1
|
Sigrist S, Abel MG, Best SA, Bollinger LM. Sleep restriction reduces voluntary isometric quadriceps strength through reduced neuromuscular efficiency, not impaired contractile performance. Eur J Appl Physiol 2024; 124:3351-3363. [PMID: 38935151 DOI: 10.1007/s00421-024-05535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Acute sleep restriction (SR) reduces strength through an unknown mechanism. PURPOSE To determine how SR affects quadriceps contractile function and recruitment. METHODS Eighteen healthy subjects (9 M, 9F, age 23.8 ± 2.8y) underwent isometric (maximal and submaximal), isokinetic (300-60°·s-1), and interpolated twitch (ITT) assessment of knee extensors following 3d of adequate sleep (SA; 7-9 h·night-1), 3d of SR (5 h·night-1), and 7d of washout (WO; 7-9 h·night-1). RESULTS Compared to SA (227.9 ± 76.6Nm) and WO (228.19 ± 62.9Nm), MVIC was lesser following SR (209.9 ± 73.9Nm; p = 0.006) and this effect was greater for males (- 9.8 v. - 4.8%). There was no significant effect of sleep or sleep x speed interaction on peak isokinetic torque. Peak twitch torque was greater in the potentiated state, but no significant effect of sleep was noted. Males displayed greater potentiation of peak twitch torque (12 v. 7.5%) and rate of torque development (16.7 v. 8.2%) than females but this was not affected by sleep condition. ITT-assessed voluntary activation did not vary among sleep conditions (SA: 81.8 ± 13.1% v. SR: 84.4 ± 12.6% v. WO 84.9 ± 12.6%; p = 0.093). SR induced a leftward shift in Torque-EMG relationship at high torque output in both sexes. Compared to SA, females displayed greater y-intercept and lesser slope with SR and WO and males displayed lesser y-intercept and greater slope with SR and WO. CONCLUSIONS Three nights of SR decreases voluntary isometric knee extensor strength, but not twitch contractile properties. Sex-specific differences in neuromuscular efficiency may explain the greater MVIC reduction in males following SR.
Collapse
Affiliation(s)
- S Sigrist
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - M G Abel
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - S A Best
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - L M Bollinger
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA.
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Zhang G, Wang S, Ma P, Wang T, Sun X, Zhang X, Li H, Pan J. Association of habitual sleep duration with abnormal bowel symptoms: a cross-sectional study of the 2005-2010 national health and nutrition examination survey. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:125. [PMID: 39152480 PMCID: PMC11330150 DOI: 10.1186/s41043-024-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Nowadays, few studies have examined the relationships between sleep duration and abnormal gut health. In this study, we used data from the National Health and Nutrition Examination Survey (NHANES) to investigate the correlations between habitual sleep duration and abnormal bowel symptoms in adults. METHODS This study included 11,533 participants aged ≥ 20 years from the NHANES conducted during 2005-2010. Chronic constipation and chronic diarrhea were defined based on the Bristol Stool Form Scale (BSFS) and frequency of bowel movements. Sleep duration was assessed based on the self-report questionnaire and classified into three groups: short sleep duration (< 7 h), normal sleep duration (7-9 h), and long sleep duration (> 9 h). Weighted data were calculated according to analytical guidelines. Logistic regression models and restricted cubic spline curves (RCS) were used to assess and describe the association between sleep duration and chronic diarrhea and constipation. Univariate and stratified analyses were also performed. RESULTS There were 949 (7.27%) adults aged 20 years and older with chronic diarrhea and 1120 (8.94%) adults with constipation among the 11,533 individuals. A positive association was found between short sleep duration and chronic constipation, with a multivariate-adjusted OR of 1.32 (95% CI: 1.05-1.66). Additionally, long sleep duration was significantly associated with an increased risk of chronic diarrhea (OR: 1.75, 95% CI: 1.08-2.84, P = 0.026). The RCS models revealed a statistically significant nonlinear association (P for non-linearity < 0.05) between sleep duration and chronic diarrhea. Furthermore, obesity was found to modify the association between sleep duration and chronic diarrhea and constipation (p for interaction = 0.044). CONCLUSIONS This study suggests that both long and short sleep durations are associated with a higher risk of chronic diarrhea and constipation in the general population. Furthermore, a non-linear association between sleep duration and these conditions persists even after adjusting for case complexities.
Collapse
Affiliation(s)
- Guimei Zhang
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Sisi Wang
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Ping Ma
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Tuzhi Wang
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Xizhe Sun
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Xiaotao Zhang
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Hongyao Li
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Jiyang Pan
- Sleep Medicine Centre, Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China.
| |
Collapse
|
3
|
Chen L, Li Q, Huang X, Li Z. Association between sleep duration and possible sarcopenia in middle-aged and elderly Chinese individuals: evidence from the China health and retirement longitudinal study. BMC Geriatr 2024; 24:594. [PMID: 38992611 PMCID: PMC11241889 DOI: 10.1186/s12877-024-05168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Sarcopenia is a common cause of disability in the aging population, and managing sarcopenia is an important step in building intrinsic capacity and promoting healthy aging. A growing body of evidence suggests that sleep deprivation may be a mediator of the development of sarcopenia. The purpose of this study was to explore the longitudinal association between sleep duration and possible sarcopenia using data from a national sample. METHODS Two waves of data from the CHARLS database for 2011 and 2015 were used in this study. All possible sarcopenia participants met the Asia Working Group for Sarcopenia 2019 (AWGS 2019) diagnostic criteria. Sleep duration was assessed using a self-report questionnaire, and sleep duration was categorized as short (≤ 6 h), medium (6-8 h), or long (> 8 h) based on previous studies. Longitudinal associations between sleep duration and possible sarcopenia will be calculated by univariate and multifactorial logistic regression analyses and expressed as odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS A total of 5654 individuals participated in the follow-up study, with a prevalence of possible sarcopenia of 53.72% (578) in the short sleep duration group, 38.29% (412) in the medium sleep duration group, and 7.99% (86) in the long sleep duration group. According to the crude model of the second-wave follow-up study, short sleep durations were significantly more strongly associated with possible sarcopenia than were medium and long sleep durations (OR: 1.35, 95% CI: 1.17-1.55, P = 0.000). The association between short sleep duration and possible sarcopenia was maintained even after adjustment for covariates such as age, gender, residence, education level, BMI, smoking status, alcohol consumption and comorbidities (OR: 1.18, 95% CI: 1.02-1.36, P = 0.029). In the subgroup analysis, short sleep duration was associated with low grip strength (OR: 1.20, 95% CI: 1.02-1.41, P = 0.031). CONCLUSIONS Sleep deprivation may be closely associated with the development of possible sarcopenia in middle-aged and elderly people, which provides new insights and ideas for sarcopenia intervention, and further studies are needed to reveal the underlying mechanisms involved.
