1
|
Ni Bhraonain EP, Turner JA, Hannigan KI, Sanders KM, Cobine CA. Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus. Cell Tissue Res 2024:10.1007/s00441-024-03929-z. [PMID: 39607495 DOI: 10.1007/s00441-024-03929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract, yet their function in the esophagus remains unknown. The mouse esophagus has been described as primarily skeletal muscle; however, ICC have been identified in this region. This study characterizes the distribution of skeletal and smooth muscle cells (SMCs) and their spatial relationship to ICC, PDGFRα+ cells, and intramuscular motor neurons in the mouse esophagus. SMCs occupied approximately 30% of the distal esophagus, but their density declined in more proximal regions. Similarly, ANO1+ intramuscular ICC (ICC-IM) were distributed along the esophagus, with density decreasing proximally. While ICC-IM were closely associated with SMCs, they were also present in regions of skeletal muscle. Intramuscular, submucosal, and myenteric PDGFRα+ cells were densely distributed throughout the esophagus, yet only intramuscular PDGFRα+ cells in the lower esophageal sphincter (LES) and distal esophagus expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with intramuscular nNOS+, VIP+, VAChT+, and TH+ neurons and GFAP+ cells resembling intramuscular enteric glia. These findings suggest that ICC-IM and PDGFRα+ cells may have roles in regulating esophageal motility due to their close proximity to each other and to skeletal muscle and SMCs, although further functional studies are needed to explore their role in this region. The mixed muscular composition and presence of interstitial cells in the mouse distal esophagus is anatomically similar to the transitional zone found in the human esophagus, and therefore, motility studies in the mouse may be translatable to humans.
Collapse
Affiliation(s)
- Emer P Ni Bhraonain
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Jack A Turner
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA.
| |
Collapse
|
2
|
Hannigan KI, Ni Bhraonain EP, Gould TW, Keef KD, Cobine CA. Modulation of intracellular calcium activity in interstitial cells of Cajal by inhibitory neural pathways within the internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 2024; 327:G382-G404. [PMID: 38860285 PMCID: PMC11427099 DOI: 10.1152/ajpgi.00309.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The internal anal sphincter (IAS) functions to maintain continence. Previous studies utilizing mice with cell-specific expression of GCaMP6f revealed two distinct subtypes of intramuscular interstitial cells of Cajal (ICC-IM) with differing Ca2+ activities in the IAS. The present study further examined Ca2+ activity in ICC-IM and its modulation by inhibitory neurotransmission. The spatiotemporal properties of Ca2+ transients in Type II ICC-IM mimicked those of smooth muscle cells (SMCs), indicating their joint participation in the "SIP" syncytium. Electrical field stimulation (EFS; atropine present) abolished localized and whole cell Ca2+ transients in Type I and II ICC-IM. The purinergic antagonist MRS2500 did not abolish EFS responses in either cell type, whereas the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine (l-NNA) abolished responses in Type I but not Type II ICC-IM. Combined antagonists abolished EFS responses in Type II ICC-IM. In both ICC-IM subtypes, the ability of EFS to inhibit Ca2+ release was abolished by l-NNA but not MRS2500, suggesting that the nitrergic pathway directly inhibits ICC-IM by blocking Ca2+ release from intracellular stores. Since inositol (1,4,5)-trisphosphate receptor-associated cGMP kinase substrate I (IRAG1) is expressed in ICC-IM, it is possible that it participates in the inhibition of Ca2+ release by nitric oxide. Platelet-derived growth factor receptor α (PDGFRα)+ cells but not ICC-IM expressed P2Y1 receptors (P2Y1R) and small-conductance Ca2+-activated K+ channels (SK3), suggesting that the purinergic pathway indirectly blocks whole cell Ca2+ transients in Type II ICC-IM via PDGFRα+ cells. This study provides the first direct evidence for functional coupling between inhibitory motor neurons and ICC-IM subtypes in the IAS, with contractile inhibition ultimately dependent upon electrical coupling between SMCs, ICC, and PDGFRα+ cells via the SIP syncytium.NEW & NOTEWORTHY Two intramuscular interstitial cells of Cajal (ICC-IM) subtypes exist within the internal anal sphincter (IAS). This study provides the first evidence for direct coupling between nitrergic motor neurons and both ICC-IM subtypes as well as indirect coupling between purinergic inputs and Type II ICC-IM. The spatiotemporal properties of whole cell Ca2+ transients in Type II ICC-IM mimic those of smooth muscle cells (SMCs), suggesting that ICC-IM modulate the activity of SMCs via their joint participation in a SIP syncytium (SMCs, ICC, and PDGFRα+ cells).
Collapse
Affiliation(s)
- Karen I Hannigan
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| | - Emer P Ni Bhraonain
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| | - Thomas W Gould
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| | - Kathleen D Keef
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| | - Caroline A Cobine
- Department of Physiology and Cell BiologyUniversity of NevadaRenoNevadaUnited States
| |
Collapse
|
3
|
Hwang SJ, Kim M, Jones A, Basma N, Baker SA, Sanders KM, Ward SM. Interstitial cells of the sip syncytium regulate basal membrane potential in murine gastric corpus. FASEB J 2024; 38:e23863. [PMID: 39143726 PMCID: PMC11587931 DOI: 10.1096/fj.202400982r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Smooth muscle cells (SMCs), Interstitial cells of Cajal (ICC) and Platelet-derived growth factor receptor α positive (PDGFRα+) cells form an integrated, electrical syncytium within the gastrointestinal (GI) muscular tissues known as the SIP syncytium. Immunohistochemical analysis of gastric corpus muscles showed that c-KIT+/ANO1+ ICC-IM and PDGFRα+ cells were closely apposed to one another in the same anatomical niches. We used intracellular microelectrode recording from corpus muscle bundles to characterize the roles of intramuscular ICC and PDGFRα+ cells in conditioning membrane potentials of gastric muscles. In muscle bundles, that have a relatively higher input impedance than larger muscle strips or sheets, we recorded an ongoing discharge of stochastic fluctuations in membrane potential, previously called unitary potentials or spontaneous transient depolarizations (STDs) and spontaneous transient hyperpolarizations (STHs). We reasoned that STDs should be blocked by antagonists of ANO1, the signature conductance of ICC. Activation of ANO1 has been shown to generate spontaneous transient inward currents (STICs), which are the basis for STDs. Ani9 reduced membrane noise and caused hyperpolarization, but this agent did not block the fluctuations in membrane potential quantitatively. Apamin, an antagonist of small conductance Ca2+-activated K+ channels (SK3), the signature conductance in PDGFRα+ cells, further reduced membrane noise and caused depolarization. Reversing the order of channel antagonists reversed the sequence of depolarization and hyperpolarization. These experiments show that the ongoing discharge of STDs and STHs by ICC and PDGFRα+ cells, respectively, exerts conditioning effects on membrane potentials in the SIP syncytium that would effectively regulate the excitability of SMCs.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - MinKyung Kim
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Amanda Jones
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Naseer Basma
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
4
|
Taheri N, Choi EL, Nguyen VTT, Zhang Y, Huynh NM, Kellogg TA, van Wijnen AJ, Ordog T, Hayashi Y. Inhibition of EZH2 Reduces Aging-Related Decline in Interstitial Cells of Cajal of the Mouse Stomach. Cell Mol Gastroenterol Hepatol 2024; 18:101376. [PMID: 38969206 PMCID: PMC11359770 DOI: 10.1016/j.jcmgh.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND & AIMS Restricted gastric motor functions contribute to aging-associated undernutrition, sarcopenia, and frailty. We previously identified a decline in interstitial cells of Cajal (ICC; gastrointestinal pacemaker and neuromodulator cells) and their stem cells (ICC-SC) as a key factor of gastric aging. Altered functionality of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) is central to organismal aging. Here, we investigated the role of EZH2 in the aging-related loss of ICC/ICC-SC. METHODS klotho mice, a model of accelerated aging, were treated with the most clinically advanced EZH2 inhibitor, EPZ6438 (tazemetostat; 160 mg/kg intraperitoneally twice a day for 3 weeks). Gastric ICC were analyzed by Western blotting and immunohistochemistry. ICC and ICC-SC were quantified by flow cytometry. Gastric slow wave activity was assessed by intracellular electrophysiology. Ezh2 was deactivated in ICC by treating KitcreERT2/+;Ezh2fl/fl mice with tamoxifen. TRP53, a key mediator of aging-related ICC loss, was induced with nutlin 3a in gastric muscle organotypic cultures and an ICC-SC line. RESULTS In klotho mice, EPZ6438 treatment mitigated the decline in the ICC growth factor KIT ligand/stem cell factor and gastric ICC. EPZ6438 also improved gastric slow wave activity and mitigated the reduced food intake and impaired body weight gain characteristic of this strain. Conditional genomic deletion of Ezh2 in Kit-expressing cells also prevented ICC loss. In organotypic cultures and ICC-SC, EZH2 inhibition prevented the aging-like effects of TRP53 stabilization on ICC/ICC-SC. CONCLUSIONS Inhibition of EZH2 with EPZ6438 mitigates aging-related ICC/ICC-SC loss and gastric motor dysfunction, improving slow wave activity and food intake in klotho mice.
Collapse
Affiliation(s)
- Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Egan L Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Vy Truong Thuy Nguyen
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yuebo Zhang
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Nick M Huynh
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | - Tamas Ordog
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
5
|
Ni Bhraonain E, Turner J, Hannigan K, Sanders K, Cobine C. Immunohistochemical characterization of interstitial cells and their relationship to motor neurons within the mouse esophagus. RESEARCH SQUARE 2024:rs.3.rs-4474290. [PMID: 38947055 PMCID: PMC11213231 DOI: 10.21203/rs.3.rs-4474290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract. However, their role(s) in esophageal motility are still unclear. The mouse esophagus has traditionally been described as almost entirely skeletal muscle in nature though ICC have been identified along its entire length. The current study evaluated the distribution of skeletal and smooth muscle within the esophagus using a mouse selectively expressing eGFP in smooth muscle cells (SMCs). The relationship of SMCs to ICC and PDGFRα+ cells was also examined. SMCs declined in density in the oral direction however SMCs represented ~ 25% of the area in the distal esophagus suggesting a likeness to the transition zone observed in humans. ANO1+ intramuscular ICC (ICC-IM) were distributed along the length of the esophagus though like SMCs, declined proximally. ICC-IM were closely associated with SMCs but were also found in regions devoid of SMCs. Intramuscular and submucosal PDGFRα+ cells were densely distributed throughout the esophagus though only intramuscular PDGFRα+ cells within the LES and distal esophagus highly expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with nNOS+, VIP+, VAChT+ and TH+ neurons throughout the LES and distal esophagus. GFAP+ cells resembling intramuscular enteric glia were observed within the muscle and were closely associated with ICC-IM and PDGFRα+ cells, occupying a similar location to c. These data suggest that the mouse esophagus is more similar to the human than thought previously and thus set the foundation for future functional and molecular studies using transgenic mice.
