of Biomedical ResearchColima UniversityColimaMexico
| | | | - Monica Lemus
- Department of Neuroendocrinology, University Center of Biomedical ResearchColima UniversityColimaMexico
| | | | | |
Collapse
|
3
|
Margolis LM, Wilson MA, Drummer DJ, Carrigan CT, Murphy NE, Allen JT, Dawson MA, Mantzoros CS, Young AJ, Pasiakos SM. Pioglitazone does not enhance exogenous glucose oxidation or metabolic clearance rate during aerobic exercise in men under acute high-altitude exposure. Am J Physiol Regul Integr Comp Physiol 2024; 327:R25-R34. [PMID: 38682243 PMCID: PMC11381008 DOI: 10.1152/ajpregu.00064.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.
Collapse
Affiliation(s)
- Lee M Margolis
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Marques A Wilson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Devin J Drummer
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Christopher T Carrigan
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Nancy E Murphy
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jillian T Allen
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - M Alan Dawson
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Christos S Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States
| | - Andrew J Young
- United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Belcamp, Maryland, United States
| | - Stefan M Pasiakos
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
4
|
Cuéllar-Pérez R, Jauregui-Huerta F, Ruvalcaba-Delgadillo Y, Montero S, Lemus M, Roces de Álvarez-Buylla E, García-Estrada J, Luquín S. K252a Prevents Microglial Activation Induced by Anoxic Stimulation of Carotid Bodies in Rats. TOXICS 2023; 11:871. [PMID: 37888721 PMCID: PMC10610815 DOI: 10.3390/toxics11100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Inducing carotid body anoxia through the administration of cyanide can result in oxygen deprivation. The lack of oxygen activates cellular responses in specific regions of the central nervous system, including the Nucleus Tractus Solitarius, hypothalamus, hippocampus, and amygdala, which are regulated by afferent pathways from chemosensitive receptors. These receptors are modulated by the brain-derived neurotrophic factor receptor TrkB. Oxygen deprivation can cause neuroinflammation in the brain regions that are activated by the afferent pathways from the chemosensitive carotid body. To investigate how microglia, a type of immune cell in the brain, respond to an anoxic environment resulting from the administration of NaCN, we studied the effects of blocking the TrkB receptor on this cell-type response. Male Wistar rats were anesthetized, and a dose of NaCN was injected into their carotid sinus to induce anoxia. Prior to the anoxic stimulus, the rats were given an intracerebroventricular (icv) infusion of either K252a, a TrkB receptor inhibitor, BDNF, or an artificial cerebrospinal fluid (aCSF). After the anoxic stimulus, the rats were perfused with paraformaldehyde, and their brains were processed for microglia immunohistochemistry. The results indicated that the anoxic stimulation caused an increase in the number of reactive microglial cells in the hypothalamic arcuate, basolateral amygdala, and dentate gyrus of the hippocampus. However, the infusion of the K252a TrkB receptor inhibitor prevented microglial activation in these regions.
Collapse
Affiliation(s)
- Ricardo Cuéllar-Pérez
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Fernando Jauregui-Huerta
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Yaveth Ruvalcaba-Delgadillo
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| | - Sergio Montero
- Facultad de Medicina, Universidad de Colima, Colima 28040, Mexico
| | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28040, Mexico
| | | | - Joaquín García-Estrada
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Sonia Luquín
- Microscopía de Alta Resolución, Depto, de Neurociencias, Universidad de Guadalajara, Guadalajara 44340, Mexico; (R.C.-P.)
| |
Collapse
|
5
|
Deming N, Steer S, Hernandez J, Dinenno F, Richards J. Carbohydrate ingestion attenuates the reduction in complex cognitive function and cerebral blood flow during prolonged passive heat stress in humans. J Therm Biol 2023; 117:103698. [PMID: 37734348 DOI: 10.1016/j.jtherbio.2023.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE To determine whether carbohydrate ingestion would reduce cognitive dysfunction in humans following long duration passive heat stress (PHS) versus consuming electrolytes alone. METHODS Fifteen young (27 ± 4 y) healthy adults were exposed to 120 min of PHS through the use of a liquid perfused suit (50 °C) on two randomized visits. Subjects consumed fluids supplemented with electrolytes (E) or electrolytes + carbohydrates (E + C). Pre- and post-heat stress, body mass (BM) and plasma osmolality (pOsm) were measured. Heart rate (HR), blood pressure (BP), Physiological Strain Index (PSI), core temperature (Tc), plasma glucose, respiration rate (RR), end-tidal CO2 (PetCO2) and internal carotid artery (ICA) blood flow were recorded at baseline and every 15 min of heat stress. Cognitive function was assessed via the Automated Neuropsychological Assessment Metric at baseline and at 30- and 120 min during heat stress. RESULTS There were no significant differences between fluid conditions for BM, pOsm, PSI, Tc, RR or PetCO2. Plasma glucose was ∼75% greater in the E + C condition compared to the E condition after 90 min of PHS (P < 0.05). Cognitive function (120 min) was impaired following PHS only in E condition (P < 0.05) and performance on complex cognitive tasks were better by ∼22-340% in the E + C vs. E (P < 0.05). Compared to the E condition, HR and BP were lower and ICA blood flow, vascular conductance, and glucose delivery was ∼90% greater in the E + C after 90 min of PHS (P < 0.05). CONCLUSIONS These data are the first to demonstrate that carbohydrate ingestion may have a protective effect on cognitive function during long duration PHS. Furthermore, this protection was associated with preserved ICA blood flow and glucose delivery to the brain.