Collapse
Affiliation(s)
- Linfeng Chen
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Qingyun Li
- Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiaoyun Huang
- Guangdong Medical University, Zhanjiang, 524023, China.
| | - Zhong Li
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Shenzhen Research Institute, Sun Yat-Sen University, Shenzhen, 518000, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Maloney A, Kanaley JA. Short Sleep Duration Disrupts Glucose Metabolism: Can Exercise Turn Back the Clock? Exerc Sport Sci Rev 2024; 52:77-86. [PMID: 38608214 PMCID: PMC11168896 DOI: 10.1249/jes.0000000000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Short sleep duration is prevalent in modern society and may be contributing to type 2 diabetes prevalence. This review will explore the effects of sleep restriction on glycemic control, the mechanisms causing insulin resistance, and whether exercise can offset changes in glycemic control. Chronic sleep restriction may also contribute to a decrease in physical activity leading to further health complications.
Collapse
Affiliation(s)
- Alan Maloney
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | | |
Collapse
|
5
|
Knowles OE, Soria M, Saner NJ, Trewin AJ, Alexander SE, Roberts SSH, Hiam D, Garnham AP, Drinkwater EJ, Aisbett B, Lamon S. The interactive effect of sustained sleep restriction and resistance exercise on skeletal muscle transcriptomics in young females. Physiol Genomics 2024; 56:506-518. [PMID: 38766755 DOI: 10.1152/physiolgenomics.00010.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Both sleep loss and exercise regulate gene expression in skeletal muscle, yet little is known about how the interaction of these stressors affects the transcriptome. The aim of this study was to investigate the effect of nine nights of sleep restriction (SR), with repeated resistance exercise (REx) sessions, on the skeletal muscle transcriptome of young, trained females. Ten healthy females aged 18-35 yr old undertook a randomized cross-over study of nine nights of SR (5 h time in bed) and normal sleep (NS; ≥7 h time in bed) with a minimum 6-wk washout. Participants completed four REx sessions per condition (days 3, 5, 7, and 9). Muscle biopsies were collected both pre- and post-REx on days 3 and 9. Gene and protein expression were assessed by RNA sequencing and Western blot, respectively. Three or nine nights of SR had no effect on the muscle transcriptome independently of exercise. However, close to 3,000 transcripts were differentially regulated (false discovery rate < 0.05) 48 h after the completion of three resistance exercise sessions in both NS and SR conditions. Only 39% of downregulated genes and 18% of upregulated genes were common between both conditions, indicating a moderating effect of SR on the response to exercise. SR and REx interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.NEW & NOTEWORTHY This study investigated the effect of nine nights of sleep restriction, with repeated resistance exercise sessions, on the skeletal muscle transcriptome of young, trained females. Sleep restriction and resistance exercise interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.
Collapse
Affiliation(s)
- Olivia E Knowles
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Megan Soria
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Sarah E Alexander
- Cardiometabolic Health and Exercise Physiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Spencer S H Roberts
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Danielle Hiam
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew P Garnham
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Eric J Drinkwater
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Brad Aisbett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Saner NJ, Lee MJC, Pitchford NW, Broatch JR, Roach GD, Bishop DJ, Bartlett JD. The effect of sleep restriction, with or without high-intensity interval exercise, on behavioural alertness and mood state in young healthy males. J Sleep Res 2024; 33:e13987. [PMID: 37434366 DOI: 10.1111/jsr.13987] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Mood state and alertness are negatively affected by sleep loss, and can be positively influenced by exercise. However, the potential mitigating effects of exercise on sleep-loss-induced changes in mood state and alertness have not been studied comprehensively. Twenty-four healthy young males were matched into one of three, 5-night sleep interventions: normal sleep (NS; total sleep time (TST) per night = 449 ± 22 min), sleep restriction (SR; TST = 230 ± 5 min), or sleep restriction and exercise (SR + EX; TST = 235 ± 5 min, plus three sessions of high-intensity interval exercise (HIIE)). Mood state was assessed using the profile of mood states (POMS) and a daily well-being questionnaire. Alertness was assessed using psychomotor vigilance testing (PVT). Following the intervention, POMS total mood disturbance scores significantly increased for both the SR and SR + EX groups, and were greater than the NS group (SR vs NS; 31.0 ± 10.7 A.U., [4.4-57.7 A.U.], p = 0.020; SR + EX vs NS; 38.6 ± 14.9 A.U., [11.1-66.1 A.U.], p = 0.004). The PVT reaction times increased in the SR (p = 0.049) and SR + EX groups (p = 0.033) and the daily well-being questionnaire revealed increased levels of fatigue in both groups (SR; p = 0.041, SR + EX; p = 0.026) during the intervention. Despite previously demonstrated physiological benefits of performing three sessions of HIIE during five nights of sleep restriction, the detriments to mood, wellness, and alertness were not mitigated by exercise in this study. Whether alternatively timed exercise sessions or other exercise protocols could promote more positive outcomes on these factors during sleep restriction requires further research.
Collapse
Affiliation(s)
- Nicholas J Saner
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Matthew J-C Lee
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Nathan W Pitchford
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James R Broatch
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Greg D Roach
- Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Jonathan D Bartlett
- Institute for Health and Sport (iHeS), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| |
Collapse
|
7
|
Sun F. Frontiers and hotspots of high-intensity interval exercise in children and adolescents: text mining and knowledge domain visualization. Front Physiol 2024; 15:1330578. [PMID: 38510943 PMCID: PMC10952003 DOI: 10.3389/fphys.2024.1330578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Background: During the past two decades, research on high-intensity interval exercise (HIIE) in children and adolescents has steadily accumulated, especially on the subthemes of improving cardiometabolic and cardiovascular health. However, there is still little scientific understanding of using scientometric analysis to establish knowledge maps. Exploring the relationship between known and new emerging ideas and their potential value has theoretical and practical implications in the context of a researcher's limited ability to read, analyze, and synthesize all published works. Objective: First, this study aims to provide extensive information on HIIE research in children and adolescents, including authors, institutions, countries, journals, and references. Second, the objective is to use co-occurrence, burst, and co-citation analyses based on hybrid node types to reveal hotspots and forecast frontiers for HIIE research in children and adolescents. Methods: Using the bibliographic data of the Web of Science Core Collection (WoSCC) as the data source, publications, authors, and journals were analyzed with the help of bibliometric methods and visualization tools such as CiteSpace, VOSviewer, Pajek, and Bibliometrix R package. Authorial, institutional, and national collaboration networks were plotted, along with research hotspots and research frontiers based on keyword bursts and document co-citations. Results: This study found that executive function, high-intensity interval training, heart rate variability, and insulin resistance are emerging research topics; high-intensity training, mental health, exercise intensity, and cardiometabolic risk factors are continual frontier research areas in the subthemes. Conclusion: Our study has three novel contributions. First, it explicitly and directly reflects the research history and current situation of the HIIE intervention strategy in children and adolescents. This approach makes it clear and easy to trace the origin and development of this strategy in specific groups of children and adolescents. Second, it analyzes the research hotspots of HIIE in the field and predicts the research frontiers and development trends, which will help researchers get a deeper understanding of HIIE and pediatric health research. Third, the findings will enable researchers to pinpoint the most influential scholars, institutions, journals, and references in the field, increasing the possibility of future collaborations between authors, institutions, and countries.
