1
|
Patidar K, Pillai N, Dhakal S, Avery LB, Mavroudis PD. A minimal physiologically based pharmacokinetic model to study the combined effect of antibody size, charge, and binding affinity to FcRn/antigen on antibody pharmacokinetics. J Pharmacokinet Pharmacodyn 2024; 51:477-492. [PMID: 38400996 DOI: 10.1007/s10928-023-09899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 02/26/2024]
Abstract
Protein therapeutics have revolutionized the treatment of a wide range of diseases. While they have distinct physicochemical characteristics that influence their absorption, distribution, metabolism, and excretion (ADME) properties, the relationship between the physicochemical properties and PK is still largely unknown. In this work we present a minimal physiologically-based pharmacokinetic (mPBPK) model that incorporates a multivariate quantitative relation between a therapeutic's physicochemical parameters and its corresponding ADME properties. The model's compound-specific input includes molecular weight, molecular size (Stoke's radius), molecular charge, binding affinity to FcRn, and specific antigen affinity. Through derived and fitted empirical relationships, the model demonstrates the effect of these compound-specific properties on antibody disposition in both plasma and peripheral tissues using observed PK data in mice and humans. The mPBPK model applies the two-pore hypothesis to predict size-based clearance and exposure of full-length antibodies (150 kDa) and antibody fragments (50-100 kDa) within a onefold error. We quantitatively relate antibody charge and PK parameters like uptake rate, non-specific binding affinity, and volume of distribution to capture the relatively faster clearance of positively charged mAb as compared to negatively charged mAb. The model predicts the terminal plasma clearance of slightly positively and negatively charged antibody in humans within a onefold error. The mPBPK model presented in this work can be used to predict the target-mediated disposition of a drug when compound-specific and target-specific properties are known. To our knowledge, a combined effect of antibody weight, size, charge, FcRn, and antigen has not been incorporated and studied in a single mPBPK model previously. By conclusively incorporating and relating a multitude of protein's physicochemical properties to observed PK, our mPBPK model aims to contribute as a platform approach in the early stages of drug development where many of these properties can be optimized to improve a molecule's PK and ultimately its efficacy.
Collapse
Affiliation(s)
- Krutika Patidar
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Nikhil Pillai
- Global DMPK Modeling & Simulation, Sanofi, 350 Water St, Cambridge, MA, 02141, USA
| | - Saroj Dhakal
- Global DMPK Modeling & Simulation, Sanofi, 350 Water St, Cambridge, MA, 02141, USA
| | | | | |
Collapse
|
2
|
Parhiz H, Shuvaev VV, Li Q, Papp TE, Akyianu AA, Shi R, Yadegari A, Shahnawaz H, Semple SC, Mui BL, Weissman D, Muzykantov VR, Glassman PM. Physiologically based modeling of LNP-mediated delivery of mRNA in the vascular system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102175. [PMID: 38576454 PMCID: PMC10992703 DOI: 10.1016/j.omtn.2024.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
RNA therapeutics are an emerging, powerful class of drugs with potential applications in a wide range of disorders. A central challenge in their development is the lack of clear pharmacokinetic (PK)-pharmacodynamic relationship, in part due to the significant delay between the kinetics of RNA delivery and the onset of pharmacologic response. To bridge this gap, we have developed a physiologically based PK/pharmacodynamic model for systemically administered mRNA-containing lipid nanoparticles (LNPs) in mice. This model accounts for the physiologic determinants of mRNA delivery, active targeting in the vasculature, and differential transgene expression based on nanoparticle coating. The model was able to well-characterize the blood and tissue PKs of LNPs, as well as the kinetics of tissue luciferase expression measured by ex vivo activity in organ homogenates and bioluminescence imaging in intact organs. The predictive capabilities of the model were validated using a formulation targeted to intercellular adhesion molecule-1 and the model predicted nanoparticle delivery and luciferase expression within a 2-fold error for all organs. This modeling platform represents an initial strategy that can be expanded upon and utilized to predict the in vivo behavior of RNA-containing LNPs developed for an array of conditions and across species.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191004, USA
| | - Qin Li
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler E. Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Awurama A. Akyianu
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruiqi Shi
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amir Yadegari
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamna Shahnawaz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191004, USA
| | - Patrick M. Glassman
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Naoi S, Yamane M, Nemoto T, Kato M, Saito R, Tachibana T. Physiologically based pharmacokinetic (PBPK) model that describes enhanced FcRn-dependent distribution of monoclonal antibodies (mAbs) by pI-engineering in mice. Drug Metab Pharmacokinet 2023; 53:100506. [PMID: 38029470 DOI: 10.1016/j.dmpk.2023.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/22/2023] [Accepted: 03/15/2023] [Indexed: 12/01/2023]
Abstract
We previously reported that monoclonal antibodies (mAbs) with a high isoelectric point (pI) value tended to exhibit fast plasma clearance (CL) and large steady-state volume of distribution (Vdss) in mice. However, the positive correlation between pI, CL, and Vdss cannot be described by the reported physiologically based pharmacokinetic (PBPK) models, in which FcRn-mediated transcytosis of mAbs is set to be minimal compared to convection-mediated transport. To address this issue, physiological parameters (lymph flow rate, reflection coefficient, endothelial uptake clearance, and FcRn concentration) were optimized based on the pharmacokinetic profiles of mAbs with various pI values in wild type and FcRn-deficient (beta-2-microglobulin knockout [KO]) mice. Simulations using the PBPK model developed in this study showed a positive correlation between pI, CL and Vdss observed in wild-type mice. Therefore, this model successfully characterized our hypothetical mechanism that an electrostatic positive interaction between mAbs and the endothelial membrane enhances FcRn-mediated transcytosis of mAbs, resulting in large Vdss. We sought to determine the right contribution of the two pathways of antibody distribution to the interstitial space and established a new model that could effectively capture the effect of pI on FcRn-mediated distribution of mAbs in the body.
Collapse
Affiliation(s)
- Sotaro Naoi
- Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Mizuki Yamane
- Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Takayuki Nemoto
- Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Motohiro Kato
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan
| | - Ryoichi Saito
- Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Tatsuhiko Tachibana
- Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| |
Collapse
|
4
|
Enell Smith K, Fritzell S, Nilsson A, Barchan K, Rosén A, Schultz L, Varas L, Säll A, Rose N, Håkansson M, von Schantz L, Ellmark P. ATOR-1017 (evunzekibart), an Fc-gamma receptor conditional 4-1BB agonist designed for optimal safety and efficacy, activates exhausted T cells in combination with anti-PD-1. Cancer Immunol Immunother 2023; 72:4145-4159. [PMID: 37796298 PMCID: PMC10700433 DOI: 10.1007/s00262-023-03548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND 4-1BB (CD137) is a co-stimulatory receptor highly expressed on tumor reactive effector T cells and NK cells, which upon stimulation prolongs persistence of tumor reactive effector T and NK cells within the tumor and induces long-lived memory T cells. 4-1BB agonistic antibodies have been shown to induce strong anti-tumor effects that synergize with immune checkpoint inhibitors. The first generation of 4-1BB agonists was, however, hampered by dose-limiting toxicities resulting in suboptimal dose levels or poor agonistic activity. METHODS ATOR-1017 (evunzekibart), a second-generation Fc-gamma receptor conditional 4-1BB agonist in IgG4 format, was designed to overcome the limitations of the first generation of 4-1BB agonists, providing strong agonistic effect while minimizing systemic immune activation and risk of hepatoxicity. The epitope of ATOR-1017 was determined by X-ray crystallography, and the functional activity was assessed in vitro and in vivo as monotherapy or in combination with anti-PD1. RESULTS ATOR-1017 binds to a unique epitope on 4-1BB enabling ATOR-1017 to activate T cells, including cells with an exhausted phenotype, and NK cells, in a cross-linking dependent, FcγR-conditional, manner. This translated into a tumor-directed and potent anti-tumor therapeutic effect in vivo, which was further enhanced with anti-PD-1 treatment. CONCLUSIONS These preclinical data demonstrate a strong safety profile of ATOR-1017, together with its potent therapeutic effect as monotherapy and in combination with anti-PD1, supporting further clinical development of ATOR-1017.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna Säll
- Alligator Bioscience AB, Lund, Sweden
| | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden.
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Zhou T, Tegenge MA, Golding B, Scott J. Dosing Strategy of Immunoglobulin (IgG) Replacement Therapies in Obese and Overweight Patients with Primary Immunodeficiency Diseases (PIDDs): A Meta-Analysis of Clinical Trials. J Clin Pharmacol 2023; 63 Suppl 2:S110-S116. [PMID: 37942903 DOI: 10.1002/jcph.2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The current dosing strategy of immune globulin products for the treatment of primary immunodeficiency diseases (PIDDs) in the USA is based on total body weight (BW). The aim of our study was to assess the relationship between dose and trough level, and to determine whether an alternative dosing strategy should be considered for patients who are overweight or obese. We analyzed data in a total of 533 patients from 11 studies. We modeled the relationship between trough level and dose per week using a linear mixed model. We used an over-dispersed Poisson model to model the relationship between infection and trough level. In these analyses, we then combined the study-specific treatment effects using a random-effect or fixed-effect model. The mean administered dose per week was 9.77, 14.00, or 18.17 g in patients who were normal weight, overweight, or obese, respectively. Compared with a patient of normal weight, a 1 g increase in dose per week in a patient who was overweight was associated with a smaller increase in the trough level, 0.08 g/L less (95%CI -0.14 to -0.03 g/L), and a 1 g increase in dose per week in a patient who was obese was associated with a much smaller increase in trough level, 0.01 g/L less (95% CI -0.07 to 0.06 g/L). Last, for a 1 unit (g/L) increase in trough level, the expected number of infections remained the same, with a multiplicative factor of 1.01 (95%CI 0.98-1.04). Overall, we found no compelling evidence to justify a reconsideration of the current dosing strategy based on total BW for patients with PIDDs who are overweight or obese.