Collapse
|
6
|
Li P, Xiao Y, Zhou L, Zhang X, Xu Y, Wang X, Zou M, Guo X. A bibliometric analysis of interstitial cells of Cajal research. Front Med (Lausanne) 2024; 11:1391545. [PMID: 38831987 PMCID: PMC11145981 DOI: 10.3389/fmed.2024.1391545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 06/05/2024] Open
Abstract
Objective The significance of interstitial cells of Cajal (ICC) in the gastrointestinal tract has garnered increasing attention. In recent years, approximately 80 articles on ICC have been published annually in various journals. However, no bibliometric study has specifically focused on the literature related to ICC. Therefore, we conducted a comprehensive bibliometric analysis of ICC to reveal dynamic scientific developments, assisting researchers in exploring hotspots and emerging trends while gaining a global perspective. Methods We conducted a literature search in the Web of Science Core Collection (WoSCC) from January 1, 2013, to December 31, 2023, to identify relevant literature on ICC. We employed bibliometric software, namely VOSviewer and CiteSpace, to analyze various aspects including annual publication output, collaborations, research hotspots, current status, and development trends in this domain. Results A total of 891 English papers were published in 359 journals by 928 institutions from 57 countries/regions. According to the keyword analysis of the literature, researchers mainly focused on "c-Kit," "expression," "smooth muscle," and "nitric oxide" related to ICC over the past 11 years. However, with "SIP syncytium," "ANO1," "enteric neurons," "gastrointestinal stromal tumors (GIST)," and "functional dyspepsia (FD)," there has been a growing interest in the relationship between ANO1, SIP syncytium, and ICC, as well as the role of ICC in the treatment of GIST and FD. Conclusion Bibliometric analysis has revealed the current status of ICC research. The association between ANO1, SIP syncytium, enteric neurons and ICC, as well as the role of ICC in the treatment of GIST versus FD has become the focus of current research. However, further research and collaboration on a global scale are still needed. Our analysis is particularly valuable to researchers in gastroenterology, oncology, and cell biology, providing insights that can guide future research directions.
Collapse
Affiliation(s)
- Pengyu Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yadan Xiao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Lan Zhou
- Integrated Traditional Chinese and Western Medicine Department, The Third Hospital of Changsha, Changsha, China
| | - Xuyuan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaojuan Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Menglong Zou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Guo
- Science & Technology Innovation Center (National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry), Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Zholos AV, Melnyk MI, Dryn DO. Molecular mechanisms of cholinergic neurotransmission in visceral smooth muscles with a focus on receptor-operated TRPC4 channel and impairment of gastrointestinal motility by general anaesthetics and anxiolytics. Neuropharmacology 2024; 242:109776. [PMID: 37913983 DOI: 10.1016/j.neuropharm.2023.109776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Acetylcholine is the primary excitatory neurotransmitter in visceral smooth muscles, wherein it binds to and activates two muscarinic receptors subtypes, M2 and M3, thus causing smooth muscle excitation and contraction. The first part of this review focuses on the types of cells involved in cholinergic neurotransmission and on the molecular mechanisms underlying acetylcholine-induced membrane depolarisation, which is the central event of excitation-contraction coupling causing Ca2+ entry via L-type Ca2+ channels and smooth muscle contraction. Studies of the muscarinic cation current in intestinal myocytes (mICAT) revealed its main molecular counterpart, receptor-operated TRPC4 channel, which is activated in synergy by both M2 and M3 receptors. M3 receptors activation is of permissive nature, while activation of M2 receptors via Gi/o proteins that are coupled to them plays a direct role in TRPC4 opening. Our understanding of signalling pathways underlying mICAT generation has vastly expanded in recent years through studies of TRPC4 gating in native cells and its regulation in heterologous cells. Recent studies using muscarinic receptor knockout have established that at low agonist concentration activation of both M2 receptor and the M2/M3 receptor complex elicits smooth muscle contraction, while at high agonist concentration M3 receptor function becomes dominant. Based on this knowledge, in the second part of this review we discuss the cellular and molecular mechanisms underlying the numerous anticholinergic effects on neuroactive drugs, in particular general anaesthetics and anxiolytics, which can significantly impair gastrointestinal motility. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Alexander V Zholos
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| | - Mariia I Melnyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dariia O Dryn
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
9
|
Abstract
Propulsion of contents in the gastrointestinal tract requires coordinated functions of the extrinsic nerves to the gut from the brain and spinal cord, as well as the neuromuscular apparatus within the gut. The latter includes excitatory and inhibitory neurons, pacemaker cells such as the interstitial cells of Cajal and fibroblast-like cells, and smooth muscle cells. Coordination between these extrinsic and enteric neurons results in propulsive functions which include peristaltic reflexes, migrating motor complexes in the small intestine which serve as the housekeeper propelling to the colon the residual content after digestion, and mass movements in the colon which lead to defecation.
Collapse
Affiliation(s)
- Gary M Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, Vermont
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Zhao S, Zhang T, Tong W. Application of optogenetics in the study of gastrointestinal motility: A mini review. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2023; 16. [DOI: 10.1142/s1793545822300130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Disorders of gastrointestinal (GI) motility are associated with various symptoms such as nausea, vomiting, and constipation. However, the underlying causes of impaired GI motility remain unclear, which has led to variation in the efficacy of therapies to treat GI dysfunction. Optogenetics is a novel approach through which target cells can be precisely controlled by light and has shown great potential in GI motility research. Here, we summarized recent studies of GI motility patterns utilizing optogenetic devices and focused on the ability of opsins, which are genetically expressed in different types of cells in the gut, to regulate the excitability of target cells. We hope that our review of recent findings regarding optogenetic control of GI cells broadens the scope of application for optogenetics in GI motility studies.
Collapse
Affiliation(s)
- Song Zhao
- Department of General Surgery, Gastric and Colorectal Surgery Division, Army Medical Center (Daping Hospital), Army Medical University Chongqing, P. R. China
| | - Ting Zhang
- Department of General Surgery, The 983th Hospital of Joint Logistic Support Force of People’s Liberation Army, Tianjin, P. R. China
| | - Weidong Tong
- Department of General Surgery, Gastric and Colorectal Surgery Division, Army Medical Center (Daping Hospital), Army Medical University Chongqing, P. R. China
| |
Collapse
|
11
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
12
|
Hwang SJ, Drumm BT, Kim MK, Lyu JH, Baker S, Sanders KM, Ward SM. Calcium transients in intramuscular interstitial cells of Cajal of the murine gastric fundus and their regulation by neuroeffector transmission. J Physiol 2022; 600:4439-4463. [PMID: 36057845 DOI: 10.1113/jp282876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The cells responsible for mediating enteric neuroeffector transmission remain controversial. In the stomach intramuscular interstitial cells of Cajal (ICC-IM) were the first ICC reported to receive cholinergic and nitrergic neural inputs. Utilization of a cell specific calcium biosensor, GCaMP6f, the activity and neuroeffector responses of ICC-IM were examined. ICC-IM were highly active, generating stochastic intracellular Ca2+ -transients. Stimulation of enteric motor nerves abolished Ca2+ -transients in ICC-IM. This inhibitory response was preceded by a global rise in intracellular Ca2+ . Individual ICC-IM responded to nerve stimulation with a rise in Ca2+ followed by inhibition of Ca2+ -transients. Inhibition of Ca2+ -transients was blocked by the nitric oxide synthase antagonist, L-NNA. The global rise in Ca2+ was inhibited by the muscarinic antagonist, atropine. Simultaneous intracellular recordings with video imaging revealed that the global rise in intracellular Ca2+ and inhibition of Ca2+ -transients was temporally associated with rapid excitatory junction potentials followed by more sustained inhibitory junction potentials. The data presented support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. ABSTRACT Enteric neurotransmission is critical for coordinating motility throughout the gastrointestinal (GI) tract. However, there is considerable controversy regarding the cells that are responsible for the transduction of these neural inputs. In the present study, utilization of a cell-specific calcium biosensor GCaMP6f, the spontaneous activity and neuroeffector responses of intramuscular ICC (ICC-IM) to motor neural inputs was examined. Simultaneous intracellular microelectrode recordings and high-speed video-imaging during nerve stimulation was used to reveal the temporal relationship between changes in intracellular Ca2+ and post-junctional electrical responses to neural stimulation. ICC-IM were highly active, generating intracellular Ca2+ -transients that occurred stochastically, from multiple independent sites in single ICC-IM. Ca2+ -transients were not entrained in single ICC-IM or between neighboring ICC-IM. Activation of enteric motor neurons produced a dominant inhibitory response that abolished Ca2+ -transients in ICC-IM. This inhibitory response was often preceded by a summation of Ca2+ -transients that led to a global rise in Ca2+ . Individual ICC-IM responded to nerve stimulation by a global rise in Ca2+ followed by inhibition of Ca2+ -transients. The inhibition of Ca2+ -transients was blocked by the nitric oxide synthase antagonist, L-NNA. The global rise in intracellular Ca2+ was inhibited by the muscarinic antagonist, atropine. Simultaneous intracellular microelectrode recordings with video-imaging revealed that the rise in Ca2+ was temporally associated with rapid excitatory junction potentials and the inhibition of Ca2+ -transients with inhibitory junction potentials. These data support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. Abstract figure legend Intramuscular interstitial cells of Cajal (ICC-IM) of the gastric fundus receive nitrergic inhibitory and cholinergic excitatory neuroeffector motor inputs. Using a genetically encoded calcium sensor we demonstrate that ICC-IM are highly active cells generating stochastic intracellular Ca2 -transients. Stimulation of enteric motor nerves abolished Ca2 -transients in ICC-IM, produced an inhibitory junction potential (IJP) and muscle relaxation that was mediated by nitric oxide (left hand side of figure). This inhibitory response was often preceded by a global rise in intracellular Ca2 in ICC-IM, a rapid excitatory junction potential (EJP) and muscle contraction, that was mediated by acetylcholine (right hand side of figure). Individual ICC-IM could respond to both excitatory and inhibitory neural inputs. These data support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Min Kyung Kim
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Ju Hyeong Lyu
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sal Baker
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
13
|
Grainger N, Shonnard CC, Quiggle SK, Fox EB, Presley H, Daugherty R, Shonnard MC, Drumm BT, Sanders KM. Propagation of Pacemaker Activity and Peristaltic Contractions in the Mouse Renal Pelvis Rely on Ca 2+-activated Cl - Channels and T-Type Ca 2+ Channels. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac041. [PMID: 36325511 PMCID: PMC9614935 DOI: 10.1093/function/zqac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023]
Abstract
The process of urine removal from the kidney occurs via the renal pelvis (RP). The RP demarcates the beginning of the upper urinary tract and is endowed with smooth muscle cells. Along the RP, organized contraction of smooth muscle cells generates the force required to move urine boluses toward the ureters and bladder. This process is mediated by specialized pacemaker cells that are highly expressed in the proximal RP that generate spontaneous rhythmic electrical activity to drive smooth muscle depolarization. The mechanisms by which peristaltic contractions propagate from the proximal to distal RP are not fully understood. In this study, we utilized a transgenic mouse that expresses the genetically encoded Ca2+ indicator, GCaMP3, under a myosin heavy chain promotor to visualize spreading peristaltic contractions in high spatial detail. Using this approach, we discovered variable effects of L-type Ca2+ channel antagonists on contraction parameters. Inhibition of T-type Ca2+ channels reduced the frequency and propagation distance of contractions. Similarly, antagonizing Ca2+-activated Cl- channels or altering the transmembrane Cl- gradient decreased contractile frequency and significantly inhibited peristaltic propagation. These data suggest that voltage-gated Ca2+ channels are important determinants of contraction initiation and maintain the fidelity of peristalsis as the spreading contraction moves further toward the ureter. Recruitment of Ca2+-activated Cl- channels, likely Anoctamin-1, and T-type Ca2+ channels are required for efficiently conducting the depolarizing current throughout the length of the RP. These mechanisms are necessary for the efficient removal of urine from the kidney.
