1
|
Jinde S, Belforte JE, Yamamoto J, Wilson MA, Tonegawa S, Nakazawa K. Lack of kainic acid-induced gamma oscillations predicts subsequent CA1 excitotoxic cell death. Eur J Neurosci 2009; 30:1036-55. [PMID: 19735292 PMCID: PMC2761958 DOI: 10.1111/j.1460-9568.2009.06896.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gamma oscillations are a prominent feature of hippocampal network activity, but their functional role remains debated, ranging from mere epiphenomena to being crucial for information processing. Similarly, persistent gamma oscillations sometimes appear prior to epileptic discharges in patients with mesial temporal sclerosis. However, the significance of this activity in hippocampal excitotoxicity is unclear. We assessed the relationship between kainic acid (KA)-induced gamma oscillations and excitotoxicity in genetically engineered mice in which N-methyl-D-aspartic acid receptor deletion was confined to CA3 pyramidal cells. Mutants showed reduced CA3 pyramidal cell firing and augmented sharp wave-ripple activity, resulting in higher susceptibility to KA-induced seizures, and leading to strikingly selective neurodegeneration in the CA1 subfield. Interestingly, the increase in KA-induced gamma-aminobutyric acid (GABA) levels, and the persistent 30-50-Hz gamma oscillations, both of which were observed in control mice prior to the first seizure discharge, were abolished in the mutants. Consequently, on subsequent days, mutants manifested prolonged epileptiform activity and massive neurodegeneration of CA1 cells, including local GABAergic neurons. Remarkably, pretreatment with the potassium channel blocker alpha-dendrotoxin increased GABA levels, restored gamma oscillations, and prevented CA1 degeneration in the mutants. These results demonstrate that the emergence of low-frequency gamma oscillations predicts increased resistance to KA-induced excitotoxicity, raising the possibility that gamma oscillations may have potential prognostic value in the treatment of epilepsy.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Unit on Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Maryland 20892
| | - Juan E. Belforte
- Unit on Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Maryland 20892
| | - Jun Yamamoto
- The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Matthew A. Wilson
- The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Susumu Tonegawa
- The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Howard Hughes Medical Institute
| | - Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Maryland 20892
| |
Collapse
|
2
|
Esguerra M, Kwon YH, Sur M. Retinogeniculate EPSPs recorded intracellularly in the ferret lateral geniculate nucleus in vitro: Role of NMDA receptors. Vis Neurosci 2009; 8:545-55. [PMID: 1350209 DOI: 10.1017/s0952523800005642] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe used an in vitro preparation of the ferret lateral geniculate nucleus (LGN) to examine the role of the NMDA class of excitatory amino acid (EAA) receptors in retinogeniculate transmission. Intracellular recordings revealed that blockade of NMDA receptors both shortened the time course and reduced the amplitude of fast and slow components of excitatory postsynaptic potentials (EPSPs) evoked by optic tract stimulation. The amplitude and width of the EPSPs mediated by NMDA receptors increased as membrane potential was depolarized towards spike threshold. Individual LGN cells were influenced to varying extents by blockade of NMDA receptors; NMDA and non-NMDA receptor blockade together attenuated severely the entire retinogeniculate EPSP. The dependence of all components of retinogeniculate EPSPs (and action potentials) on NMDA receptor activation supports the hypothesis that the NMDA receptor participates in fast (<10 ms) synaptic events underlying conventional retinogeniculate transmission. The voltage dependence of the NMDA receptor-gated conductance suggests strongly that the transmission of retinal information through the LGN is subject to modulation by extraretinal inputs that affect the membrane potential of LGN neurons.