Collapse
Affiliation(s)
- Nathan Deming
- Human Performance Laboratory, Directorate of Athletics, USAF Academy, CO, 80840, USA; Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80521, USA
| | - Sarah Steer
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80521, USA
| | - Jesse Hernandez
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80521, USA
| | - Frank Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80521, USA
| | - Jennifer Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, 80521, USA.
| |
Collapse
|
6
|
Verdoorn D, Cleypool CG, Mackaaij C, Bleys RL. Visualization of the carotid body in situ in fixed human carotid bifurcations using a xylene-based tissue clearing method. Biotech Histochem 2023; 98:166-171. [PMID: 36330775 DOI: 10.1080/10520295.2022.2140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anatomy of the carotid body (CB) and its nerve supply are important, because it is a potential therapeutic target for treatment of various clinical conditions. Visualization of the CB in situ in fixed human anatomical specimens is hampered by obscuring adipose and connective tissues. We developed a tissue clearing method to optimize identification of the CB. We used single sided carotid bifurcations of six human cadavers fixed long term. Visualization of the CB was accomplished by clearing tissue with xylene. Under incident light, carotid bifurcations exhibited a less transparent, darker colored CB; hematoxylin and eosin stained paraffin sections confirmed its identity. Our visualization of the CB in situ in human carotid bifurcations fixed long term enabled targeted resection and subsequent topographic and morphometric measurements of the CB. Our procedure does not interfere with immunohistochemical staining of sections prepared from such specimens.
Collapse
Affiliation(s)
- Daphne Verdoorn
- Department of Anatomy, Division of Surgical Specialties, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Cindy Gj Cleypool
- Department of Anatomy, Division of Surgical Specialties, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Claire Mackaaij
- Department of Anatomy, Division of Surgical Specialties, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Ronald Law Bleys
- Department of Anatomy, Division of Surgical Specialties, University Medical Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Schwartz MW, Krinsley JS, Faber CL, Hirsch IB, Brownlee M. Brain Glucose Sensing and the Problem of Relative Hypoglycemia. Diabetes Care 2023; 46:237-244. [PMID: 36701597 PMCID: PMC9887623 DOI: 10.2337/dc22-1445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/22/2022] [Indexed: 01/27/2023]
Abstract
"Relative hypoglycemia" is an often-overlooked complication of diabetes characterized by an increase in the glycemic threshold for detecting and responding to hypoglycemia. The clinical relevance of this problem is linked to growing evidence that among patients with critical illness, higher blood glucose in the intensive care unit is associated with higher mortality among patients without diabetes but lower mortality in patients with preexisting diabetes and an elevated prehospitalization HbA1c. Although additional studies are needed, the cardiovascular stress associated with hypoglycemia perception, which can occur at normal or even elevated glucose levels in patients with diabetes, offers a plausible explanation for this difference in outcomes. Little is known, however, regarding how hypoglycemia is normally detected by the brain, much less how relative hypoglycemia develops in patients with diabetes. In this article, we explore the role in hypoglycemia detection played by glucose-responsive sensory neurons supplying peripheral vascular beds and/or circumventricular organs. These observations support a model wherein relative hypoglycemia results from diabetes-associated impairment of this neuronal glucose-sensing process. By raising the glycemic threshold for hypoglycemia perception, this impairment may contribute to the increased mortality risk associated with standard glycemic management of critically ill patients with diabetes.
