1
|
Lee VY, Nils AVM, Arruda BP, Xavier GF, Nogueira MI, Motta-Teixeira LC, Takada SH. Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations. IBRO Neurosci Rep 2024; 17:263-279. [PMID: 39310269 PMCID: PMC11414703 DOI: 10.1016/j.ibneur.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction About 15-20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia. Methods spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24-36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75. Results gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring. Conclusion spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.
Collapse
Affiliation(s)
- Vitor Yonamine Lee
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Aline Vilar Machado Nils
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Bruna Petrucelli Arruda
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Gilberto Fernando Xavier
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
| | - Maria Inês Nogueira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
| | - Lívia Clemente Motta-Teixeira
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, R. do Matão, Travessa 14, 101, Sao Paulo 05508-900, Brazil
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, R. Jaguaribe, 155 - Vila Buarque, Sao Paulo, SP 01224-001, Brazil
| | - Silvia Honda Takada
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 2415, Sao Paulo, SP 05508-900, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Alameda da Universidade, s/n, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| |
Collapse
|
2
|
Sun H, Chen M, Liao J, He L, Wan B, Yin J, Zhang X. The maternal lifestyle in pregnancy: Implications for foetal skeletal muscle development. J Cachexia Sarcopenia Muscle 2024; 15:1641-1650. [PMID: 39155495 PMCID: PMC11446712 DOI: 10.1002/jcsm.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
The world is facing a global nutrition crisis, as evidenced by the rising incidence of metabolic disorders such as obesity, insulin resistance and chronic inflammation. Skeletal muscle is the largest tissue in humans and plays an important role in movement and host metabolism. Muscle fibre formation occurs mainly during the embryonic stage. Therefore, maternal lifestyle, especially nutrition and exercise during pregnancy, has a critical influence on foetal skeletal muscle development and the subsequent metabolic health of the offspring. In this review, the influence of maternal obesity, malnutrition and micronutrient intake on foetal skeletal muscle development is systematically summarized. We also aim to describe how maternal exercise shapes foetal muscle development and metabolic health in the offspring. The role of maternal gut microbiota and its metabolites on foetal muscle development is further discussed, although this field is still in its 'infancy'. This review will provide new insights to reduce the global crisis of metabolic disorders and highlight current gaps to promote further research.
Collapse
Affiliation(s)
- Haijun Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary MedicineBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jialong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Linjuan He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Boyang Wan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design Breeding (MOE)BeijingChina
| |
Collapse
|
3
|
Gao Y, Hossain MN, Zhao L, Deavila JM, Law NC, Zhu MJ, Murdoch GK, Du M. Spatial Transcriptomics Analysis: Maternal Obesity Impairs Myogenic Cell Migration and Differentiation during Embryonic Limb Development. Int J Mol Sci 2024; 25:9488. [PMID: 39273445 PMCID: PMC11395138 DOI: 10.3390/ijms25179488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Limb muscle is responsible for physical activities and myogenic cell migration during embryogenesis is indispensable for limb muscle formation. Maternal obesity (MO) impairs prenatal skeletal muscle development, but the effects of MO on myogenic cell migration remain to be examined. C57BL/6 mice embryos were collected at E13.5. The GeoMx DSP platform was used to customize five regions along myogenic cell migration routes (myotome, dorsal/ventral limb, limb stroma, limb tip), and data were analyzed by GeomxTools 3.6.0. A total of 2224 genes were down-regulated in the MO group. The GO enrichment analysis showed that MO inhibited migration-related biological processes. The signaling pathways guiding myogenic migration such as hepatocyte growth factor signaling, fibroblast growth factor signaling, Wnt signaling and GTPase signaling were down-regulated in the MO E13.5 limb tip. Correspondingly, the expression levels of genes involved in myogenic cell migration, such as Pax3, Gab1, Pxn, Tln2 and Arpc, were decreased in the MO group, especially in the dorsal and ventral sides of the limb. Additionally, myogenic differentiation-related genes were down-regulated in the MO limb. MO impedes myogenic cell migration and differentiation in the embryonic limb, providing an explanation for the impairment of fetal muscle development and offspring muscle function due to MO.
Collapse
Affiliation(s)
- Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Liang Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jeanene Marie Deavila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Nathan C. Law
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA;
| | - Gordon K. Murdoch
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; (Y.G.); (M.N.H.); (J.M.D.); (N.C.L.); (G.K.M.)
| |
Collapse
|
4
|
Sivakumar S, Lama D, Rabhi N. Childhood obesity from the genes to the epigenome. Front Endocrinol (Lausanne) 2024; 15:1393250. [PMID: 39045266 PMCID: PMC11263020 DOI: 10.3389/fendo.2024.1393250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The prevalence of obesity and its associated comorbidities has surged dramatically in recent decades. Especially concerning is the increased rate of childhood obesity, resulting in diseases traditionally associated only with adulthood. While obesity fundamentally arises from energy imbalance, emerging evidence over the past decade has revealed the involvement of additional factors. Epidemiological and murine studies have provided extensive evidence linking parental obesity to increased offspring weight and subsequent cardiometabolic complications in adulthood. Offspring exposed to an obese environment during conception, pregnancy, and/or lactation often exhibit increased body weight and long-term metabolic health issues, suggesting a transgenerational inheritance of disease susceptibility through epigenetic mechanisms rather than solely classic genetic mutations. In this review, we explore the current understanding of the mechanisms mediating transgenerational and intergenerational transmission of obesity. We delve into recent findings regarding both paternal and maternal obesity, shedding light on the underlying mechanisms and potential sex differences in offspring outcomes. A deeper understanding of the mechanisms behind obesity inheritance holds promise for enhancing clinical management strategies in offspring and breaking the cycle of increased metabolic risk across generations.
Collapse
Affiliation(s)
| | | | - Nabil Rabhi
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Zhang CXW, Candia AA, Sferruzzi-Perri AN. Placental inflammation, oxidative stress, and fetal outcomes in maternal obesity. Trends Endocrinol Metab 2024; 35:638-647. [PMID: 38418281 DOI: 10.1016/j.tem.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
The obesity epidemic has led to a growing body of research investigating the consequences of maternal obesity on pregnancy and offspring health. The placenta, traditionally viewed as a passive intermediary between mother and fetus, is known to play a critical role in modulating the intrauterine environment and fetal development, and we now know that maternal obesity leads to increased inflammation, oxidative stress, and altered placental function. Here, we review recent research exploring the involvement of inflammation and oxidative stress as mechanisms impacting the placenta and fetus during obese pregnancy. Understanding them is crucial for informing strategies that can mitigate the adverse health effects of maternal obesity on offspring development and disease risk.
Collapse
Affiliation(s)
- Cindy X W Zhang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alejandro A Candia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Institute of Health Sciences, University of O'Higgins, Santiago, Chile
| | | |
Collapse
|
6
|
Valkenborghs SR, Hayman MJ. Physical activity during pregnancy and baby brain development - The elephant in the consulting room. Neurosci Biobehav Rev 2024; 159:105602. [PMID: 38395119 DOI: 10.1016/j.neubiorev.2024.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Affiliation(s)
- Sarah R Valkenborghs
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia; Active Living research program, Hunter Medical Research Institute, New Lambton Heights, Australia.
| | - Melanie J Hayman
- School of Health, Medical, and Applied Sciences, CQUniversity, Rockhampton, Australia
| |
Collapse
|
7
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
8
|
Dong J, Xu Q, Qian C, Wang L, DiSciullo A, Lei J, Lei H, Yan S, Wang J, Jin N, Xiong Y, Zhang J, Burd I, Wang X. Fetal growth restriction exhibits various mTOR signaling in different regions of mouse placentas with altered lipid metabolism. Cell Biol Toxicol 2024; 40:15. [PMID: 38451382 PMCID: PMC10920423 DOI: 10.1007/s10565-024-09855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy and can have significant impact on obstetric and neonatal outcomes. Increasing evidence has shown that the inhibited mechanistic target of rapamycin (mTOR) signaling in placenta is associated with FGR. However, interpretation of existing research is limited due to inconsistent methodologies and varying understanding of the mechanism by which mTOR activity contributes to FGR. Hereby, we have demonstrated that different anatomic regions of human and mouse placentas exhibited different levels of mTOR activity in normal compared to FGR pregnancies. When using the rapamycin-induced FGR mouse model, we found that placentas of FGR pregnancies exhibited abnormal morphological changes and reduced mTOR activity in the decidual-junctional layer. Using transcriptomics and lipidomics, we revealed that lipid and energy metabolism was significantly disrupted in the placentas of FGR mice. Finally, we demonstrated that maternal physical exercise during gestation in our FGR mouse model was associated with increased fetal and placental weight as well as increased placental mTOR activity and lipid metabolism. Collectively, our data indicate that the inhibited placental mTOR signaling contributes to FGR with altered lipid metabolism in mouse placentas, and maternal exercise could be an effective method to reduce the occurrence of FGR or alleviate the adverse outcomes associated with FGR.
Collapse
Affiliation(s)
- Jie Dong
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China.
| | - Qian Xu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Chenxi Qian
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Lu Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Alison DiSciullo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA
| | - Hui Lei
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Song Yan
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Jingjing Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Ni Jin
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Yujing Xiong
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Jianhua Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA.
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
9
|
Chae SA, Du M, Zhu MJ, Son JS. Exercise enhances placental labyrinth trophoblast development by activation of PGC-1α and FNDC5/irisin†. Biol Reprod 2024; 110:355-364. [PMID: 37934783 PMCID: PMC10873274 DOI: 10.1093/biolre/ioad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
Placental chorion/labyrinth trophoblasts are energy demanding which is met by the mitochondrial oxidative phosphorylation. Exercise enhances placental development and mitochondrial biogenesis, but the underlying mechanisms remain poorly understood. To address, female C57BL/6 J mice were randomly assigned into two groups: a control group and an exercise (EX) group. All animals were acclimated to treadmill exercise for 1 week before mating, but only the EX group was subjected to daily exercise during pregnancy from embryonic day (E) 1.5 to E16.5. Placenta were collected at E18.5 for biochemical and histochemical analyses, and primary trophoblast cells were isolated from the E18.5 placenta for further analyses. The data showed that exercise during pregnancy promoted the expression of syncytiotrophoblast cell markers, indicating trophoblast cell differentiation, which was closely associated with elevated mitochondrial biogenesis and oxidative metabolism in the E18.5 placenta. In addition, exercise during pregnancy activated peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), which was associated with upregulated placental α-ketoglutarate and the expression of isocitrate dehydrogenases and ten-eleven translocations, facilitating DNA demethylation of the Pgc1a promoter. Furthermore, exercise upregulated fibronectin type III domain containing 5 expression and the secretion of its cleaved form, irisin, which is known to activate PGC-1α. These data suggest that exercise-induced activation of PGC-1α, via epigenetic modifications, is responsible for promoting mitochondrial energy metabolism and chorion/labyrinth trophoblast development.