Collapse
Affiliation(s)
- Fucheng Sun
- Department of Physical Education, Faculty of Social Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Chen IY, Radom-Aizik S, Stehli A, Palmer JR, Lui KK, Dave A, Chappel-Farley MG, Vinces KG, Gealer D, Lim A, Mander BA, Benca RM, Neikrug AB. Cardiorespiratory fitness and circadian rhythms in adolescents: a pilot study. J Appl Physiol (1985) 2024; 136:372-384. [PMID: 38126092 PMCID: PMC11213564 DOI: 10.1152/japplphysiol.00291.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Although cardiorespiratory fitness (CRF), an important marker of youth health, is associated with earlier sleep/wake schedule, its relationship with circadian rhythms is unclear. This study examined the associations between CRF and rhythm variables in adolescents. Eighteen healthy adolescents (10 females and 8 males; Mage = 14.6 ± 2.3 yr) completed two study visits on weekdays bracketing an ambulatory assessment during summer vacation. Visit 1 included in-laboratory CRF assessment (peak V̇o2) using a ramp-type progressive cycle ergometry protocol and gas exchange measurement, which was followed by 7-14 days of actigraphy to assess sleep/wake patterns and 24-h activity rhythms. During Visit 2, chronotype, social jetlag (i.e., the difference in midsleep time between weekdays and weekends), and phase preference were assessed using a questionnaire, and hourly saliva samples were collected to determine the dim light melatonin onset (DLMO) phase. All analyses were adjusted for sex, pubertal status, and physical activity. Greater peak V̇o2 was associated with earlier sleep/wake times and circadian phase measures, including acrophase, UP time, DOWN time, last activity peak (LAP) time, and chronotype (all P < 0.05). Peak V̇o2 was negatively associated with social jetlag (P = 0.02). In addition, the mixed-model analysis revealed a significant interaction effect between peak V̇o2 and actigraphy-estimated hour-by-hour activity patterns (P < 0.001), with the strongest effects observed at around the time of waking (0600-1000). In healthy adolescents, better CRF was associated with an earlier circadian phase and increased activity levels notably during the morning. Future studies are needed to investigate the longitudinal effects of the interactions between CRF and advanced rhythms on health outcomes.NEW & NOTEWORTHY In healthy adolescents, better cardiorespiratory fitness, as assessed by the gold standard measure [laboratory-based assessment of peak oxygen consumption (V̇o2)], was associated with earlier circadian timing of sleep/wake patterns, rest-activity rhythms and chronotype, and less social jetlag. These findings highlight the close interrelationships between fitness and rhythms and raise the possibility that maintaining higher cardiorespiratory fitness levels alongside earlier sleep/wake schedule and activity rhythms may be important behavioral intervention targets to promote health in adolescents.
Collapse
Affiliation(s)
- Ivy Y Chen
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, United States
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, University of California, Irvine, Irvine, California, United States
| | - Annamarie Stehli
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, United States
- Pediatric Exercise and Genomics Research Center, University of California, Irvine, Irvine, California, United States
| | - Jake R Palmer
- School of Psychology, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Kitty K Lui
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, United States
| | - Abhishek Dave
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, United States
| | - Miranda G Chappel-Farley
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, United States
| | - Karla G Vinces
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, United States
| | - Daniel Gealer
- Pediatric Exercise and Genomics Research Center, University of California, Irvine, Irvine, California, United States
| | - Alexandra Lim
- Pediatric Exercise and Genomics Research Center, University of California, Irvine, Irvine, California, United States
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, United States
| | - Ruth M Benca
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, United States
| | - Ariel B Neikrug
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California, United States
| |
Collapse
|
9
|
Robberechts R, Poffé C. Defining ketone supplementation: the evolving evidence for postexercise ketone supplementation to improve recovery and adaptation to exercise. Am J Physiol Cell Physiol 2024; 326:C143-C160. [PMID: 37982172 DOI: 10.1152/ajpcell.00485.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-β-hydroxybutyrate (βHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ruben Robberechts
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Lee MJ, Caruana NJ, Saner NJ, Kuang J, Stokes T, McLeod JC, Oikawa SY, Bishop DJ, Bartlett JD, Phillips SM. Resistance-only and concurrent exercise induce similar myofibrillar protein synthesis rates and associated molecular responses in moderately active men before and after training. FASEB J 2024; 38:e23392. [PMID: 38153675 DOI: 10.1096/fj.202302024r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Aerobic and resistance exercise (RE) induce distinct molecular responses. One hypothesis is that these responses are antagonistic and unfavorable for the anabolic response to RE when concurrent exercise is performed. This thesis may also depend on the participants' training status and concurrent exercise order. We measured free-living myofibrillar protein synthesis (MyoPS) rates and associated molecular responses to resistance-only and concurrent exercise (with different exercise orders), before and after training. Moderately active men completed one of three exercise interventions (matched for age, baseline strength, body composition, and aerobic capacity): resistance-only exercise (RE, n = 8), RE plus high-intensity interval exercise (RE+HIIE, n = 8), or HIIE+RE (n = 9). Participants trained 3 days/week for 10 weeks; concurrent sessions were separated by 3 h. On the first day of Weeks 1 and 10, muscle was sampled immediately before and after, and 3 h after each exercise mode and analyzed for molecular markers of MyoPS and muscle glycogen. Additional muscle, sampled pre- and post-training, was used to determine MyoPS using orally administered deuterium oxide (D2 O). In both weeks, MyoPS rates were comparable between groups. Post-exercise changes in proteins reflective of protein synthesis were also similar between groups, though MuRF1 and MAFbx mRNA exhibited some exercise order-dependent responses. In Week 10, exercise-induced changes in MyoPS and some genes (PGC-1ɑ and MuRF1) were dampened from Week 1. Concurrent exercise (in either order) did not compromise the anabolic response to resistance-only exercise, before or after training. MyoPS rates and some molecular responses to exercise are diminished after training.
Collapse
Affiliation(s)
- Matthew J Lee
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Nikeisha J Caruana
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C McLeod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Jonathan D Bartlett
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Tibúrcio FC, Leite APS, Muller KS, Pinto CG, Valentino E, Castro PATDS, Matsumura CY, de Carvalho SF, Matheus SMM. Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1940. [PMID: 38003989 PMCID: PMC10673219 DOI: 10.3390/medicina59111940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Nandrolone decanoate (ND) is the most widely used among the anabolic androgenic steroids (AAS), synthetic substances derived from testosterone, to improve muscular and health gains associated with exercises. The AAS leads to physical performance enhancement and presents anti-aging properties, but its abuse is associated with several adverse effects. Supraphysiological doses of AAS with or without physical exercise can cause morphological and functional alterations in neuromuscular interactions. This study aims to investigate the effects of ND supraphysiological doses in neuromuscular interactions, focusing on the soleus muscle and its neuromuscular junctions (NMJs) in rats, associated or not with physical exercise. Materials and Methods: Forty male Sprague Dawley rats were divided into four groups: sedentary and exercised groups, with or without ND at the dose of 10 mg/kg/week. The animals were treated for eight weeks, with intramuscular injections, and the soleus muscle was collected for morphological analyses. Results: The supraphysiological doses of ND in the sedentary group caused muscle degeneration, evidenced by splitting fibers, clusters of small fibers, irregular myofibrils, altered sarcomeres, an increase in collagen deposition and in the number of type I muscle fibers (slow-twitch) and central nuclei, as well as a decrease in fibers with peripheral nuclei. On the other hand, in the ND exercise group, there was an increase in the NMJs diameter with scattering of its acetylcholine receptors, although no major morphological changes were found in the skeletal muscle. Thus, the alterations caused by ND in sedentary rats were partially reversed by physical exercise. Conclusions: The supraphysiological ND exposure in the sedentary rats promoted an increase in muscle oxidative pattern and adverse morphological alterations in skeletal muscle, resulting from damage or post-injury regeneration. In the ND-exercised rats, no major morphological changes were found. Thus, the physical exercise partially reversed the alterations caused by ND in sedentary rats.