Collapse
Affiliation(s)
- M Esguerra
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
3
|
Ellis LD, Krahe R, Bourque CW, Dunn RJ, Chacron MJ. Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current. J Neurophysiol 2007; 98:1526-37. [PMID: 17615127 PMCID: PMC5053812 DOI: 10.1152/jn.00564.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional role of cholinergic input in the modulation of sensory responses was studied using a combination of in vivo and in vitro electrophysiology supplemented by mathematical modeling. The electrosensory system of weakly electric fish recognizes different environmental stimuli by their unique alteration of a self-generated electric field. Variations in the patterns of stimuli are primarily distinguished based on their frequency. Pyramidal neurons in the electrosensory lateral line lobe (ELL) are often tuned to respond to specific input frequencies. Alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli. Here we show that muscarinic receptor activation in vivo enhances the excitability, burst firing, and subsequently the response of pyramidal cells to naturalistic sensory input. Through a combination of in vitro electrophysiology and mathematical modeling, we reveal that this enhanced excitability and bursting likely results from the down-regulation of an A-type potassium current. Further, we provide an explanation of the mechanism by which these currents can mediate frequency tuning.
Collapse
Affiliation(s)
- Lee D Ellis
- Center for Research in Neuroscience, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
4
|
Taylor AL, Rodger J, Stirling RV, Beazley LD, Dunlop SA. The balance of NMDA- and AMPA/kainate receptor-mediated activity in normal adult goldfish and during optic nerve regeneration. Exp Neurol 2005; 195:391-9. [PMID: 16004985 DOI: 10.1016/j.expneurol.2005.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/26/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
Retinotectal topography is established during development and relies on the sequential recruitment of glutamate receptors within postsynaptic tectal cells. NMDA receptors underpin plastic changes at early stages when retinal ganglion cell (RGC) terminal arbors are widespread and topography is coarse; AMPA/kainate receptors mediate fast secure neurotransmission characteristic of mature circuits once topography is refined. Here, we have examined the relative contributions of these receptors to visually evoked activity in normal adult goldfish, in which retinotectal topography is constantly adjusted to compensate for the continual neurogenesis and the addition of new RGC arbors. Furthermore, we examined animals at two stages of optic nerve regeneration. In the first, RGC arbors are widespread and receptive fields large resulting in coarse topography; in the second, RGC arbors are pruned to reduce receptive fields leading to refined topography. Antagonists were applied to the tectum during multiunit recording of postsynaptic responses. Normal goldfish have low levels of NMDA receptor-mediated activity and high levels of AMPA/kainate. When coarse topography has been restored, NMDA receptor-mediated activity is increased and that of AMPA/kainate decreased. Once topography has been refined, the balance of NMDA and AMPA/kainate receptor-mediated activity returns to normal. The data suggest that glutamatergic neurotransmission in normal adult goldfish is dual with NMDA receptors fine-tuning topography and AMPA receptors allowing stable synaptic function. Furthermore, the normal operation of both receptors allows a response to injury in which the balance can be transiently reversed to restore topography and vision.
Collapse
Affiliation(s)
- Andrew L Taylor
- School of Animal Biology, The University of Western Australia, Crawley 6009, Australia
| | | | | | | | | |
Collapse
|
5
|
Dunlop SA, Stirling RV, Rodger J, Symonds ACE, Bancroft WJ, Tee LBG, Beazley LD. Failure to form a stable topographic map during optic nerve regeneration: abnormal activity-dependent mechanisms. Exp Neurol 2003; 184:805-15. [PMID: 14769373 DOI: 10.1016/j.expneurol.2003.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 05/30/2003] [Accepted: 08/06/2003] [Indexed: 10/26/2022]
Abstract