Collapse
Affiliation(s)
- Song Ah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Jun Seok Son
- Nutrigenomics and Exercise Biology Laboratory, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Tando Y, Matsui Y. Inheritance of environment-induced phenotypic changes through epigenetic mechanisms. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad008. [PMID: 38094661 PMCID: PMC10719065 DOI: 10.1093/eep/dvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 03/08/2024]
Abstract
Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
11
|
Ruebel ML, Borengasser SJ, Zhong Y, Kang P, Faske J, Shankar K. Maternal Exercise Prior to and during Gestation Induces Sex-Specific Alterations in the Mouse Placenta. Int J Mol Sci 2023; 24:16441. [PMID: 38003633 PMCID: PMC10671464 DOI: 10.3390/ijms242216441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
While exercise (EX) during pregnancy is beneficial for both mother and child, little is known about the mechanisms by which maternal exercise mediates changes in utero. Six-week-old female C57BL/6 mice were divided into two groups: with (exercise, EX; N = 7) or without (sedentary, SED; N = 8) access to voluntary running wheels. EX was provided via 24 h access to wheels for 10 weeks prior to conception until late pregnancy (18.5 days post coitum). Sex-stratified placentas and fetal livers were collected. Microarray analysis of SED and EX placentas revealed that EX affected gene transcript expression of 283 and 661 transcripts in male and female placentas, respectively (±1.4-fold, p < 0.05). Gene Set Enrichment and Ingenuity Pathway Analyses of male placentas showed that EX led to inhibition of signaling pathways, biological functions, and down-regulation of transcripts related to lipid and steroid metabolism, while EX in female placentas led to activation of pathways, biological functions, and gene expression related to muscle growth, brain, vascular development, and growth factors. Overall, our results suggest that the effects of maternal EX on the placenta and presumably on the offspring are sexually dimorphic.
Collapse
Affiliation(s)
- Meghan L. Ruebel
- Microbiome and Metabolism Research Unit, USDA-ARS, Southeast Area, Little Rock, AR 72202, USA;
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Sarah J. Borengasser
- Tobacco Settlement Endowment Trust Health Promotion Research Center, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics—Endocrinology & Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ying Zhong
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Ping Kang
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
| | - Jennifer Faske
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA; (Y.Z.); (J.F.)
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Pahlavani HA, Laher I, Weiss K, Knechtle B, Zouhal H. Physical exercise for a healthy pregnancy: the role of placentokines and exerkines. J Physiol Sci 2023; 73:30. [PMID: 37964253 PMCID: PMC10718036 DOI: 10.1186/s12576-023-00885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Complications such as diabetes and preeclampsia can occur during pregnancy. Moderate-intensity exercise can prevent such complications by releasing placentokines and exerkines, such as apelin, adiponectin, leptin, irisin, and chemerin. Exercise and apelin increase thermogenesis and glucose uptake in pregnancy by activating AMPK, PI3K, PGC-1α, AKT1, UCP3, and sarcolipin. Exercise increases apelin levels to reduce preeclampsia symptoms by increasing eNOS, NO, placental growth factor (PlGF), and VEGF and decreasing levels of fms-like tyrosine kinase 1 (sFlt-1), soluble endoglin (sEng), and oxidative stress. A negative relationship has been reported between plasma leptin and VO2peak/kg and VO2peak in women with gestational diabetes. In active women, decreases in leptin levels reduce the risk of preeclampsia by ~ 40%. Higher adiponectin levels are associated with greater physical activity and lead to increased insulin sensitivity. Increased adiponectin levels in preeclampsia and exercise counteract inflammatory and atherogenic activities while also having vascular protective effects. Exercise increases irisin levels that correlate negatively with fasting glucose, insulin concentration, and glycosylated hemoglobin levels. Irisin augments mRNA expression levels of UCP1 and cell death-inducing DNA fragmentation factor-like effector A (cidea) to cause browning of adipose tissue, increased thermogenesis, and increased energy consumption. Irisin concentrations in mothers with preeclampsia in the third trimester negatively correlate with systolic and diastolic blood pressure. Expression levels of chemerin, IL-6, and TNF-α are increased in gestational diabetes, and the increases in chemerin in late pregnancy positively correlate with the ratio of sFlt-1 to PlGF as a marker of preeclampsia. The effects of physical exercise on placentokines and exerkines in women at various stages of pregnancy remain poorly understood.
Collapse
Affiliation(s)
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
- Medbase St Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
| | - Hassane Zouhal
- Movement Sport, Health and Sciences Laboratory (M2S) UFR-STAPS, University of Rennes 2-ENS Cachan, Charles Tillon, France.
- Institut International Des Sciences Du Sport (2IS), Irodouer, France.
| |
Collapse
|
13
|
Aparicio VA, Baena-García L, Sánchez-González C, Acosta-Manzano P, Varela-López A, Quiles JL. Influence of a concurrent exercise training program during pregnancy on the placenta mitochondrial DNA integrity and content of minerals with enzymatic relevance. The GESTAFIT project. Placenta 2023; 139:19-24. [PMID: 37295054 DOI: 10.1016/j.placenta.2023.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION We aimed i) to investigate the effects of a concurrent (aerobic plus strength) exercise intervention during pregnancy on placental mtDNA copy number, proportion of deleted mtDNA, and on the content of some trace and ultra-trace minerals with coenzymatic relevance; ii) to explore the association of such mitochondrial markers with the concentration of these minerals. METHODS For the present study specific aims, 47 placentas were randomly selected from women that participated in the GESTAFIT project into exercise (n = 24) or control (n = 23) groups. The exercise group followed a concurrent aerobic and strength training program, three 60-min sessions/week, from the 17th gestational week until birth. Placenta tissue was collected and processed for minerals determination by the inductively coupled plasma mass spectrometry technique. RT-PCR was used to determine placentas mtDNA copy number and ND1/ND4 deletion. RESULTS After adjusting for potential confounders, the mothers who participated in the exercise program had placentas with greater mtDNA copy number (p = 0.04) and lower mtDNA deletion (p = 0.003). Placentas from mothers in the exercise group presented higher manganese content than those from the controls (0.26 ± 0.03 mg/dL vs. 0.13 ± 0.03 mg/dL, p = 0.003). Placenta manganese content was significantly associated with lower mtDNA deletions (r = -0.382) and greater mtDNA copy number (r = 0.513). Iron content was associated with higher mtDNA copy number (r = 0.393). Selenium content was associated with lower mtDNA deletion (r = -0.377) and greater mtDNA copy number (r = 0.442). Finally, zinc and magnesium content were associated with higher mtDNA copy number (r = 0.447 and r = 0.453, respectively). DISCUSSION This concurrent exercise training program induced a better placental status, which might be mediated through an improvement of mitochondrial bioenergetics and antioxidative capacity.
Collapse
Affiliation(s)
- Virginia A Aparicio
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Spain; Sport and Health University Research Centre (iMUDS), University of Granada, Spain; Glzartea, Kirola eta Ariketa Fisikoa Ikerkuntza Taldea (GIKAFIT), Society Sports and Exercise Research Group, Department of Physical Education and Sport, Faculty of Education and Sport-Physical Activity and Sport Sciences Section, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Araba/Álava, Basque Country, Spain
| | - Laura Baena-García
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain; The Institute of Biomedicine Research (Instituto de Investigación Biosanitaria, ibs), Spain.
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Spain
| | - Pedro Acosta-Manzano
- Sport and Health University Research Centre (iMUDS), University of Granada, Spain; Institute of Human Movement Science, Sport and Health, University of Graz, Austria
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Spain
| | - Jose L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Spain
| |
Collapse
|
14
|
Wang L, O'Kane AM, Zhang Y, Ren J. Maternal obesity and offspring health: Adapting metabolic changes through autophagy and mitophagy. Obes Rev 2023:e13567. [PMID: 37055041 DOI: 10.1111/obr.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
Maternal obesity leads to obstetric complications and a high prevalence of metabolic anomalies in the offspring. Among various contributing factors for maternal obesity-evoked health sequelae, developmental programming is considered as one of the leading culprit factors for maternal obesity-associated chronic comorbidities. Although a unified theory is still lacking to systematically address multiple unfavorable postnatal health sequelae, a cadre of etiological machineries have been put forward, including lipotoxicity, inflammation, oxidative stress, autophagy/mitophagy defect, and cell death. Hereinto, autophagy and mitophagy play an essential housekeeping role in the clearance of long-lived, damaged, and unnecessary cell components to maintain and restore cellular homeostasis. Defective autophagy/mitophagy has been reported in maternal obesity and negatively impacts fetal development and postnatal health. This review will provide an update on metabolic disorders in fetal development and postnatal health issues evoked by maternal obesity and/or intrauterine overnutrition and discuss the possible contribution of autophagy/mitophagy in metabolic diseases. Moreover, relevant mechanisms and potential therapeutic strategies will be discussed in an effort to target autophagy/mitophagy and metabolic disturbances in maternal obesity.
Collapse
Affiliation(s)
- Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Aislinn M O'Kane
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
15
|
Poniedziałek-Czajkowska E, Mierzyński R, Leszczyńska-Gorzelak B. Preeclampsia and Obesity-The Preventive Role of Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1267. [PMID: 36674022 PMCID: PMC9859423 DOI: 10.3390/ijerph20021267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/10/2023]
Abstract
Obesity is now recognized as a worldwide epidemic. An inadequate diet and reduced physical activity are acknowledged as the leading causes of excess body weight. Despite growing evidence that obesity is a risk factor for unsuccessful pregnancies, almost half of all women who become pregnant today are overweight or obese. Common complications of pregnancy in this group of women are preeclampsia and gestational hypertension. These conditions are also observed more frequently in women with excessive weight gain during pregnancy. Preeclampsia is one of the most serious pregnancy complications with an unpredictable course, which in its most severe forms, threatens the life and health of the mother and her baby. The early identification of the risk factors for preeclampsia development, including obesity, allows for the implementation of prophylaxis and a reduction in maternal and fetal complications risk. Additionally, preeclampsia and obesity are the recognized risk factors for developing cardiovascular disease in later life, so prophylaxis and treating obesity are paramount for their prevention. Thus, a proper diet and physical activity might play an essential role in the prophylaxis of preeclampsia in this group of women. Limiting weight gain during pregnancy and modifying the metabolic risk factors with regular physical exercise creates favorable metabolic conditions for pregnancy development and benefits the elements of the pathogenetic sequence for preeclampsia development. In addition, it is inexpensive, readily available and, in the absence of contraindications to its performance, safe for the mother and fetus. However, for this form of prevention to be effective, it should be applied early in pregnancy and, for overweight and obese women, proposed as an essential part of planning pregnancy. This paper aims to present the mechanisms of the development of hypertension in pregnancy in obese women and the importance of exercise in its prevention.