Collapse
Affiliation(s)
- Tingting Zhou
- Office of Biostatistics and Pharmacovigilance, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Million A Tegenge
- Office of Clinical Evaluation, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Basil Golding
- Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - John Scott
- Office of Biostatistics and Pharmacovigilance, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
6
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
7
|
Neumaier M, Giesler S, Ast V, Roemer M, Voß TD, Reinz E, Costina V, Schmelz M, Nürnberg E, Nittka S, Leppä AM, Rudolf R, Trumpp A, Fuchs T. Opsonization-independent antigen-specific recognition by myeloid phagocytes expressing monoclonal antibodies. SCIENCE ADVANCES 2023; 9:eadg1812. [PMID: 37656789 PMCID: PMC11314243 DOI: 10.1126/sciadv.adg1812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
This report demonstrates a novel class of innate immune cells designated "variable immunoreceptor-expressing myeloids" (VIREMs). Using single-cell transcriptomics and genome-wide epigenetic profiling, we establish that VIREMs are myeloid cells unrelated to lymphocytes. We visualize the phenotype of B-VIREMs that are capable of genetically recombining and expressing antibody genes, the exclusive hallmark function of B lymphocytes. These cells, designated B-VIREMs, display monoclonal antibody cell surface signatures and regularly circulate in the blood of healthy individuals. Single-cell data reveal clonal expansion of circulating B-VIREMs as a dynamic response to disease stimuli. Live-cell imaging models suggest that B-VIREMs load their own Fc receptors with endogenous antibodies during vesicle transport to the cell surface. A first cloned B-VIREM-derived antibody (Vab1) specifically binds stomatin, a ubiquitous scaffold protein that is strictly expressed intracellularly, allowing Vab1-bearing macrophages to phagocytose cell debris without requiring prior opsonization. Our results suggest important antigen-specific tissue maintenance functionalities in these innate immune cells.
Collapse
Affiliation(s)
- Michael Neumaier
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Sophie Giesler
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Department of Medicine I - Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Ast
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Mathis Roemer
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
| | - Timo-Daniel Voß
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Stuttgart, Germany
| | - Eileen Reinz
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
| | - Victor Costina
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
| | - Martin Schmelz
- Department of Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Elina Nürnberg
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Stefanie Nittka
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
| | - Aino-Maija Leppä
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ)-Center for Molecular Biology of Heidelberg University (ZMBH) Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Ruediger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ)-Center for Molecular Biology of Heidelberg University (ZMBH) Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Tina Fuchs
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Altendorfer-Kroath T, Hummer J, Kollmann D, Boulgaropoulos B, Raml R, Birngruber T. Quantification of the Therapeutic Antibody Ocrelizumab in Mouse Brain Interstitial Fluid Using Cerebral Open Flow Microperfusion and Simultaneous Monitoring of the Blood-Brain Barrier Integrity. Pharmaceutics 2023; 15:1880. [PMID: 37514066 PMCID: PMC10383368 DOI: 10.3390/pharmaceutics15071880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing relevance of improved therapeutic monoclonal antibodies (mAbs) to treat neurodegenerative diseases has strengthened the need to reliably measure their brain pharmacokinetic (PK) profiles. The aim of this study was, therefore, to absolutely quantify the therapeutic antibody ocrelizumab (OCR) as a model antibody in mouse brain interstitial fluid (ISF), and to record its PK profile by using cerebral open flow microperfusion (cOFM). Further, to monitor the blood-brain barrier (BBB) integrity using an endogenous antibody with a similar molecular size as OCR. The study was conducted on 13 male mice. Direct and absolute OCR quantification was performed with cOFM in combination with zero flow rate, and subsequent bioanalysis of the obtained cerebral ISF samples. For PK profile recording, cerebral ISF samples were collected bi-hourly, and brain tissue and plasma were collected once at the end of the sampling period. The BBB integrity was monitored during the entire PK profile recording by using endogenous mouse immunoglobulin G1. We directly and absolutely quantified OCR and recorded its brain PK profile over 96 h. The BBB remained intact during the PK profile recording. The resulting data provide the basis for reliable PK assessment of therapeutic antibodies in the brain thus favoring the further development of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Thomas Altendorfer-Kroath
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Joanna Hummer
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Denise Kollmann
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Beate Boulgaropoulos
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Reingard Raml
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
9
|
Boger E, Erngren T, Fihn BM, Leonard E, Rubin K, Bäckström E. Assessment of Epithelial Lining Fluid Partitioning of Systemically Administered Monoclonal Antibodies in Rats. J Pharm Sci 2023; 112:1130-1136. [PMID: 36632919 DOI: 10.1016/j.xphs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
For systemically administered monoclonal antibodies (mAbs) with pharmacological targets in the epithelial lining fluid (ELF), information on the partitioning of mAb between plasma and ELF is instrumental for dose predictions. Bronchoalveolar lavage (BAL) combined with measurements of urea as indicator of sample dilution is often used to estimate ELF concentrations of a drug. However, unbalanced extraction of mAb and urea could potentially lead to a systematic bias in the back-calculated ELF concentration. In the present study 0.5, 1, or 4 mL phosphate-buffered saline was instilled to lungs of rats to obtain lavage samples after systemic dosing of mAb and tool small molecule (n≥4/group). Furthermore, extraction of urea, mAb and the small molecule was assessed by repeatedly lavaging the lung (n = 4). There was no statistically significant difference in the calculated partitioning into ELF between the evaluated instillation volumes. Repeated BAL demonstrated that urea and the small molecule were extracted from other sources than the ELF. In contrast, there was limited to none in-flow of mAb into the lavage fluid. The unbalanced extraction of urea and mAb could theoretically result in underestimated ELF concentrations and the calculated partitioning of 0.17±0.062 might therefore constitute a lower boundary for the true partitioning.
Collapse
Affiliation(s)
- E Boger
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - T Erngren
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - B-M Fihn
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - E Leonard
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - K Rubin
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - E Bäckström
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
10
|
Noh K, Liu X, Wei C. Optimizing transcardial perfusion of small molecules and biologics for brain penetration and biodistribution studies in rodents. Biopharm Drug Dispos 2023; 44:71-83. [PMID: 35508078 DOI: 10.1002/bdd.2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Abstract
Efficiently removing blood from the brain vasculature is critical to evaluate accurately the brain penetration and biodistribution of drug candidates, especially for biologics as their blood concentrations are substantially higher than the brain concentrations. Transcardial perfusion has been used widely to remove residual blood in the brain; however, the perfusion conditions (such as the perfusion rate and time) reported in the literature are quite varied, and the performance of these methods on blood removal has not been investigated thoroughly. In this study, the effectiveness of the perfusion conditions was assessed by measuring brain hemoglobin levels. Sodium nitrite (NaNO2 ) as an additive in the perfusate was evaluated at different concentrations. Blood removal was significantly improved with 2% NaNO2 over a 20 min perfusion in mouse without disrupting the integrity of the blood-brain barrier (BBB). In mice, the optimized perfusion method significantly lowered the measured brain-to-plasma ratio (Kp,brain ) for monoclonal antibodies due to the removal of blood contamination and small molecules with a moderate-to-high BBB permeability and with a high brain-unbound-fraction (fu,brain ) presumably due to flux out of the brain during perfusion. Perfusion with or without NaNO2 clearly removed the residual blood in rat brain but with no difference observed in Kp,brain between the perfusion groups with or without 2% NaNO2 . In conclusion, a perfusion method was successfully developed to evaluate the brain penetration of small molecules and biologics in rodents for the first time. The transcardial perfusion with 2% NaNO2 effectively removed the residual blood in the brain and significantly improved the assessment of brain penetration of biologics. For small molecules, however, transcardial perfusion may not be performed, as small molecule compounds could be washed away from the brain by the perfusion procedure.