Visually evoked responses in the optic tectum are mediated by glutamate receptors. During development, there is a switch from N-methyl-d-aspartate (NMDA)- to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated activity as the retinotectal map refines and visual function ensues. A similar pattern is seen in goldfish as the map refines during optic nerve regeneration. Here we examined glutamate receptors during optic nerve regeneration in the lizard, Ctenophorus ornatus, in which an imprecise retinotopic map forms transiently but degrades, leaving animals blind via the experimental eye. Receptor function was examined using NMDA and AMPA/kainate antagonists during in vitro tectal recording of visually evoked post-synaptic extracellular responses. Expression of NR1 (NMDA) and GluR2 (AMPA) receptor subtypes was examined immunohistochemically. In unoperated control animals, responses were robust and AMPA/kainate receptor-mediated. When the imprecise map was present, responses were difficult to evoke and insecure; periods of spontaneous activity as well as inactivity were also noted. Although AMPA/kainate-mediated activity persisted and GluR2 immunoreactivity increased transiently, NMDA receptor-mediated activity was also consistently detected and NR1 expression increased. In the long term, when the map had degraded, responses were readily evoked and predominantly AMPA/kainate receptor-mediated although some NMDA-mediated activity and NR1 expression remained. We suggest that the asynchronous activity reaching the optic tectum results in an inability to recapitulate the appropriate functional sequences of expression of NMDA and AMPA/kainate receptors necessary to refine the retinotectal map.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Brain Mapping
- Electrophysiology
- Evoked Potentials, Visual/drug effects
- Evoked Potentials, Visual/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Immunohistochemistry
- Lizards
- Nerve Crush
- Nerve Regeneration/physiology
- Optic Nerve/physiology
- Optic Nerve Injuries/physiopathology
- Quinoxalines/pharmacology
- Receptors, AMPA/biosynthesis
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/metabolism
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Time Factors
- Valine/analogs & derivatives
- Valine/pharmacology
Collapse
Affiliation(s)
- Sarah A Dunlop
- School of Animal Biology, The University of Western Australia, Hackett Drive, Nedlands 6907, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Fujiyama F, Hioki H, Tomioka R, Taki K, Tamamaki N, Nomura S, Okamoto K, Kaneko T. Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol 2003; 465:234-49. [PMID: 12949784 DOI: 10.1002/cne.10848] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To clarify which vesicular glutamate transporter (VGluT) is used by excitatory axon terminals of the retinofugal system, we examined immunoreactivities and mRNA signals for VGluT1 and VGluT2 in the rat retina and compared immunoreactivities for VGluT1 and VGluT2 in the retinorecipient regions using double immunofluorescence method, anterograde tracing, and immunoelectron microscopy. Furthermore, the changes of VGluT1 and VGluT2 immunoreactivities were studied after eyeball enucleation. Intense immunoreactivity and mRNA signal for VGluT2, but not for VGluT1 immunoreactivity, were observed in most perikarya of ganglion cells in the retina. Immunoelectron microscopy revealed that VGluT1- and VGluT2-immunolabeled terminals made asymmetrical synapses, suggesting that they were excitatory synapses, and that VGluT1-immunolabeled terminals were smaller than VGluT2-labeled ones in many retinorecipient regions, such as the dorsal lateral geniculate nucleus (LGd) and superior colliculus (SC). Double immunofluorescence study further revealed that almost no VGluT2 immunoreactivity was colocalized with VGluT1 in the retinorecipient regions. After wheat germ agglutinin (WGA) injection into the eyeballs, WGA immunoreactivity was colocalized in the single axon terminals of LGd and SC with VGluT2 but not VGluT1 immunoreactivity. After unilateral enucleation, VGluT2 immunoreactivity in the LGd, SC, nucleus of the optic tract, and nuclei of the accessory optic tract in the contralateral side of the enucleated eye was clearly decreased. Although only a small change of VGluT2 immunoreactivity was observed in the contra- and ipsilateral suprachiasmatic nuclei, olivary pretectal nucleus, anterior pretectal nucleus, and posterior pretectal nucleus, moderate reduction of VGluT2 was found in these regions after bilateral enucleation. On the other hand, almost no change in VGluT1 immunoreactivity was found in the structures examined in the present enucleation study. Thus, the present results support the notion that the retinofugal pathways are glutamatergic, and indicate that VGluT2, but not VGluT1, is employed for accumulating glutamate into synaptic vesicles of retinofugal axons.