Collapse
|
16
|
Allman BR, McDonald S, May L, Børsheim E. Resistance Training as a Countermeasure in Women with Gestational Diabetes Mellitus: A Review of Current Literature and Future Directions. Sports Med 2022; 52:2871-2888. [PMID: 35810251 PMCID: PMC10043826 DOI: 10.1007/s40279-022-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
Gestational diabetes mellitus (GDM) poses a significant health concern for both mother and offspring. Exercise has emerged as a cornerstone of glycemic management in GDM. However, most research regarding this topic examines aerobic training (AT), despite substantial evidence for the effectiveness of resistance training (RT) in improving dysregulated glucose in other groups of people with diabetes, such as in type 2 diabetes mellitus (T2DM). Thus, the purpose of this paper is to review research that examined the impact of RT on markers of glucose management in GDM, and to discuss future research directions to determine the benefits of RT in GDM. Based on the current evidence, RT is effective in reducing insulin requirement, especially in overweight women, reducing fasting glucose concentrations, and improving short-term postprandial glycemic control. However, the number of studies and findings limit conclusions about the impact of RT on risk of GDM, fasting insulin concentrations, insulin resistance, β-cell function, and intra-exercise glucose management. Overall, current evidence is accumulating to suggest that RT is a promising non-pharmacological tool to regulate circulating glucose concentrations in women with GDM, and a potential alternative or supplement to AT.
Collapse
Affiliation(s)
- Brittany R Allman
- Arkansas Children's Nutrition Center, Little Rock, AR, USA.
- Arkansas Children's Research Institute, Little Rock, AR, USA.
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Samantha McDonald
- School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA
| | - Linda May
- Department of Obstetrics and Gynecology, East Carolina University (ECU), Greenville, NC, USA
- Department of Kinesiology, ECU, Greenville, NC, USA
- Department of Foundational Sciences and Research, ECU, Greenville, NC, USA
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Departments of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
17
|
Maternal Underweight and Obesity Are Associated with Placental Pathologies in Human Pregnancy. Reprod Sci 2022; 29:3425-3448. [PMID: 35739350 DOI: 10.1007/s43032-022-00983-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Maternal underweight and obesity are prevalent conditions, associated with chronic, low-grade inflammation, poor fetal development, and long-term adverse outcomes for the child. The placenta senses and adapts to the pregnancy environment in an effort to support optimal fetal development. However, the mechanisms driving these adaptations, and the resulting placental phenotypes, are poorly understood. We hypothesised that maternal underweight and obesity would be associated with increased prevalence of placental pathologies in term and preterm pregnancies. Data from 12,154 pregnancies were obtained from the Collaborative Perinatal Project, a prospective cohort study conducted from 1959 to 1974. Macro- and microscopic placental pathologies were analysed across maternal prepregnancy body mass index (BMI) to assess differences in the presence of pathologies among underweight, overweight, and obese BMI groups compared to normal weight reference BMI at term and preterm. Placental pathologies were also assessed across fetal sex. Pregnancies complicated by maternal obesity had placentae with increased fetal inflammation at preterm, and increased inflammation of maternal gestational tissues at term. In term pregnancies, increasing maternal BMI associated with increased maternal vascular malperfusion (MVM), odds of an appropriately mature placenta for gestational age, and placental weight, and decreased placental efficiency. Male placentae, independent of maternal BMI, had increased inflammation, MVM, and placental efficiency than female placentae, particularly at term. Maternal underweight and obesity are not inert conditions for the placenta, and the histomorphological changes driven by suboptimal maternal BMI may serve as indicators of adversities experienced in utero and potential predictors of future health trajectories.
Collapse
|
18
|
Chae SA, Son JS, de Avila JM, Du M, Zhu MJ. Maternal exercise improves epithelial development of fetal intestine by enhancing apelin signaling and oxidative metabolism. Am J Physiol Regul Integr Comp Physiol 2022; 323:R728-R738. [PMID: 36189989 PMCID: PMC9829469 DOI: 10.1152/ajpregu.00128.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
Obesity in pregnancy is currently the leading cause of gestational complications for the mother and fetus worldwide. Maternal obesity (MO), common in western societies, impedes development of intestinal epithelium in the fetuses, which causes disorders in the nutrient absorption and intestine-related immune responses in offspring. Here, using a mouse model of maternal exercise (ME), we found that exercise during pregnancy protects the impairment of fetal intestinal morphometrical formation and epithelial development due to MO. MO decreased villus length and epithelial proliferation markers in E18.5 fetal small intestine, which was increased due to ME. The expression of the epithelial differentiation markers, Lyz1, Muc2, and Tff3, in fetal small intestine was decreased due to MO, but protected by ME. Consistently, the biomarkers related to mitochondrial biogenesis and oxidative metabolism were downregulated in MO fetal small intestine but recovered by ME. Apelin injection to dams partially mirrored the beneficial effects of ME. ME and apelin injection activated AMPK, the downstream target of apelin receptor signaling, which might mediate the improvement of fetal epithelial development and oxidative metabolism. These findings suggest that ME, a highly accessible intervention, is effective in improving fetal intestinal epithelium of obese dams. Apelin-AMPK-mitochondrial biogenesis axis provides amenable therapeutic targets to facilitate fetal intestinal development of obese mothers.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeanene Marie de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington
| |
Collapse
|
19
|
Guinhouya BC, Duclos M, Enea C, Storme L. Beneficial Effects of Maternal Physical Activity during Pregnancy on Fetal, Newborn, and Child Health: Guidelines for Interventions during the Perinatal Period from the French National College of Midwives. J Midwifery Womens Health 2022; 67 Suppl 1:S149-S157. [PMID: 36480665 PMCID: PMC10107927 DOI: 10.1111/jmwh.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
The objective of this work is to synthesize current knowledge about the effects of maternal physical activity during pregnancy on children's health. During the prenatal and postnatal periods, maternal physical activity has protective effects against the risks of macrosomia, obesity, and other associated cardiometabolic disorders. Even though longitudinal studies in humans are still necessary to validate them, these effects have been consistently observed in animal studies. A remarkable effect of maternal physical activity is its positive role on neurogenesis, language development, memory, and other cognitive functions related to learning.
Collapse
Affiliation(s)
| | - Martine Duclos
- Department of Sport Medicine and Functional Explorations, University-Hospital (CHU), G. Montpied Hospital, Clermont-Ferrand, Clermont-Ferrand, F-63003, France
- INRAE, UNH, CRNH Auvergne, Clermont-Ferrand, F-63000, France
- Clermont University, University of Auvergne, UFR Médecine, BP 10448, Clermont-Ferrand, F-63000, France
| | - Carina Enea
- Laboratoire MOVE (EA6314), Université de Poitiers, Faculté des sciences du sport, 8 allée Jean Monnet - TSA 31113 - 96073 Poitiers cedex 9
| | - Laurent Storme
- Univ. Lille, ULR 2694 METRICS, Lille, F-59000, France
- Department of Neonatology, CHU Lille, Lille, F-59000, France
| |
Collapse
|
20
|
Cechinel LR, Batabyal RA, Freishtat RJ, Zohn IE. Parental obesity-induced changes in developmental programming. Front Cell Dev Biol 2022; 10:918080. [PMID: 36274855 PMCID: PMC9585252 DOI: 10.3389/fcell.2022.918080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies support the link between parental obesity and the predisposition to develop adult-onset metabolic syndromes that include obesity, high blood pressure, dyslipidemia, insulin resistance, and diabetes in the offspring. As the prevalence of obesity increases in persons of childbearing age, so does metabolic syndrome in their descendants. Understanding how parental obesity alters metabolic programs in the progeny, predisposing them to adult-onset metabolic syndrome, is key to breaking this cycle. This review explores the basis for altered metabolism of offspring exposed to overnutrition by focusing on critical developmental processes influenced by parental obesity. We draw from human and animal model studies, highlighting the adaptations in metabolism that occur during normal pregnancy that become maladaptive with obesity. We describe essential phases of development impacted by parental obesity that contribute to long-term alterations in metabolism in the offspring. These encompass gamete formation, placentation, adipogenesis, pancreas development, and development of brain appetite control circuits. Parental obesity alters the developmental programming of these organs in part by inducing epigenetic changes with long-term consequences on metabolism. While exposure to parental obesity during any of these phases is sufficient to alter long-term metabolism, offspring often experience multiple exposures throughout their development. These insults accumulate to increase further the susceptibility of the offspring to the obesogenic environments of modern society.
Collapse
|
21
|
Patterns in Prenatal Physical Activity and Sedentary Behavior: Associations With Blood Pressure and Placental Features in the MoMHealth Cohort. J Phys Act Health 2022; 19:658-665. [PMID: 36049747 DOI: 10.1123/jpah.2021-0585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Moderate to vigorous physical activity (MVPA) and sedentary behavior (SED) are associated with blood pressure (BP) and adverse pregnancy outcomes. The authors investigated associations of prenatal MVPA and SED patterns with BP and with placental malperfusion features. METHODS Women enrolled in this prospective cohort study in the first trimester. MVPA, SED, and BP were measured objectively each trimester. MVPA and SED trajectories were constructed. Placental examinations were conducted in a subset. Associations of trajectories with BPs were assessed with linear regression adjusted for age, race, education, prepregnancy body mass index, and gestational age. Associations with placental malperfusion lesions and weight were adjusted for key covariates. RESULTS One hundred eleven participants were included; placental exams were available in 50. Participants with high (vs low) SED were younger and more likely to have adverse pregnancy outcomes. High SED (vs low) was associated with higher first trimester systolic (β = 5.3; 95% confidence interval, 0.0 to 10.6) and diastolic (β = 5.0; 95% confidence interval, 1.4 to 8.6) and higher second trimester diastolic (β = 4.9; 95% confidence interval, 1.6 to 8.2) BP. Medium and high MVPA groups were associated with lower postpartum diastolic BP. Trajectories were not associated with placental malperfusion. CONCLUSIONS MVPA and SED patterns were differentially associated with prenatal and postpartum BP. Encouraging favorable levels of both might help women achieve lower BP during and after pregnancy.