Collapse
Affiliation(s)
- Felipe Cantore Tibúrcio
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Ana Paula Silveira Leite
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Kevin Silva Muller
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Carina Guidi Pinto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Erick Valentino
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Paula Aiello Tomé de Souza Castro
- Department of Physical Therapy, Center for Biological and Health Sciences, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Cintia Yuri Matsumura
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Shelly Favorito de Carvalho
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil;
| | - Selma Maria Michelin Matheus
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| |
Collapse
|
12
|
Genario R, Gil S, Oliveira-Júnior G, Leitão AE, Franco T, Dos Santos Sales RC, Ferriolli E, Busse AL, Filho WJ, Gualano B, Roschel H. Sleep quality is a predictor of muscle mass, strength, quality of life, anxiety and depression in older adults with obesity. Sci Rep 2023; 13:11256. [PMID: 37438429 DOI: 10.1038/s41598-023-37921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
We aimed to investigate associations between sleep quality with selected quantitative and qualitative parameters of health in older individuals with obesity. Cross-sectional assessment (n = 95 men/women; ≥ 65 years; BMI ≥ 30 kg/m2) of sleep quality, body composition, handgrip strength, quality-of-life, anxiety/depression. Mean PSQI score was 6.3. Poor sleepers (n = 49) presented lower appendicular lean mass (ALM) (16.2 vs 17.8 kg; p = 0.0273), ALM/BMI (0.47 vs 0.53 kg/BMI; p = 0.0085), fat mass (48.6 vs 46.6%; p = 0.0464), handgrip strength (19.7 vs 22.0 kgf; p = 0.0542) and handgrip/BMI (0.57 vs 0.66 kgf/BMI; p = 0.0242) than good sleepers. They also had higher anxiety (8.6 vs 5.6; p = 0.0100) and depression (4.8 vs 3.2; p = 0.0197) scores, worse health-related quality-of-life and lower scores in mental (62.8 vs 73.0; p = 0.0223) and physical (52.9 vs 67.3; p = 0.0015) domains. Adjusted models showed that PSQI was negatively associated with ALM (β = - 0.13, 95% CI - 0.25; - 0.01) and health-related quality of life on physical (β = - 2.76, 95% CI - 3.82; - 1.70) and mental (β = - 2.25, 95% CI - 3.38; - 1.12) domains, and positively associated with anxiety (β = 0.57; 95% CI 0.26; 0.87) and depression (β = 0.31; 95% CI 0.13; 0.49). Poor sleep quality associates with impaired selected quantitative and qualitative parameters of health. Additionally, sleep quality was shown as an independent predictor of ALM, health-related quality-of-life, anxiety and depression in older individuals with obesity.
Collapse
Affiliation(s)
- Rafael Genario
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, Universidade de Sao Paulo, Sao Paulo, Brazil
- Rheumatology Division, Clinical Hospital, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Saulo Gil
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, Universidade de Sao Paulo, Sao Paulo, Brazil
- Rheumatology Division, Clinical Hospital, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gersiel Oliveira-Júnior
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, Universidade de Sao Paulo, Sao Paulo, Brazil
- Rheumatology Division, Clinical Hospital, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alice Erwig Leitão
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, Universidade de Sao Paulo, Sao Paulo, Brazil
- Rheumatology Division, Clinical Hospital, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tathiane Franco
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, Universidade de Sao Paulo, Sao Paulo, Brazil
- Rheumatology Division, Clinical Hospital, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ruan Célio Dos Santos Sales
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, Universidade de Sao Paulo, Sao Paulo, Brazil
- Rheumatology Division, Clinical Hospital, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eduardo Ferriolli
- Division of Internal and Geriatric Medicine, Department of Internal Medicine-Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Alexandre Leopold Busse
- Laboratorio de Investigacao Medica em Envelhecimento (LIM-66), Serviço de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Wilson Jacob Filho
- Laboratorio de Investigacao Medica em Envelhecimento (LIM-66), Serviço de Geriatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, Universidade de Sao Paulo, Sao Paulo, Brazil
- Rheumatology Division, Clinical Hospital, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, School of Medicine, Universidade de Sao Paulo, Sao Paulo, Brazil.
- Rheumatology Division, Clinical Hospital, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Lyons LC, Vanrobaeys Y, Abel T. Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain. J Neurochem 2023; 166:24-46. [PMID: 36802068 PMCID: PMC10919414 DOI: 10.1111/jnc.15787] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
In countries around the world, sleep deprivation represents a widespread problem affecting school-age children, teenagers, and adults. Acute sleep deprivation and more chronic sleep restriction adversely affect individual health, impairing memory and cognitive performance as well as increasing the risk and progression of numerous diseases. In mammals, the hippocampus and hippocampus-dependent memory are vulnerable to the effects of acute sleep deprivation. Sleep deprivation induces changes in molecular signaling, gene expression and may cause changes in dendritic structure in neurons. Genome wide studies have shown that acute sleep deprivation alters gene transcription, although the pool of genes affected varies between brain regions. More recently, advances in research have drawn attention to differences in gene regulation between the level of the transcriptome compared with the pool of mRNA associated with ribosomes for protein translation following sleep deprivation. Thus, in addition to transcriptional changes, sleep deprivation also affects downstream processes to alter protein translation. In this review, we focus on the multiple levels through which acute sleep deprivation impacts gene regulation, highlighting potential post-transcriptional and translational processes that may be affected by sleep deprivation. Understanding the multiple levels of gene regulation impacted by sleep deprivation is essential for future development of therapeutics that may mitigate the effects of sleep loss.
Collapse
Affiliation(s)
- Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Power CJ, Fox JL, Teramoto M, Scanlan AT. Sleep Patterns Fluctuate Following Training and Games across the Season in a Semi-Professional, Female Basketball Team. Brain Sci 2023; 13:brainsci13020238. [PMID: 36831781 PMCID: PMC9954585 DOI: 10.3390/brainsci13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Quantifying athlete sleep patterns may inform development of optimal training schedules and sleep strategies, considering the competitive challenges faced across the season. Therefore, this study comprehensively quantified the sleep patterns of a female basketball team and examined variations in sleep between nights. Seven semi-professional, female basketball players had their sleep monitored using wrist-worn activity monitors and perceptual ratings during a 13-week in-season. Sleep variables were compared between different nights (control nights, training nights, training nights before games, nights before games, non-congested game nights, and congested game nights), using generalized linear mixed models, as well as Cohen's d and odds ratios as effect sizes. Players experienced less sleep on training nights before games compared to control nights, training nights, nights before games, and congested game nights (p < 0.05, d = 0.43-0.69). Players also exhibited later sleep onset times on non-congested game nights compared to control nights (p = 0.01, d = 0.68), and earlier sleep offset times following training nights before games compared to all other nights (p < 0.01, d = 0.74-0.79). Moreover, the odds of players attaining better perceived sleep quality was 88% lower on congested game nights than on nights before games (p < 0.001). While players in this study attained an adequate sleep duration (7.3 ± 0.3 h) and efficiency (85 ± 2%) on average across the in-season, they were susceptible to poor sleep on training nights before games and following games. Although limited to a team-based case series design, these findings suggest basketball coaches may need to reconsider scheduling team-based, on-court training sessions on nights prior to games and consider implementing suitable psychological and recovery strategies around games to optimize player sleep.