Collapse
Affiliation(s)
- Keumhan Noh
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| | - Cong Wei
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Aweda TA, Cheng SH, Lenhard SC, Sepp A, Skedzielewski T, Hsu CY, Marshall S, Haag H, Kehler J, Jagdale P, Peter A, Schmid MA, Gehman A, Doan M, Mayer AP, Gorycki P, Fanget M, Colas C, Smith B, Maier CC, Alsaid H. In vivo biodistribution and pharmacokinetics of sotrovimab, a SARS-CoV-2 monoclonal antibody, in healthy cynomolgus monkeys. Eur J Nucl Med Mol Imaging 2023; 50:667-678. [PMID: 36305907 PMCID: PMC9614201 DOI: 10.1007/s00259-022-06012-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Sotrovimab (VIR-7831), a human IgG1κ monoclonal antibody (mAb), binds to a conserved epitope on the SARS-CoV-2 spike protein receptor binding domain (RBD). The Fc region of VIR-7831 contains an LS modification to promote neonatal Fc receptor (FcRn)-mediated recycling and extend its serum half-life. Here, we aimed to evaluate the impact of the LS modification on tissue biodistribution, by comparing VIR-7831 to its non-LS-modified equivalent, VIR-7831-WT, in cynomolgus monkeys. METHODS 89Zr-based PET/CT imaging of VIR-7831 and VIR-7831-WT was performed up to 14 days post injection. All major organs were analyzed for absolute concentration as well as tissue:blood ratios, with the focus on the respiratory tract, and a physiologically based pharmacokinetics (PBPK) model was used to evaluate the tissue biodistribution kinetics. Radiomics features were also extracted from the PET images and SUV values. RESULTS SUVmean uptake in the pulmonary bronchi for 89Zr-VIR-7831 was statistically higher than for 89Zr-VIR-7831-WT at days 6 (3.43 ± 0.55 and 2.59 ± 0.38, respectively) and 10 (2.66 ± 0.32 and 2.15 ± 0.18, respectively), while the reverse was observed in the liver at days 6 (5.14 ± 0.80 and 8.63 ± 0.89, respectively), 10 (4.52 ± 0.59 and 7.73 ± 0.66, respectively), and 14 (4.95 ± 0.65 and 7.94 ± 0.54, respectively). Though the calculated terminal half-life was 21.3 ± 3.0 days for VIR-7831 and 16.5 ± 1.1 days for VIR-7831-WT, no consistent differences were observed in the tissue:blood ratios between the antibodies except in the liver. While the lung:blood SUVmean uptake ratio for both mAbs was 0.25 on day 3, the PBPK model predicted the total lung tissue and the interstitial space to serum ratio to be 0.31 and 0.55, respectively. Radiomics analysis showed VIR-7831 had mean-centralized PET SUV distribution in the lung and liver, indicating more uniform uptake than VIR-7831-WT. CONCLUSION The half-life extended VIR-7831 remained in circulation longer than VIR-7831-WT, consistent with enhanced FcRn binding, while the tissue:blood concentration ratios in most tissues for both drugs remained statistically indistinguishable throughout the course of the experiment. In the bronchiolar region, a higher concentration of 89Zr-VIR-7831 was detected. The data also allow unparalleled insight into tissue distribution and elimination kinetics of mAbs that can guide future biologic drug discovery efforts, while the residualizing nature of the 89Zr label sheds light on the sites of antibody catabolism.
Collapse
Affiliation(s)
- Tolulope A Aweda
- Bioimaging, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Shih-Hsun Cheng
- Bioimaging, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Stephen C Lenhard
- Bioimaging, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | | | | | - Chih-Yang Hsu
- Bioimaging, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Shelly Marshall
- Integrated Biological Platform Sciences, GSK, Collegeville, PA, USA
| | - Heather Haag
- Integrated Biological Platform Sciences, GSK, Collegeville, PA, USA
| | - Jonathan Kehler
- Bioanalysis, Immunogenicity & Biomarkers, GSK, Collegeville, PA, USA
| | | | - Alessia Peter
- mAb Engineering & Bioanalytics, Humabs BioMed SA, Vir Biotechnology, Inc, Bellinzona, Switzerland
| | - Michael A Schmid
- mAb Engineering & Bioanalytics, Humabs BioMed SA, Vir Biotechnology, Inc, Bellinzona, Switzerland
| | - Andrew Gehman
- Non-Clinical and Translational Statistics, GSK, Collegeville, PA, USA
| | - Minh Doan
- Bioimaging, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Andrew P Mayer
- Bioanalysis, Immunogenicity & Biomarkers, GSK, Collegeville, PA, USA
| | | | - Marie Fanget
- Bioanalytical Department, Vir Biotechnology, Inc, San Francisco, CA, USA
| | | | - Brenda Smith
- Toxicology, Vir Biotechnology, Inc, San Francisco, CA, USA
| | | | - Hasan Alsaid
- Bioimaging, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA.
| |
Collapse
|
12
|
Korzekwa K, Radice C, Nagar S. A Permeability- and Perfusion-based PBPK model for Improved Prediction of Concentration-time Profiles. Clin Transl Sci 2022; 15:2035-2052. [PMID: 35588513 PMCID: PMC9372417 DOI: 10.1111/cts.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 12/02/2022] Open
Abstract
To improve predictions of concentration‐time (C‐t) profiles of drugs, a new physiologically based pharmacokinetic modeling framework (termed ‘PermQ’) has been developed. This model includes permeability into and out of capillaries, cell membranes, and intracellular lipids. New modeling components include (i) lumping of tissues into compartments based on both blood flow and capillary permeability, and (ii) parameterizing clearances in and out of membranes with apparent permeability and membrane partitioning values. Novel observations include the need for a shallow distribution compartment particularly for bases. C‐t profiles were modeled for 24 drugs (7 acidic, 5 neutral, and 12 basic) using the same experimental inputs for three different models: Rodgers and Rowland (RR), a perfusion‐limited membrane‐based model (Kp,mem), and PermQ. Kp,mem and PermQ can be directly compared since both models have identical tissue partition coefficient parameters. For the 24 molecules used for model development, errors in Vss and t1/2 were reduced by 37% and 43%, respectively, with the PermQ model. Errors in C‐t profiles were reduced (increased EOC) by 43%. The improvement was generally greater for bases than for acids and neutrals. Predictions were improved for all 3 models with the use of parameters optimized for the PermQ model. For five drugs in a test set, similar results were observed. These results suggest that prediction of C‐t profiles can be improved by including capillary and cellular permeability components for all tissues.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Casey Radice
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
13
|
Talkington AM, McSweeney MD, Wessler T, Rath MK, Li Z, Zhang T, Yuan H, Frank JE, Forest MG, Cao Y, Lai SK. A PBPK model recapitulates early kinetics of anti-PEG antibody-mediated clearance of PEG-liposomes. J Control Release 2022; 343:518-527. [PMID: 35066099 PMCID: PMC9080587 DOI: 10.1016/j.jconrel.2022.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
PEGylation is routinely used to extend the systemic circulation of various protein therapeutics and nanomedicines. Nonetheless, mounting evidence is emerging that individuals exposed to select PEGylated therapeutics can develop antibodies specific to PEG, i.e., anti-PEG antibodies (APA). In turn, APA increase both the risk of hypersensitivity to the drug as well as potential loss of efficacy due to accelerated blood clearance of the drug. Despite the broad implications of APA, the timescales and systemic specificity by which APA can alter the pharmacokinetics and biodistribution of PEGylated drugs remain not well understood. Here, we developed a physiologically based pharmacokinetic (PBPK) model designed to resolve APA's impact on both early- and late-phase pharmacokinetics and biodistribution of intravenously administered PEGylated drugs. Our model accurately recapitulates PK and biodistribution data obtained from PET/CT imaging of radiolabeled PEG-liposomes and PEG-uricase in mice with and without APA, as well as serum levels of PEG-uricase in humans. Our work provides another illustration of the power of high-resolution PBPK models for understanding the pharmacokinetic impacts of anti-drug antibodies and the dynamics with which antibodies can mediate clearance of foreign species.
Collapse
Affiliation(s)
- Anne M Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy Wessler
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA; Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Marielle K Rath
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Tao Zhang
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Yuan
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, UNC Chapel Hill, USA
| | | | - M Gregory Forest
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA; Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Stüber JC, Rechberger KF, Miladinović SM, Pöschinger T, Zimmermann T, Villenave R, Eigenmann MJ, Kraft TE, Shah DK, Kettenberger H, Richter WF. Impact of charge patches on tumor disposition and biodistribution of therapeutic antibodies. AAPS OPEN 2022. [DOI: 10.1186/s41120-021-00048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThis study explores the impact of antibody surface charge on tissue distribution into various tissues including tumor. Tumor-bearing mice were dosed intravenously with a mixture comprising three antibodies engineered to carry negative charge patches, a balanced charge distribution, or positive patches, respectively (cassette dosing). Tissue levels were analyzed with a specific LC-MS/MS method. In addition, the antibody mix was administered to non-tumor bearing mice. Muscle and skin interstitial fluid were obtained by centrifugation and analyzed by LC-MS/MS. An in vitro endothelium model was explored for its feasibility to mimic the observed distribution differences.A balanced charge distribution was optimal in terms of total tumor exposure, while in other tissues, negatively charged and balanced charged antibodies gave similar results. In contrast, positive charge patches generally resulted in increased serum clearance but markedly enhanced tumor and organ uptake, leading to higher tissue-to-serum ratios. The uptake and availability in the interstitial space were confirmed by specific assessment of antibody levels in the interstitial fluid of the muscle and skin, with similar charge impact as in total tissue. The in vitro model was able to differentiate the transport propensity of this series of antibody variants. In summary, our results show the differential effects of charge patches on an antibody surface on biodistribution and tumor uptake. These insights may help in the design of molecules with biodistribution properties tailored to their purpose, and an optimized safety profile.