Collapse
|
22
|
Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines 2022; 10:biomedicines10102461. [PMID: 36289722 PMCID: PMC9599218 DOI: 10.3390/biomedicines10102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
While a dramatic increase in obesity and related comorbidities is being witnessed, the underlying mechanisms of their spread remain unresolved. Epigenetic and other non-genetic mechanisms tend to be prominent candidates involved in the establishment and transmission of obesity and associated metabolic disorders to offspring. Here, we review recent findings addressing those candidates, in the context of maternal and paternal influences, and discuss the effectiveness of preventive measures.
Collapse
Affiliation(s)
- Gemma Comas-Armangue
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Lela Makharadze
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Melisa Gomez-Velazquez
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| | - Raffaele Teperino
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| |
Collapse
|
23
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
24
|
Luft C, da Costa MS, Antunes GL, de Oliveira JR, Donadio MVF. The role of maternal exercise on placental, behavioral and genetic alterations induced by prenatal stress. Neurochem Int 2022; 158:105384. [PMID: 35787396 DOI: 10.1016/j.neuint.2022.105384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022]
Abstract
The present study aimed to evaluate the effects of treadmill maternal exercise on alterations induced by prenatal stress in neonatal mice. Female and male Balb/c mice were divided into five groups: control (CON), prenatal restraint stress (PNS), prenatal restraint stress and physical exercise before pregnancy (PNS + EX1), prenatal restraint stress and physical exercise during pregnancy (PNS + EX2), and prenatal restraint stress and physical exercise before and during pregnancy (PNS + EX3). Exercise was performed using a treadmill, at a speed of 10 m/min, for 60 minutes, 5 days a week. Maternal behavior was assessed on days 3, 4 and 5 postpartum (PPD). Placental gene expression of glucocorticoid receptor (GR), 11-β-hydroxysteroid dehydrogenase 2 (11β-HSD2), 5-hydroxytryptamine receptor 1A (5HT1AR), and corticotropin releasing hormone receptor 1 (CRHR1) were analyzed. In neonatal mice, the gene expression of GR, mineralocorticoid receptor (MR), CRHR1, 5HTr1, oxytocin Receptor 1 (OXTr1), tropomyosin related kinase B (TRκB), brain-derived neurotrophic factor exon I (BDNF I), and BDNF IV was analyzed in the brain (PND0) and hippocampus (PND10). Maternal exercise improved (p < 0.05) maternal care. In the placenta, maternal exercise prevented (p < 0.01) the increase in GR expression caused by PNS. In the brain from PND0, exercise before pregnancy prevented (p = 0.002) the decreased CRHR1 expression promoted by PNS. In the hippocampus of PND10 males, PNS decreased (p = 0.0005) GR expression, and exercise before pregnancy prevented (p = 0.003) this effect. In PND10 females, maternal exercise prevented (p < 0.05) the PNS-induced increase in MR expression. PNS + EX2 males showed increased (p < 0.01) BDNF I gene expression and PNS + EX1 females demonstrated increased (p = 0.03) BDNF IV expression. In conclusion, maternal physical exercise may play a role in modulating maternal-fetal health and may contribute to preventing neurodevelopmental changes induced by prenatal stress.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Géssica Luana Antunes
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Department of Physiotherapy, Facultad de Medicina y Ciencias de la Salud, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
| |
Collapse
|
25
|
Fang X, Wu H, Wang X, Lian F, Li M, Miao R, Wei J, Tian J. Modulation of Gut Microbiota and Metabolites by Berberine in Treating Mice With Disturbances in Glucose and Lipid Metabolism. Front Pharmacol 2022; 13:870407. [PMID: 35721198 PMCID: PMC9204213 DOI: 10.3389/fphar.2022.870407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction: Glucose and lipid metabolism disturbances has become the third major disease after cancer and cardio-cerebrovascular diseases. Emerging evidence shows that berberine can effectively intervene glucose and lipid metabolism disturbances, but the underlying mechanisms of this remain unclear. To investigate this issue, we performed metagenomic and metabolomic analysis in a group of normal mice (the NC group), mice with disturbances in glucose and lipid metabolism (the MC group) and mice with disturbances in glucose and lipid metabolism after berberine intervention (the BER group). Result: Firstly, analysis of the clinical indicators revealed that berberine significantly improved the blood glucose and blood lipid of the host. The fasting blood glucose level decreased by approximately 30% in the BER group after 8 weeks and the oral glucose tolerance test showed that the blood glucose level of the BER group was lower than that of the MC group at any time. Besides, berberine significantly reduced body weight, total plasma cholesterol and triglyceride. Secondly, compared to the NC group, we found dramatically decreased microbial richness and diversity in the MC group and BER group. Thirdly, LDA effect size suggested that berberine significantly altered the overall gut microbiota structure and enriched many bacteria, including Akkermansia (p < 0.01), Eubacterium (p < 0.01) and Ruminococcus (p < 0.01). Fourthly, the metabolomic analysis suggested that there were significant differences in the metabolomics signature of each group. For example, isoleucine (p < 0.01), phenylalanine (p < 0.05), and arbutin (p < 0.05) significantly increased in the MC group, and berberine intervention significantly reduced them. The arbutin content in the BER group was even lower than that in the NC group. Fifthly, by combined analysis of metagenomics and metabolomics, we observed that there were significantly negative correlations between the reduced faecal metabolites (e.g., arbutin) in the BER group and the enriched gut microbiota (e.g., Eubacterium and Ruminococcus) (p < 0.05). Finally, the correlation analysis between gut microbiota and clinical indices indicated that the bacteria (e.g., Eubacterium) enriched in the BER group were negatively associated with the above-mentioned clinical indices (p < 0.05). Conclusion: Overall, our results describe that the changes of gut microbiota and metabolites are associated with berberine improving glucose and lipid metabolism disturbances.
Collapse
Affiliation(s)
- Xinyi Fang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runyu Miao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian,
| |
Collapse
|
26
|
Chae SA, Son JS, Zhao L, Gao Y, Liu X, Marie de Avila J, Zhu MJ, Du M. Exerkine apelin reverses obesity-associated placental dysfunction by accelerating mitochondrial biogenesis in mice. Am J Physiol Endocrinol Metab 2022; 322:E467-E479. [PMID: 35403440 PMCID: PMC9126223 DOI: 10.1152/ajpendo.00023.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal exercise (ME) protects against adverse effects of maternal obesity (MO) on fetal development. As a cytokine stimulated by exercise, apelin (APN) is elevated due to ME, but its roles in mediating the effects of ME on placental development remain to be defined. Two studies were conducted. In the first study, 18 female mice were assigned to control (CON), obesogenic diet (OB), or OB with exercise (OB/Ex) groups (n = 6); in the second study, the same number of female mice were assigned to three groups; CON with PBS injection (CD/PBS), OB/PBS, or OB with apelin injection (OB/APN). In the exercise study, daily treadmill exercise during pregnancy significantly elevated the expression of PR domain 16 (PRDM16; P < 0.001), which correlated with enhanced oxidative metabolism and mitochondrial biogenesis in the placenta (P < 0.05). More importantly, these changes were partially mirrored in the apelin study. Apelin administration upregulated PRDM16 protein level (P < 0.001), mitochondrial biogenesis (P < 0.05), placental nutrient transporter expression (P < 0.001), and placental vascularization (P < 0.01), which were impaired due to MO (P < 0.05). In summary, MO impairs oxidative phosphorylation in the placenta, which is improved by ME; apelin administration partially mimics the beneficial effects of exercise on improving placental function, which prevents placental dysfunction due to MO.NEW & NOTEWORTHY Maternal exercise prevents metabolic disorders of mothers and offspring induced by high-fat diet. Exercise intervention enhances PRDM16 activation, oxidative metabolism, and vascularization of placenta, which are inhibited due to maternal obesity. Similar to maternal exercise, apelin administration improves placental function of obese dams.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jeanene Marie de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
27
|
Wang M, Wang Z, Miao Y, Wei H, Peng J, Zhou Y. Diallyl Trisulfide Promotes Placental Angiogenesis by Regulating Lipid Metabolism and Alleviating Inflammatory Responses in Obese Pregnant Mice. Nutrients 2022; 14:nu14112230. [PMID: 35684030 PMCID: PMC9182607 DOI: 10.3390/nu14112230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
The placental tissue serves as an exchanger between the mother and the fetus during pregnancy in mammals. Proper placental angiogenesis is central to the health of both the mother and the growth and development of the fetus. Maternal obesity is associated with impaired placental function, resulting in restricted placental blood vessel development and fetal developmental disorders. Hydrogen sulfide (H2S) is a ubiquitous second messenger in cells that has many biological effects such as promoting angiogenesis, anti-inflammation, anti-oxidation and promoting lipid metabolism. However, in the case of maternal obesity, whether H2S can be used as an important signaling molecule to regulate body metabolism, alleviate placental inflammation levels and promote placental angiogenesis is still unclear. In this study, diallyl trisulfide (DATS), which is a well-known H2S donor, was derived from garlic and used to treat obese pregnant mice induced by a high-fat diet, to determine its effects on lipid metabolism and inflammation, as well as placental morphology and placental angiogenesis. Here, we show that DATS treatment increased litter size and alive litter size. DATS improved the H2S level in the serum and placenta of the mice. In addition, DATS treatment improved insulin resistance and lipid metabolism, reduced the inflammatory response and alleviated placental vascular dysplasia caused by obesity in obese mice. In summary, our research revealed that H2S is an important signaling molecule in vivo, which can regulate placental angiogenesis and improve the reproductive performance in maternal obesity. The addition of H2S donor DATS during pregnancy promoted placental angiogenesis by regulating lipid metabolism and alleviating inflammatory responses in obese pregnant mice.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.W.); (Z.W.); (Y.M.); (H.W.)
| | - Zhaoyu Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.W.); (Z.W.); (Y.M.); (H.W.)
| | - Yueyue Miao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.W.); (Z.W.); (Y.M.); (H.W.)
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.W.); (Z.W.); (Y.M.); (H.W.)
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.W.); (Z.W.); (Y.M.); (H.W.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (J.P.); (Y.Z.)
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.W.); (Z.W.); (Y.M.); (H.W.)