Collapse
Affiliation(s)
- Cody J. Power
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
- Correspondence:
| | - Jordan L. Fox
- Rural Clinical School, The University of Queensland, Rockhampton, QLD 4700, Australia
| | - Masaru Teramoto
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84108, USA
| | - Aaron T. Scanlan
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| |
Collapse
|
15
|
Sleep, circadian biology and skeletal muscle interactions: Implications for metabolic health. Sleep Med Rev 2022; 66:101700. [PMID: 36272396 DOI: 10.1016/j.smrv.2022.101700] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022]
Abstract
There currently exists a modern epidemic of sleep loss, triggered by the changing demands of our 21st century lifestyle that embrace 'round-the-clock' remote working hours, access to energy-dense food, prolonged periods of inactivity, and on-line social activities. Disturbances to sleep patterns impart widespread and adverse effects on numerous cells, tissues, and organs. Insufficient sleep causes circadian misalignment in humans, including perturbed peripheral clocks, leading to disrupted skeletal muscle and liver metabolism, and whole-body energy homeostasis. Fragmented or insufficient sleep also perturbs the hormonal milieu, shifting it towards a catabolic state, resulting in reduced rates of skeletal muscle protein synthesis. The interaction between disrupted sleep and skeletal muscle metabolic health is complex, with the mechanisms underpinning sleep-related disturbances on this tissue often multifaceted. Strategies to promote sufficient sleep duration combined with the appropriate timing of meals and physical activity to maintain circadian rhythmicity are important to mitigate the adverse effects of inadequate sleep on whole-body and skeletal muscle metabolic health. This review summarises the complex relationship between sleep, circadian biology, and skeletal muscle, and discusses the effectiveness of several strategies to mitigate the negative effects of disturbed sleep or circadian rhythms on skeletal muscle health.
Collapse
|
16
|
Yang J, Jiang F, Yang M, Chen Z. Sarcopenia and nervous system disorders. J Neurol 2022; 269:5787-5797. [PMID: 35829759 DOI: 10.1007/s00415-022-11268-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Sarcopenia has an insidious start that can induce physical malfunction, raise the risk of falls, disability, and mortality in the old, severely impair the aged persons' quality of life and health. More and more studies have demonstrated that sarcopenia is linked to neurological diseases in recent years. This review examines the advancement of sarcopenia and neurological illnesses research.
Collapse
Affiliation(s)
- Jie Yang
- Department of Rehabilitation Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 of Minjiang Street, Quzhou, 32400, Zhejiang, China
| | - Feifei Jiang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 of Minjiang Street, Quzhou, 32400, Zhejiang, China
| | - Ming Yang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 of Minjiang Street, Quzhou, 32400, Zhejiang, China
| | - Zhizhi Chen
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 of Minjiang Street, Quzhou, 32400, Zhejiang, China.
| |
Collapse
|
17
|
Lin W, Saner NJ, Weng X, Caruana NJ, Botella J, Kuang J, Lee MJC, Jamnick NA, Pitchford NW, Garnham A, Bartlett JD, Chen H, Bishop DJ. The Effect of Sleep Restriction, With or Without Exercise, on Skeletal Muscle Transcriptomic Profiles in Healthy Young Males. Front Endocrinol (Lausanne) 2022; 13:863224. [PMID: 35937838 PMCID: PMC9355502 DOI: 10.3389/fendo.2022.863224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Inadequate sleep is associated with many detrimental health effects, including increased risk of developing insulin resistance and type 2 diabetes. These effects have been associated with changes to the skeletal muscle transcriptome, although this has not been characterised in response to a period of sleep restriction. Exercise induces a beneficial transcriptional response within skeletal muscle that may counteract some of the negative effects associated with sleep restriction. We hypothesised that sleep restriction would down-regulate transcriptional pathways associated with glucose metabolism, but that performing exercise would mitigate these effects. METHODS 20 healthy young males were allocated to one of three experimental groups: a Normal Sleep (NS) group (8 h time in bed per night (TIB), for five nights (11 pm - 7 am)), a Sleep Restriction (SR) group (4 h TIB, for five nights (3 am - 7 am)), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB, for five nights (3 am - 7 am) and three high-intensity interval exercise (HIIE) sessions (performed at 10 am)). RNA sequencing was performed on muscle samples collected pre- and post-intervention. Our data was then compared to skeletal muscle transcriptomic data previously reported following sleep deprivation (24 h without sleep). RESULTS Gene set enrichment analysis (GSEA) indicated there was an increased enrichment of inflammatory and immune response related pathways in the SR group post-intervention. However, in the SR+EX group the direction of enrichment in these same pathways occurred in the opposite directions. Despite this, there were no significant changes at the individual gene level from pre- to post-intervention. A set of genes previously shown to be decreased with sleep deprivation was also decreased in the SR group, but increased in the SR+EX group. CONCLUSION The alterations to inflammatory and immune related pathways in skeletal muscle, following five nights of sleep restriction, provide insight regarding the transcriptional changes that underpin the detrimental effects associated with sleep loss. Performing three sessions of HIIE during sleep restriction attenuated some of these transcriptional changes. Overall, the transcriptional alterations observed with a moderate period of sleep restriction were less evident than previously reported changes following a period of sleep deprivation.