Collapse
Affiliation(s)
| | - Cameron C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Sage K Quiggle
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Emily B Fox
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Hannah Presley
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Robbie Daugherty
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Matthew C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA,Department of Life and Health Science, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
14
|
Moon SB, Hwang SJ, Baker S, Kim M, Sasse K, Koh SD, Sanders KM, Ward SM. Changes in interstitial cells and gastric excitability in a mouse model of sleeve gastrectomy. PLoS One 2022; 17:e0269909. [PMID: 35737727 PMCID: PMC9223402 DOI: 10.1371/journal.pone.0269909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity is a critical risk factor of several life-threatening diseases and the prevalence in adults has dramatically increased over the past ten years. In the USA the age-adjusted prevalence of obesity in adults was 42.4%, i.e., with a body mass index (BMI, weight (kg)/height (m)2) that exceeds 30 kg/m2. Obese individuals are at the higher risk of obesity-related diseases, co-morbid conditions, lower quality of life, and increased mortality more than those in the normal BMI range i.e., 18.5–24.9 kg/m2. Surgical treatment continues to be the most efficient and scientifically successful treatment for obese patients. Sleeve gastrectomy or vertical sleeve gastrectomy (VSG) is a relatively new gastric procedure to reduce body weight but is now the most popular bariatric operation. To date there have been few studies examining the changes in the cellular components and pacemaker activity that occur in the gastric wall following VSG and whether normal gastric activity recovers following VSG. In the present study we used a murine model to investigate the chronological changes of gastric excitability including electrophysiological, molecular and morphological changes in the gastric musculature following VSG. There is a significant disruption in specialized interstitial cells of Cajal in the gastric antrum following sleeve gastrectomy. This is associated with a loss of gastric pacemaker activity and post-junctional neuroeffector responses. Over a 4-month recovery period there was a gradual return in interstitial cells of Cajal networks, pacemaker activity and neural responses. These data describe for the first time the changes in gastric interstitial cells of Cajal networks, pacemaker activity and neuroeffector responses and the time-dependent recovery of ICC networks and normalization of motor activity and neural responses following VSG.
Collapse
Affiliation(s)
- Suk Bae Moon
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Sung Jin Hwang
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Sal Baker
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Minkyung Kim
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Kent Sasse
- Sasse Surgical Associates, Reno, Nevada, United States of America
| | - Sang Don Koh
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Kenton M. Sanders
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, United States of America
| | - Sean M. Ward
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
15
|
Drumm BT, Cobine CA, Baker SA. Insights on gastrointestinal motility through the use of optogenetic sensors and actuators. J Physiol 2022; 600:3031-3052. [PMID: 35596741 DOI: 10.1113/jp281930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
The muscularis of the gastrointestinal (GI) tract consists of smooth muscle cells (SMCs) and various populations of interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α+ (PDGFRα+ ) cells, as well as excitatory and inhibitory enteric motor nerves. SMCs, ICC and PDGFRα+ cells form an electrically coupled syncytium, which together with inputs from the enteric nervous system (ENS) regulate GI motility. Early studies evaluating Ca2+ signalling behaviours in the GI tract relied upon indiscriminate loading of tissues with Ca2+ dyes. These methods lacked the means to study activity in specific cells of interest without encountering contamination from other cells within the preparation. Development of mice expressing optogenetic sensors (GCaMP, RCaMP) has allowed visualization of Ca2+ signalling behaviours in a cell specific manner. Additionally, availability of mice expressing optogenetic modulators (channelrhodopsins or halorhodospins) has allowed manipulation of specific signalling pathways using light. GCaMP expressing animals have been used to characterize Ca2+ signalling behaviours of distinct classes of ICC and SMCs throughout the GI musculature. These findings illustrate how Ca2+ signalling in ICC is fundamental in GI muscles, contributing to tone in sphincters, pacemaker activity in rhythmic muscles and relaying enteric signals to SMCs. Animals that express channelrhodopsin in specific neuronal populations have been used to map neural circuitry and to examine post junctional neural effects on GI motility. Thus, optogenetic approaches provide a novel means to examine the contribution of specific cell types to the regulation of motility patterns within complex multi-cellular systems. Abstract Figure Legends Optogenetic activators and sensors can be used to investigate the complex multi-cellular nature of the gastrointestinal (GI tract). Optogenetic activators that are activated by light such as channelrhodopsins (ChR2), OptoXR and halorhodopsinss (HR) proteins can be genetically encoded into specific cell types. This can be used to directly activate or silence specific GI cells such as various classes of enteric neurons, smooth muscle cells (SMC) or interstitial cells, such as interstitial cells of Cajal (ICC). Optogenetic sensors that are activated by different wavelengths of light such as green calmodulin fusion protein (GCaMP) and red CaMP (RCaMP) make high resolution of sub-cellular Ca2+ signalling possible within intact tissues of specific cell types. These tools can provide unparalleled insight into mechanisms underlying GI motility and innervation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
16
|
Koh SD, Drumm BT, Lu H, Kim HJ, Ryoo SB, Kim HU, Lee JY, Rhee PL, Wang Q, Gould TW, Heredia D, Perrino BA, Hwang SJ, Ward SM, Sanders KM. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc Natl Acad Sci U S A 2022; 119:e2123020119. [PMID: 35446689 PMCID: PMC9170151 DOI: 10.1073/pnas.2123020119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Bernard T. Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hongli Lu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hyun Jin Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Seung-Bum Ryoo
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Heung-Up Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Ji Yeon Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Gangnam-Gu, Seoul, Korea 135-710
| | - Qianqian Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Thomas W. Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Dante Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| |
Collapse
|
17
|
Eicher AK, Kechele DO, Sundaram N, Berns HM, Poling HM, Haines LE, Sanchez JG, Kishimoto K, Krishnamurthy M, Han L, Zorn AM, Helmrath MA, Wells JM. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell 2022; 29:36-51.e6. [PMID: 34856121 PMCID: PMC8741755 DOI: 10.1016/j.stem.2021.10.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Human organoid model systems lack important cell types that, in the embryo, are incorporated into organ tissues during development. We developed an organoid assembly approach starting with cells from the three primary germ layers-enteric neuroglial, mesenchymal, and epithelial precursors-that were derived separately from human pluripotent stem cells (PSCs). From these three cell types, we generated human antral and fundic gastric tissue containing differentiated glands surrounded by layers of smooth muscle containing functional enteric neurons that controlled contractions of the engineered antral tissue. Using this experimental system, we show that human enteric neural crest cells (ENCCs) promote mesenchyme development and glandular morphogenesis of antral stomach organoids. Moreover, ENCCs can act directly on the foregut to promote a posterior fate, resulting in organoids with a Brunner's gland phenotype. Thus, germ layer components that are derived separately from PSCs can be used for tissue engineering to generate complex human organoids.