- Correspondence: (J.P.); (Y.Z.)
| |
Collapse
|
28
|
Rodrigo N, Saad S, Pollock C, Glastras SJ. Diet Modification before or during Pregnancy on Maternal and Foetal Outcomes in Rodent Models of Maternal Obesity. Nutrients 2022; 14:2154. [PMID: 35631295 PMCID: PMC9146671 DOI: 10.3390/nu14102154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
The obesity epidemic has serious implications for women of reproductive age; its rising incidence is associated not just with health implications for the mother but also has transgenerational ramifications for the offspring. Increased incidence of diabetes, cardiovascular disease, obesity, and kidney disease are seen in both the mothers and the offspring. Animal models, such as rodent studies, are fundamental to studying maternal obesity and its impact on maternal and offspring health, as human studies lack rigorous controlled experimental design. Furthermore, the short and prolific reproductive potential of rodents enables examination across multiple generations and facilitates the exploration of interventional strategies to mitigate the impact of maternal obesity, both before and during pregnancy. Given that obesity is a major public health concern, it is important to obtain a greater understanding of its pathophysiology and interaction with reproductive health, placental physiology, and foetal development. This narrative review focuses on the known effects of maternal obesity on the mother and the offspring, and the benefits of interventional strategies, including dietary intervention, before or during pregnancy on maternal and foetal outcomes. It further examines the contribution of rodent models of maternal obesity to elucidating pathophysiological pathways of disease development, as well as methods to reduce the impact of obesity on the mothers and the developing foetus. The translation of these findings into the human experience will also be discussed.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Renal Medicine, Royal North Shore Hospital, Sydney 2065, Australia
| | - Sarah J. Glastras
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
29
|
Gao Y, Zhao L, Son JS, Liu X, Chen Y, Deavila JM, Zhu MJ, Murdoch GK, Du M. Maternal Exercise Before and During Pregnancy Facilitates Embryonic Myogenesis by Enhancing Thyroid Hormone Signaling. Thyroid 2022; 32:581-593. [PMID: 35286177 PMCID: PMC9145266 DOI: 10.1089/thy.2021.0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Maternal exercise (ME) improves fetal and offspring muscle development, but mechanisms remain to be established. Since the thyroid hormone (TH) is critical for cell differentiation during embryonic development, we hypothesized that ME elevates TH receptor (THR) signaling in embryos, which promotes embryonic myogenesis. Methods: Female mice were exercised daily on a treadmill or received a daily TH, triiodothyronine (T3) injection. Embryos (embryonic day 12.5 [E12.5]) and P19 cells were used for studying effects of TH on embryonic myogenesis. TH levels in serum and embryos after ME or T3I were analyzed. Expression of TH signaling related genes and myogenic genes was assessed. THRα binding to the promoters of myogenic genes was investigated by chromatin immunoprecipitation-qantitative polymerase chain reaction (ChIP-qPCR). A CRISPR/CAS9 plasmid was utilized to knock out THRα in P19 cells. Results: ME elevated TH levels in both maternal circulation and embryos, which were correlated with enhanced TH signaling and myogenesis. At E12.5, both myogenic determinants (Pax3, Pax7) and myogenic regulatory factors (Myf5, Myod) were upregulated in ME embryos. ME increased THRα content and elevated messenger RNA (mRNA) expression of TH transporter Slc16a2 and deiodinase Dio2. In addition, the THRα binding to the promoters of Pax3/7 was increased. In P19 embryoid bodies, T3 promoted myogenic differentiation, which was abolished by ablating THRα. Furthermore, maternal daily injection of T3 at a level matching exercised mothers promoted embryonic myogenesis. Conclusions: ME promotes TH delivery to the embryos and enhances embryonic myogenesis, which is partially mediated by enhanced TH signaling in ME embryos.
Collapse
Affiliation(s)
- Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Yanting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jeanene Marie Deavila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- Food Microbiology and Nutrigenomics Laboratory, School of Food Science, Washington State University, Pullman, Washington, USA
| | - Gordon K. Murdoch
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
- Address correspondence to: Min Du, PhD, Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
30
|
Maternal exercise intergenerationally drives muscle-based thermogenesis via activation of apelin-AMPK signaling. EBioMedicine 2022; 76:103842. [PMID: 35081489 PMCID: PMC8790600 DOI: 10.1016/j.ebiom.2022.103842] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sarcolipin and uncoupling protein 3 (UCP3) mediate muscle-based non-shivering thermogenesis (NST) to improve metabolic homeostasis. The impacts of maternal obesity (MO) and maternal exercise (ME) on NST in offspring muscle remain unexamined. METHODS Female mice were fed with a control diet or high fat diet to induce obesity. Then, obese mice were further separated into two groups: obesity only (OB) and OB plus daily exercise (OB/Ex). Fetal muscle was collected at embryonic day 18.5 and offspring mice at 3-month-old. Apelin administration during pregnancy and apelin receptor (APJ) knockout mouse were further used for investigating the mediatory role of APJ on muscle-based thermogenesis. To explore the direct effects of exercise on AMP-activated protein kinase (AMPK) downstream targets, AMPK knockout mouse was used. FINDINGS MO inhibited while ME activated AMPK and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) in fetal muscle. AMPK activation increased sarcolipin expression, which inhibited the uptake of calcium ions into sarcoplasmic reticulum, thereby activating CaMKK2. Consistently, the expression of UCP3 and sarcolipin was suppressed due to MO but activated in ME fetal muscle. Importantly, changes of UCP3 and sarcolipin maintained in offspring muscle, showing the transgenerational effects. Furthermore, apelin administration during pregnancy mimicked the effects of ME on AMPK and CaMKK2 activation, and UCP3 and sarcolipin expression, underscoring the mediatory roles of apelin-AMPK signaling in improving fetal muscle development. INTERPRETATION ME, via activation of apelin signaling-AMPK axis, enhances NST gene expression in fetal and offspring muscle impaired due to MO, which intergenerationally protects offspring from diet-induced obesity and metabolic disorders. FUNDING This work was supported by National Institutes of Health Grant R01-HD067449.
Collapse
|
31
|
Alizadeh Pahlavani H. Possible roles of exercise and apelin against pregnancy complications. Front Endocrinol (Lausanne) 2022; 13:965167. [PMID: 36093083 PMCID: PMC9452694 DOI: 10.3389/fendo.2022.965167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of maternal obesity during pregnancy is associated with the risk of gestational diabetes, preeclampsia, and cardiomyopathy. Environmental factors such as active lifestyles and apelin may lead to beneficial changes. In rats, apelin and exercise (45 to 65% VO2max for 6 to 9 weeks) during pregnancy increase brown adipose tissue (BAT) proteins such as Cidea, Elovl3, UCP1, PRDM16, and PGC-1α in males and females fetuses, while white adipose tissue (WAT) is reduced. In humans and animals, apelin and exercise stimulate the expression of the glucose transporters (GLUT1/2/4) in the muscle and adipose tissue through the PI3K/Akt and AMPK pathways. Hence, exercise and apelin may are known as regulators of energy metabolism and be anti-obesity and anti-diabetic properties. In mice, exercise also creates a short-term hypoxic environment in the pregnant mother, activating HIF-1, VEGF, and VEGFR, and increasing angiogenesis. Exercise and apelin also increase vasodilation, angiogenesis, and suppression of inflammation through the L-arginine/eNOS/NO pathway in humans. Exercise can stimulate the ACE2-Ang-(1-7)-Mas axis in parallel with inhibiting the ACE-Ang II-AT1 pathway. Exercise and apelin seem to prevent preeclampsia through these processes. In rats, moderate-intensity exercise (60 to 70% VO2max for 8 weeks) and apelin/APJ also may prevent pathological hypertrophy in pregnancy by activating the PI3K/Akt/mTOR/p70S6K pathway, PI3k-Akt-ERK1/2-p70S6K pathway, and the anti-inflammatory cytokine IL-10. Since pre-clinical studies have been more on animal models, future research with scientific guidelines should pay more attention to human specimens. In future research, time factors such as the first, second, and third trimesters of pregnancy and the intensity and duration of exercise are important variables that should be considered to determine the optimal intensity and duration of exercise.
Collapse
|
32
|
Imprinted lncRNA Dio3os preprograms intergenerational brown fat development and obesity resistance. Nat Commun 2021; 12:6845. [PMID: 34824246 PMCID: PMC8617289 DOI: 10.1038/s41467-021-27171-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Maternal obesity (MO) predisposes offspring to obesity and metabolic disorders but little is known about the contribution of offspring brown adipose tissue (BAT). We find that MO impairs fetal BAT development, which persistently suppresses BAT thermogenesis and primes female offspring to metabolic dysfunction. In fetal BAT, MO enhances expression of Dio3, which encodes deiodinase 3 (D3) to catabolize triiodothyronine (T3), while a maternally imprinted long noncoding RNA, Dio3 antisense RNA (Dio3os), is inhibited, leading to intracellular T3 deficiency and suppression of BAT development. Gain and loss of function shows Dio3os reduces D3 content and enhances BAT thermogenesis, rendering female offspring resistant to high fat diet-induced obesity. Attributing to Dio3os inactivation, its promoter has higher DNA methylation in obese dam oocytes which persists in fetal and adult BAT, uncovering an oocyte origin of intergenerational obesity. Overall, our data uncover key features of Dio3os activation in BAT to prevent intergenerational obesity and metabolic dysfunctions. Maternal obesity predisposes offspring to obesity and metabolic disorders through incompletely understood mechanisms. Here the authors report that Dio3os is an imprinted long-coding RNA that modulates brown adipose tissue development and obesity resistance in the offspring.
Collapse
|
33
|
Beleza J, Stevanović-Silva J, Coxito P, Costa RC, Ascensão A, Torrella JR, Magalhães J. Building-up fit muscles for the future: Transgenerational programming of skeletal muscle through physical exercise. Eur J Clin Invest 2021; 51:e13515. [PMID: 33580562 DOI: 10.1111/eci.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
'Special issue - In Utero and Early Life Programming of Aging and Disease'. Skeletal muscle (SM) adaptations to physical exercise (PE) have been extensively studied due, not only to the relevance of its in situ plasticity, but also to the SM endocrine-like effects in noncontractile tissues, such as brain, liver or adipocytes. Regular PE has been considered a pleiotropic nonpharmacological strategy to prevent and counteract the deleterious consequences of several metabolic, cardiovascular, oncological and neurodegenerative disorders. Additionally, PE performed by parents seems to have a direct impact in the offspring through the transgenerational programming of different tissues, such as SM. In fact, SM offspring programming mechanisms seems to be orchestrated, at least in part, by epigenetic machinery conditioning transcriptional or post-transcriptional processes. Ultimately, PE performed in the early in life is also a critical window of opportunity to positively modulate the juvenile and adult phenotype. Parental PE has a positive impact in several health-related offspring outcomes, such as SM metabolism, differentiation, morphology and ultimately in offspring exercise volition and endurance. Also, early-life PE counteracts conceptional-related adverse effects and induces long-lasting healthy benefits throughout adulthood. Additionally, epigenetics mechanisms seem to play a key role in the PE-induced SM adaptations. Despite the undoubtedly positive role of parental and early-life PE on SM phenotype, a strong research effort is still needed to better understand the mechanisms that positively regulate PE-induced SM programming.