Collapse
Affiliation(s)
- Wentao Lin
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Nicholas J. Saner
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Human Integrative Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Nikeisha J. Caruana
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Javier Botella
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Matthew J-C. Lee
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Nicholas A. Jamnick
- Metabolic Research Unit, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nathan W. Pitchford
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Hao Chen
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, China
- *Correspondence: Hao Chen, ; David J. Bishop,
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- *Correspondence: Hao Chen, ; David J. Bishop,
| |
Collapse
|
18
|
Yasuda J, Murata K, Hasegawa T, Yamamura M, Maeo S, Takegaki J, Tottori N, Yokokawa T, Mori R, Arimitsu T, Nishikori S, Fujita S. Relation between protein intake and resistance training-induced muscle hypertrophy in middle-aged women: a pilot study. Nutrition 2022; 97:111607. [DOI: 10.1016/j.nut.2022.111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
|
19
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Prokopidis K, Dionyssiotis Y. Effects of sleep deprivation on sarcopenia and obesity: A narrative review of randomized controlled and crossover trials. J Frailty Sarcopenia Falls 2021; 6:50-56. [PMID: 34131601 PMCID: PMC8173530 DOI: 10.22540/jfsf-06-050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Shortened and fragmented sleeping patterns occupying modern industrialized societies may promote metabolic disturbances accompanied by increased risk of weight gain and skeletal muscle degradation. Short-term sleep restriction may alter energy homeostasis by modifying dopamine brain receptor signaling, leading to hyperpalatable food consumption and risk of increased adiposity. Concomitantly, the metabolic damage caused by lower testosterone and higher cortisol levels may stimulate systemic inflammation, insulin resistance, and suppress pathways involved in muscle protein synthesis. These changes may lead to dysregulated energy balance and skeletal muscle metabolism, increasing the risk of sarcopenic obesity, an additional public health burden. Future trials controlling for food intake and exploring further the influence of sleep deprivation on anabolic and catabolic signaling, and gut peptide interaction with energy balance are warranted.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom
| | - Yannis Dionyssiotis
- 1 Physical Medicine and Rehabilitation Department, National Rehabilitation Center EKA, Athens, Greece
| |
Collapse
|
21
|
Remchak MME, Piersol KL, Bhatti S, Spaeth AM, Buckman JF, Malin SK. Considerations for Maximizing the Exercise "Drug" to Combat Insulin Resistance: Role of Nutrition, Sleep, and Alcohol. Nutrients 2021; 13:1708. [PMID: 34069950 PMCID: PMC8157556 DOI: 10.3390/nu13051708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 01/12/2023] Open
Abstract
Insulin resistance is a key etiological factor in promoting not only type 2 diabetes mellitus but also cardiovascular disease (CVD). Exercise is a first-line therapy for combating chronic disease by improving insulin action through, in part, reducing hepatic glucose production and lipolysis as well as increasing skeletal muscle glucose uptake and vasodilation. Just like a pharmaceutical agent, exercise can be viewed as a "drug" such that identifying an optimal prescription requires a determination of mode, intensity, and timing as well as consideration of how much exercise is done relative to sitting for prolonged periods (e.g., desk job at work). Furthermore, proximal nutrition (nutrient timing, carbohydrate intake, etc.), sleep (or lack thereof), as well as alcohol consumption are likely important considerations for enhancing adaptations to exercise. Thus, identifying the maximal exercise "drug" for reducing insulin resistance will require a multi-health behavior approach to optimize type 2 diabetes and CVD care.
Collapse
Affiliation(s)
- Mary-Margaret E. Remchak
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Kelsey L. Piersol
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Sabha Bhatti
- Division of Cardiovascular Medicine, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Andrea M. Spaeth
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
| | - Jennifer F. Buckman
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ 08854, USA
| | - Steven K. Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, NJ 08901, USA; (M.-M.E.R.); (K.L.P.); (A.M.S.); (J.F.B.)
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Genders AJ, Marin EC, Bass JJ, Kuang J, Saner NJ, Smith K, Atherton PJ, Bishop DJ. Ammonium chloride administration prior to exercise has muscle-specific effects on mitochondrial and myofibrillar protein synthesis in rats. Physiol Rep 2021; 9:e14797. [PMID: 33769716 PMCID: PMC7995552 DOI: 10.14814/phy2.14797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 12/04/2022] Open
Abstract
AIM Exercise is able to increase both muscle protein synthesis and mitochondrial biogenesis. However, acidosis, which can occur in pathological states as well as during high-intensity exercise, can decrease mitochondrial function, whilst its impact on muscle protein synthesis is disputed. Thus, the aim of this study was to determine the effect of a mild physiological decrease in pH, by administration of ammonium chloride, on myofibrillar and mitochondrial protein synthesis, as well as associated molecular signaling events. METHODS Male Wistar rats were given either a placebo or ammonium chloride prior to a short interval training session. Rats were killed before exercise, immediately after exercise, or 3 h after exercise. RESULTS Myofibrillar (p = 0.036) fractional protein synthesis rates was increased immediately after exercise in the soleus muscle of the placebo group, but this effect was absent in the ammonium chloride group. However, in the gastrocnemius muscle NH4 Cl increased myofibrillar (p = 0.044) and mitochondrial protein synthesis (0 h after exercise p = 0.01; 3 h after exercise p = 0.003). This was accompanied by some small differences in protein phosphorylation and mRNA expression. CONCLUSION This study found ammonium chloride administration immediately prior to a single session of exercise in rats had differing effects on mitochondrial and myofibrillar protein synthesis rates in soleus (type I) and gastrocnemius (type II) muscle in rats.
Collapse
Affiliation(s)
- Amanda J. Genders
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Evelyn C. Marin
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
- Department of Medicine (Austin Health)The University of MelbourneMelbourneVictoriaAustralia
| | - Joseph J. Bass
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Nicholas J. Saner
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| | - Ken Smith
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - Philip J. Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing ResearchNottingham Biomedical Research Centre (BRC)National Institute for Health Research (NIHR)School of MedicineUniversity of NottinghamNottinghamUK
| | - David J. Bishop
- Institute for Health and Sport (iHeS)Victoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
23
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
24
|
Acute Sleep Restriction Affects Sport-Specific But Not Athletic Performance in Junior Tennis Players. Int J Sports Physiol Perform 2021; 16:1154–1159. [PMID: 33607625 DOI: 10.1123/ijspp.2020-0390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Little is known about the effect of sleep restriction (SR) on different domains of athletes' physical performance. Therefore, the aim of this randomized, counterbalanced, and crossover study was to evaluate the effect of acute SR on sport-specific technical and athletic performance in male junior tennis players. METHODS Tennis players (N = 12; age 15.4 ± 2.6 y) were randomly allocated to either a sleep-restriction condition (SR, n = 6), where they experienced acute sleep restriction the night before the test session (≤5 h of sleep), or to a control condition (CON, n = 6), where they followed their habitual sleep-wake routines. Testing procedures included 20 left and right serves, 15 forehand and backhand crosscourt shots, and a repeated-sprint-ability test (RSA). The accuracy of serves and shots was considered for further analysis. One week later, players of SR joined CON, and players of CON experienced SR, and all test procedures were repeated. RESULTS Significant decrease in the accuracy of right (-17.5%, P = .010, effect size [ES] = 1.0, moderate) and left serve (-14.1%, P = .014, ES = 1.2, large), crosscourt backhand (-23.9%, P = .003, ES ≥ 2.0, very large), and forehand shot (-15.6%, P = .014, ES = 1.1, moderate) were observed in SR compared to CON, while RSA was similar in both conditions. CONCLUSION Coaches and athletes at the team and individual level should be aware that 1 night of SR affects sport-specific but not athletic performance in tennis players.
Collapse
|
25
|
Daily Myofibrillar Protein Synthesis Rates in Response to Low- and High-Frequency Resistance Exercise Training in Healthy, Young Men. Int J Sport Nutr Exerc Metab 2021; 31:209-216. [PMID: 33601335 DOI: 10.1123/ijsnem.2020-0274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 11/18/2022]
Abstract
The impact of resistance exercise frequency on muscle protein synthesis rates remains unknown. The aim of this study was to compare daily myofibrillar protein synthesis rates over a 7-day period of low-frequency (LF) versus high-frequency (HF) resistance exercise training. Nine young men (21 ± 2 years) completed a 7-day period of habitual physical activity (BASAL). This was followed by a 7-day exercise period of volume-matched, LF (10 × 10 repetitions at 70% one-repetition maximum, once per week) or HF (2 × 10 repetitions at ∼70% one-repetition maximum, five times per week) resistance exercise training. The participants had one leg randomly allocated to LF and the other to HF. Skeletal muscle biopsies and daily saliva samples were collected to determine myofibrillar protein synthesis rates using 2H2O, with intracellular signaling determined using Western blotting. The myofibrillar protein synthesis rates did not differ between the LF (1.46 ± 0.26%/day) and HF (1.48 ± 0.33%/day) conditions over the 7-day exercise training period (p > .05). There were no significant differences between the LF and HF conditions over the first 2 days (1.45 ± 0.41%/day vs. 1.25 ± 0.46%/day) or last 5 days (1.47 ± 0.30%/day vs. 1.50 ± 0.41%/day) of the exercise training period (p > .05). Daily myofibrillar protein synthesis rates were not different from BASAL at any time point during LF or HF (p > .05). The phosphorylation status and total protein content of selected proteins implicated in skeletal muscle ribosomal biogenesis were not different between conditions (p > .05). Under the conditions of the present study, resistance exercise training frequency did not modulate daily myofibrillar protein synthesis rates in young men.