Collapse
|
15
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
16
|
Chang HP, Li Z, Shah DK. Development of a Physiologically-Based Pharmacokinetic Model for Whole-Body Disposition of MMAE Containing Antibody-Drug Conjugate in Mice. Pharm Res 2022; 39:1-24. [PMID: 35044590 DOI: 10.1007/s11095-021-03162-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To quantitate and mathematically characterize the whole-body pharmacokinetics (PK) of different ADC analytes following administration of an MMAE-conjugated ADC in tumor-bearing mice. METHODS The PK of different ADC analytes (total antibody, total drug, unconjugated drug) was measured following administration of an MMAE-conjugated ADC in tumor-bearing mice. The PK of ADC analytes was compared with the whole-body PK of the antibody and drug obtained following administration of these molecules alone. An ADC PBPK model was developed by linking antibody PBPK model with small-molecule PBPK model, where the drug was assumed to deconjugate in DAR-dependent manner. RESULTS Comparison of antibody biodistribution coefficient (ABC) values for total antibody suggests that conjugation of drug did not significantly affect the PK of antibody. Comparison of tissue:plasma AUC ratio (T/P) for the conjugated drug and total antibody suggests that in certain tissues (e.g., spleen) ADC may demonstrate higher deconjugation. It was observed that the tissue distribution profile of the drug can be altered following its conjugation to antibody. For example, MMAE distribution to the liver was found to increase while its distribution to the heart was found to decrease upon conjugation to antibody. MMAE exposure in the tumor was found to increase by ~20-fold following administration as conjugate (i.e., ADC). The PBPK model was able to a priori predict the PK of all three ADC analytes in plasma, tissues, and tumor reasonably well. CONCLUSIONS The ADC PBPK model developed here serves as a platform for translational and clinical investigations of MMAE containing ADCs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
17
|
Rafidi H, Rajan S, Urban K, Shatz-Binder W, Hui K, Ferl GZ, Kamath AV, Boswell CA. Effect of molecular size on interstitial pharmacokinetics and tissue catabolism of antibodies. MAbs 2022; 14:2085535. [PMID: 35867780 PMCID: PMC9311319 DOI: 10.1080/19420862.2022.2085535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Advances in antibody engineering have enabled the construction of novel molecular formats in diverse shapes and sizes, providing new opportunities for biologic therapies and expanding the need to understand how various structural aspects affect their distribution properties. To assess the effect of antibody size on systemic pharmacokinetics (PK) and tissue distribution with or without neonatal Fc receptor (FcRn) binding, we evaluated a series of non-mouse-binding anti-glycoprotein D monoclonal antibody formats, including IgG [~150 kDa], one-armed IgG [~100 kDa], IgG-HAHQ (attenuated FcRn binding) [~150 kDa], F(ab')2 [~100 kDa], and F(ab) [~50 kDa]. Tissue-specific concentration-time profiles were corrected for blood content based on vascular volumes and normalized based on interstitial volumes to allow estimation of interstitial concentrations and interstitial:serum concentration ratios. Blood correction demonstrated that the contribution of circulating antibody on total uptake was greatest at early time points and for highly vascularized tissues. Tissue interstitial PK largely mirrored serum exposure profiles. Similar interstitial:serum ratios were obtained for the two FcRn-binding molecules, IgG and one-armed IgG, which reached pseudo-steady-state kinetics in most tissues. For non-FcRn-binding molecules, interstitial:serum ratios changed over time, suggesting that these molecules did not reach steady-state kinetics during the study. Furthermore, concentration-time profiles of both intact and catabolized molecule were measured by a dual tracer approach, enabling quantification of tissue catabolism and demonstrating that catabolism levels were highest for IgG-HAHQ. Overall, these data sets provide insight into factors affecting preclinical distribution and may be useful in estimating interstitial concentrations and/or catabolism in human tissues.
Collapse
Affiliation(s)
- Hanine Rafidi
- Departments of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA
| | - Sharmila Rajan
- Departments of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA
| | - Konnie Urban
- Safety Assessment, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA
| | - Whitney Shatz-Binder
- Protein Chemistry, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA
| | - Keliana Hui
- Departments of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA
| | - Gregory Z Ferl
- Departments of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA.,Biomedical Imaging, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA
| | - Amrita V Kamath
- Departments of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA
| | - C Andrew Boswell
- Departments of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA.,Biomedical Imaging, Research and Early Development, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
18
|
Pharmacokinetics and Pharmacodynamics of T-Cell Bispecifics in the Tumour Interstitial Fluid. Pharmaceutics 2021; 13:pharmaceutics13122105. [PMID: 34959386 PMCID: PMC8705663 DOI: 10.3390/pharmaceutics13122105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
The goal of this study is to investigate the pharmacokinetics in plasma and tumour interstitial fluid of two T-cell bispecifics (TCBs) with different binding affinities to the tumour target and to assess the subsequent cytokine release in a tumour-bearing humanised mouse model. Pharmacokinetics (PK) as well as cytokine data were collected in humanised mice after iv injection of cibisatamab and CEACAM5-TCB which are binding with different binding affinities to the tumour antigen carcinoembryonic antigen (CEA). The PK data were modelled and coupled to a previously published physiologically based PK model. Corresponding cytokine release profiles were compared to in vitro data. The PK model provided a good fit to the data and precise estimation of key PK parameters. High tumour interstitial concentrations were observed for both TCBs, influenced by their respective target binding affinities. In conclusion, we developed a tailored experimental method to measure PK and cytokine release in plasma and at the site of drug action, namely in the tumour. Integrating those data into a mathematical model enabled to investigate the impact of target affinity on tumour accumulation and can have implications for the PKPD assessment of the therapeutic antibodies.
Collapse
|
19
|
Siegemund M, Oak P, Hansbauer EM, Allersdorfer A, Utschick K, Winter A, Grasmüller C, Galler G, Mayer JP, Weiche B, Prassler J, Kontermann RE, Rothe C. Pharmacokinetic Engineering of OX40-Blocking Anticalin Proteins Using Monomeric Plasma Half-Life Extension Domains. Front Pharmacol 2021; 12:759337. [PMID: 34759826 PMCID: PMC8573339 DOI: 10.3389/fphar.2021.759337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Anticalin® proteins have been proven as versatile clinical stage biotherapeutics. Due to their small size (∼20 kDa), they harbor a short intrinsic plasma half-life which can be extended, e.g., by fusion with IgG or Fc. However, for antagonism of co-immunostimulatory Tumor Necrosis Factor Receptor Superfamily (TNFRSF) members in therapy of autoimmune and inflammatory diseases, a monovalent, pharmacokinetically optimized Anticalin protein format that avoids receptor clustering and therefore potential activation is favored. We investigated the suitability of an affinity-improved streptococcal Albumin-Binding Domain (ABD) and the engineered Fab-selective Immunoglobulin-Binding Domain (IgBD) SpGC3Fab for plasma Half-Life Extension (HLE) of an OX40-specific Anticalin and bispecific Duocalin proteins, neutralizing OX40 and a second co-immunostimulatory TNFRSF member. The higher affinity of ABD fusion proteins to human serum albumin (HSA) and Mouse Serum Albumin (MSA), with a 4 to 5-order of magnitude lower KD compared with the binding affinity of IgBD fusions to human/mouse IgG, translated into longer terminal plasma half-lives (t1/2). Hence, the anti-OX40 Anticalin-ABD protein reached t1/2 values of ∼40 h in wild-type mice and 110 h in hSA/hFcRn double humanized mice, in contrast to ∼7 h observed for anti-OX40 Anticalin-IgBD in wild-type mice. The pharmacokinetics of an anti-OX40 Anticalin-Fc fusion protein was the longest in both models (t1/2 of 130 h and 146 h, respectively). Protein formats composed of two ABDs or IgBDs instead of one single HLE domain clearly showed longer presence in the circulation. Importantly, Anticalin-ABD and -IgBD fusions showed OX40 receptor binding and functional competition with OX40L-induced cellular reactivity in the presence of albumin or IgG, respectively. Our results suggest that fusion to ABD or IgBD can be a versatile platform to tune the plasma half-life of Anticalin proteins in response to therapeutic needs.