Collapse
Affiliation(s)
- Alexandra K. Eicher
- College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA,Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Daniel O. Kechele
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - H. Matthew Berns
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Holly M. Poling
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Lauren E. Haines
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - J. Guillermo Sanchez
- College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA,Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Keishi Kishimoto
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,CuSTOM-RIKEN BDR Collaborative Laboratory, CCHMC, Cincinnati, OH, 45229, USA,Laboratory for Lung Development, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Mansa Krishnamurthy
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Endocrinology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Lu Han
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Michael A. Helmrath
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - James M. Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,Division of Endocrinology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,Lead Contact and Corresponding Author,Corresponding Author’s:
| |
Collapse
|
18
|
Sanders KM, Baker SA, Drumm BT, Kurahashi M. Ca 2+ Signaling Is the Basis for Pacemaker Activity and Neurotransduction in Interstitial Cells of the GI Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:229-241. [PMID: 36587162 DOI: 10.1007/978-3-031-05843-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Years ago gastrointestinal motility was thought to be due to interactions between enteric nerves and smooth muscle cells (SMCs) in the tunica muscularis. Thus, regulatory mechanisms controlling motility were either myogenic or neurogenic. Now we know that populations of interstitial cells, c-Kit+ (interstitial cells of Cajal or ICC), and PDGFRα+ cells (formerly "fibroblast-like" cells) are electrically coupled to SMCs, forming the SIP syncytium. Pacemaker and neurotransduction functions are provided by interstitial cells through Ca2+ release from the endoplasmic reticulum (ER) and activation of Ca2+-activated ion channels in the plasma membrane (PM). ICC express Ca2+-activated Cl- channels encoded by Ano1. When activated, Ano1 channels produce inward current and, therefore, depolarizing or excitatory effects in the SIP syncytium. PDGFRα+ cells express Ca2+-activated K+ channels encoded by Kcnn3. These channels generate outward current when activated and hyperpolarizing or membrane-stabilizing effects in the SIP syncytium. Inputs from enteric and sympathetic neurons regulate Ca2+ transients in ICC and PDGFRα+ cells, and currents activated in these cells conduct to SMCs and regulate contractile behaviors. ICC also serve as pacemakers, generating slow waves that are the electrophysiological basis for gastric peristalsis and intestinal segmentation. Pacemaker types of ICC express voltage-dependent Ca2+ conductances that organize Ca2+ transients, and therefore Ano1 channel openings, into clusters that define the amplitude and duration of slow waves. Ca2+ handling mechanisms are at the heart of interstitial cell function, yet little is known about what happens to Ca2+ dynamics in these cells in GI motility disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Iowa, Iowa City, USA
| |
Collapse
|
19
|
Abstract
Gastroparesis is characterized by symptoms suggestive of, and objective evidence of, delayed gastric emptying in the absence of mechanical obstruction. This review addresses the normal emptying of solids and liquids from the stomach and details the myogenic and neuromuscular control mechanisms, including the specialized function of the pyloric sphincter, that result in normal emptying, based predominantly on animal research. A clear understanding of fundamental mechanisms is necessary to comprehend derangements leading to gastroparesis, and additional research on human gastric muscles is needed. The section on pathophysiology of gastroparesis considers neuromuscular diseases that affect nonsphincteric gastric muscle, disorders of the extrinsic neural control, and pyloric dysfunction that lead to gastroparesis. The potential cellular basis for gastroparesis is attributed to the effects of oxidative stress and inflammation, with increased pro-inflammatory and decreased resident macrophages, as observed in full-thickness biopsies from patients with gastroparesis. Predominant diagnostic tests involving measurements of gastric emptying, the use of a functional luminal imaging probe, and high-resolution antral duodenal manometry in characterizing the abnormal motor functions at the gastroduodenal junction are discussed. Management is based on supporting nutrition; dietary interventions, including the physical reduction in particle size of solid foods; pharmacological agents, including prokinetics and anti-emetics; and interventions such as gastric electrical stimulation and pyloromyotomy. These are discussed briefly, and comment is added on the potential for individualized treatments in the future, based on optimal gastric emptying measurement and objective documentation of the underlying pathophysiology causing the gastroparesis.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| |
Collapse
|
20
|
Ward SM. Postjunctional M2 Muscarinic Receptors Augment Neurally Mediated Cholinergic Contractions of Murine Airway Smooth Muscle. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab067. [PMID: 35028567 PMCID: PMC8742910 DOI: 10.1093/function/zqab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 12/12/2021] [Indexed: 01/07/2023]
|
21
|
Huizinga JD, Hussain A, Chen JH. Interstitial cells of Cajal and human colon motility in health and disease. Am J Physiol Gastrointest Liver Physiol 2021; 321:G552-G575. [PMID: 34612070 DOI: 10.1152/ajpgi.00264.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our understanding of human colonic motility, and autonomic reflexes that generate motor patterns, has increased markedly through high-resolution manometry. Details of the motor patterns are emerging related to frequency and propagation characteristics that allow linkage to interstitial cells of Cajal (ICC) networks. In studies on colonic motor dysfunction requiring surgery, ICC are almost always abnormal or significantly reduced. However, there are still gaps in our knowledge about the role of ICC in the control of colonic motility and there is little understanding of a mechanistic link between ICC abnormalities and colonic motor dysfunction. This review will outline the various ICC networks in the human colon and their proven and likely associations with the enteric and extrinsic autonomic nervous systems. Based on our extensive knowledge of the role of ICC in the control of gastrointestinal motility of animal models and the human stomach and small intestine, we propose how ICC networks are underlying the motor patterns of the human colon. The role of ICC will be reviewed in the autonomic neural reflexes that evoke essential motor patterns for transit and defecation. Mechanisms underlying ICC injury, maintenance, and repair will be discussed. Hypotheses are formulated as to how ICC dysfunction can lead to motor abnormalities in slow transit constipation, chronic idiopathic pseudo-obstruction, Hirschsprung's disease, fecal incontinence, diverticular disease, and inflammatory conditions. Recent studies on ICC repair after injury hold promise for future therapies.
Collapse
Affiliation(s)
- Jan D Huizinga
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Amer Hussain
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Ji-Hong Chen
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
Alkawadri T, McGarvey LP, Mullins ND, Hollywood MA, Thornbury KD, Sergeant GP. Contribution of Postjunctional M2 Muscarinic Receptors to Cholinergic Nerve-Mediated Contractions of Murine Airway Smooth Muscle. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab053. [PMID: 35330928 PMCID: PMC8788713 DOI: 10.1093/function/zqab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Postjunctional M2Rs on airway smooth muscle (ASM) outnumber M3Rs by a ratio of 4:1 in most species, however, it is the M3Rs that are thought to mediate the bronchoconstrictor effects of acetylcholine. In this study, we describe a novel and profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM at low stimulus frequencies.. Contractions induced by 2Hz EFS were augmented by > 2.5-fold when the stimulus interval was reduced from 100 to 10 s. This effect was reversed by the M2R antagonists, methoctramine, and AFDX116, and was absent in M2R null mice. The M3R antagonist 4-DAMP abolished the entire response in both WT and M2R KO mice. The M2R-mediated potentiation of EFS-induced contractions was not observed when the stimulus frequency was increased to 20 Hz. A subthreshold concentration of carbachol enhanced the amplitude of EFS-evoked contractions in WT, but not M2R null mice. These data highlight a significant M2R-mediated potentiation of M3R-dependent contractions of ASM at low frequency stimulation that could be relevant in diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Tuleen Alkawadri
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Lorcan P McGarvey
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, BT7 1NN, Northern Ireland
| | - N D Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | | |
Collapse
|
23
|
Cai W, Makwana R, Straface M, Gharibans A, Andrews PLR, Sanger GJ. Evidence for tetrodotoxin-resistant spontaneous myogenic contractions of mouse isolated stomach that are dependent on acetylcholine. Br J Pharmacol 2021; 179:1187-1200. [PMID: 34519057 PMCID: PMC9297954 DOI: 10.1111/bph.15685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose Gastric pacemaker cells, interstitial cells of Cajal (ICC), are believed to initiate myogenic (non‐neuronal) contractions. These become damaged in gastroparesis, associated with dysrhythmic electrical activity and nausea. We utilised mouse isolated stomach to model myogenic contractions and investigate their origin and actions of interstitial cells of Cajal modulators. Experimental Approach Intraluminal pressure was recorded following distension with a physiological volume; tone, contraction amplitude and frequency were quantified. Compounds were bath applied. Key Results The stomach exhibited regular large amplitude contractions (median amplitude 9.0 [4.7–14.8] cmH2O, frequency 2.9 [2.5–3.4] c.p.m; n = 20), appearing to progress aborally. Tetrodotoxin (TTX, 10−6 M) had no effect on tone, frequency or amplitude but blocked responses to nerve stimulation. ω‐conotoxin GVIA (10−7 M) ± TTX was without effect on baseline motility. In the presence of TTX, (1) atropine (10−10–10−6 M) reduced contraction amplitude and frequency in a concentration‐related manner (pIC50 7.5 ± 0.3 M for amplitude), (2) CaCC channel (previously ANO1) inhibitors MONNA and CaCCinh‐A01 reduced contraction amplitude (significant at 10−5, 10−4 M respectively) and frequency (significant at 10−5 M), and (3), neostigmine (10−5 M) evoked a large, variable, increase in contraction amplitude, reduced by atropine (10−8–10−6 M) but unaffected (exploratory study) by the H1 receptor antagonist mepyramine (10−6 M). Conclusions and Implications The distended mouse stomach exhibited myogenic contractions, resistant to blockade of neural activity by TTX. In the presence of TTX, these contractions were prevented or reduced by compounds blocking interstitial cells of Cajal activity or by atropine and enhanced by neostigmine (antagonised by atropine), suggesting involvement of non‐neuronal ACh in their regulation.
Collapse
Affiliation(s)
- Weigang Cai
- Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raj Makwana
- Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marilisa Straface
- Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Armen Gharibans
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Paul L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK
| | - Gareth J Sanger
- Blizard Institute and the National Centre for Bowel Research, Barts The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021; 8:662410. [PMID: 34434970 PMCID: PMC8382116 DOI: 10.3389/fcvm.2021.662410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.
Collapse
Affiliation(s)
- Daniel Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Chen Kang
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Juan Hong
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Rajan Sah
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
25
|
Lin P, Li B, Ye J, Shang F, Zhao H, Xie J, Yu X. Curcumin relieves mice gastric emptying dysfunction induced by L-arginine and atropine through interstitial cells of Cajal. Exp Ther Med 2021; 21:548. [PMID: 33850520 DOI: 10.3892/etm.2021.9980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Curcumin is natural polyphenol from Curcuma longa rhizomes with several biological properties. Our previous studies demonstrated that curcumin inhibited functional gastric emptying disorders induced by L-arginine, the precursor of nitric oxide (NO), and atropine, an acetylcholine receptor (AChR) blocker. However, the mechanism of action of curcumin remains unclear. In the present study, mouse models of functional gastric emptying disorders induced by L-arginine and atropine were used to examine changes in interstitial cells of Cajal (ICC) and NO- and ACh-mediated regulation of gastrointestinal motility. Curcumin pre-treatment ameliorated the gastric emptying rate in mice treated with L-arginine or atropine (P<0.01). NO content and NO synthase activity significantly increased in the stomachs of L-arginine-treated mice, compared with controls (P<0.01). Acetylcholinesterase activity (P<0.01) and mRNA expression (P<0.01), as well as AChR mRNA levels (P<0.05) significantly decreased following atropine treatment. Moreover, in both models, the levels of c-kit, anoctamin 1 and connexin 43 significantly decreased in the stomach (P<0.01). Conversely, curcumin pre-treatment inhibited the changes induced by L-arginine and atropine (P<0.01 or P<0.05). By affecting the production of exogenous NO, the effects of Ach-AchR and the biomarkers of ICC, curcumin relieves the gastric emptying dysfunction in mice.