Collapse
Affiliation(s)
- Michael W. Schwartz
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, WA
| | - James S. Krinsley
- Stamford Hospital, Stamford, CT
- Columbia Vagelos College of Physicians and Surgeons, New York, NY
| | - Chelsea L. Faber
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ
| | - Irl B. Hirsch
- Department of Medicine, University of Washington Medicine Diabetes Institute, Seattle, WA
| | - Michael Brownlee
- Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
8
|
Baby SM, Zaidi F, Hunsberger GE, Sokal D, Gupta I, Conde SV, Chew D, Rall K, Coatney RW. Acute effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity and cardiorespiratory responses in dogs. Exp Physiol 2023; 108:280-295. [PMID: 36459572 PMCID: PMC10103873 DOI: 10.1113/ep090584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity in vivo and how do carotid body chemoreceptor stimulation-mediated cardiorespiratory responses in beagle dogs compare during euglycaemia and insulin-induced hypoglycaemia? What is the main finding and its importance? Intracarotid insulin administration leads to sustained increase in carotid body chemoreceptor activity and respiratory response with significant cardiovascular effects. Insulin-induced hypoglycaemia exacerbated NaCN-mediated carotid body chemoreceptor activity and respiratory response with enhanced cardiovascular reflex response. These findings suggest that insulin-induced hypoglycaemia augments the carotid body chemoreceptors to initiate the adaptive counter-regulatory responses to restore the normoglycaemic condition. ABSTRACT The carotid body chemoreceptors (CBC) play an important role in the adaptive counter-regulatory response to hypoglycaemia by evoking the CBC-mediated sympathetic neuronal system to restore normoglycaemia. Ex vivo studies have shown varied responses of insulin-induced hypoglycaemia on CBC function, and several in vivo studies have indirectly established the role of CBCs in restoring normoglycaemia in both animals and humans. However, a direct effect of insulin and/or insulin-induced hypoglycaemia on CBC activity is not established in animal models. Therefore, the aim of this study was to evaluate in vivo effects of insulin and insulin-induced hypoglycaemia on CBC activity and cardiorespiration in a preclinical large animal model. The carotid sinus nerve (CSN) activity and cardiorespiratory responses to sodium cyanide (NaCN; 25 µg/kg) were compared before (euglycaemic) and after (hypoglycaemic) intracarotid administration of insulin (12.5-100 µU/dogs) in beagle dogs. Insulin administration increased CSN activity and minute ventilation (V ̇ $\dot V$ E ) with significant (P < 0.0001) effects on heart rate and blood pressure. Insulin-mediated effects on CSN and cardiorespiration were sustained and the change inV ̇ $\dot V$ E was driven by tidal volume only. Insulin significantly (P < 0.0001) lowered blood glucose level. NaCN-mediated CSN activity andV ̇ $\dot V$ E were significantly (P < 0.0001) augmented during insulin-induced hypoglycaemia. The augmentedV ̇ $\dot V$ E was primarily driven by respiratory frequency and partially by tidal volume. The cardiovascular reflex response mediated through CBC stimulation was significantly (P < 0.0001) exacerbated during insulin-induced hypoglycaemia. Collectively, these results demonstrate direct effects of insulin and insulin-induced hypoglycaemia on CBC chemosensitivity to potentiate CBC-mediated neuroregulatory pathways to initiate adaptive neuroendocrine and cardiorespiratory counter-regulatory responses to restore normoglycaemia.
Collapse
Affiliation(s)
- Santhosh M. Baby
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | - Faisal Zaidi
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | | | - David Sokal
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Isha Gupta
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Silvia V. Conde
- NOVA Medical SchoolFaculdade de Ciências MédicasUniversidade Nova de LisboaLisboaPortugal
| | - Daniel Chew
- Experimental MedicineSurgical Development and TherapyGalvani BioelectronicsStevenageUK
| | - Kristen Rall
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| | - Robert W. Coatney
- Translational Sciences and Treatment DiscoveryGalvani BioelectronicsCollegevillePAUSA
| |
Collapse
|
9
|
Katayama PL, Leirão IP, Kanashiro A, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body: A novel key player in neuroimmune interactions. Front Immunol 2022; 13:1033774. [PMID: 36389846 PMCID: PMC9644854 DOI: 10.3389/fimmu.2022.1033774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The idea that the nervous system communicates with the immune system to regulate physiological and pathological processes is not new. However, there is still much to learn about how these interactions occur under different conditions. The carotid body (CB) is a sensory organ located in the neck, classically known as the primary sensor of the oxygen (O2) levels in the organism of mammals. When the partial pressure of O2 in the arterial blood falls, the CB alerts the brain which coordinates cardiorespiratory responses to ensure adequate O2 supply to all tissues and organs in the body. A growing body of evidence, however, has demonstrated that the CB is much more than an O2 sensor. Actually, the CB is a multimodal sensor with the extraordinary ability to detect a wide diversity of circulating molecules in the arterial blood, including inflammatory mediators. In this review, we introduce the literature supporting the role of the CB as a critical component of neuroimmune interactions. Based on ours and other studies, we propose a novel neuroimmune pathway in which the CB acts as a sensor of circulating inflammatory mediators and, in conditions of systemic inflammation, recruits a sympathetic-mediated counteracting mechanism that appears to be a protective response.