Collapse
Affiliation(s)
- Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Prajakta Oak
- Pieris Pharmaceuticals GmbH, Hallbergmoos, Germany
| | | | | | | | | | | | | | | | | | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
20
|
Gao F, Zhang X. Pharmacokinetic profiles of a SARS-COV-2 neutralizing antibody BD-604 in cynomolgus monkeys. Drug Test Anal 2021; 13:1727-1734. [PMID: 34215019 PMCID: PMC8427073 DOI: 10.1002/dta.3122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Currently, severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has spread worldwide as a severe pandemic and effective therapeutic medications are urgently needed. As reported previously, BD-604 is a fully human monoclonal antibody with strong in vitro and in vivo neutralizing activity to SARS-COV-2. OBJECTIVE The purpose of this study was to characterize the pharmacokinetic propertie of BD-604 in cynomolgus monkeys. METHODS To analyze the concentration of BD-604 in cynomolgus monkey serum, an ELISA assay was established, and a systemic validation was performed including accuracy and precision, dilution linearity and hook effect, selectivity, specificity, stability, and parallelism tests. Then, six naïve cynomolgus monkeys (3/sex) were administered BD-604 at a single dose of 10 mg/kg via intravenous infusion (60 min). Blood samples were collected at various time points (0-672 h) and analyzed for serum concentrations of BD-604. RESULTS The data from validation experiments assure the reproducibility and reliability of the established ELISA assay. Then, the validated method was used to measure BD-604 concentration in cynomolgus monkey serum. The pharmacokinetics parameters including terminal half-life (t1/2 ), peak serum concentration (Cmax ), area under curve from time zero to last timepoint or infinity (AUClast /AUCinf ), apparent volume of distribution (Vz ), clearance rate (CL), and mean residence time (MRT) were calculated and reported. BD-604 showed no marked sex differences at the dose of 10 mg/kg when comparing the AUC0-last and Cmax between female and male cynomolgus monkeys. CONCLUSION In cynomolgus monkeys, BD-604 possesses pharmacokinetic properties similar to natural IgGs.
Collapse
Affiliation(s)
- Feng Gao
- Singlomics (Beijing DanXu Biopharmaceuticals) Co., Ltd., Beijing, China
| | - Xu Zhang
- Singlomics (Beijing DanXu Biopharmaceuticals) Co., Ltd., Beijing, China
| |
Collapse
|
21
|
Mahmood I, Tegenge MA. Spreadsheet-Based Minimal Physiological Models for the Prediction of Clearance of Therapeutic Proteins in Pediatric Patients. J Clin Pharmacol 2021; 61 Suppl 1:S108-S116. [PMID: 34185903 DOI: 10.1002/jcph.1846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
There is a growing interest in the use of physiologically based pharmacokinetic (PBPK) models as clinical pharmacology drug development tools. In PBPK modeling, not every organ or physiological parameter is required, leading to the development of a minimal PBPK (mPBPK) model, which is simple and efficient. The objective of this study was to streamline mPBPK modeling approaches and enable straightforward prediction of clearance of protein-based products in children. Four mPBPK models for scaling clearance from adult to children were developed and evaluated on Excel spreadsheets using (1) liver and kidneys; (2) liver, kidneys, and skin; (3) liver, kidneys, skin, and lymph; and (4) interstitial, lymph, and plasma volume. There were 35 therapeutic proteins with a total of 113 observations across different age groups (premature neonates to adolescents). For monoclonal and polyclonal antibodies, more than 90% of observations were within a 0.5- to 2-fold prediction error for all 4 methods. For nonantibodies, 79% to 100% of observations were within the 0.5- to 2-fold prediction error for the 4 different methods. Methods 1 and 4 provided the best results, >90% of the total observations were within the 0.5- to 2-fold prediction error for all 3 classes of protein-based products across a wide age range. The precision of clearance prediction was comparatively lower in children ≤2 years of age vs older children (>2 years of age) with methods 1 and 4 predicting 80% to 100% and 75% to 90% of observations within the 0.5- to 2-fold prediction error, respectively. The results of the study indicated that mPBPK models can be developed on spreadsheets, with acceptable performance for prediction of clearance.
Collapse
Affiliation(s)
- Iftekhar Mahmood
- Mahmood Clinical Pharmacology Consultancy, Rockville, Maryland, USA
| | - Million A Tegenge
- Division of Clinical Evaluation and Pharmacology/Toxicology, Center for Biologics Evaluation and Research (CBER), Office of Tissues and Advanced Therapies (OTAT), Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
22
|
Van De Vyver AJ, Marrer-Berger E, Wang K, Lehr T, Walz AC. Cytokine Release Syndrome By T-cell-Redirecting Therapies: Can We Predict and Modulate Patient Risk? Clin Cancer Res 2021; 27:6083-6094. [PMID: 34162679 DOI: 10.1158/1078-0432.ccr-21-0470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
T-cell-redirecting therapies are promising new therapeutic options in the field of cancer immunotherapy, but the development of these modalities is challenging. A commonly observed adverse event in patients treated with T-cell-redirecting therapies is cytokine release syndrome (CRS). Its clinical manifestation is a burden on patients, and continues to be a big hurdle in the clinical development of this class of therapeutics. We review different T-cell-redirecting therapies, discuss key factors related to cytokine release and potentially leading to CRS, and present clinical mitigation strategies applied for those modalities. We propose to dissect those risk factors into drug-target-disease-related factors and individual patient risk factors. Aiming to optimize the therapeutic intervention of these modalities, we illustrate how the knowledge on drug-target-disease-related factors, such as target expression, binding affinity, and target accessibility, can be leveraged in a model-based framework and highlight with case examples how modeling and simulation is applied to guide drug discovery and development. We draw attention to the current gaps in predicting the individual patient's risk towards a high-grade CRS, which requires further considerations of risk factors related, but not limited to, the patient's demographics, genetics, underlying pathologies, treatment history, and environmental exposures. The drug-target-disease-related factors together with the individual patient's risk factors can be regarded as the patient's propensity for developing CRS in response to therapy. As an outlook, we suggest implementing a risk scoring system combined with mechanistic modeling to enable the prediction of an individual patient's risk of CRS for a given therapeutic intervention.
Collapse
Affiliation(s)
- Arthur J Van De Vyver
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland. .,Saarland University, Department of Clinical Pharmacy, Saarbrücken, Germany
| | - Estelle Marrer-Berger
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Ken Wang
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | - Thorsten Lehr
- Saarland University, Department of Clinical Pharmacy, Saarbrücken, Germany
| | - Antje-Christine Walz
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| |
Collapse
|
23
|
Enell Smith K, Deronic A, Hägerbrand K, Norlén P, Ellmark P. Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy. Expert Opin Biol Ther 2021; 21:1635-1646. [PMID: 34043482 DOI: 10.1080/14712598.2021.1934446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction: CD40 signaling activates dendritic cells leading to improved T cell priming against tumor antigens. CD40 agonism expands the tumor-specific T cell repertoire and has the potential to increase the fraction of patients that respond to established immunotherapies.Areas covered: This article reviews current as well as emerging CD40 agonist therapies with a focus on antibody-based therapies, including next generation bispecific CD40 agonists. The scientific rationale for different design criteria, binding epitopes, and formats are discussed.Expert opinion: The ability of CD40 agonists to activate dendritic cells and enhance antigen cross-presentation to CD8+ T cells provides an opportunity to elevate response rates of cancer immunotherapies. While there are many challenges left to address, including optimal dose regimen, CD40 agonist profile, combination partners and indications, we are confident that CD40 agonists will play an important role in the challenging task of reprogramming the immune system to fight cancer.
Collapse
Affiliation(s)
| | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Sweden.,Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Le Prieult F, Barini E, Laplanche L, Schlegel K, Mezler M. Collecting antibodies and large molecule biomarkers in mouse interstitial brain fluid: a comparison of microdialysis and cerebral open flow microperfusion. MAbs 2021; 13:1918819. [PMID: 33993834 PMCID: PMC8128180 DOI: 10.1080/19420862.2021.1918819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The determination of concentrations of large therapeutic molecules, like monoclonal antibodies (mAbs), in the interstitial brain fluid (ISF) is one of the cornerstones for the translation from preclinical species to humans of treatments for neurodegenerative diseases. Microdialysis (MD) and cerebral open flow microperfusion (cOFM) are the only currently available methods for extracting ISF, and their use and characterization for the collection of large molecules in rodents have barely started. For the first time, we compared both methods at a technical and performance level for measuring ISF concentrations of a non-target-binding mAb, trastuzumab, in awake and freely moving mice. Without correction of the data for recovery, concentrations of samples are over 10-fold higher through cOFM compared to MD. The overall similar pharmacokinetic profile and ISF exposure between MD (corrected for recovery) and cOFM indicate an underestimation of the absolute concentrations calculated with in vitro recovery. In vivo recovery (zero-flow rate method) revealed an increased extraction of trastuzumab at low flow rates and a 6-fold higher absolute concentration at steady state than initially calculated with the in vitro recovery. Technical optimizations have significantly increased the performance of both systems, resulting in the possibility of sampling up to 12 mice simultaneously. Moreover, strict aseptic conditions have played an important role in improving data quality. The standardization of these complex methods makes the unraveling of ISF concentrations attainable for various diseases and modalities, starting in this study with mAbs, but extending further in the future to RNA therapeutics, antibody-drug conjugates, and even cell therapies.
Collapse
Affiliation(s)
- Florie Le Prieult
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Erica Barini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Loic Laplanche
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Kerstin Schlegel
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Mario Mezler
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| |
Collapse
|
25
|
Song DH, Garcia G, Situ K, Chua BA, Hong MLO, Do EA, Ramirez CM, Harui A, Arumugaswami V, Morizono K. Development of a blocker of the universal phosphatidylserine- and phosphatidylethanolamine-dependent viral entry pathways. Virology 2021; 560:17-33. [PMID: 34020328 DOI: 10.1016/j.virol.2021.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.