Collapse
Affiliation(s)
- Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Joan Ramon Torrella
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| |
Collapse
|
34
|
Marques ES, Agudelo J, Kaye EM, Modaresi SMS, Pfohl M, Bečanová J, Wei W, Polunas M, Goedken M, Slitt AL. The role of maternal high fat diet on mouse pup metabolic endpoints following perinatal PFAS and PFAS mixture exposure. Toxicology 2021; 462:152921. [PMID: 34464680 DOI: 10.1016/j.tox.2021.152921] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a family of chemicals that are ubiquitous in the environment. Some of these chemicals, such as perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorooctanoic acid (PFOA), are found in human sera and have been shown to cause liver steatosis and reduce postnatal survival and growth in rodents. The purpose of this work is to evaluate the impact of diet and PFAS exposure to mouse dam (mus musculus) on the risk to pup liver and metabolism endpoints later in life, as well as evaluate PFAS partitioning to pups. Timed-pregnant dams were fed a standard chow diet or 60 % kcal high fat diet (HFD). Dams were administered either vehicle, 1 mg/kg PFOA, 1 mg/kg PFOS, 1 mg/kg PFHxS, or a PFAS mixture (1 mg/kg of each PFOA, PFOS, and PFHxS) daily via oral gavage from gestation day 1 until postnatal day (PND) 20. At PND 21, livers of dams and 2 pups of each sex were evaluated for lipid changes while remaining pups were weaned to the same diet as the dam for an additional 10 weeks. Dam and pup serum at PND 21 and PND 90 were also evaluated for PFAS concentration, alanine aminotransferase (ALT), leptin and adiponectin, and glycosylated hemoglobin A1c. Perinatal exposure to a HFD, as expected, increased pup body weight, maternal liver weight, pup liver triglycerides, pup serum ALT, and pup serum leptin. PFOA and the PFAS mixture increased liver weights, and. treatment with all three compounds increased liver triglycerides. The maternal HFD increased dam and pup serum PFAS levels, however, was protective against PFOA-induced increase in serum ALT and observed increases in liver triglycerides. The PFAS mixture had very distinct effects when compared to single compound treatment, suggesting some cumulative effects, particularly when evaluating PFAS transfer from dam to pup. This data highlights the importance of diet and mixtures when evaluating liver effect of PFAS and PFAS partitioning.
Collapse
Affiliation(s)
- Emily S Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Juliana Agudelo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Emily M Kaye
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Seyed Mohamad Sadegh Modaresi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Jitka Bečanová
- Graduate School of Oceanography, University of Rhode Island, 215 S Ferry Rd, Narragansett, RI 02882, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA
| | - Marianne Polunas
- Rutgers Translational Sciences, Rutgers University, 33 Knightsbridge Road, Piscataway, NJ 08854, USA
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, 33 Knightsbridge Road, Piscataway, NJ 08854, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI 02881, USA.
| |
Collapse
|
35
|
Chae SA, Son JS, Du M. Prenatal exercise in fetal development: a placental perspective. FEBS J 2021; 289:3058-3071. [PMID: 34449982 DOI: 10.1111/febs.16173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Maternal obesity (MO) and gestational diabetes mellitus (GDM) are common in Western societies, which impair fetal development and predispose offspring to metabolic dysfunction. Placenta is the organ linking the mother to her fetus, and MO suppresses the development of vascular system and expression of nutrient transporters in placenta, thereby affecting fetal development. For maintaining its proper physiological function, placenta is energy demanding, which is met through extensive oxidative phosphorylation. However, the oxidative capacity of placenta is suppressed due to MO and GDM. Recently, several studies showed that physical activity during pregnancy enhances oxidative metabolism and improves placental function, which might be partially mediated by exerkines, referring to cytokines elicited by exercise. In addition, as an endocrine organ, placenta secretes cytokines, termed placentokines, including apelin, superoxide dismutase 3, irisin, and adiponectin, which mediate fetal development and maternal metabolism. Possible molecular mechanisms linking maternal exercise and placentokines to placental and fetal development are further discussed. As an emerging field, up to now, available studies are limited, mostly conducted in rodents. Given the epidemics of obesity and metabolic disorders, as well as the prevalence of maternal sedentary lifestyle, the effects of exercise of pregnant women on placental function and placentokine secretion, as well as their impacts on fetal development, need to be further examined.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
36
|
Song L, Yan J, Wang N, Wei X, Luo X, Meng K, Sun B. Prenatal exercise reverses high-fat-diet-induced placental alterations and alters male fetal hypothalamus during late gestation in rats†. Biol Reprod 2021; 102:705-716. [PMID: 31742332 DOI: 10.1093/biolre/ioz213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/14/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Maternal high-fat (HF) diet negatively affects maternal metabolism and placental function. This study aimed to determine whether gestational exercise prevents the effect of HF diet on placental amino acid transporter expression and nutrient-sensing signaling and the fetal response. Pregnant Sprague-Dawley rats were either fed with a CHOW (13.5% fat) or HF (60% fat) diet during gestation and further divided into two subgroups: voluntary exercised and sedentary. Placentae were collected on gestational day (GD) 14 and GD20, and male placentae were used in this study. We found that gestational exercise ameliorated the detrimental effects of HF diet on dams' adiposity, plasma leptin, and insulin concentrations. Maternal exercise did not influence fetoplacental growth but affected male fetal hypothalamic Leprb, Stat3, Insr, Agrp, and Pomc expressions on GD20. Maternal HF diet decreased placental labyrinth thickness and increased system A amino acid transporter SNAT2 expression, while these changes were normalized by exercise. The activation of placental mechanistic target of rapamycin complex 1/4E-BP1 and LepRb/STAT3 signaling might contribute to the increased placental SNAT2 expression in HF-fed dams, which were reversed by exercise on GD20. These data highlight that gestational exercise reverses HF-diet-induced placental alterations during late gestation without influencing fetal growth. However, maternal exercise altered fetal hypothalamic gene expression, which may affect long-term offspring health.
Collapse
Affiliation(s)
- Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Krassovskaia PM, Chaves AB, Houmard JA, Broskey NT. Exercise during Pregnancy: Developmental Programming Effects and Future Directions in Humans. Int J Sports Med 2021; 43:107-118. [PMID: 34344043 DOI: 10.1055/a-1524-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidemiological studies show that low birth weight is associated with mortality from cardiovascular disease in adulthood, indicating that chronic diseases could be influenced by hormonal or metabolic insults encountered in utero. This concept, now known as the Developmental Origins of Health and Disease hypothesis, postulates that the intrauterine environment may alter the structure and function of the organs of the fetus as well as the expression of genes that impart an increased vulnerability to chronic diseases later in life. Lifestyle interventions initiated during the prenatal period are crucial as there is the potential to attenuate progression towards chronic diseases. However, how lifestyle interventions such as physical activity directly affect human offspring metabolism and the potential mechanisms involved in regulating metabolic balance at the cellular level are not known. The purpose of this review is to highlight the effects of exercise during pregnancy on offspring metabolic health and emphasize gaps in the current human literature and suggestions for future research.
Collapse
Affiliation(s)
- Polina M Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Alec B Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Joseph A Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| | - Nicholas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, United States
| |
Collapse
|
38
|
Chen Y, Ma G, Hu Y, Yang Q, Deavila JM, Zhu MJ, Du M. Effects of Maternal Exercise During Pregnancy on Perinatal Growth and Childhood Obesity Outcomes: A Meta-analysis and Meta-regression. Sports Med 2021; 51:2329-2347. [PMID: 34143412 DOI: 10.1007/s40279-021-01499-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Perinatal growth abnormalities program susceptibility to childhood obesity, which is further exaggerated by maternal overweight and obesity (MO) during pregnancy. Exercise is highly accessible, but reports about the benefits of maternal exercise on fetal growth and childhood obesity outcomes are inconsistent, reducing the incentives for pregnant women to participate in exercise to improve children's perinatal growth. OBJECTIVE This systematic review and meta-analysis aims to establish evidence-based efficacy of exercise in mothers with normal weight (MNW) and MO during pregnancy in reducing the risks of perinatal growth abnormalities and childhood obesity. In addition, the impacts of exercise volume are also assessed. METHODS The PubMed, ScienceDirect, Web of Science, and Cochrane Library databases were searched from inception to February 15, 2020. We included randomized controlled trials with exercise-only intervention or exercise with other confounders in pregnant MNW (body mass index, BMI 18.5-24.9 kg/m2) and MO (BMI ≥ 25 kg/m2), which were further subgrouped in the meta-analysis. Primary outcomes included birth weight, preterm birth, small for gestational age (SGA), large for gestational age (LGA), infant and childhood weight, and childhood obesity. A linear meta-regression analysis was also used to explore the effects of exercise volume on outcomes. RESULTS 99 studies were included in the meta-analysis (n = 596,876), and individual study quality ranged from fair to good according to the Newcastle-Ottawa scale assessment. Exercise only interventions in MNW reduced preterm birth by 15% (26 studies, n = 76,132; odds ratio [OR] 0.85; 95% CI 0.72, 1.01; I2 = 83.3%), SGA by 17% (33 studies, n = 92,351; OR 0.83; 95% CI 0.71, 0.98; I2 = 74.5%) and LGA by 17% (29 studies, n = 84,310; OR 0.83; 95% CI 0.74, 0.95; I2 = 60.4%). Exercise only interventions in MO reduced preterm birth by 33% (2 studies, n = 3,050; OR 0.67; 95% CI 0.70, 0.96; I2 = 0%), SGA by 27% (8 studies, n = 3,909; OR 0.73; 95% CI 0.50, 1.05; I2 = 40.4%) and LGA by 55% (9 studies, n = 81,581; OR 0.45; 95% CI 0.18, 1.11; I2 = 98.3%). Exercise only interventions in MNW reduced childhood obesity by 53% (3 studies, n = 6,920; OR 0.47; 95% CI 0.36, 0.63; I2 = 77.0%). However, no significant effect was observed in outcomes from exercise confounders in either MNW or MO. In the meta-regression, the volume of exercise-only intervention in MNW was negatively associated with birth weight, greatly driven by volumes more than 810 metabolic equivalents (MET)-min per week. Other outcomes were not associated with exercise volume. CONCLUSIONS This systematic review and meta-analysis suggests that exercise during pregnancy in both MNW and MO safely and effectively reduce the risks of preterm birth, SGA, and LGA. Furthermore, MNW exercise also reduces the risk of childhood obesity. Overall, regardless of prepregnancy BMI, maternal exercise during pregnancy provides an excellent opportunity to mitigate the high prevalence of adverse birth outcomes and childhood obesity.