Collapse
Affiliation(s)
- Pedro L. Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Isabela P. Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José V. Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B. Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S. A. Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
10
|
Gibbons TD, Dempsey JA, Thomas KN, Campbell HA, Stothers TAM, Wilson LC, Ainslie PN, Cotter JD. Contribution of the carotid body to thermally mediated hyperventilation in humans. J Physiol 2022; 600:3603-3624. [PMID: 35731687 DOI: 10.1113/jp282918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/15/2022] [Indexed: 01/05/2023] Open
Abstract
Humans hyperventilate under heat and cold strain. This hyperventilatory response has detrimental consequences including acid-base dysregulation, dyspnoea, decreased cerebral blood flow and accelerated brain heating. The ventilatory response to hypoxia is exaggerated under whole-body heating and cooling, indicating that altered carotid body function might contribute to thermally mediated hyperventilation. To address whether the carotid body might contribute to heat- and cold-induced hyperventilation, we indirectly measured carotid body tonic activity via hyperoxia, and carotid body sensitivity via hypoxia, under graded heat and cold strain in 13 healthy participants in a repeated-measures design. We hypothesised that carotid body tonic activity and sensitivity would be elevated in a dose-dependent manner under graded heat and cold strain, thereby supporting its role in driving thermally mediated hyperventilation. Carotid body tonic activity was increased in a dose-dependent manner with heating, reaching 175% above baseline (P < 0.0005), and carotid body suppression with hyperoxia removed all of the heat-induced increase in ventilation (P = 0.9297). Core cooling increased carotid body activity by up to 250% (P < 0.0001), but maximal values were reached with mild cooling and thereafter plateaued. Carotid body sensitivity to hypoxia was profoundly increased by up to 180% with heat stress (P = 0.0097), whereas cooling had no detectable effect on hypoxic sensitivity. In summary, cold stress increased carotid body tonic activity and this effect was saturated with mild cooling, whereas heating had clear dose-dependent effects on carotid body tonic activity and sensitivity. These dose-dependent effects with heat strain indicate that the carotid body probably plays a primary role in driving heat-induced hyperventilation. KEY POINTS: Humans over-breathe (hyperventilate) when under heat and cold stress, and though this has detrimental physiological repercussions, the mechanisms underlying this response are unknown. The carotid body, a small organ that is responsible for driving hyperventilation in hypoxia, was assessed under incremental heat and cold strain. The carotid body drive to breathe, as indirectly assessed by transient hyperoxia, increased in a dose-dependent manner with heating, reaching 175% above baseline; cold stress similarly increased the carotid body drive to breathe, but did not show dose-dependency. Carotid body sensitivity, as indirectly assessed by hypoxic ventilatory responses, was profoundly increased by 70-180% with mild and severe heat strain, whereas cooling had no detectable effect. Carotid body hyperactivity and hypersensitivity are two interrelated mechanisms that probably underlie the increased drive to breathe with heat strain, whereas carotid body hyperactivity during mild cooling may play a subsidiary role in cold-induced hyperventilation.
Collapse
Affiliation(s)
- Travis D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Jerome A Dempsey
- John Rankin Laboratory for Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kate N Thomas
- Department of Surgical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Tiarna A M Stothers
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand
| | - Luke C Wilson
- Department of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - James D Cotter
- School of Physical Education, Sport & Exercise Science, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
11
|
Arce-Álvarez A, Salazar-Ardiles C, Cornejo C, Paez V, Vásquez-Muñoz M, Stillner-Vilches K, Jara CR, Ramirez-Campillo R, Izquierdo M, Andrade DC. Chemoreflex Control as the Cornerstone in Immersion Water Sports: Possible Role on Breath-Hold. Front Physiol 2022; 13:894921. [PMID: 35733994 PMCID: PMC9207453 DOI: 10.3389/fphys.2022.894921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Immersion water sports involve long-term apneas; therefore, athletes must physiologically adapt to maintain muscle oxygenation, despite not performing pulmonary ventilation. Breath-holding (i.e., apnea) is common in water sports, and it involves a decrease and increases PaO2 and PaCO2, respectively, as the primary signals that trigger the end of apnea. The principal physiological O2 sensors are the carotid bodies, which are able to detect arterial gases and metabolic alterations before reaching the brain, which aids in adjusting the cardiorespiratory system. Moreover, the principal H+/CO2 sensor is the retrotrapezoid nucleus, which is located at the brainstem level; this mechanism contributes to detecting respiratory and metabolic acidosis. Although these sensors have been characterized in pathophysiological states, current evidence shows a possible role for these mechanisms as physiological sensors during voluntary apnea. Divers and swimmer athletes have been found to displayed longer apnea times than land sports athletes, as well as decreased peripheral O2 and central CO2 chemoreflex control. However, although chemosensitivity at rest could be decreased, we recently found marked sympathoexcitation during maximum voluntary apnea in young swimmers, which could activate the spleen (which is a reservoir organ for oxygenated blood). Therefore, it is possible that the chemoreflex, autonomic function, and storage/delivery oxygen organ(s) are linked to apnea in immersion water sports. In this review, we summarized the available evidence related to chemoreflex control in immersion water sports. Subsequently, we propose a possible physiological mechanistic model that could contribute to providing new avenues for understanding the respiratory physiology of water sports.