Collapse
Affiliation(s)
- Da-Hoon Song
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Kathy Situ
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bernadette A Chua
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Madeline Lauren O Hong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elyza A Do
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Airi Harui
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
26
|
Khaowroongrueng V, Jadhav SB, Syed M, Akbar M, Gertz M, Otteneder MB, Fueth M, Derendorf H. Pharmacokinetics and Determination of Tumor Interstitial Distribution of a Therapeutic Monoclonal Antibody Using Large-Pore Microdialysis. J Pharm Sci 2021; 110:3061-3068. [PMID: 33819461 DOI: 10.1016/j.xphs.2021.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
R7072 is a fully human monoclonal antibody (mAb) exerting anti-tumor activity via blockade of insulin like growth factor 1 receptor. The tumoral interstitial concentrations are anticipated to be better surrogates of active site concentrations than commonly used serum concentrations for pharmacokinetic-pharmacodynamic correlation of anti-tumor mAbs. Previously, a large-pore microdialysis technique for measuring tissue interstitial concentrations of R7072 in non-tumor bearing mice was established. In the current studies, the serum pharmacokinetics of R7072 were assessed and tissue interstitial concentrations were measured by large-pore microdialysis following intravenous and intraperitoneal administration of R7072 in tumor bearing mice. R7072 exhibited nonlinear pharmacokinetics in the studied dose range. Tumor and subcutaneous interstitial concentration data suggested some delay in tissue distribution after dosing. A dose-dependent increase in the ratio of tumor interstitial to serum concentration was observed indicating target-mediated drug disposition in tumor tissue. However, subcutaneous interstitial to serum concentration ratios were similar across the doses as observed previously in non-tumor bearing mice. A two-compartment population pharmacokinetic model with subcutaneous and tumor as open-loop compartments comprising of parallel linear and non-linear elimination from serum, linear disposition from subcutaneous interstitium and non-linear disposition from tumor interstitium was developed to simultaneously describe the pharmacokinetic data from all matrices.
Collapse
Affiliation(s)
- Vipada Khaowroongrueng
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Satyawan B Jadhav
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Muzeeb Syed
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Mohammad Akbar
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Michael Gertz
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael B Otteneder
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, Basel, Switzerland
| | - Matthias Fueth
- Roche Pharma Research and Early Development, Pharmaceutical Science, Roche Innovation Center Basel, Basel, Switzerland.
| | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Modeling Pharmacokinetics and Pharmacodynamics of Therapeutic Antibodies: Progress, Challenges, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13030422. [PMID: 33800976 PMCID: PMC8003994 DOI: 10.3390/pharmaceutics13030422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
With more than 90 approved drugs by 2020, therapeutic antibodies have played a central role in shifting the treatment landscape of many diseases, including autoimmune disorders and cancers. While showing many therapeutic advantages such as long half-life and highly selective actions, therapeutic antibodies still face many outstanding issues associated with their pharmacokinetics (PK) and pharmacodynamics (PD), including high variabilities, low tissue distributions, poorly-defined PK/PD characteristics for novel antibody formats, and high rates of treatment resistance. We have witnessed many successful cases applying PK/PD modeling to answer critical questions in therapeutic antibodies’ development and regulations. These models have yielded substantial insights into antibody PK/PD properties. This review summarized the progress, challenges, and future directions in modeling antibody PK/PD and highlighted the potential of applying mechanistic models addressing the development questions.
Collapse
|
28
|
Chang HP, Kim SJ, Shah DK. Whole-Body Pharmacokinetics of Antibody in Mice Determined using Enzyme-Linked Immunosorbent Assay and Derivation of Tissue Interstitial Concentrations. J Pharm Sci 2020; 110:446-457. [PMID: 32502472 DOI: 10.1016/j.xphs.2020.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Here we have reported whole-body disposition of wild-type IgG and FcRn non-binding IgG in mice, determined using Enzyme-Linked Immunosorbent Assay (ELISA). The disposition data generated using ELISA are compared with previously published biodistribution data generated using radiolabelled IgG. In addition, we introduce a novel concept of ABCIS values, which are defined as percentage ratios of tissue interstitial and plasma AUC values. These values can help in predicting tissue interstitial concentrations of monoclonal antibodies (mAbs) based on the plasma concentrations. Tissue interstitial concentrations derived from our study are also compared with previously reported values measured using microdialysis or centrifugation method. Lastly, the new set of biodistribution data generated using ELISA are used to refine the PBPK model for mAbs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Se Jin Kim
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
29
|
Goto R, Inuzuka R, Shindo T, Namai Y, Oda Y, Harita Y, Oka A. Relationship between post-IVIG IgG levels and clinical outcomes in Kawasaki disease patients: new insight into the mechanism of action of IVIG. Clin Rheumatol 2020; 39:3747-3755. [PMID: 32458247 DOI: 10.1007/s10067-020-05153-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION/OBJECTIVES The dosing of intravenous immunoglobulin (IVIG) therapy for Kawasaki disease (KD) has been a matter of debate for decades, with recent studies implicating that larger doses lead to better outcomes. Despite this, few have investigated post-IVIG infusion immunoglobulin G (IgG) levels in relation to outcomes of KD such as response to IVIG and development of coronary artery abnormalities (CAAs). The present study investigated how varying levels of post-infusion IgG affected these outcomes. METHOD We collected demographic and laboratory data, including post-infusion IgG, from children with KD who were admitted to six hospitals in Japan between 2006 and 2012. We conducted multivariate analyses to examine the relationship between independent variables and non-response to IVIG and development of CAAs. We used random forest, a decision tree-based machine learning tool, to investigate the marginal effect of varying post-infusion IgG levels on non-response to IVIG and development of CAAs. RESULTS Of 456 patients included in the study, 130 (28.5%) were non-responders and 38 (8.3%) developed CAAs. Sodium, post-infusion IgG, and AST were significantly associated with non-response. Post-infusion IgG and sodium were significantly associated with CAA development. The random forest plots revealed a decrease in non-response and CAA rates with increasing post-infusion IgG until post-infusion IgG was near the median (2821 mg/dL), after which the non-response and CAA rates leveled off. CONCLUSIONS Greater post-infusion IgG is associated with better response to IVIG and decreased CAA development in KD patients, but this effect levels off at post-infusion IgG levels greater than the median. Key points • Though previous studies have shown that post-intravenous immunoglobulin (IVIG) infusion immunoglobulin G (IgG) is associated with non-response to IVIG therapy and coronary artery abnormality (CAA) development in Kawasaki disease (KD) patients, no study has investigated the relationship between varying levels of post-infusion IgG and these clinical outcomes. • Our study showed that non-response to IVIG therapy and CAA development in Kawasaki disease patients follow a decreasing trend with increasing post-infusion IgG at post-infusion IgG levels below the median. • At values of post-infusion IgG greater than the median, non-response and CAA development rates remain relatively constant with increasing post-infusion IgG. • Our study suggests that when post-infusion IgG is greater than the median, IgG may have fully bound to the therapeutic targets of KD, and in these patients, there may be limited benefit in administering additional IVIG.
Collapse
Affiliation(s)
- Ryunosuke Goto
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryo Inuzuka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Takahiro Shindo
- Division of Cardiology, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-0074, Japan
| | - Yoshiyuki Namai
- Department of Pediatrics, Ohta Nishinouchi Hospital, 2-5-20 Nishinouchi, Koriyama, Fukushima, 963-8558, Japan
| | - Yoichiro Oda
- Department of Pediatrics, Chigasaki Municipal Hospital, 5-15-1 Honson, Chigasaki, Kanagawa, 253-0042, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
30
|
Computer-assembled cross-species/cross-modalities two-pore physiologically based pharmacokinetic model for biologics in mice and rats. J Pharmacokinet Pharmacodyn 2019; 46:339-359. [PMID: 31079322 DOI: 10.1007/s10928-019-09640-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Two-pore physiologically-based pharmacokinetic (PBPK) models can be expected to describe the tissue distribution and elimination kinetics of soluble proteins, endogenous or dosed, as function of their size. In this work, we amalgamated our previous two-pore PBPK model for an inert domain antibody (dAb) in mice with the cross-species platform PBPK model for monoclonal antibodies described in literature into a unified two-pore platform that describes protein modalities of different sizes and includes neonatal Fc receptor (FcRn) mediated recycling. This unified PBPK model was parametrized for organ-specific lymph flow rates and the endosomal recycling rate constant using an extended tissue distribution time-course dataset that included an inert dAb, albumin and IgG in rats and mice. The model was evaluated by comparing the ab initio predictions for the tissue distribution and elimination properties of albumin-binding dAbs (AlbudAbsTM) in mice and rats with the experimental observations. Due to the large number of molecular species and reactions involved in large-scale PBPK models, we have also developed and deployed a MatlabTM script for automating the assembly of SimBiologyTM-based two-pore biologics PBPK models which drastically cuts the time and effort required for model building.