Collapse
Affiliation(s)
- Fumino Fujiyama
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Aguilar J, Rivadulla C, Soto C, Canedo A. New corticocuneate cellular mechanisms underlying the modulation of cutaneous ascending transmission in anesthetized cats. J Neurophysiol 2003; 89:3328-39. [PMID: 12611967 DOI: 10.1152/jn.01085.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ascending cutaneous transmission through the middle cuneate nucleus is subject to cortico-feedback modulation. This work studied the intracuneate cellular mechanisms underlying the corticocuneate influence. Single unit extracellular records combined with iontophoresis showed that the corticocuneate input activates cuneo-lemniscal (CL) and noncuneo-lemniscal (nCL) cells via N-methyl-D-aspartate (NMDA) and non-NMDA receptors as shown by the decrease of the cortical-induced activation on ejection of CNQX and APV, either alone or in combination. These results were confirmed by in vivo intracellular recordings. Two subgroups of nCL cells were distinguished according to their sensitivity to iontophoretic ejection of glycine and its antagonist, strychnine. Finally, the corticalevoked activation of CL cells was decreased by GABA and increased by glycine acting at a strychnine-sensitive site, indicating that glycine indirectly affects the cuneo-lemniscal transmission. A model is proposed whereby the cortex influences CL cells through three different mechanisms, producing 1) activation via non-NMDA and NMDA receptors, 2) inhibition through GABAergic nCLs, and 3) disinhibition via serial glycinergic-GABAergic nCL cells. These corticocuneate feedback effects serve to potentiate the activity of CL cells topographically aligned through direct activation and disinhibition, while inhibiting, via GABAergic cells, other CL neurons not topographically aligned.
Collapse
Affiliation(s)
- Juan Aguilar
- Department of Physiology, Faculty of Medicine, 15705 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
8
|
Moffett JR. Reductions in N-acetylaspartylglutamate and the 67 kDa form of glutamic acid decarboxylase immunoreactivities in the visual system of albino and pigmented rats after optic nerve transections. J Comp Neurol 2003; 458:221-39. [PMID: 12619078 DOI: 10.1002/cne.10570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study compares the immunohistochemical distributions of N-acetylaspartylglutamate (NAAG) and the large isoform of the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD(67)) in the visual system of albino and pigmented rats. Most retinal ganglion cells and their axons were strongly immunoreactive for NAAG, whereas GAD(67) immunoreactivity was very sparse in these cells and projections. In retinorecipient zones, NAAG and GAD(67) immunoreactivities occurred in distinct populations of neurons and in dense networks of strongly immunoreactive fibers and synapses. Dual-labeling immunohistochemistry indicated that principal neurons were stained for NAAG, whereas local interneurons were stained for GAD(67). In contrast to the distribution observed in retinorecipient zones, most or all neurons were doubly stained for NAAG and GAD(67) in the thalamic reticular nucleus. Ten days after unilateral optic nerve transection, NAAG-immunoreactive fibers and synapses were substantially reduced in all contralateral retinal terminal zones. The posttransection pattern of NAAG-immunoreactive synaptic loss demarcated the contralateral and ipsilateral divisions of the retinal projections. In addition, an apparent transynaptic reduction in GAD(67) immunoreactivity was observed in some deafferented areas, such as the lateral geniculate. These findings suggest a complicated picture in which NAAG and GABA are segregated in distinct neuronal populations in primary visual targets, yet they are colocalized in neurons of the thalamic reticular nucleus. This is consistent with NAAG acting as a neurotransmitter release modulator that is coreleased with a variety of classical transmitters in specific neural pathways.
Collapse
Affiliation(s)
- John R Moffett
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA.
| |
Collapse
|
9
|
Leresche N. Synaptic Currents in Thalamo-cortical Neurons of the Rat Lateral Geniculate Nucleus. Eur J Neurosci 2002; 4:595-602. [PMID: 12106323 DOI: 10.1111/j.1460-9568.1992.tb00168.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thalamo-cortical neurons were identified in slices of the rat dorsal lateral geniculate nucleus and whole-cell currents were recorded using the patch-clamp technique. Postsynaptic currents occurring spontaneously, or elicited by extracellular stimulation in the vicinity of the recorded neuron, were analysed. Spontaneous postsynaptic currents were observed in every recorded neuron. At a holding potential of - 60 mV, and with a high internal Cl-, the currents were inward and had amplitudes ranging from < 10 to 425 pA. All the spontaneous currents were blocked by 10 microM bicuculline, indicating that they were due to the activation of postsynaptic gamma-aminobutyric acid (GABAA) receptors. The 10-90% rise time of these spontaneous GABAergic currents was 0.86 +/- 0.19 ms. Their time course of decay could be fitted to an exponential function with one time constant of 18.19 +/- 3.02 ms (mean +/- SD), or two time constants of 4.47 +/- 0.77 and 33.27 +/- 3.74 ms. This activity was frequently organized in bursts. Stimulus-evoked postsynaptic currents were recorded and shown to be due to the activation of glutamatergic receptors. Under similar experimental conditions a bicuculline-sensitive component was also recorded. These stimulus-evoked GABAergic currents had a 10 - 90% rise time of 1.93 +/- 0.54 ms. Their time course of decay could also be fitted to an exponential function with one time constant of 24.42 ms or two time constants of 10.26 +/- 2.46 and 49.30 +/- 10.98 ms. The difference in the time course between spontaneous and evoked GABAergic currents suggests that these responses may arise from synapses having different locations.