Collapse
Affiliation(s)
- Alexis Arce-Álvarez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Carlos Cornejo
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Valeria Paez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Manuel Vásquez-Muñoz
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Clínica Santa María, Santiago, Chile
| | | | - Catherine R. Jara
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de La Salud, Universidad de Antofagasta, Antofagasta, Chile
- *Correspondence: David C. Andrade, ,
| |
Collapse
|
12
|
Limberg JK, Soares RN, Padilla J. Role of the Autonomic Nervous System in the Hemodynamic Response to Hyperinsulinemia-Implications for Obesity and Insulin Resistance. Curr Diab Rep 2022; 22:169-175. [PMID: 35247145 PMCID: PMC9012695 DOI: 10.1007/s11892-022-01456-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Herein, we summarize recent advances which provide new insights into the role of the autonomic nervous system in the control of blood flow and blood pressure during hyperinsulinemia. We also highlight remaining gaps in knowledge as it pertains to the translation of findings to relevant human chronic conditions such as obesity, insulin resistance, and type 2 diabetes. RECENT FINDINGS Our findings in insulin-sensitive adults show that increases in muscle sympathetic nerve activity with hyperinsulinemia do not result in greater sympathetically mediated vasoconstriction in the peripheral circulation. Both an attenuation of α-adrenergic-receptor vasoconstriction and augmented β-adrenergic vasodilation in the setting of high insulin likely explain these findings. In the absence of an increase in sympathetically mediated restraint of peripheral vasodilation during hyperinsulinemia, blood pressure is supported by increases in cardiac output in insulin-sensitive individuals. We highlight a dynamic interplay between central and peripheral mechanisms during hyperinsulinemia to increase sympathetic nervous system activity and maintain blood pressure in insulin-sensitive adults. Whether these results translate to the insulin-resistant condition and implications for long-term cardiovascular regulation warrants further exploration.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO, 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Pauza AG, Thakkar P, Tasic T, Felippe I, Bishop P, Greenwood MP, Rysevaite-Kyguoliene K, Ast J, Broichhagen J, Hodson DJ, Salgado HC, Pauza DH, Japundzic-Zigon N, Paton JFR, Murphy D. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circ Res 2022; 130:694-707. [PMID: 35100822 PMCID: PMC8893134 DOI: 10.1161/circresaha.121.319874] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Aberrant sympathetic nerve activity exacerbates cardiovascular risk in hypertension and diabetes, which are common comorbidities, yet clinically sympathetic nerve activity remains poorly controlled. The hypertensive diabetic state is associated with increased reflex sensitivity and tonic drive from the peripheral chemoreceptors, the cause of which is unknown. We have previously shown hypertension to be critically dependent on the carotid body (CB) input in spontaneously hypertensive rat, a model that also exhibits a number of diabetic traits. CB overstimulation by insulin and leptin has been similarly implicated in the development of increased sympathetic nerve activity in metabolic syndrome and obesity. Thus, we hypothesized that in hypertensive diabetic state (spontaneously hypertensive rat), the CB is sensitized by altered metabolic signaling causing excessive sympathetic activity levels and dysfunctional reflex regulation.
Collapse
Affiliation(s)
- Audrys G Pauza
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | - Pratik Thakkar
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - Tatjana Tasic
- School of Dental Medicine, University of Belgrade, Serbia (T.T.)
| | - Igor Felippe
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - Paul Bishop
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | - Michael P Greenwood
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| | | | - Julia Ast
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, United Kingdom (J.A., D.J.H.)
| | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, United Kingdom (D.A., D.J.H.).,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, United Kingdom (J.A., D.J.H.)
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Brazil (H.C.S.)
| | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas (K.R.-K., D.H.P.)
| | - Nina Japundzic-Zigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia (N.J.-Z.)
| | - Julian F R Paton
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand (P.T., I.F., J.F.R.P.)
| | - David Murphy
- Bristol Medical School, Translational Health Sciences, University of Bristol, United Kingdom (A.G.P., P.B., M.P.G., D.M.)
| |
Collapse
|
14
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
15
|
Vestergaard MB, Ghanizada H, Lindberg U, Arngrim N, Paulson OB, Gjedde A, Ashina M, Larsson HBW. Human Cerebral Perfusion, Oxygen Consumption, and Lactate Production in Response to Hypoxic Exposure. Cereb Cortex 2021; 32:1295-1306. [PMID: 34448827 PMCID: PMC8924433 DOI: 10.1093/cercor/bhab294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/01/2023] Open
Abstract
Exposure to moderate hypoxia in humans leads to cerebral lactate production, which occurs even when the cerebral metabolic rate of oxygen (CMRO2) is unaffected. We searched for the mechanism of this lactate production by testing the hypothesis of upregulation of cerebral glycolysis mediated by hypoxic sensing. Describing the pathways counteracting brain hypoxia could help us understand brain diseases associated with hypoxia. A total of 65 subjects participated in this study: 30 subjects were exposed to poikilocapnic hypoxia, 14 were exposed to isocapnic hypoxia, and 21 were exposed to carbon monoxide (CO). Using this setup, we examined whether lactate production reacts to an overall reduction in arterial oxygen concentration or solely to reduced arterial oxygen partial pressure. We measured cerebral blood flow (CBF), CMRO2, and lactate concentrations by magnetic resonance imaging and spectroscopy. CBF increased (P < 10-4), whereas the CMRO2 remained unaffected (P > 0.076) in all groups, as expected. Lactate increased in groups inhaling hypoxic air (poikilocapnic hypoxia: $0.0136\ \frac{\mathrm{mmol}/\mathrm{L}}{\Delta{\mathrm{S}}_{\mathrm{a}}{\mathrm{O}}_2}$, P < 10-6; isocapnic hypoxia: $0.0142\ \frac{\mathrm{mmol}/\mathrm{L}}{\Delta{\mathrm{S}}_{\mathrm{a}}{\mathrm{O}}_2}$, P = 0.003) but was unaffected by CO (P = 0.36). Lactate production was not associated with reduced CMRO2. These results point toward a mechanism of lactate production by upregulation of glycolysis mediated by sensing a reduced arterial oxygen pressure. The released lactate may act as a signaling molecule engaged in vasodilation.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Nanna Arngrim