Collapse
Affiliation(s)
- Peng Lin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Baitao Li
- Department of Biotechnology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Junli Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Fangfang Shang
- Department of Pathology, Navy 971 Hospital of The People's Liberation Army, Qingdao, Shandong 266000, P.R. China
| | - Hui Zhao
- Department of Pathology, Navy 971 Hospital of The People's Liberation Army, Qingdao, Shandong 266000, P.R. China
| | - Jing Xie
- Laboratory of Human Microscopic Structure, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xiaoling Yu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
26
|
Han J, Zhang L, Li X, Chen YP, Rong Y, Yan BG. Identification of CD44 as a Cell-Surface Marker for Kit Negative Interstitial Cells of Cajal in Adult Mouse Colon. Cells Tissues Organs 2021; 209:200-208. [PMID: 33691306 DOI: 10.1159/000511054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Loss of Kit protein expression is proven to influence the plasticity of interstitial cells of Cajal (ICCs) and may contribute to gastrointestinal (GI) dysfunctions. The role and fate of Kit negative ICCs are unclear, and cell-specific markers for the Kit ICCs are unknown. In this study, we treated adult mice with imatinib (a Kit signaling blocker) for 8 or 16 days and investigated whether CD44 is a specific marker for the Kit negative ICCs in the adult mouse colon. We aimed at examining the protein and mRNA level of CD44 and Kit by using Western blot and real-time RT-PCR, respectively. Our results indicated that Kit expression was downregulated for both protein and mRNA levels after imatinib treatment for 8 or 16 days as compared to the vehicle-treated mice. Interestingly, CD44 expression remained unchanged throughout the treatment. Immunostaining on whole-mount preparations for Kit and CD44 showed that CD44 was exclusively co-localized with Kit in the ICCs of the vehicle-treated mouse colon. After imatinib treatment, a number of CD44+/Kit- cells with elaborated processes were observed with an evident decrease of Kit+ cell number within the muscular layers (ICC-IM) and around the myenteric nerve plexus (ICC-MY) as compared to vehicle-treated mice. After discontinuing imatinib for 16 days, Kit+ ICC-MY and ICC-IM were completely co-localized with normalization of CD44 and Kit+ cell numbers. Overall, our results identify CD44 as a cell-specific surface marker for Kit-ICCs and may be useful to understand the role and fate of Kit- ICCs in GI disorders.
Collapse
Affiliation(s)
- Juan Han
- Department of Emergency and ICU, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Emergency and ICU, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Li
- Department of Emergency and ICU, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Ping Chen
- Department of Neurosurgery, The 958th Hospital of Army, Chongqing, China
| | - Yuan Rong
- Department of Emergency and ICU, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bai-Gang Yan
- Department of Emergency and ICU, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China,
| |
Collapse
|
27
|
Chen QC, Jiang Z, Zhang JH, Cao LX, Chen ZQ. Xiangbinfang granules enhance gastric antrum motility via intramuscular interstitial cells of Cajal in mice. World J Gastroenterol 2021; 27:576-591. [PMID: 33642830 PMCID: PMC7901053 DOI: 10.3748/wjg.v27.i7.576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/24/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Interdigestive migrating motor complexes (MMC) produce periodic contractions in the gastrointestinal tract, but the exact mechanism of action still remains unclear. Intramuscular interstitial cells of Cajal (ICC-IM) participate in gastrointestinal hormone and neuromodulation, but the correlation between ICC-IM and MMC is also unclear. We found that xiangbinfang granules (XBF) mediated the phase III contraction of MMC. Here, the effects of XBF on gastric antrum motility in W/Wv mice and the effects of ICC-IM on gastric antrum MMC are reported.
AIM To observe the effects of ICC-IM on gastric antrum motility and to establish the mechanism of XBF in promoting gastric antrum motility.
METHODS The density of c-kit-positive ICC myenteric plexus (ICC-MP) and ICC-IM in the antral muscularis of W/Wv and wild-type (WT) mice was examined by confocal microscopy. The effects of XBF on gastric antrum slow waves in W/Wv and WT mice were recorded by intracellular amplification recording. Micro-strain-gauge force transducers were implanted into the gastric antrum to monitor the MMC and the effect of XBF on gastric antrum motility in conscious W/Wv and WT mice.
RESULTS In the gastric antrum of W/Wv mice, c-kit immunoreactivity was significantly reduced, and no ICC-IM network was observed. Spontaneous rhythmic slow waves also appeared in the antrum of W/Wv mice, but the amplitude of the antrum slow wave decreased significantly in W/Wv mice (22.62 ± 2.23 mV vs 2.92 ± 0.52 mV, P < 0.0001). MMCs were found in 7 of the 8 WT mice but no complete MMC cycle was found in W/Wv mice. The contractile frequency and amplitude index of the gastric antrum were significantly increased in conscious WT compared to W/Wv mice (frequency, 3.53 ± 0.18 cpm vs 1.28 ± 0.12 cpm; amplitude index, 23014.26 ± 1798.65 mV·20 min vs 3782.16 ± 407.13 mV·20 min; P < 0.0001). XBF depolarized smooth muscle cells of the gastric antrum in WT and W/Wv mice in a dose-dependent manner. Similarly, the gastric antrum motility in WT mice was significantly increased after treatment with XBF 5 mg (P < 0.05). Atropine (0.1 mg/kg) blocked the enhancement of XBF in WT and W/Wv mice completely, while tetrodotoxin (0.05 mg/kg) partially inhibited the enhancement by XBF.
CONCLUSION ICC-IM participates in the regulation of gastric antrum MMC in mice. XBF induces MMC III-like contractions that enhance gastric antrum motility via ICC-IM in mice.
Collapse
Affiliation(s)
- Qi-Cheng Chen
- The Research Team of TCM Applications of Perioperative, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Zhi Jiang
- The Research Team of TCM Applications of Perioperative, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Jun-Hong Zhang
- Department of Research Public Service Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Li-Xing Cao
- The Research Team of TCM Applications of Perioperative, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Zhi-Qiang Chen
- The Research Team of TCM Applications of Perioperative, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| |
Collapse
|
28
|
Drumm BT, Thornbury KD, Hollywood MA, Sergeant GP. Role of Ano1 Ca 2+-activated Cl - channels in generating urethral tone. Am J Physiol Renal Physiol 2021; 320:F525-F536. [PMID: 33554780 DOI: 10.1152/ajprenal.00520.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Urinary continence is maintained in the lower urinary tract by the contracture of urethral sphincters, including smooth muscle of the internal urethral sphincter. These contractions occlude the urethral lumen, preventing urine leakage from the bladder to the exterior. Over the past 20 years, research on the ionic conductances that contribute to urethral smooth muscle contractility has greatly accelerated. A debate has emerged over the role of interstitial cell of Cajal (ICC)-like cells in the urethra and their expression of Ca2+-activated Cl- channels encoded by anoctamin-1 [Ano1; transmembrane member 16 A (Tmem16a) gene]. It has been proposed that Ano1 channels expressed in urethral ICC serve as a source of depolarization for smooth muscle cells, increasing their excitability and contributing to tone. Although a clear role for Ano1 channels expressed in ICC is evident in other smooth muscle organs, such as the gastrointestinal tract, the role of these channels in the urethra is unclear, owing to differences in the species (rabbit, rat, guinea pig, sheep, and mouse) examined and experimental approaches by different groups. The importance of clarifying this situation is evident as effective targeting of Ano1 channels may lead to new treatments for urinary incontinence. In this review, we summarize the key findings from different species on the role of ICC and Ano1 channels in urethral contractility. Finally, we outline proposals for clarifying this controversial and important topic by addressing how cell-specific optogenetic and inducible cell-specific genetic deletion strategies coupled with advances in Ano1 channel pharmacology may clarify this area in future studies.NEW & NOTEWORTHY Studies from the rabbit have shown that anoctamin-1 (Ano1) channels expressed in urethral interstitial cells of Cajal (ICC) serve as a source of depolarization for smooth muscle cells, increasing excitability and tone. However, the role of urethral Ano1 channels is unclear, owing to differences in the species examined and experimental approaches. We summarize findings from different species on the role of urethral ICC and Ano1 channels in urethral contractility and outline proposals for clarifying this topic using cell-specific optogenetic approaches.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
29
|
Hannigan KI, Bossey AP, Foulkes HJL, Drumm BT, Baker SA, Ward SM, Sanders KM, Keef KD, Cobine CA. A novel intramuscular Interstitial Cell of Cajal is a candidate for generating pacemaker activity in the mouse internal anal sphincter. Sci Rep 2020; 10:10378. [PMID: 32587396 PMCID: PMC7316801 DOI: 10.1038/s41598-020-67142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The internal anal sphincter (IAS) generates phasic contractions and tone. Slow waves (SWs) produced by interstitial cells of Cajal (ICC) underlie phasic contractions in other gastrointestinal regions. SWs are also present in the IAS where only intramuscular ICC (ICC-IM) are found, however the evidence linking ICC-IM to SWs is limited. This study examined the possible relationship between ICC-IM and SWs by recording Ca2+ transients in mice expressing a genetically-encoded Ca2+-indicator in ICC (Kit-Cre-GCaMP6f). A role for L-type Ca2+ channels (CavL) and anoctamin 1 (ANO1) was tested since each is essential for SW and tone generation. Two distinct ICC-IM populations were identified. Type I cells (36% of total) displayed localised asynchronous Ca2+ transients not dependent on CavL or ANO1; properties typical of ICC-IM mediating neural responses in other gastrointestinal regions. A second novel sub-type, i.e., Type II cells (64% of total) generated rhythmic, global Ca2+ transients at the SW frequency that were synchronised with neighbouring Type II cells and were abolished following blockade of either CavL or ANO1. Thus, the spatiotemporal characteristics of Type II cells and their dependence upon CavL and ANO1 all suggest that these cells are viable candidates for the generation of SWs and tone in the IAS.