Collapse
Affiliation(s)
- Yanting Chen
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.,Nutrigenoimics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Guiling Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Jeanene M Deavila
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.,Nutrigenoimics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA. .,Nutrigenoimics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
39
|
Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of Maternal Obesity On Placental Phenotype. Curr Vasc Pharmacol 2021; 19:113-131. [PMID: 32400334 DOI: 10.2174/1570161118666200513115316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
The incidence of obesity is rising rapidly worldwide with the consequence that more women are entering pregnancy overweight or obese. This leads to an increased incidence of clinical complications during pregnancy and of poor obstetric outcomes. The offspring of obese pregnancies are often macrosomic at birth although there is also a subset of the progeny that are growth-restricted at term. Maternal obesity during pregnancy is also associated with cardiovascular, metabolic and endocrine dysfunction in the offspring later in life. As the interface between the mother and fetus, the placenta has a central role in programming intrauterine development and is known to adapt its phenotype in response to environmental conditions such as maternal undernutrition and hypoxia. However, less is known about placental function in the abnormal metabolic and endocrine environment associated with maternal obesity during pregnancy. This review discusses the placental consequences of maternal obesity induced either naturally or experimentally by increasing maternal nutritional intake and/or changing the dietary composition. It takes a comparative, multi-species approach and focusses on placental size, morphology, nutrient transport, metabolism and endocrine function during the later stages of obese pregnancy. It also examines the interventions that have been made during pregnancy in an attempt to alleviate the more adverse impacts of maternal obesity on placental phenotype. The review highlights the potential role of adaptations in placental phenotype as a contributory factor to the pregnancy complications and changes in fetal growth and development that are associated with maternal obesity.
Collapse
Affiliation(s)
- A L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - E J Camm
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom
| |
Collapse
|
40
|
Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of Maternal Obesity and Gestational Diabetes Mellitus on the Placenta: Current Knowledge and Targets for Therapeutic Interventions. Curr Vasc Pharmacol 2021; 19:176-192. [PMID: 32543363 DOI: 10.2174/1570161118666200616144512] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
Abstract
Obesity and gestational diabetes mellitus (GDM) are becoming more common among pregnant women worldwide and are individually associated with a number of placenta-mediated obstetric complications, including preeclampsia, macrosomia, intrauterine growth restriction and stillbirth. The placenta serves several functions throughout pregnancy and is the main exchange site for the transfer of nutrients and gas from mother to fetus. In pregnancies complicated by maternal obesity or GDM, the placenta is exposed to environmental changes, such as increased inflammation and oxidative stress, dyslipidemia, and altered hormone levels. These changes can affect placental development and function and lead to abnormal fetal growth and development as well as metabolic and cardiovascular abnormalities in the offspring. This review aims to summarize current knowledge on the effects of obesity and GDM on placental development and function. Understanding these processes is key in developing therapeutic interventions with the goal of mitigating these effects and preventing future cardiovascular and metabolic pathology in subsequent generations.
Collapse
Affiliation(s)
- Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Janine Hutson
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| |
Collapse
|
41
|
Kabasakal Çetin A, Alkan Tuğ T, Güleç A, Akyol A. Effects of maternal taurine supplementation on maternal dietary intake, plasma metabolites and fetal growth and development in cafeteria diet fed rats. PeerJ 2021; 9:e11547. [PMID: 34141487 PMCID: PMC8180190 DOI: 10.7717/peerj.11547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Maternal obesity may disrupt the developmental process of the fetus during gestation in rats. Recent evidence suggests that taurine can exert protective role against detrimental influence of obesogenic diets. This study aimed to examine the effect of maternal cafeteria diet and/or taurine supplementation on maternal dietary intake, plasma metabolites, fetal growth and development. METHODS Female Wistar rats were fed a control diet (CON), CON supplemented with 1.5% taurine in drinking water (CONT), cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks all animals were mated and maintained on the same diets during pregnancy and lactation. RESULTS Dietary intakes were significantly different between the groups. Both CAF and CAFT fed dams consumed less water in comparison to CON and CONT dams. Taurine supplementation only increased plasma taurine concentrations in CONT group. Maternal plasma adiponectin concentrations increased in CAF and CAFT fed dams compared to CON and CONT fed dams and there was no effect of taurine. Hyperleptinemia was observed in CAF fed dams but not in CAFT fed dams. Malondialdehyde was significantly increased only in CAF fed dams. Litter size, sex ratio and birth weight were similar between the groups. There was an increase in neonatal mortality in CONT group. DISCUSSION This study showed that maternal taurine supplementation exerted modest protective effects on cafeteria diet induced maternal obesity. The increased neonatal mortality in CONT neonates indicates possible detrimental effects of taurine supplementation in the setting of normal pregnancy. Therefore, future studies should investigate the optimal dose of taurine supplementation and long term potential effects on the offspring.
Collapse
Affiliation(s)
- Arzu Kabasakal Çetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Tuǧba Alkan Tuğ
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Atila Güleç
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Aslı Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
42
|
Akhter Z, Heslehurst N, Ceulemans D, Rankin J, Ackroyd R, Devlieger R. Pregnancy after Bariatric Surgery: A Nested Case-Control Study of Risk Factors for Small for Gestational Age Babies in AURORA. Nutrients 2021; 13:nu13051699. [PMID: 34067722 PMCID: PMC8156275 DOI: 10.3390/nu13051699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bariatric surgery prior to pregnancy is a significant risk factor for small for gestational age (SGA) babies. This case-control study investigated differences between mothers delivering an SGA baby following bariatric surgery, compared to those delivering an appropriate for gestational age (AGA) baby. Out of 129 babies born to mothers in the AURORA cohort study, 25 were SGA (<10th percentile) and 97 were AGA (10th-90th percentile). Higher gestational weight gain (GWG) was significantly associated with decreased odds of SGA (aOR per kg 0.92, 95% CI 0.85-0.99). According to the Institute of Medicine GWG guidelines, 44% of SGA mothers had 'inadequate' GWG compared to 17% of AGA mothers. Nearly half of the mothers had 'excessive' GWG yet still gave birth to an SGA or AGA baby. Mothers of SGA babies lost more weight following bariatric surgery (45.6 ± 14.4 kg vs. 39.0 ± 17.9 kg). Women who reported receiving nutritional advice following bariatric surgery were significantly less likely to have an SGA baby (aOR 0.15, 95% CI 0.0.4-0.55). Women with a history of bariatric surgery should be provided with specialized support before and during pregnancy to encourage adequate nutritional intake and weight gain to support healthy fetal growth.
Collapse
Affiliation(s)
- Zainab Akhter
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK; (N.H.); (J.R.)
- Correspondence:
| | - Nicola Heslehurst
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK; (N.H.); (J.R.)
| | - Dries Ceulemans
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, 3000 Leuven, Belgium; (D.C.); (R.D.)
| | - Judith Rankin
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK; (N.H.); (J.R.)
| | - Roger Ackroyd
- Department of Surgery, Sheffield Teaching Hospitals, Sheffield S10 2JF, UK;
| | - Roland Devlieger
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, 3000 Leuven, Belgium; (D.C.); (R.D.)
| |
Collapse
|
43
|
Kusuyama J, Alves-Wagner AB, Conlin RH, Makarewicz NS, Albertson BG, Prince NB, Kobayashi S, Kozuka C, Møller M, Bjerre M, Fuglsang J, Miele E, Middelbeek RJW, Xiudong Y, Xia Y, Garneau L, Bhattacharjee J, Aguer C, Patti ME, Hirshman MF, Jessen N, Hatta T, Ovesen PG, Adamo KB, Nozik-Grayck E, Goodyear LJ. Placental superoxide dismutase 3 mediates benefits of maternal exercise on offspring health. Cell Metab 2021; 33:939-956.e8. [PMID: 33770509 PMCID: PMC8103776 DOI: 10.1016/j.cmet.2021.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Poor maternal diet increases the risk of obesity and type 2 diabetes in offspring, adding to the ever-increasing prevalence of these diseases. In contrast, we find that maternal exercise improves the metabolic health of offspring, and here, we demonstrate that this occurs through a vitamin D receptor-mediated increase in placental superoxide dismutase 3 (SOD3) expression and secretion. SOD3 activates an AMPK/TET signaling axis in fetal offspring liver, resulting in DNA demethylation at the promoters of glucose metabolic genes, enhancing liver function, and improving glucose tolerance. In humans, SOD3 is upregulated in serum and placenta from physically active pregnant women. The discovery of maternal exercise-induced cross talk between placenta-derived SOD3 and offspring liver provides a central mechanism for improved offspring metabolic health. These findings may lead to novel therapeutic approaches to limit the transmission of metabolic disease to the next generation.
Collapse
Affiliation(s)
- Joji Kusuyama
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan.
| | - Ana Barbara Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Royce H Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nathan S Makarewicz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brent G Albertson
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Noah B Prince
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Shio Kobayashi
- Section of Immunobiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Chisayo Kozuka
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; YCI Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Magnus Møller
- Department of Gynecology and Obstetrics, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Fuglsang
- Department of Gynecology and Obstetrics, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Emily Miele
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yang Xiudong
- Graduate School of Biomedical Sciences, University of Texas at Houston, Houston, TX, USA
| | - Yang Xia
- Graduate School of Biomedical Sciences, University of Texas at Houston, Houston, TX, USA
| | - Léa Garneau
- Institut du Savoir Montfort, recherche, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jayonta Bhattacharjee
- School of Human Kinetics, Faculty of Health Science University of Ottawa, Ottawa, Canada
| | - Céline Aguer
- Institut du Savoir Montfort, recherche, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; School of Human Kinetics, Faculty of Health Science University of Ottawa, Ottawa, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Science University of Ottawa, Ottawa, Canada
| | - Mary Elizabeth Patti
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Ishikawa, Japan
| | - Per Glud Ovesen
- Department of Gynecology and Obstetrics, Aarhus University Hospital and Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Science University of Ottawa, Ottawa, Canada
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Liu Y, Wang Y, Wang C, Shi R, Zhou X, Li Z, Sun W, Zhao L, Yuan L. Maternal obesity increases the risk of fetal cardiac dysfunction via visceral adipose tissue derived exosomes. Placenta 2021; 105:85-93. [PMID: 33556718 DOI: 10.1016/j.placenta.2021.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION There is a strong association between gestational obesity and fetal cardiac dysfunction, while the exact mechanisms remain largely unknown. The purpose of this study was to investigate the role of exosomes from maternal visceral adipose tissue in abnormal embryonic development in obese pregnancy. METHODS Female C57BL/6J obese mice were induced by a high-fat diet (containing 60% fat). Fetal cardiac function and morphology were examined by echocardiography and histology. The placenta was extracted for histological examination. miRNA expression in exosomes from the visceral adipose tissue was profiled by RNA-seq. Gene expression of inflammatory factors was analyzed by qPCR. RESULTS In the obese pregnant mice, there were obvious inflammation and lipid droplets in the placenta. And the fetal cardiac function in obese pregnancy was also compromised. Moreover, injection of the visceral adipose tissue exosomes from the obese mice significantly decreased the fetal cardiac function in the normal lean pregnant mice. Mechanistically, the decreased expression of miR-19b might be responsible for the enhanced inflammation in the placenta. DISCUSSION Exosomes derived from visceral adipose tissue in obese mice contribute to fetal heart dysfunction, at least partially via affecting the function of the placenta.