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark
| | - Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen 2100, Denmark.,Faculty of Health and Medical Science, Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Albert Gjedde
- Faculty of Health and Medical Science, Department of Neuroscience, University of Copenhagen, Copenhagen 2100, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark.,Faculty of Health and Medical Science, Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital Rigshospitalet, Glostrup 2600, Denmark.,Faculty of Health and Medical Science, Department of Clinical Medicine, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
16
|
Longer apneas and hypopneas are associated with greater ultra-short-term HRV in obstructive sleep apnea. Sci Rep 2020; 10:21556. [PMID: 33298982 PMCID: PMC7726571 DOI: 10.1038/s41598-020-77780-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Low long-term heart rate variability (HRV), often observed in obstructive sleep apnea (OSA) patients, is a known risk factor for cardiovascular diseases. However, it is unclear how the type or duration of individual respiratory events modulate ultra-short-term HRV and beat-to-beat intervals (RR intervals). We aimed to examine the sex-specific changes in RR interval and ultra-short-term HRV during and after apneas and hypopneas of various durations. Electrocardiography signals, recorded as a part of clinical polysomnography, of 758 patients (396 men) with suspected OSA were analysed retrospectively. Average RR intervals and time-domain HRV parameters were determined during the respiratory event and the 15-s period immediately after the event. Parameters were analysed in three pooled sex-specific subgroups based on the respiratory event duration (10-20 s, 20-30 s, and > 30 s) separately for apneas and hypopneas. We observed that RR intervals shortened after the respiratory events and the magnitude of these changes increased in both sexes as the respiratory event duration increased. Furthermore, ultra-short-term HRV generally increased as the respiratory event duration increased. Apneas caused higher ultra-short-term HRV and a stronger decrease in RR interval compared to hypopneas. In conclusion, the respiratory event type and duration modulate ultra-short-term HRV and RR intervals. Considering HRV and the respiratory event characteristics in the diagnosis of OSA could be useful when assessing the cardiac consequences of OSA in a more detailed manner.
Collapse
|
17
|
Brognara F, Felippe ISA, Salgado HC, Paton JFR. Autonomic innervation of the carotid body as a determinant of its sensitivity: implications for cardiovascular physiology and pathology. Cardiovasc Res 2020; 117:1015-1032. [PMID: 32832979 DOI: 10.1093/cvr/cvaa250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
The motivation for this review comes from the emerging complexity of the autonomic innervation of the carotid body (CB) and its putative role in regulating chemoreceptor sensitivity. With the carotid bodies as a potential therapeutic target for numerous cardiorespiratory and metabolic diseases, an understanding of the neural control of its circulation is most relevant. Since nerve fibres track blood vessels and receive autonomic innervation, we initiate our review by describing the origins of arterial feed to the CB and its unique vascular architecture and blood flow. Arterial feed(s) vary amongst species and, unequivocally, the arterial blood supply is relatively high to this organ. The vasculature appears to form separate circuits inside the CB with one having arterial venous anastomoses. Both sympathetic and parasympathetic nerves are present with postganglionic neurons located within the CB or close to it in the form of paraganglia. Their role in arterial vascular resistance control is described as is how CB blood flow relates to carotid sinus afferent activity. We discuss non-vascular targets of autonomic nerves, their possible role in controlling glomus cell activity, and how certain transmitters may relate to function. We propose that the autonomic nerves sub-serving the CB provide a rapid mechanism to tune the gain of peripheral chemoreflex sensitivity based on alterations in blood flow and oxygen delivery, and might provide future therapeutic targets. However, there remain a number of unknowns regarding these mechanisms that require further research that is discussed.
Collapse
Affiliation(s)
- Fernanda Brognara
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand.,Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Igor S A Felippe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton Auckland 1023, New Zealand
| |
Collapse
|
18
|
Exploring the Mediators that Promote Carotid Body Dysfunction in Type 2 Diabetes and Obesity Related Syndromes. Int J Mol Sci 2020; 21:ijms21155545. [PMID: 32756352 PMCID: PMC7432672 DOI: 10.3390/ijms21155545] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Carotid bodies (CBs) are peripheral chemoreceptors that sense changes in blood O2, CO2, and pH levels. Apart from ventilatory control, these organs are deeply involved in the homeostatic regulation of carbohydrates and lipid metabolism and inflammation. It has been described that CB dysfunction is involved in the genesis of metabolic diseases and that CB overactivation is present in animal models of metabolic disease and in prediabetes patients. Additionally, resection of the CB-sensitive nerve, the carotid sinus nerve (CSN), or CB ablation in animals prevents and reverses diet-induced insulin resistance and glucose intolerance as well as sympathoadrenal overactivity, meaning that the beneficial effects of decreasing CB activity on glucose homeostasis are modulated by target-related efferent sympathetic nerves, through a reflex initiated in the CBs. In agreement with our pre-clinical data, hyperbaric oxygen therapy, which reduces CB activity, improves glucose homeostasis in type 2 diabetes patients. Insulin, leptin, and pro-inflammatory cytokines activate the CB. In this manuscript, we review in a concise manner the putative pathways linking CB chemoreceptor deregulation with the pathogenesis of metabolic diseases and discuss and present new data that highlight the roles of hyperinsulinemia, hyperleptinemia, and chronic inflammation as major factors contributing to CB dysfunction in metabolic disorders.