Collapse
|
31
|
A Bioluminescence Resonance Energy Transfer-Based Approach for Determining Antibody-Receptor Occupancy In Vivo. iScience 2019; 15:439-451. [PMID: 31121469 PMCID: PMC6529791 DOI: 10.1016/j.isci.2019.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Elucidating receptor occupancy (RO) of monoclonal antibodies (mAbs) is a crucial step in characterizing the therapeutic efficacy of mAbs. However, the in vivo assessment of RO, particularly within peripheral tissues, is greatly limited by current technologies. In the present study, we developed a bioluminescence resonance energy transfer (BRET)-based system that leverages the large signal:noise ratio and stringent energy donor-acceptor distance dependency to measure antibody RO in a highly selective and temporal fashion. This versatile and minimally invasive system enables longitudinal monitoring of the in vivo antibody-receptor engagement over several days. As a proof of principle, we quantified cetuximab-epidermal growth factor receptor binding kinetics using this system and assessed cetuximab RO in a tumor xenograft model. Incomplete ROs were observed, even at a supratherapeutic dose of 50 mg/kg, indicating that fractional target accessibility is achieved. The BRET-based imaging approach enables quantification of antibody in vivo RO and provides critical information required to optimize therapeutic mAb efficacy. Nano-BRET was used to longitudinally quantify cetuximab-binding kinetics to EGFR Incomplete EGFR occupancy in solid tumors was observed even at supratherapeutic doses A kinetic disassociation exists between plasma antibody and bound targets in tumors
Collapse
|
32
|
Kalra P, Brandl J, Gaub T, Niederalt C, Lippert J, Sahle S, Küpfer L, Kummer U. Quantitative systems pharmacology of interferon alpha administration: A multi-scale approach. PLoS One 2019; 14:e0209587. [PMID: 30759154 PMCID: PMC6374012 DOI: 10.1371/journal.pone.0209587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022] Open
Abstract
The therapeutic effect of a drug is governed by its pharmacokinetics which determine the downstream pharmacodynamic response within the cellular network. A complete understanding of the drug-effect relationship therefore requires multi-scale models which integrate the properties of the different physiological scales. Computational modelling of these individual scales has been successfully established in the past. However, coupling of the scales remains challenging, although it will provide a unique possibility of mechanistic and holistic analyses of therapeutic outcomes for varied treatment scenarios. We present a methodology to combine whole-body physiologically-based pharmacokinetic (PBPK) models with mechanistic intracellular models of signal transduction in the liver for therapeutic proteins. To this end, we developed a whole-body distribution model of IFN-α in human and a detailed intracellular model of the JAK/STAT signalling cascade in hepatocytes and coupled them at the liver of the whole-body human model. This integrated model infers the time-resolved concentration of IFN-α arriving at the liver after intravenous injection while simultaneously estimates the effect of this dose on the intracellular signalling behaviour in the liver. In our multi-scale physiologically-based pharmacokinetic/pharmacodynamic (PBPK/PD) model, receptor saturation is seen at low doses, thus giving mechanistic insights into the pharmacodynamic (PD) response. This model suggests a fourfold lower intracellular response after administration of a typical IFN-α dose to an individual as compared to the experimentally observed responses in in vitro setups. In conclusion, this work highlights clear differences between the observed in vitro and in vivo drug effects and provides important suggestions for future model-based study design.
Collapse
Affiliation(s)
- Priyata Kalra
- Department of Modelling of Biological Processes, COS/BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Julian Brandl
- Department of Modelling of Biological Processes, COS/BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
- Now at Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Gaub
- Clinical Sciences, Bayer Pharma, Kaiser-Wilhelm-Allee 1, Leverkusen, Germany
| | - Christoph Niederalt
- Clinical Sciences, Bayer Pharma, Kaiser-Wilhelm-Allee 1, Leverkusen, Germany
| | - Jörg Lippert
- Clinical Sciences, Bayer Pharma, Kaiser-Wilhelm-Allee 1, Leverkusen, Germany
| | - Sven Sahle
- Department of Modelling of Biological Processes, COS/BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
| | - Lars Küpfer
- Clinical Sciences, Bayer Pharma, Kaiser-Wilhelm-Allee 1, Leverkusen, Germany
| | - Ursula Kummer
- Department of Modelling of Biological Processes, COS/BioQuant, Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
33
|
Ura B, Di Lorenzo G, Romano F, Monasta L, Mirenda G, Scrimin F, Ricci G. Interstitial Fluid in Gynecologic Tumors and Its Possible Application in the Clinical Practice. Int J Mol Sci 2018; 19:ijms19124018. [PMID: 30545144 PMCID: PMC6321738 DOI: 10.3390/ijms19124018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Gynecologic cancers are an important cause of worldwide mortality. The interstitium consists of solid and fluid phases, situated between the blood vessels and cells. The interstitial fluid (IF), or fluid phase, is an extracellular fluid bathing and surrounding the tissue cells. The TIF (tumor interstitial fluid) is a dynamic fluid rich in lipids, proteins and enzyme-derived substances. The molecules found in the IF may be associated with pathological changes in tissues leading to cancer growth and metastatization. Proteomic techniques have allowed an extensive study of the composition of the TIF as a source of biomarkers for gynecologic cancers. In our review, we analyze the composition of the TIF, its formation process, the sampling methods, the consequences of its accumulation and the proteomic analyses performed, that make TIF valuable for monitoring different types of cancers.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Federico Romano
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Lorenzo Monasta
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giuseppe Mirenda
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Federica Scrimin
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Giuseppe Ricci
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34137 Trieste, Italy.
| |
Collapse
|
34
|
Nanotracing and cavity-ring down spectroscopy: A new ultrasensitive approach in large molecule drug disposition studies. PLoS One 2018; 13:e0205435. [PMID: 30332475 PMCID: PMC6192596 DOI: 10.1371/journal.pone.0205435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
New therapeutic biological entities such as bispecific antibodies targeting tissue or specific cell populations form an increasingly important part of the drug development portfolio. However, these biopharmaceutical agents bear the risk of extensive target-mediated drug disposition or atypical pharmacokinetic properties as compared to canonical antibodies. Pharmacokinetics and bio-distribution studies become therefore more and more important during lead optimization. Biologics present, however, greater analytical challenges than small molecule drugs due to the mass and selectivity limitation of mass spectrometry and ligand-binding assay, respectively. Radiocarbon (14C) and its detection methods, such as the emerging 14C cavity ring down spectroscopy (CRDS), thus can play an important role in the large molecule quantitation where a 14C-tag is covalently bound through a stable linker. CRDS has the advantage of a simplified sample preparation and introduction system as compared to accelerator mass spectrometry (AMS) and can be accommodated within an ordinary research laboratory. In this study, we report on the labeling of an anti-IL17 IgG1 model antibody with 14C propionate tag and its detection by CRDS using it as nanotracer (2.1 nCi or 77.7 Bq blended with the therapeutic dose) in a pharmacokinetics study in a preclinical species. We compare these data to data generated by AMS in parallel processed samples. The derived concentration time profiles for anti-IL17 by CRDS were in concordance with the ones derived by AMS and γ-counting of an 125I-labeled anti-IL17 radiotracer and were well described by a 2-compartment population pharmacokinetic model. In addition, antibody tissue distribution coefficients for anti-IL17 were determined by CRDS, which proved to be a direct and sensitive measurement of the extravascular tissue concentration of the antibody when tissue perfusion was applied. Thus, this proof-of-concept study demonstrates that trace 14C-radiolabels and CRDS are an ultrasensitive approach in (pre)clinical pharmacokinetics and bio-distribution studies of new therapeutic entities.
Collapse
|
35
|
Mandikian D, Figueroa I, Oldendorp A, Rafidi H, Ulufatu S, Schweiger MG, Couch JA, Dybdal N, Joseph SB, Prabhu S, Ferl GZ, Boswell CA. Tissue Physiology of Cynomolgus Monkeys: Cross-Species Comparison and Implications for Translational Pharmacology. AAPS JOURNAL 2018; 20:107. [PMID: 30298434 DOI: 10.1208/s12248-018-0264-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
We previously performed a comparative assessment of tissue-level vascular physiological parameters in mice and rats, two of the most commonly utilized species in translational drug development. The present work extends this effort to non-human primates by measuring tissue- and organ-level vascular volumes (Vv), interstitial volumes (Vi), and blood flow rates (Q) in cynomolgus monkeys. These measurements were accomplished by red blood cell labeling, extracellular marker infusion, and rubidium chloride bolus distribution, respectively, the same methods used in previous rodent measurements. In addition, whole-body blood volumes (BV) were determined across species. The results demonstrate that Vv, Vi, and Q, measured using our methods scale approximately by body weight across mouse, rat, and monkey in the tissues considered here, where allometric analysis allowed extrapolation to human parameters. Significant differences were observed between the values determined in this study and those reported in the literature, including Vv in muscle, brain, and skin and Q in muscle, adipose, heart, thymus, and spleen. The impact of these differences for selected tissues was evaluated via sensitivity analysis using a physiologically based pharmacokinetic model. The blood-brain barrier in monkeys was shown to be more impervious to an infused radioactive tracer, indium-111-pentetate, than in mice or rats. The body weight-normalized total BV measured in monkey agreed well with previously measured value in rats but was lower than that in mice. These findings have important implications for the common practice of scaling physiological parameters from rodents to primates in translational pharmacology.