Collapse
Affiliation(s)
- Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Aaron P Bossey
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Holly J L Foulkes
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kathleen D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| |
Collapse
|
30
|
Drumm BT, Rembetski BE, Huynh K, Nizar A, Baker SA, Sanders KM. Excitatory cholinergic responses in mouse colon intramuscular interstitial cells of Cajal are due to enhanced Ca 2+ release via M 3 receptor activation. FASEB J 2020; 34:10073-10095. [PMID: 32539213 DOI: 10.1096/fj.202000672r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Colonic intramuscular interstitial cells of Cajal (ICC-IM) are associated with cholinergic varicosities, suggesting a role in mediating excitatory neurotransmission. Ca2+ release in ICC-IM activates Ano1, a Ca2+ -activated Cl- conductance, causing tissue depolarization and increased smooth muscle excitability. We employed Ca2+ imaging of colonic ICC-IM in situ, using mice expressing GCaMP6f in ICC to evaluate ICC-IM responses to excitatory neurotransmission. Expression of muscarinic type 2, 3 (M2 , M3 ), and NK1 receptors were enriched in ICC-IM. NK1 receptor agonists had minimal effects on ICC-IM, whereas neostigmine and carbachol increased Ca2+ transients. These effects were reversed by DAU 5884 (M3 receptor antagonist) but not AF-DX 116 (M2 receptor antagonist). Electrical field stimulation (EFS) in the presence of L-NNA and MRS 2500 enhanced ICC-IM Ca2+ transients. Responses were blocked by atropine or DAU 5884, but not AF-DX 116. ICC-IM responses to EFS were ablated by inhibiting Ca2+ stores with cyclopiazonic acid and reduced by inhibiting Ca2+ influx via Orai channels. Contractions induced by EFS were reduced by an Ano1 channel antagonist, abolished by DAU 5884, and unaffected by AF-DX 116. Colonic ICC-IM receive excitatory inputs from cholinergic neurons via M3 receptor activation. Enhancing ICC-IM Ca2+ release and Ano1 activation contributes to excitatory responses of colonic muscles.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.,Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Benjamin E Rembetski
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Kaitlin Huynh
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Aqeel Nizar
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
31
|
Grainger N, Freeman RS, Shonnard CC, Drumm BT, Koh SD, Ward SM, Sanders KM. Identification and classification of interstitial cells in the mouse renal pelvis. J Physiol 2020; 598:3283-3307. [PMID: 32415739 DOI: 10.1113/jp278888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Platelet-derived growth factor receptor-α (PDGFRα) is a novel biomarker along with smooth myosin heavy chain for the pacemaker cells (previously termed 'atypical' smooth muscle cells) in the murine and cynomolgus monkey pelvis-kidney junction. PDGFRα+ cells present in adventitial and urothelial layers of murine renal pelvis do not express smooth muscle myosin heavy chain (smMHC) but are in close apposition to nerve fibres. Most c-Kit+ cells in the renal pelvis are mast cells. Mast cells (CD117+ /CD45+ ) are more abundant in the proximal renal pelvis and pelvis-kidney junction regions whereas c-Kit+ interstitial cells (CD117+ /CD45- ) are found predominantly in the distal renal pelvis and ureteropelvic junction. PDGFRα+ cells are distinct from c-Kit+ interstitial cells. A subset of PDGFRα+ cells express the Ca2+ -activated Cl- channel, anoctamin-1, across the entire renal pelvis. Spontaneous Ca2+ transients were observed in c-Kit+ interstitial cells, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using mice expressing genetically encoded Ca2+ sensors. ABSTRACT Rhythmic contractions of the renal pelvis transport urine from the kidneys into the ureter. Specialized pacemaker cells, termed atypical smooth muscle cells (ASMCs), are thought to drive the peristaltic contractions of typical smooth muscle cells (TSMCs) in the renal pelvis. Interstitial cells (ICs) in close proximity to ASMCs and TSMCs have been described, but the role of these cells is poorly understood. The presence and distributions of platelet-derived growth factor receptor-α+ (PDGFRα+ ) ICs in the pelvis-kidney junction (PKJ) and distal renal pelvis were evaluated. We found PDGFRα+ ICs in the adventitial layers of the pelvis, the muscle layer of the PKJ and the adventitia of the distal pelvis. PDGFRα+ ICs were distinct from c-Kit+ ICs in the renal pelvis. c-Kit+ ICs are a minor population of ICs in murine renal pelvis. The majority of c-Kit+ cells were mast cells. PDGFRα+ cells in the PKJ co-expressed smooth muscle myosin heavy chain (smMHC) and several other smooth muscle gene transcripts, indicating these cells are ASMCs, and PDGFRα is a novel biomarker for ASMCs. PDGFRα+ cells also express Ano1, which encodes a Ca2+ -activated Cl- conductance that serves as a primary pacemaker conductance in ICs of the GI tract. Spontaneous Ca2+ transients were observed in c-Kit+ ICs, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using genetically encoded Ca2+ sensors. A reporter strain of mice with enhanced green fluorescent protein driven by the endogenous promotor for Pdgfra was shown to be a powerful new tool for isolating and characterizing the phenotype and functions of these cells in the renal pelvis.
Collapse
Affiliation(s)
- Nathan Grainger
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ryan S Freeman
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Cameron C Shonnard
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
32
|
Gastric smooth muscle cells manifest an abnormal phenotype in Parkinson's disease rats with gastric dysmotility. Cell Tissue Res 2020; 381:217-227. [PMID: 32424507 DOI: 10.1007/s00441-020-03214-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Gastroparesis is a common symptom in Parkinson's disease (PD) and whether any change occurs in gastric smooth muscle cells (SMCs) of PD patients is unclear. We previously reported that rats with bilateral substantia nigra lesions induced by 6-hydroxydopamine (6-OHDA), referred to as 6-OHDA rats, manifest typical gastroparesis. In the present study, we further investigate the underlying mechanism. By means of an organ bath system and an implantable radiotelemetry system, both a weakened contractile force of gastric circular smooth muscle and gastric myoelectric activity were detected in the 6-OHDA rats and phasic and tonic contractions elicited by carbachol or high concentration of potassium were significantly reduced in gastric circular muscle strips. A thickened smooth muscle layer was observed under a light microscope and an ultrastructure of hypertrophic SMCs, with increased caveolae and decreased dense bodies, was observed under transmission electron microscope. Furthermore, the mRNA and protein expression levels of contractile markers (myosin light chain 20, myosin heavy chain 11 and α-smooth muscle actin) and the transcription factor serum response factor (SRF) were significantly decreased, while the TNFα and IL-1β content was increased in the 6-OHDA rats. These results suggest that the decreased contractile force in 6-OHDA rats may be associated with the phenotypic abnormality observed in SMCs, which is due to downregulated contractile proteins induced by decreased SRF expression in the inflammatory muscular microenvironment.
Collapse
|
33
|
Drumm BT, Rembetski BE, Messersmith K, Manierka MS, Baker SA, Sanders KM. Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon. J Physiol 2020; 598:651-681. [PMID: 31811726 DOI: 10.1113/jp279102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Rhythmic action potentials and intercellular Ca2+ waves are generated in smooth muscle cells of colonic longitudinal muscles (LSMC). Longitudinal muscle excitability is tuned by input from subserosal ICC (ICC-SS), a population of ICC with previously unknown function. ICC-SS express Ano1 channels and generate spontaneous Ca2+ transients in a stochastic manner. Release of Ca2+ and activation of Ano1 channels causes depolarization of ICC-SS and LSMC, leading to activation of L-type Ca2+ channels, action potentials, intercellular Ca2+ waves and contractions in LSMC. Nitrergic neural inputs regulate the Ca2+ events in ICC-SS. Pacemaker activity in longitudinal muscle is an emergent property as a result of integrated processes in ICC-SS and LSMC. ABSTRACT Much is known about myogenic mechanisms in circular muscle (CM) in the gastrointestinal tract, although less is known about longitudinal muscle (LM). Two Ca2+ signalling behaviours occur in LM: localized intracellular waves not causing contractions and intercellular waves leading to excitation-contraction coupling. An Ano1 channel antagonist inhibited intercellular Ca2+ waves and LM contractions. Ano1 channels are expressed by interstitial cells of Cajal (ICC) but not by smooth muscle cells (SMCs). We investigated Ca2+ signalling in a novel population of ICC that lies along the subserosal surface of LM (ICC-SS) in mice expressing GCaMP6f in ICC. ICC-SS fired stochastic localized Ca2+ transients. Such events have been linked to activation of Ano1 channels in ICC. Ca2+ transients in ICC-SS occurred by release from stores most probably via inositol trisphosphate receptors. This activity relied on influx via store-operated Ca2+ entry and Orai channels. No voltage-dependent mechanism that synchronized Ca2+ transients in a single cell or between cells was found. Nitrergic agonists inhibited Ca2+ transients in ICC-SS, and stimulation of intrinsic nerves activated nitrergic responses in ICC-SS. Cessation of stimulation resulted in significant enhancement of Ca2+ transients compared to the pre-stimulus activity. No evidence of innervation by excitatory, cholinergic motor neurons was found. Our data suggest that ICC-SS contribute to regulation of LM motor activity. Spontaneous Ca2+ transients activate Ano1 channels in ICC-SS. Resulting depolarization conducts to SMCs, depolarizing membrane potential, activating L-type Ca2+ channels and initiating contraction. Rhythmic electrical and mechanical behaviours of LM are an emergent property of SMCs and ICC-SS.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Katelyn Messersmith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Marena S Manierka
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
34
|
Rembetski BE, Sanders KM, Drumm BT. Contribution of Ca v1.2 Ca 2+ channels and store-operated Ca 2+ entry to pig urethral smooth muscle contraction. Am J Physiol Renal Physiol 2020; 318:F496-F505. [PMID: 31904286 DOI: 10.1152/ajprenal.00514.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Urethral smooth muscle (USM) generates tone to prevent urine leakage from the bladder during filling. USM tone has been thought to be a voltage-dependent process, relying on Ca2+ influx via voltage-dependent Ca2+ channels in USM cells, modulated by the activation of Ca2+-activated Cl- channels encoded by Ano1. However, recent findings in the mouse have suggested that USM tone is voltage independent, relying on Ca2+ influx through Orai channels via store-operated Ca2+ entry (SOCE). We explored if this pathway also occurred in the pig using isometric tension recordings of USM tone. Pig USM strips generated myogenic tone, which was nearly abolished by the Cav1.2 channel antagonist nifedipine and the ATP-dependent K+ channel agonist pinacidil. Pig USM tone was reduced by the Orai channel blocker GSK-7975A. Electrical field stimulation (EFS) led to phentolamine-sensitive contractions of USM strips. Contractions of pig USM were also induced by phenylephrine. Phenylephrine-evoked and EFS-evoked contractions of pig USM were reduced by ~50-75% by nifedipine and ~30% by GSK-7975A. Inhibition of Ano1 channels had no effect on tone or EFS-evoked contractions of pig USM. In conclusion, unlike the mouse, pig USM exhibited voltage-dependent tone and agonist/EFS-evoked contractions. Whereas SOCE plays a role in generating tone and agonist/neural-evoked contractions in both species, this dominates in the mouse. Tone and agonist/EFS-evoked contractions of pig USM are the result of Ca2+ influx primarily through Cav1.2 channels, and no evidence was found supporting a role of Ano1 channels in modulating these mechanisms.