Collapse
|
19
|
Kim LJ, Polotsky VY. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E5117. [PMID: 32698380 PMCID: PMC7404212 DOI: 10.3390/ijms21145117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body (CB) is responsible for the peripheral chemoreflex by sensing blood gases and pH. The CB also appears to act as a peripheral sensor of metabolites and hormones, regulating the metabolism. CB malfunction induces aberrant chemosensory responses that culminate in the tonic overactivation of the sympathetic nervous system. The sympatho-excitation evoked by CB may contribute to the pathogenesis of metabolic syndrome, inducing systemic hypertension, insulin resistance and sleep-disordered breathing. Several molecular pathways are involved in the modulation of CB activity, and their pharmacological manipulation may lead to overall benefits for cardiometabolic diseases. In this review, we will discuss the role of the CB in the regulation of metabolism and in the pathogenesis of the metabolic dysfunction induced by CB overactivity. We will also explore the potential pharmacological targets in the CB for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA;
| | | |
Collapse
|
20
|
Vasoactive Intestinal Polypeptide in the Carotid Body-A History of Forty Years of Research. A Mini Review. Int J Mol Sci 2020; 21:ijms21134692. [PMID: 32630153 PMCID: PMC7370131 DOI: 10.3390/ijms21134692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Vasoactive intestinal polypeptide (VIP) consists of 28 amino acid residues and is widespread in many internal organs and systems. Its presence has also been found in the nervous structures supplying the carotid body not only in mammals but also in birds and amphibians. The number and distribution of VIP in the carotid body clearly depends on the animal species studied; however, among all the species, this neuropeptide is present in nerve fibers around blood vessels and between glomus cell clusters. It is also known that the number of nerves containing VIP located in the carotid body may change under various pathological and physiological factors. The knowledge concerning the functioning of VIP in the carotid body is relatively limited. It is known that VIP may impact the glomus type I cells, causing changes in their spontaneous discharge, but the main impact of VIP on the carotid body is probably connected with the vasodilatory effects of this peptide and its influence on blood flow and oxygen delivery. This review is a concise summary of forty years of research concerning the distribution of VIP in the carotid body.
Collapse
|
21
|
Abstract
The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| |
Collapse
|
22
|
Limberg JK, Johnson BD, Mozer MT, Holbein WW, Curry TB, Prabhakar NR, Joyner MJ. Role of the carotid chemoreceptors in insulin-mediated sympathoexcitation in humans. Am J Physiol Regul Integr Comp Physiol 2019; 318:R173-R181. [PMID: 31746629 DOI: 10.1152/ajpregu.00257.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the contribution of the carotid chemoreceptors to insulin-mediated increases in muscle sympathetic nerve activity (MSNA) in healthy humans. We hypothesized that reductions in carotid chemoreceptor activity would attenuate the sympathoexcitatory response to hyperinsulinemia. Young, healthy adults (9 male/9 female, 28 ± 1 yr, 24 ± 1 kg/m2) completed a 30-min euglycemic baseline followed by a 90-min hyperinsulinemic (1 mU·kg fat-free mass-1·min-1), euglycemic infusion. MSNA (microneurography of the peroneal nerve) was continuously measured. The role of the carotid chemoreceptors was assessed at baseline and during hyperinsulinemia via 1) acute hyperoxia, 2) low-dose dopamine (1-4 µg·kg-1·min-1), and 3) acute hyperoxia + low-dose dopamine. MSNA burst frequency increased from baseline during hyperinsulinemia (P < 0.01). Acute hyperoxia had no effect on MSNA burst frequency at rest (P = 0.74) or during hyperinsulinemia (P = 0.83). The insulin-mediated increase in MSNA burst frequency (P = 0.02) was unaffected by low-dose dopamine (P = 0.60). When combined with low-dose dopamine, acute hyperoxia had no effect on MSNA burst frequency at rest (P = 0.17) or during hyperinsulinemia (P = 0.85). Carotid chemoreceptor desensitization in young, healthy men and women does not attenuate the sympathoexcitatory response to hyperinsulinemia. Our data suggest that the carotid chemoreceptors do not contribute to acute insulin-mediated increases in MSNA in young, healthy adults.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Blair D Johnson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Michael T Mozer
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology, School of Medicine, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
23
|
Cracchiolo M, Sacramento JF, Mazzoni A, Panarese A, Carpaneto J, Conde SV, Micera S. Decoding Neural Metabolic Markers From the Carotid Sinus Nerve in a Type 2 Diabetes Model. IEEE Trans Neural Syst Rehabil Eng 2019; 27:2034-2043. [DOI: 10.1109/tnsre.2019.2942398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Smorschok MP, Sobierajski FM, Purdy GM, Riske LA, Busch SA, Skow RJ, Matenchuk BA, Pfoh JR, Vanden Berg ER, Linares A, Borle K, Lavoie L, Saran G, Dyck R, Funk DR, Day TA, Boulé NG, Davenport MH, Steinback CD. Peripheral chemoreceptor deactivation attenuates the sympathetic response to glucose ingestion. Appl Physiol Nutr Metab 2019; 44:389-396. [DOI: 10.1139/apnm-2018-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute increases in blood glucose are associated with heightened muscle sympathetic nerve activity (MSNA). Animal studies have implicated a role for peripheral chemoreceptors in this response, but this has not been examined in humans. Heart rate, cardiac output (CO), mean arterial pressure, total peripheral conductance, and blood glucose concentrations were collected in 11 participants. MSNA was recorded in a subset of 5 participants via microneurography. Participants came to the lab on 2 separate days (i.e., 1 control and 1 experimental day). On both days, participants ingested 75 g of glucose following baseline measurements. On the experimental day, participants breathed 100% oxygen for 3 min at baseline and again at 20, 40, and 60 min after glucose ingestion to deactivate peripheral chemoreceptors. Supplemental oxygen was not given to participants on the control day. There was a main effect of time on blood glucose (P < 0.001), heart rate (P < 0.001), CO (P < 0.001), sympathetic burst frequency (P < 0.001), burst incidence (P = 0.01), and total MSNA (P = 0.001) for both days. Blood glucose concentrations and burst frequency were positively correlated on the control day (r = 0.42; P = 0.03) and experimental day (r = 0.62; P = 0.003). There was a time × condition interaction (i.e., normoxia vs. hyperoxia) on burst frequency, in which hyperoxia significantly blunted burst frequency at 20 and 60 min after glucose ingestion only. Given that hyperoxia blunted burst frequency only during hyperglycemia, our results suggest that the peripheral chemoreceptors are involved in activating MSNA after glucose ingestion.