Collapse
Affiliation(s)
- Yunnan Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Yixiao Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Ruijing Shi
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Xueying Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
45
|
Chae SA, Son JS, Zhu MJ, De Avila JM, Du AM. Treadmill Running of Mouse as a Model for Studying Influence of Maternal Exercise on Offspring. Bio Protoc 2020; 10:e3838. [PMID: 33659487 DOI: 10.21769/bioprotoc.3838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies robustly show the beneficial effects of maternal exercise in reducing maternal birth complications and improving neonatal outcomes, though underlying mechanisms remain poorly understood. To facilitate mechanistic exploration, a protocol for maternal exercise of mice is established, with the regimen following the exercise guidelines for pregnant women. Compared to volunteer wheel running, treadmill running allows precise control of exercise intensity and duration, dramatically reducing variations among individual mouse within treatments and facilitating translation into maternal exercise in humans. Based on the maximal oxygen consumption rate (VO2max) before pregnancy, the treadmill exercise protocol is separated into three stages: early stage (E1.5 to E7.5 at 40% VO2max), mid stage (E8.5 to E14.5 at 65% VO2max), and late stage of pregnancy (E15.5 to birth at 50% VO2max), which demonstrated persistent beneficial effects on maternal health and fetal development. This protocol can be useful for standardizing maternal treadmill exercise using mice as an experimental model.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Jeanene M De Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - And Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
46
|
Son JS, Chae SA, Wang H, Chen Y, Bravo Iniguez A, de Avila JM, Jiang Z, Zhu MJ, Du M. Maternal Inactivity Programs Skeletal Muscle Dysfunction in Offspring Mice by Attenuating Apelin Signaling and Mitochondrial Biogenesis. Cell Rep 2020; 33:108461. [PMID: 33264618 PMCID: PMC8137280 DOI: 10.1016/j.celrep.2020.108461] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
Although maternal exercise (ME) becomes increasingly uncommon, the effects of ME on offspring muscle metabolic health remain largely undefined. Maternal mice are subject to daily exercise during pregnancy, which enhances mitochondrial biogenesis during fetal muscle development; this is correlated with higher mitochondrial content and oxidative muscle fibers in offspring muscle and improved endurance capacity. Apelin, an exerkine, is elevated due to ME, and maternal apelin administration mirrors the effect of ME on mitochondrial biogenesis in fetal muscle. Importantly, both ME and apelin induce DNA demethylation of the peroxisome proliferator-activated receptor γ coactivator-1α (Ppargc1a) promoter and enhance its expression and mitochondrial biogenesis in fetal muscle. Such changes in DNA methylation were maintained in offspring, with ME offspring muscle expressing higher levels of PGC-1α1/4 isoforms, explaining improved muscle function. In summary, ME enhances DNA demethylation of the Ppargc1a promoter in fetal muscle, which has positive programming effects on the exercise endurance capacity and protects offspring muscle against metabolic dysfunction. Son et al. demonstrate that maternal exercise facilitates fetal muscle development, which improves muscle function and exercise endurance in offspring. Maternal administration of apelin, an exerkine, mirrors the beneficial effects of maternal exercise on mitochondrial biogenesis and fetal muscle development. These findings suggest apelin and its receptor as potential drug targets for improving fetal muscle development of sedentary mothers.
Collapse
Affiliation(s)
- Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | | | - Jeanene M de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Zhihua Jiang
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
47
|
Kusuyama J, Alves-Wagner AB, Makarewicz NS, Goodyear LJ. Effects of maternal and paternal exercise on offspring metabolism. Nat Metab 2020; 2:858-872. [PMID: 32929233 PMCID: PMC7643050 DOI: 10.1038/s42255-020-00274-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Maternal and paternal obesity and type 2 diabetes are recognized risk factors for the development of metabolic dysfunction in offspring, even when the offspring follow a healthful lifestyle. Multiple studies have demonstrated that regular physical activity in mothers and fathers has striking beneficial effects on offspring health, including preventing the development of metabolic disease in rodent offspring as they age. Here, we review the benefits of maternal and paternal exercise in combating the development of metabolic dysfunction in adult offspring, focusing on offspring glucose homeostasis and adaptations to metabolic tissues. We discuss recent findings regarding the roles of the placenta and sperm in mediating the effects of parental exercise on offspring metabolic health, as well as the mechanisms hypothesized to underlie these beneficial changes. Given the worldwide epidemics of obesity and type 2 diabetes, if these findings translate to humans, regular exercise during the reproductive years might limit the vicious cycles in which increased metabolic risk propagates across generations.
Collapse
Affiliation(s)
- Joji Kusuyama
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ana Barbara Alves-Wagner
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nathan S Makarewicz
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Armistead B, Johnson E, VanderKamp R, Kula-Eversole E, Kadam L, Drewlo S, Kohan-Ghadr HR. Placental Regulation of Energy Homeostasis During Human Pregnancy. Endocrinology 2020; 161:5838263. [PMID: 32417921 DOI: 10.1210/endocr/bqaa076] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Successful pregnancies rely on sufficient energy and nutrient supply, which require the mother to metabolically adapt to support fetal needs. The placenta has a critical role in this process, as this specialized organ produces hormones and peptides that regulate fetal and maternal metabolism. The ability for the mother to metabolically adapt to support the fetus depends on maternal prepregnancy health. Two-thirds of pregnancies in the United States involve obese or overweight women at the time of conception. This poses significant risks for the infant and mother by disrupting metabolic changes that would normally occur during pregnancy. Despite well characterized functions of placental hormones, there is scarce knowledge surrounding placental endocrine regulation of maternal metabolic trends in pathological pregnancies. In this review, we discuss current efforts to close this gap of knowledge and highlight areas where more research is needed. As the intrauterine environment predetermines the health and wellbeing of the offspring in later life, adequate metabolic control is essential for a successful pregnancy outcome. Understanding how placental hormones contribute to aberrant metabolic adaptations in pathological pregnancies may unveil disease mechanisms and provide methods for better identification and treatment. Studies discussed in this review were identified through PubMed searches between the years of 1966 to the present. We investigated studies of normal pregnancy and metabolic disorders in pregnancy that focused on energy requirements during pregnancy, endocrine regulation of glucose metabolism and insulin resistance, cholesterol and lipid metabolism, and placental hormone regulation.
Collapse
Affiliation(s)
- Brooke Armistead
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Eugenia Johnson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Robert VanderKamp
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Elzbieta Kula-Eversole
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Sascha Drewlo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
49
|
Helle E, Priest JR. Maternal Obesity and Diabetes Mellitus as Risk Factors for Congenital Heart Disease in the Offspring. J Am Heart Assoc 2020; 9:e011541. [PMID: 32308111 PMCID: PMC7428516 DOI: 10.1161/jaha.119.011541] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Congenital heart disease (CHD) is the most common anatomical malformation occurring live‐born infants and an increasing cause of morbidity and mortality across the lifespan and throughout the world. Population‐based observations have long described associations between maternal cardiometabolic disorders and the risk of CHD in the offspring. Here we review the epidemiological evidence and clinical observations relating maternal obesity and diabetes mellitus to the risk of CHD offspring with particular attention to mechanistic models of maternal‐fetal risk transmission and first trimester disturbances of fetal cardiac development. A deeper understanding of maternal risk factors holds the potential to improve both prenatal detection of CHD by identifying at‐risk pregnancies, along with primary prevention of disease by improving preconception and prenatal treatment of at‐risk mothers.
Collapse
Affiliation(s)
- Emmi Helle
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland.,Pediatric Cardiology Children's Hospital, and Pediatric Research Center Helsinki University Hospital University of Helsinki Helsinki Finland
| | - James R Priest
- Department of Pediatrics (Cardiology) Stanford University School of Medicine Stanford CA.,Chan-Zuckerberg Biohub San Francisco CA
| |
Collapse
|
50
|
Son JS, Zhao L, Chen Y, Chen K, Chae SA, de Avila JM, Wang H, Zhu MJ, Jiang Z, Du M. Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. SCIENCE ADVANCES 2020; 6:eaaz0359. [PMID: 32494609 PMCID: PMC7164955 DOI: 10.1126/sciadv.aaz0359] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/22/2020] [Indexed: 05/07/2023]
Abstract
The obesity rate is rapidly increasing, which has been attributed to lack of exercise and excessive energy intake. Here, we found a previously unidentified explanation, due to lack of maternal exercise. In this study, healthy maternal mice were assigned either to a sedentary lifestyle or to exercise daily, and fetal brown adipose tissue (BAT) development and offspring metabolic health were analyzed. Compared to the sedentary group, maternal exercise enhanced DNA demethylation of Prdm16 promoter and BAT development and prevented obesity of offspring when challenged with a high-energy diet. Apelin, an exerkine, was elevated in both maternal and fetal circulations due to exercise, and maternal administration of apelin mimicked the beneficial effects of exercise on fetal BAT development and offspring metabolic health. Together, maternal exercise enhances thermogenesis and the metabolic health of offspring mice, suggesting that the sedentary lifestyle during pregnancy contributes to the obesity epidemic in modern societies.
Collapse
Affiliation(s)
- Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yanting Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ke Chen
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Song Ah Chae
- Department of Movement Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Hongyang Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
- Corresponding author.
| |
Collapse
|