Collapse
Affiliation(s)
- Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| |
Collapse
|
35
|
Wang Q, Zang J, Huang X, Lu H, Xu W, Chen J. Colonic Dysmotility in Murine Partial Colonic Obstruction Due to Functional Changes in Interstitial Cells. J Neurogastroenterol Motil 2019; 25:589-601. [PMID: 31587550 PMCID: PMC6786438 DOI: 10.5056/jnm19136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/07/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims Interstitial cells play important roles in gastrointestinal (GI) neuro-smooth muscle transmission. The underlying mechanisms of colonic dysmotility have not been well illustrated. We established a partial colon obstruction (PCO) mouse model to investigate the changes of interstitial cells and the correlation with colonic motility. Methods Western blot technique was employed to observe the protein expressions of Kit, platelet-derived growth factor receptor-α (Pdgfra), Ca2+-activated Cl− (Ano1) channels, and small conductance Ca2+- activated K+ (SK) channels. Colonic migrating motor complexes (CMMCs) and isometric force measurements were employed in control mice and PCO mice. Results PCO mice showed distended abdomen and feces excretion was significantly reduced. Anatomically, the colon above the obstructive silicone ring was obviously dilated. Kit and Ano1 proteins in the colonic smooth muscle layer of the PCO colons were significantly decreased, while the expression of Pdgfra and SK3 proteins were significantly increased. The effects of a nitric oxide synthase inhibitor (L-NAME) and an Ano1 channel inhibitor (NPPB) on CMMC and colonic spontaneous contractions were decreased in the proximal and distal colons of PCO mice. The SK agonist, CyPPA and antagonist, apamin in PCO mice showed more effect to the CMMCs and colonic smooth muscle contractions. Conclusions Colonic transit disorder may be due to the downregulation of the Kit and Ano1 channels and the upregulation of SK3 channels in platelet-derived growth factor receptor-α positive (PDGFRα+) cells. The imbalance between interstitial cells of Cajal-Ano1 and PDGFRα-SK3 distribution might be a potential reason for the colonic dysmotility.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Pediatric Surgery, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Jingyu Zang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Pediatric Surgery, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Xu Huang
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongli Lu
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenxie Xu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Chen
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Pediatric Surgery, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| |
Collapse
|
36
|
A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca 2+-activated Cl - channel ANO1 (TMEM16A). Proc Natl Acad Sci U S A 2019; 116:19952-19962. [PMID: 31515451 DOI: 10.1073/pnas.1904012116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ANO1 (TMEM16A) is a Ca2+-activated Cl- channel that regulates diverse cellular functions including fluid secretion, neuronal excitability, and smooth muscle contraction. ANO1 is activated by elevation of cytosolic Ca2+ and modulated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here, we describe a closely concerted experimental and computational study, including electrophysiology, mutagenesis, functional assays, and extended sampling of lipid-protein interactions with molecular dynamics (MD) to characterize PI(4,5)P2 binding modes and sites on ANO1. ANO1 currents in excised inside-out patches activated by 270 nM Ca2+ at +100 mV are increased by exogenous PI(4,5)P2 with an EC50 = 1.24 µM. The effect of PI(4,5)P2 is dependent on membrane voltage and Ca2+ and is explained by a stabilization of the ANO1 Ca2+-bound open state. Unbiased atomistic MD simulations with 1.4 mol% PI(4,5)P2 in a phosphatidylcholine bilayer identified 8 binding sites with significant probability of binding PI(4,5)P2 Three of these sites captured 85% of all ANO1-PI(4,5)P2 interactions. Mutagenesis of basic amino acids near the membrane-cytosol interface found 3 regions of ANO1 critical for PI(4,5)P2 regulation that correspond to the same 3 sites identified by MD. PI(4,5)P2 is stabilized by hydrogen bonding between amino acid side chains and phosphate/hydroxyl groups on PI(4,5)P2 Binding of PI(4,5)P2 alters the position of the cytoplasmic extension of TM6, which plays a crucial role in ANO1 channel gating, and increases the accessibility of the inner vestibule to Cl- ions. We propose a model consisting of a network of 3 PI(4,5)P2 binding sites at the cytoplasmic face of the membrane allosterically regulating ANO1 channel gating.
Collapse
|
37
|
Drumm BT, Hwang SJ, Baker SA, Ward SM, Sanders KM. Ca 2+ signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. J Physiol 2019; 597:3587-3617. [PMID: 31124144 DOI: 10.1113/jp278036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Colonic intramuscular interstitial cells of Cajal (ICC-IM) exhibit spontaneous Ca2+ transients manifesting as stochastic events from multiple firing sites with propagating Ca2+ waves occasionally observed. Firing of Ca2+ transients in ICC-IM is not coordinated with adjacent ICC-IM in a field of view or even with events from other firing sites within a single cell. Ca2+ transients, through activation of Ano1 channels and generation of inward current, cause net depolarization of colonic muscles. Ca2+ transients in ICC-IM rely on Ca2+ release from the endoplasmic reticulum via IP3 receptors, spatial amplification from RyRs and ongoing refilling of ER via the sarcoplasmic/endoplasmic-reticulum-Ca2+ -ATPase. ICC-IM are sustained by voltage-independent Ca2+ influx via store-operated Ca2+ entry. Some of the properties of Ca2+ in ICC-IM in the colon are similar to the behaviour of ICC located in the deep muscular plexus region of the small intestine, suggesting there are functional similarities between these classes of ICC. ABSTRACT A component of the SIP syncytium that regulates smooth muscle excitability in the colon is the intramuscular class of interstitial cells of Cajal (ICC-IM). All classes of ICC (including ICC-IM) express Ca2+ -activated Cl- channels, encoded by Ano1, and rely upon this conductance for physiological functions. Thus, Ca2+ handling in ICC is fundamental to colonic motility. We examined Ca2+ handling mechanisms in ICC-IM of murine proximal colon expressing GCaMP6f in ICC. Several Ca2+ firing sites were detected in each cell. While individual sites displayed rhythmic Ca2+ events, the overall pattern of Ca2+ transients was stochastic. No correlation was found between discrete Ca2+ firing sites in the same cell or in adjacent cells. Ca2+ transients in some cells initiated Ca2+ waves that spread along the cell at ∼100 µm s-1 . Ca2+ transients were caused by release from intracellular stores, but depended strongly on store-operated Ca2+ entry mechanisms. ICC Ca2+ transient firing regulated the resting membrane potential of colonic tissues as a specific Ano1 antagonist hyperpolarized colonic muscles by ∼10 mV. Ca2+ transient firing was independent of membrane potential and not affected by blockade of L- or T-type Ca2+ channels. Mechanisms regulating Ca2+ transients in the proximal colon displayed both similarities to and differences from the intramuscular type of ICC in the small intestine. Similarities and differences in Ca2+ release patterns might determine how ICC respond to neurotransmission in these two regions of the gastrointestinal tract.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Sung J Hwang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
38
|
Hwang SJ, Pardo DM, Zheng H, Bayguinov Y, Blair PJ, Fortune‐Grant R, Cook RS, Hennig GW, Shonnard MC, Grainger N, Peri LE, Verma SD, Rock J, Sanders KM, Ward SM. Differential sensitivity of gastric and small intestinal muscles to inducible knockdown of anoctamin 1 and the effects on gastrointestinal motility. J Physiol 2019; 597:2337-2360. [PMID: 30843201 PMCID: PMC6487927 DOI: 10.1113/jp277335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Electrical pacemaking in gastrointestinal muscles is generated by specialized interstitial cells of Cajal that produce the patterns of contractions required for peristalsis and segmentation in the gut. The calcium-activated chloride conductance anoctamin-1 (Ano1) has been shown to be responsible for the generation of pacemaker activity in GI muscles, but this conclusion is established from studies of juvenile animals in which effects of reduced Ano1 on gastric emptying and motor patterns could not be evaluated. Knocking down Ano1 expression using Cre/LoxP technology caused dramatic changes in in gastric motor activity, with disrupted slow waves, abnormal phasic contractions and delayed gastric emptying; modest changes were noted in the small intestine. Comparison of the effects of Ano1 antagonists on muscles from juvenile and adult small intestinal muscles suggests that conductances in addition to Ano1 may develop with age and contribute to pacemaker activity. ABSTRACT Interstitial cells of Cajal (ICC) generate slow waves and transduce neurotransmitter signals in the gastrointestinal (GI) tract, facilitating normal motility patterns. ICC express a Ca2+ -activated Cl- conductance (CaCC), and constitutive knockout of the channel protein anoctamin-1 leads to loss of slow waves in gastric and intestinal muscles. These knockout experiments were performed on juvenile mice. However, additional experiments demonstrated significant differences in the sensitivity of gastric and intestinal muscles to antagonists of anoctamin-1 channels. Furthermore, the significance of anoctamin-1 and the electrical and mechanical behaviours facilitated by this conductance have not been evaluated on the motor behaviours of adult animals. Cre/loxP technology was used to generate cell-specific knockdowns of anoctamin-1 in ICC (KitCreERT2/+ ;Ano1tm2jrr/+ ) in GI muscles. The recombination efficiency of KitCreERT was evaluated with an eGFP reporter, molecular techniques and immunohistochemistry. Electrical and contractile experiments were used to examine the consequences of anoctamin-1 knockdown on pacemaker activity, mechanical responses, gastric motility patterns, gastric emptying and GI transit. Reduced anoctamin-1 caused loss of gastric, but not intestinal slow waves. Irregular spike complexes developed in gastric muscles, leading to uncoordinated antral contractions, delayed gastric emptying and increased total GI transit time. Slow waves in intestinal muscles of juvenile mice were more sensitive to anoctamin-1 antagonists than slow waves in adult muscles. The low susceptibility to anoctamin-1 knockdown and weak efficacy of anoctamin-1 antagonists in inhibiting slow waves in adult small intestinal muscles suggest that a conductance in addition to anoctamin-1 may develop in small intestinal ICC with ageing and contribute to pacemaker activity.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - David M. Pardo
- Department of AnatomyUniversity of CaliforniaSan FranciscoSan FranciscoCA94143USA
| | - Haifeng Zheng
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Yulia Bayguinov
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Peter J. Blair
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Rachael Fortune‐Grant
- Faculty of BiologyMedicine and HealthSchool of Biological SciencesUniversity of ManchesterUK
| | - Robert S. Cook
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Grant W. Hennig
- Department of PharmacologyThe University of VermontUVM College of MedicineBurlingtonVT05405USA
| | - Matthew C. Shonnard
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Nathan Grainger
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Lauren E. Peri
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Sonali Deep Verma
- Department of AnatomyUniversity of CaliforniaSan FranciscoSan FranciscoCA94143USA
| | - Jason Rock
- Centre for Regenerative MedicineBoston University School of MedicineBostonMA02118USA
| | - Kenton M. Sanders
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| | - Sean M. Ward
- Department of Physiology & Cell BiologyUniversity of NevadaReno School of MedicineRenoNV89557USA
| |
Collapse
|
39
|
Lin Q, Qin M, Zhao SG, Liu ZX, Dou WJ, Zhang R, Li YL, Xi XH, Xu JQ, Ma LT, Wang JJ. The roles of PDGFRα signaling in the postnatal development and functional maintenance of the SMC-ICC-PDGFRα+ cell (SIP) syncytium in the colon. Neurogastroenterol Motil 2019; 31:e13568. [PMID: 30848008 DOI: 10.1111/nmo.13568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The SIP syncytium in the gut consists of smooth muscle cells, interstitial cells of Cajal, and PDGFRα+ cells. We studied the fate of SIP cells after blocking PDGFRα receptor to explore the roles of PDGFRα signaling in the postnatal development and functional maintenance of the SIP syncytium. METHODS Crenolanib was administered to mice from P0, P10, or P50. The morphological changes in SIP cells were examined by immunofluorescence. Protein expression in SIP cells was detected by Western blotting. Moreover, colonic transit was analyzed by testing the colonic bead expulsion time. KEY RESULTS A dose of 5 mg(kg•day)-1 crenolanib administered for 10 days beginning on P0 apparently hindered the development of PDGFRα+ cells in the colonic longitudinal muscularis and myenteric plexus without influencing their proliferative activity and apoptosis, but this result was not seen in the colonic circular muscularis. SMCs were also inhibited by crenolanib. A dose of 7.5 mg(kg•day)-1 crenolanib administered for 15 days beginning on P0 caused reductions in both PDGFRα+ cells and ICC in the longitudinal muscularis, myenteric plexus, and circular muscularis. However, when crenolanib was administered at a dose of 5 mg(kg•day)-1 beginning on P10 or P50, it only noticeably decreased the number of PDGFRα+ cells in the colonic longitudinal muscularis. Crenolanib also caused PDGFRα+ cells to transdifferentiate into SMC in adult mice. Colonic transit was delayed after administration of crenolanib. CONCLUSIONS & INFERENCES Therefore, PDGFRα signaling is essential for the development and functional maintenance of the SIP cells, especially PDGFRα+ cells.