Collapse
|
26
|
Mônico-Neto M, Lee KS, da Luz MHM, Pino JMV, Ribeiro DA, Cardoso CM, Sueur-Maluf LL, Tufik S, Antunes HKM. Histopathological changes and oxidative damage in type I and type II muscle fibers in rats undergoing paradoxical sleep deprivation. Cell Signal 2021; 81:109939. [PMID: 33529759 DOI: 10.1016/j.cellsig.2021.109939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND previous studies have shown that muscle atrophy is observed after sleep deprivation (SD) protocols; however, the mechanisms responsible are not fully understood. Muscle trophism can be modulated by several factors, including energy balance (positive or negative), nutritional status, oxidative stress, the level of physical activity, and disuse. The metabolic differences that exist in different types of muscle fiber may also be the result of different adaptive responses. To better understand these mechanisms, we evaluated markers of oxidative damage and histopathological changes in different types of muscle fibers in sleep-deprived rats. METHODS Twenty male Wistar EPM-1 rats were randomly allocated in two groups: a control group (CTL group; n = 10) and a sleep deprived group (SD group; n = 10). The SD group was submitted to continuous paradoxical SD for 96 h; the soleus (type I fibers) and plantar (type II fiber) muscles were analyzed for histopathological changes, trophism, lysosomal activity, and oxidative damage. Oxidative damage was assessed by lipid peroxidation and nuclear labeling of 8-OHdG. RESULTS The data demonstrated that SD increased the nuclear labeling of 8-OHdG and induced histopathological changes in both muscles, being more evident in the soleus muscle. In the type I fibers there was signs of tissue degeneration, inflammatory infiltrate and tissue edema. Muscle atrophy was observed in both muscles. The concentration of malondialdehyde, and cathepsin L activity only increased in type I fibers after SD. CONCLUSION These data indicate that the histopathological changes observed after 96 h of SD in the skeletal muscle occur by different processes, according to the type of muscle fiber, with muscles predominantly composed of type I fibers undergoing greater oxidative damage and catabolic activity, as evidenced by a larger increase in 8-OHdG labeling, lipid peroxidation, and lysosomal activity.
Collapse
Affiliation(s)
- Marcos Mônico-Neto
- Department of Psychobiology, Universidade Federal de São Paulo, SP, Brazil; Department of Biosciences, Post Graduate Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Kil Sun Lee
- Department of Biochemistry, Universidade Federal de São Paulo, SP, Brazil
| | | | | | - Daniel Araki Ribeiro
- Department of Biosciences, Post Graduate Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil; Department of Pathology, Universidade Federal de São Paulo, SP, Brazil
| | | | - Luciana Le Sueur-Maluf
- Department of Biosciences, Post Graduate Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, SP, Brazil
| | - Hanna Karen Moreira Antunes
- Department of Biosciences, Post Graduate Program of Interdisciplinary Health Sciences, Universidade Federal de São Paulo, Santos, Brazil.
| |
Collapse
|
27
|
Lamon S, Morabito A, Arentson-Lantz E, Knowles O, Vincent GE, Condo D, Alexander SE, Garnham A, Paddon-Jones D, Aisbett B. The effect of acute sleep deprivation on skeletal muscle protein synthesis and the hormonal environment. Physiol Rep 2021; 9:e14660. [PMID: 33400856 PMCID: PMC7785053 DOI: 10.14814/phy2.14660] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic sleep loss is a potent catabolic stressor, increasing the risk of metabolic dysfunction and loss of muscle mass and function. To provide mechanistic insight into these clinical outcomes, we sought to determine if acute sleep deprivation blunts skeletal muscle protein synthesis and promotes a catabolic environment. Healthy young adults (N = 13; seven male, six female) were subjected to one night of total sleep deprivation (DEP) and normal sleep (CON) in a randomized cross‐over design. Anabolic and catabolic hormonal profiles were assessed across the following day. Postprandial muscle protein fractional synthesis rate (FSR) was assessed between 13:00 and 15:00 and gene markers of muscle protein degradation were assessed at 13:00. Acute sleep deprivation reduced muscle protein synthesis by 18% (CON: 0.072 ± 0.015% vs. DEP: 0.059 ± 0.014%·h‐1, p = .040). In addition, sleep deprivation increased plasma cortisol by 21% (p = .030) and decreased plasma testosterone by 24% (p = .029). No difference was found in the markers of protein degradation. A single night of total sleep deprivation is sufficient to induce anabolic resistance and a procatabolic environment. These acute changes may represent mechanistic precursors driving the metabolic dysfunction and body composition changes associated with chronic sleep deprivation.
Collapse
Affiliation(s)
- Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aimee Morabito
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Emily Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, USA
| | - Olivia Knowles
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | - Dominique Condo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.,Center for Sport Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Sarah Elizabeth Alexander
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Andrew Garnham
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX, USA
| | - Brad Aisbett
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
28
|
Saner NJ, Lee MJC, Kuang J, Pitchford NW, Roach GD, Garnham A, Genders AJ, Stokes T, Schroder EA, Huo Z, Esser KA, Phillips SM, Bishop DJ, Bartlett JD. Exercise mitigates sleep-loss-induced changes in glucose tolerance, mitochondrial function, sarcoplasmic protein synthesis, and diurnal rhythms. Mol Metab 2021; 43:101110. [PMID: 33137489 PMCID: PMC7704425 DOI: 10.1016/j.molmet.2020.101110] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Sleep loss has emerged as a risk factor for the development of impaired glucose tolerance. The mechanisms underpinning this observation are unknown; however, both mitochondrial dysfunction and circadian misalignment have been proposed. Because exercise improves glucose tolerance and mitochondrial function, and alters circadian rhythms, we investigated whether exercise may counteract the effects induced by inadequate sleep. METHODS To minimize between-group differences of baseline characteristics, 24 healthy young males were allocated into one of the three experimental groups: a Normal Sleep (NS) group (8 h time in bed (TIB) per night, for five nights), a Sleep Restriction (SR) group (4 h TIB per night, for five nights), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB per night, for five nights and three high-intensity interval exercise (HIIE) sessions). Glucose tolerance, mitochondrial respiratory function, sarcoplasmic protein synthesis (SarcPS), and diurnal measures of peripheral skin temperature were assessed pre- and post-intervention. RESULTS We report that the SR group had reduced glucose tolerance post-intervention (mean change ± SD, P value, SR glucose AUC: 149 ± 115 A.U., P = 0.002), which was also associated with reductions in mitochondrial respiratory function (SR: -15.9 ± 12.4 pmol O2.s-1.mg-1, P = 0.001), a lower rate of SarcPS (FSR%/day SR: 1.11 ± 0.25%, P < 0.001), and reduced amplitude of diurnal rhythms. These effects were not observed when incorporating three sessions of HIIE during this period (SR+EX: glucose AUC 67 ± 57, P = 0.239, mitochondrial respiratory function: 0.6 ± 11.8 pmol O2.s-1.mg-1, P = 0.997, and SarcPS (FSR%/day): 1.77 ± 0.22%, P = 0.971). CONCLUSIONS A five-night period of sleep restriction leads to reductions in mitochondrial respiratory function, SarcPS, and amplitude of skin temperature diurnal rhythms, with a concurrent reduction in glucose tolerance. We provide novel data demonstrating that these same detrimental effects are not observed when HIIE is performed during the period of sleep restriction. These data therefore provide evidence in support of the use of HIIE as an intervention to mitigate the detrimental physiological effects of sleep loss.