Collapse
Affiliation(s)
- Megan P. Smorschok
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Frances M. Sobierajski
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Graeme M. Purdy
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Laurel A. Riske
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Stephen A. Busch
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Rachel J. Skow
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Brittany A. Matenchuk
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jamie R. Pfoh
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Emily R. Vanden Berg
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Andrea Linares
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Kennedy Borle
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Lauren Lavoie
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Gurkarn Saran
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Rebecca Dyck
- Augustana Campus, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Deanna R. Funk
- Augustana Campus, University of Alberta, Camrose, AB T4V 2R3, Canada
| | - Trevor A. Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Normand G. Boulé
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Margie H. Davenport
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Craig D. Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
25
|
Fujii N, Kashihara M, Kenny GP, Honda Y, Fujimoto T, Cao Y, Nishiyasu T. Carotid chemoreceptors have a limited role in mediating the hyperthermia-induced hyperventilation in exercising humans. J Appl Physiol (1985) 2019; 126:305-313. [PMID: 30382804 DOI: 10.1152/japplphysiol.00562.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hyperthermia causes hyperventilation at rest and during exercise. We previously reported that carotid chemoreceptors partly contribute to the hyperthermia-induced hyperventilation at rest. However, given that a hyperthermia-induced hyperventilation markedly differs between rest and exercise, the results obtained at rest may not be representative of the response in exercise. Therefore, we evaluated whether carotid chemoreceptors contribute to hyperthermia-induced hyperventilation in exercising humans. Eleven healthy young men (23 ± 2 yr) cycled in the heat (37°C) at a fixed submaximal workload equal to ~55% of the individual's predetermined peak oxygen uptake (moderate intensity). To suppress carotid chemoreceptor activity, 30-s hyperoxia breathing (100% O2) was performed at rest (before exercise) and during exercise at increasing levels of hyperthermia as defined by an increase in esophageal temperature of 0.5°C (low), 1.0°C (moderate), 1.5°C (high), and 2.0°C (severe) above resting levels. Ventilation during exercise gradually increased as esophageal temperature increased (all P ≤ 0.05), indicating that hyperthermia-induced hyperventilation occurred. Hyperoxia breathing suppressed ventilation in a greater manner during exercise (-9 to -13 l/min) than at rest (-2 ± 1 l/min); however, the magnitude of reduction during exercise did not differ at low (0.5°C) to severe (2.0°C) increases in esophageal temperature (all P > 0.05). Similarly, hyperoxia-induced changes in ventilation during exercise as assessed by percent change from prehyperoxic levels were not different at all levels of hyperthermia (~15-20%, all P > 0.05). We show that in young men carotid chemoreceptor contribution to hyperthermia-induced hyperventilation is relatively small at low-to-severe increases in body core temperature induced by moderate-intensity exercise in the heat. NEW & NOTEWORTHY Exercise-induced increases in hyperthermia cause a progressive increase in ventilation in humans. However, the mechanisms underpinning this response remain unresolved. We showed that in young men hyperventilation associated with exercise-induced hyperthermia is not predominantly mediated by carotid chemoreceptors. This study provides important new insights into the mechanism(s) underpinning the regulation of hyperthermia-induced hyperventilation in humans and suggests that factor(s) other than carotid chemoreceptors play a more important role in mediating this response.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Japan
| | - Miki Kashihara
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa , Ottawa Ontario , Canada
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Japan
| | - Tomomi Fujimoto
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Japan
| | - Yinhang Cao
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
26
|
Schultz HD. Advances in cellular and integrative control of oxygen and carbon dioxide homeostasis. J Physiol 2018; 596:2933-2934. [PMID: 30239019 PMCID: PMC6068245 DOI: 10.1113/jp276326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Harold D. Schultz
- Department of Cellular and Integrative PhysiologyUniveristy of Nebraska Medical CenterOmahaNE 68198USA
| |
Collapse
|
27
|
Affiliation(s)
- Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|