Collapse
Affiliation(s)
- Qiang Lin
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ming Qin
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shu-Guang Zhao
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen-Xiong Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Jia Dou
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Rong Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Long Li
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiao-Hou Xi
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-Qiao Xu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li-Tian Ma
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jie Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
40
|
Tonic inhibition of murine proximal colon is due to nitrergic suppression of Ca 2+ signaling in interstitial cells of Cajal. Sci Rep 2019; 9:4402. [PMID: 30867452 PMCID: PMC6416298 DOI: 10.1038/s41598-019-39729-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Spontaneous excitability and contractions of colonic smooth muscle cells (SMCs) are normally suppressed by inputs from inhibitory motor neurons, a behavior known as tonic inhibition. The post-junctional cell(s) mediating tonic inhibition have not been elucidated. We investigated the post-junctional cells mediating tonic inhibition in the proximal colon and whether tonic inhibition results from suppression of the activity of Ano1 channels, which are expressed exclusively in interstitial cells of Cajal (ICC). We found that tetrodotoxin (TTX), an inhibitor of nitric oxide (NO) synthesis, L-NNA, and an inhibitor of soluble guanylyl cyclase, ODQ, greatly enhanced colonic contractions. Ano1 antagonists, benzbromarone and Ani9 inhibited the effects of TTX, L-NNA and ODQ. Ano1 channels are activated by Ca2+ release from the endoplasmic reticulum (ER) in ICC, and blocking Ca2+ release with a SERCA inhibitor (thapsigargin) or a store-operated Ca2+ entry blocker (GSK 7975 A) reversed the effects of TTX, L-NNA and ODQ. Ca2+ imaging revealed that TTX, L-NNA and ODQ increased Ca2+ transient firing in colonic ICC. Our results suggest that tonic inhibition in the proximal colon occurs through suppression of Ca2+ release events in ICC. Suppression of Ca2+ release in ICC limits the open probability of Ano1 channels, reducing the excitability of electrically-coupled SMCs.
Collapse
|
41
|
Blair PJ, Hwang SJ, Shonnard MC, Peri LE, Bayguinov Y, Sanders KM, Ward SM. The Role of Prostaglandins in Disrupted Gastric Motor Activity Associated With Type 2 Diabetes. Diabetes 2019; 68:637-647. [PMID: 30626609 PMCID: PMC6385756 DOI: 10.2337/db18-1064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Patients with diabetes often develop gastrointestinal motor problems, including gastroparesis. Previous studies have suggested this gastric motor disorder was a consequence of an enteric neuropathy. Disruptions in interstitial cells of Cajal (ICC) have also been reported. A thorough examination of functional changes in gastric motor activity during diabetes has not yet been performed. We comprehensively examined the gastric antrums of Lepob mice using functional, morphological, and molecular techniques to determine the pathophysiological consequences in this type 2 diabetic animal model. Video analysis and isometric force measurements revealed higher frequency and less robust antral contractions in Lepob mice compared with controls. Electrical pacemaker activity was reduced in amplitude and increased in frequency. Populations of enteric neurons, ICC, and platelet-derived growth factor receptor α+ cells were unchanged. Analysis of components of the prostaglandin pathway revealed upregulation of multiple enzymes and receptors. Prostaglandin-endoperoxide synthase-2 inhibition increased slow wave amplitudes and reduced frequency of diabetic antrums. In conclusion, gastric pacemaker and contractile activity is disordered in type 2 diabetic mice, and this appears to be a consequence of excessive prostaglandin signaling. Inhibition of prostaglandin synthesis may provide a novel treatment for diabetic gastric motility disorders.
Collapse
Affiliation(s)
- Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Matthew C Shonnard
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Lauren E Peri
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV
| |
Collapse
|
42
|
|
43
|
Mazzone A, Gibbons SJ, Eisenman ST, Strege PR, Zheng T, D'Amato M, Ordog T, Fernandez-Zapico ME, Farrugia G. Direct repression of anoctamin 1 ( ANO1) gene transcription by Gli proteins. FASEB J 2019; 33:6632-6642. [PMID: 30802137 DOI: 10.1096/fj.201802373r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ca2+-activated Cl- channel, anoctamin 1 (Ano1, also known as transmembrane protein 16A) contributes to intestinal pacemaking, fluid secretion, cellular excitability, and tissue development. The human ANO1 promoter contains binding sites for the glioma-associated oncogene (Gli) proteins. We investigated regulation of ANO1 transcription by Gli. ANO1 promoter activity was determined using a luciferase reporter system. Binding and functional effects of Glis on ANO1 transcription and expression were demonstrated by chromatin immunoprecipitation, small interfering RNA knockdown, PCR, immunolabeling, and recordings of Ca2+-activated Cl- currents in human embryonic kidney 293 (HEK293) cells. Results from previous genome-wide association studies were used to test ANO1 promoter polymorphisms for association with disease. Gli1 and Gli2 bound to the promoter and repressed ANO1 transcription. Repression depended on Gli binding to a site close to the ANO1 transcriptional start site. Mutation of this site prevented Gli binding and transcriptional repression. Knockdown of Gli expression and inhibition of Gli activity increased expression of ANO1 RNA and Ca2+-activated Cl- currents in HEK293 cells. A single-nucleotide polymorphism prevented Gli binding and showed association with irritable bowel syndrome. We conclude that Gli1 and Gli2 repress ANO1 by a novel mechanism that is independent of Gli cleavage and that has a role in gastrointestinal function.-Mazzone, A., Gibbons, S. J., Eisenman, S. T., Strege, P. R., Zheng, T., D'Amato, M., Ordog, T., Fernandez-Zapico, M. E., Farrugia, G. Direct repression of anoctamin 1 (ANO1) gene transcription by Gli proteins.
Collapse
Affiliation(s)
- Amelia Mazzone
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon J Gibbons
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Seth T Eisenman
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter R Strege
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Tenghao Zheng
- Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mauro D'Amato
- Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Biodonostia Health Research Institute, San Sebastián, Spain.,Ikerbasque-Basque Science Foundation, San Sebastián, Spain
| | - Tamas Ordog
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
44
|
Sanders KM. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:3-46. [PMID: 31183821 PMCID: PMC7035145 DOI: 10.1007/978-981-13-5895-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract has multifold tasks of ingesting, processing, and assimilating nutrients and disposing of wastes at appropriate times. These tasks are facilitated by several stereotypical motor patterns that build upon the intrinsic rhythmicity of the smooth muscles that generate phasic contractions in many regions of the gut. Phasic contractions result from a cyclical depolarization/repolarization cycle, known as electrical slow waves, which result from intrinsic pacemaker activity. Interstitial cells of Cajal (ICC) are electrically coupled to smooth muscle cells (SMCs) and generate and propagate pacemaker activity and slow waves. The mechanism of slow waves is dependent upon specialized conductances expressed by pacemaker ICC. The primary conductances responsible for slow waves in mice are Ano1, Ca2+-activated Cl- channels (CaCCs), and CaV3.2, T-type, voltage-dependent Ca2+ channels. Release of Ca2+ from intracellular stores in ICC appears to be the initiator of pacemaker depolarizations, activation of T-type current provides voltage-dependent Ca2+ entry into ICC, as slow waves propagate through ICC networks, and Ca2+-induced Ca2+ release and activation of Ano1 in ICC amplifies slow wave depolarizations. Slow waves conduct to coupled SMCs, and depolarization elicited by these events enhances the open-probability of L-type voltage-dependent Ca2+ channels, promotes Ca2+ entry, and initiates contraction. Phasic contractions timed by the occurrence of slow waves provide the basis for motility patterns such as gastric peristalsis and segmentation. This chapter discusses the properties of ICC and proposed mechanism of electrical rhythmicity in GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
45
|
McErlain T, Ni Bhraonain E, Seaton Kelly R. The role of Ano1 in mediating cholinergic neurotransmission in the murine gastric fundus. J Physiol 2018; 596:3835-3837. [PMID: 29806711 DOI: 10.1113/jp276383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Tamara McErlain
- School of Biomedical Science, Queen's University Belfast, University Road, Belfast, Co. Antrim, UK
| | - Emer Ni Bhraonain
- School of Biomedical Science, Queen's University Belfast, University Road, Belfast, Co. Antrim, UK
| | - Rowena Seaton Kelly
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| |
Collapse
|
46
|
Gibbons SJ. Not just there to fill space: profound observations on interstitial cells of Cajal in the gastric fundus. J Physiol 2018; 596:1535-1536. [PMID: 29508395 DOI: 10.1113/jp275923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Simon J Gibbons
- Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|