Collapse
Affiliation(s)
- N. Leresche
- Laboratoire de Neurobiologie, URA 295 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
10
|
Williamson LC, Eagles DA, Brady MJ, Moffett JR, Namboodiri MAA, Neale JH. Localization and Synaptic Release of N-acetylaspartylglutamate in the Chick Retina and Optic Tectum. Eur J Neurosci 2002; 3:441-451. [PMID: 12106183 DOI: 10.1111/j.1460-9568.1991.tb00831.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The neuropeptide, N-acetylaspartylglutamate (NAAG), was identified in the chick retina (1.4 nmol/retina) by HPLC, radioimmunoassay and immunohistochemistry. This acidic dipeptide was found within retinal ganglion cell bodies and their neurites in the optic fibre layer of the retina. Substantial, but less intense, immunoreactivity was detected in many amacrine-like cells in the inner nuclear layer and in multiple bands within the inner plexiform layer. In addition, NAAG immunoreactivity was observed in the optic fibre layer and in the neuropil of the superficial layers of the optic tectum, as well as in many cell bodies in the tectum. Using a newly developed, specific and highly sensitive (3 fmol/50 microl) radioimmunoassay for NAAG, peptide release was detected in isolated retinas upon depolarization with 55 mM extracellular potassium. This assay also permitted detection of peptide release from the optic tectum following stimulation of action potentials in retinal ganglion cell axons of the optic tract. Both of these release processes required the presence of extracellular calcium. Electrically stimulated release from the tectum was reversibly blocked by extracellular cadmium. These findings suggest that NAAG serves an extracellular function following depolarization-induced release from retinal amacrine neurons and from ganglion cell axon endings in the chick optic tectum. These data support the hypothesis that NAAG functions in synaptic communication between neurons in the visual system.
Collapse
Affiliation(s)
- Lura C. Williamson
- Department of Biology, Georgetown University, Washington D.C., USA 20057
| | | | | | | | | | | |
Collapse
|
11
|
Harata N, Katayama J, Akaike N. Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus. Neuroscience 1999; 89:109-25. [PMID: 10051221 DOI: 10.1016/s0306-4522(98)00308-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Responses to glutamate receptor agonists were recorded from identified relay neurons in the dorsal lateral geniculate nucleus of the rat, using the nystatin-perforated patch-clamp technique. Rapid application of glutamate, N-methyl-D-aspartate, (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate induced inward currents at a holding potential of -44 mV. The responses to low concentrations of each agonist were composed only of steady-state currents, but the responses to high concentrations were additionally composed of a rapid transient peak component except in the kainate-induced current. The currents induced by 10(-3)M N-methyl-D-aspartate in the external solution containing 0 mM Mg2+ and 10(-6)M glycine were reduced in amplitude when the external solution contained 1 mM Mg2+, and were abolished when the solution contained no glycine. The currents induced by a neurotransmitter candidate at retinogeniculate synapses, N-acetyl-aspartyl-glutamate, were markedly reduced in amplitude when the solution contained 1 mM Mg2+ or 10(-4)M DL-2-amino-5-phosphonovaleric acid. The current abolished in the Mg2+-containing, glycine-free solution (N-methyl-D-aspartate component) and the current remaining in the same solution (non-N-methyl-D-aspartate component) of the N-acetyl-aspartyl-glutamate response were both increased in a concentration-dependent manner, as the N-acetyl-aspartyl-glutamate concentration was increased. The current-voltage relationship of the currents induced by N-methyl-D-aspartate and N-acetyl-aspartyl-glutamate was characterized by Mg2+-dependent