Collapse
Affiliation(s)
- Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Sports Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Matthew J-C Lee
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nathan W Pitchford
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Sport Performance Optimization Research Team, School of Human Life Sciences, University of Tasmania, Launceston, Australia
| | - Gregory D Roach
- Appleton Institute for Behavioral Science, Central Queensland University, Adelaide, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Amanda J Genders
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Canada
| | - Elizabeth A Schroder
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, United States
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, United States
| | | | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | | |
Collapse
|
29
|
Randell RK, Anderson R, Carter JM, Rollo I. Self-reported current sleep behaviors of adult athletes from different competitive levels and sports. Sleep Sci 2021; 14:1-7. [PMID: 34917267 PMCID: PMC8663738 DOI: 10.5935/1984-0063.20200044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022] Open
Abstract
Objectives To quantify self-reported current sleep behaviors in a range of adult athletes. In addition, to determine any differences in sleep duration and sleep quality, depending on sport type and competitive level. Material and Methods In this cross-sectional study, 313 athletes (243 male, 70 female), competing in a variety of sports and competitive level, completed the Pittsburgh sleep quality index (PSQI) and a questionnaire which captured current sleep behaviors. Sleep quality was calculated using the global PSQI score (≥ 5 indicative of poor sleep quality). Results On average, athletes self-reported sleep duration was 7:34 ± 1:00 h:min. Overall, 19% of athletes achieved less than 7 h of sleep, 50% achieved less than 8 h. Global PSQI score was 5.0 ± 2.4, with poor sleep quality found in 55% of athletes. Sleep duration was significantly shorter in runners compared to basketball, soccer and rugby players (p < 0.05). Recreational athletes slept significantly less (7:08 ± 0:54 h:min) than competitive (7:32 ± 1:00 h:min), national (7:50 ± 1:00 h:min) and elite level athletes (7:49 ± 0:51 h:min). No differences in sleep quality were found between sport or competitive level. Discussion Half of the athletes failed to achieve 8 h of sleep per night and the majority reported compromised sleep quality. Sport type and competitive level may influence sleep duration; however, these factors do not seem to cause discrepancies in sleep quality. This study provides novel data into the sleep behaviors of adult athletes, and suggests strategies to improve sleep duration and quality may be warranted.
Collapse
Affiliation(s)
- Rebecca K Randell
- Life Sciences, Gatorade Sports Science Institute - PepsiCo Inc. - Leicester - United Kingdom.,Loughborough University, School of Sport, Exercise and Health Sciences -Loughborough - Leicestershire - United Kingdom
| | - Rosie Anderson
- Loughborough University, School of Sport, Exercise and Health Sciences -Loughborough - Leicestershire - United Kingdom
| | - James M Carter
- Life Sciences, Gatorade Sports Science Institute - PepsiCo Inc. - Leicester - United Kingdom
| | - Ian Rollo
- Life Sciences, Gatorade Sports Science Institute - PepsiCo Inc. - Leicester - United Kingdom.,Loughborough University, School of Sport, Exercise and Health Sciences -Loughborough - Leicestershire - United Kingdom
| |
Collapse
|
30
|
The Development and Evaluation of a Training Monitoring System for Amateur Rugby Union. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A training monitoring system (TMS) should be both attainable and scientifically grounded; however, the optimal method of monitoring training is not yet fully understood. The purpose of this study was to develop and evaluate an online TMS for amateur rugby union. The experimental approach to the problem consisted of five phases: (1) establishing the current training and training load (TL) monitoring practices of amateur rugby union teams, (2) designing and developing the TMS, (3) recruiting teams and subsequently introducing the TMS, (4) supporting the strength and conditioning (S&C) coaches using the TMS, and (5) evaluating the TMS. The findings of this study support the use of an online TMS as a useful and effective method of facilitating training prescription and design in an effort to reduce injury risk and enhance performance. The main barriers impeding player compliance are the lack of feedback on their data and evidence of its use in training design, coaching, and prescription. The effectiveness of the system is dependent on the extent to which the associated challenges are mitigated to ensure quality and consistent data. However, this study offers a method of monitoring training that can be effective while also establishing pitfalls to avoid for both practitioners and researchers alike.
Collapse
|
31
|
Cherubini JM, Cheng JL, Williams JS, MacDonald MJ. Sleep deprivation and endothelial function: reconciling seminal evidence with recent perspectives. Am J Physiol Heart Circ Physiol 2020; 320:H29-H35. [PMID: 33064569 DOI: 10.1152/ajpheart.00607.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep is critical for the maintenance of physiological homeostasis and, as such, inadequate sleep beckons a myriad of pathologies. Sleep deprivation is a growing health concern in contemporary society since short sleep durations are associated with increased cardiovascular disease risk and atherosclerotic plaque development. Vascular endothelial dysfunction is an antecedent to atherosclerosis and cardiovascular disease. Herein, we review seminal literature indicating that short sleep durations attenuate endothelial function and explore more recent evidence indicating that sleep deprivation perturbs autonomic balance and the circadian rhythmicity of peripheral vascular clock components. We further examine literature that indicates a mechanistic link between short sleep duration and endothelial dysfunction and subsequent morbidity. Understanding the mechanisms that regulate endothelial function in the context of sleep deprivation facilitates the development and optimization of interventions, such as exercise, that mitigate the ramifications of inadequate sleep on vascular function and cardiovascular health.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/sleep-deprivation-and-endothelial-function/.
Collapse
Affiliation(s)
| | - Jem L Cheng
- Vascular Dynamics Lab, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
32
|
Barakat C, Pearson J, Escalante G, Campbell B, De Souza EO. Body Recomposition: Can Trained Individuals Build Muscle and Lose Fat at the Same Time? Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Estafanos S, Adams C, Tinline-Goodfellow C, Hodson N. Can you out-exercise a bad sleep? A muscle-centric view. J Physiol 2020; 598:2549-2550. [PMID: 32415779 DOI: 10.1113/jp279913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Stephanie Estafanos
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Carolyn Adams
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | | | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Knowles OE. No time to sleep on it – start exercising! J Physiol 2020; 598:2059-2060. [DOI: 10.1113/jp279790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Olivia E. Knowles
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences Deakin University Geelong Victoria Australia
| |
Collapse
|