Collapse
Affiliation(s)
- Danielle Mandikian
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Isabel Figueroa
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Amy Oldendorp
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Hanine Rafidi
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Sheila Ulufatu
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Michelle G Schweiger
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Jessica A Couch
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Noel Dybdal
- Safety Assessment, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Sean B Joseph
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA
| | - Gregory Z Ferl
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA. .,Genentech Inc., 1 DNA Way MS 463a, South San Francisco, California, 94080, USA.
| | - C Andrew Boswell
- Preclinical and Translational Pharmacokinetics, Genentech Research and Early Development, South San Francisco, California, 94080, USA. .,Genentech Inc., 1 DNA Way MS 463a, South San Francisco, California, 94080, USA.
| |
Collapse
|
36
|
Li X, Jusko WJ, Cao Y. Role of Interstitial Fluid Turnover on Target Suppression by Therapeutic Biologics Using a Minimal Physiologically Based Pharmacokinetic Model. J Pharmacol Exp Ther 2018; 367:1-8. [PMID: 30002096 PMCID: PMC6123664 DOI: 10.1124/jpet.118.250134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023] Open
Abstract
For therapeutic biologics against soluble ligands, the magnitude and duration of target suppression affect their therapeutic efficacy. Many factors have been evaluated in relation to target suppression but the interstitial fluid turnover rate in target tissues has not been considered. Inspired by the fact that etanercept exerts limited efficacy in Crohn's disease despite its high efficacy in rheumatoid arthritis, we developed a minimal physiologically based pharmacokinetic model to investigate the role of the tissue fluid turnover rate on soluble target suppression and assessed the interrelationships between binding constants and tissue fluid turnover. Interstitial fluid turnover rates in target tissues were found to strongly influence target binding kinetics. For tissues with low fluid turnover, stable binders (low koff) exhibit greater target suppression, but efficacy is often restricted by accumulation of the drug-target complex. For tissues with high fluid turnover, fast binders (high kon) are generally favored, but a plateau effect is present for antibodies with low dissociation rates (koff). Etanercept is often regarded as a fast tumor necrosis factor-α (TNF-α) binder (high kon) despite comparable binding affinity (KD, koff/kon) with adalimumab and infliximab. Crohn's disease largely involves the colon, a tissue with relatively slower fluid turnover than arthritis-associated joint synovium; this may explain why etanercept exerts poor TNF-α suppressive effect in Crohn's disease. This study highlights the importance of tissue interstitial fluid turnover in evaluation of therapeutic antibodies bound to soluble antigens.
Collapse
Affiliation(s)
- Xiaobing Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China (X.L.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (X.L., Y.C.); and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical, Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - William J Jusko
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China (X.L.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (X.L., Y.C.); and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical, Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - Yanguang Cao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China (X.L.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (X.L., Y.C.); and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical, Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| |
Collapse
|
37
|
Haslene-Hox H. Measuring gradients in body fluids - A tool for elucidating physiological processes, diagnosis and treatment of disease. Clin Chim Acta 2018; 489:233-241. [PMID: 30145208 DOI: 10.1016/j.cca.2018.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Hanne Haslene-Hox
- SINTEF Industry, Department of biotechnology and nanomedicine, Sem Sælands vei 2A, 7034 Trondheim, Norway.
| |
Collapse
|
38
|
Malik P, Edginton A. Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies. Expert Opin Drug Metab Toxicol 2018; 14:585-599. [PMID: 29806953 DOI: 10.1080/17425255.2018.1482278] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Dose design for pediatric trials with monoclonal antibodies (mAbs) is often extrapolated from the adult dose according to weight, age, or body surface area. While these methods account for the size differences between adults and children, they do not account for the maturation of processes that may play a key role in the pharmacokinetics and/or pharmacodynamics of mAbs. With the same weight-based dose, infants and young children typically receive lower plasma exposures when compared to adults. Areas covered: The mechanistic features of mAb distribution, elimination, and absorption are explored in detail and literature-based hypotheses are generated to describe their age-dependence. This knowledge can be incorporated into a physiologically based pharmacokinetic (PBPK) modeling approach to pediatric dose determination. Expert opinion: As data from pediatric clinical trials become increasingly available, we have the opportunity to reflect on the physiologic drivers of pharmacokinetics, safety, and efficacy in children with mathematical models. A modeling approach that accounts for the age-related features of mAb disposition can be used to derive first-in-pediatric doses, design optimal sampling schemes for children in clinical trials and even explore new pharmacokinetic end-points as predictors of safety and efficacy in children.
Collapse
Affiliation(s)
- Paul Malik
- a School of Pharmacy , University of Waterloo , Kitchener , Ontario , Canada
| | - Andrea Edginton
- a School of Pharmacy , University of Waterloo , Kitchener , Ontario , Canada
| |
Collapse
|
39
|
Falk JJ, Winkelmann M, Stöhr D, Alt M, Schrezenmeier H, Krawczyk A, Lotfi R, Sinzger C. Identification of Elite Neutralizers With Broad and Potent Neutralizing Activity Against Human Cytomegalovirus (HCMV) in a Population of HCMV-Seropositive Blood Donors. J Infect Dis 2018; 218:876-885. [DOI: 10.1093/infdis/jiy229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Martina Winkelmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, Ulm, Germany
| | - Mira Alt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany
| | | |
Collapse
|
40
|
Chen X, Jiang X, Doddareddy R, Geist B, McIntosh T, Jusko WJ, Zhou H, Wang W. Development and Translational Application of a Minimal Physiologically Based Pharmacokinetic Model for a Monoclonal Antibody against Interleukin 23 (IL-23) in IL-23-Induced Psoriasis-Like Mice. J Pharmacol Exp Ther 2018; 365:140-155. [PMID: 29420255 DOI: 10.1124/jpet.117.244855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
The interleukin (IL)-23/Th17/IL-17 immune pathway has been identified to play an important role in the pathogenesis of psoriasis. Many therapeutic proteins targeting IL-23 or IL-17 are currently under development for the treatment of psoriasis. In the present study, a mechanistic pharmacokinetics (PK)/pharmacodynamics (PD) study was conducted to assess the target-binding and disposition kinetics of a monoclonal antibody (mAb), CNTO 3723, and its soluble target, mouse IL-23, in an IL-23-induced psoriasis-like mouse model. A minimal physiologically based pharmacokinetic model with target-mediated drug disposition features was developed to quantitatively assess the kinetics and interrelationship between CNTO 3723 and exogenously administered, recombinant mouse IL-23 in both serum and lesional skin site. Furthermore, translational applications of the developed model were evaluated with incorporation of human PK for ustekinumab, an anti-human IL-23/IL-12 mAb developed for treatment of psoriasis, and human disease pathophysiology information in psoriatic patients. The results agreed well with the observed clinical data for ustekinumab. Our work provides an example on how mechanism-based PK/PD modeling can be applied during early drug discovery and how preclinical data can be used for human efficacious dose projection and guide decision making during early clinical development of therapeutic proteins.
Collapse
Affiliation(s)
- Xi Chen
- Biologics Development Sciences, Janssen BioTherapeutics (X.C., X.J., R.D., B.G., T.M., W.W.) and Global Clinical Pharmacology (H.Z.), Janssen R&D, Spring House, Pennsylvania; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - Xiling Jiang
- Biologics Development Sciences, Janssen BioTherapeutics (X.C., X.J., R.D., B.G., T.M., W.W.) and Global Clinical Pharmacology (H.Z.), Janssen R&D, Spring House, Pennsylvania; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - Rajitha Doddareddy
- Biologics Development Sciences, Janssen BioTherapeutics (X.C., X.J., R.D., B.G., T.M., W.W.) and Global Clinical Pharmacology (H.Z.), Janssen R&D, Spring House, Pennsylvania; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - Brian Geist
- Biologics Development Sciences, Janssen BioTherapeutics (X.C., X.J., R.D., B.G., T.M., W.W.) and Global Clinical Pharmacology (H.Z.), Janssen R&D, Spring House, Pennsylvania; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - Thomas McIntosh
- Biologics Development Sciences, Janssen BioTherapeutics (X.C., X.J., R.D., B.G., T.M., W.W.) and Global Clinical Pharmacology (H.Z.), Janssen R&D, Spring House, Pennsylvania; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - William J Jusko
- Biologics Development Sciences, Janssen BioTherapeutics (X.C., X.J., R.D., B.G., T.M., W.W.) and Global Clinical Pharmacology (H.Z.), Janssen R&D, Spring House, Pennsylvania; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - Honghui Zhou
- Biologics Development Sciences, Janssen BioTherapeutics (X.C., X.J., R.D., B.G., T.M., W.W.) and Global Clinical Pharmacology (H.Z.), Janssen R&D, Spring House, Pennsylvania; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| | - Weirong Wang
- Biologics Development Sciences, Janssen BioTherapeutics (X.C., X.J., R.D., B.G., T.M., W.W.) and Global Clinical Pharmacology (H.Z.), Janssen R&D, Spring House, Pennsylvania; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J.)
| |
Collapse
|
41
|
Lin Z. Advance in physiologically based pharmacokinetic modelling: from the organ level to suborgan level based on experimental data. J Physiol 2017; 595:7265-7266. [PMID: 29052221 DOI: 10.1113/jp275311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|