block at hyperpolarized potentials. The inward currents induced by 3 x 10(-4)M AMPA and 3 x 10(-4)M glutamate were markedly potentiated by 10(-4)M cyclothiazide, but the currents induced by 3 x 10(-4)M kainate and 10(-3)M N-acetyl-aspartyl-glutamate (non-N-methyl-D-aspartate component) were little affected. The currents induced by any agonist were not affected by 3 x 10(-4)g/ml concanavalin A. The current induced by 10(-4)M kainate was markedly suppressed by pretreatment with 10(-4)M AMPA or 10(-4)M glutamate, but only weakly by 10(-3)M N-acetyl-aspartylglutamate. The Ca2+ permeability (PCa/PCs) of the N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors was 9.57 and 0.16, respectively. These results suggest that dorsal lateral geniculate nucleus relay neurons of the rat possessed both Ca2+-permeable N-methyl-D-aspartate receptors and less permeable non-N-methyl-D-aspartate (presumably AMPA) receptors, and that N-acetyl-aspartyl-glutamate mainly acts at N-methyl-D-aspartate receptors with a weak kainate-like action on non-N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- N Harata
- Department of Physiology, Kyushu University Faculty of Medicine, Fukuoka, Japan
| | | | | |
Collapse
|
12
|
Jones EG, Tighilet B, Tran BV, Huntsman MM. Nucleus- and cell-specific expression of NMDA and non-NMDA receptor subunits in monkey thalamus. J Comp Neurol 1998; 397:371-93. [PMID: 9674563 DOI: 10.1002/(sici)1096-9861(19980803)397:3<371::aid-cne5>3.0.co;2-#] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Subcortical and corticothalamic inputs excite thalamic neurons via a diversity of glutamate receptor subtypes. Differential expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptor subunits (GluR1-4; GluR5-7; NR1, NR2A-D) on a nucleus- and cell type-specific basis was examined by quantitative in situ hybridization histochemistry and by immunocytochemical staining for receptor subunits and colocalized gamma-aminobutyric acid (GABA) or calcium binding proteins. Levels of NMDA subunit expression, except NR2C, are higher than for the most highly expressed AMPA (GluR1,3,4) and kainate (GluR6) receptor subunits. Expression of NR2C, GluR2, GluR5, and GluR7 is extremely low. Major differences distinguish the reticular nucleus and the dorsal thalamus and, within the dorsal thalamus, the intralaminar and other nuclei. In the reticular nucleus, GluR4 is by far the most prominent, and NMDA receptors are at comparatively low levels. In the dorsal thalamus, NMDA receptors predominate. Anterior intralaminar nuclei are more enriched in GluR4 and GluR6 subunits than other nuclei, whereas posterior intralaminar nuclei are enriched in GluR1 and differ among themselves in relative NMDA receptor subunit expression. GABAergic intrinsic neurons of the dorsal thalamus express much higher levels of GluR1 and GluR6 receptor subunits than do parvalbumin- or calbindin-immunoreactive relay cells and low or absent NMDA receptors. Relay cells are dominated by NMDA receptors, along with GluR3 and GluR6 subunits not expressed by GABA cells. High levels of NR2B are found in astrocytes. Differences in NMDA and non-NMDA receptor profiles will affect functional properties of the thalamic GABAergic and relay cells.
Collapse
Affiliation(s)
- E G Jones
- Department of Anatomy and Neurobiology, University of California, Irvine 92697-1280, USA.
| | | | | | | |
Collapse
|
13
|
Rivadulla C, Grieve KL, Cudeiro J. Enhanced visual responses in cat dLGN--potentiation by priming with excitatory amino acids. Neuroreport 1998; 9:653-7. [PMID: 9559933 DOI: 10.1097/00001756-199803090-00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sustained iontophoresis of NMDA potentiated visual responses for minutes after the application in 16 of 38 cells (42%), peaking 3 min after the end of the application and declining to control levels within 12 min. Potentiation was also seen after application of ACPD (36%, n = 14) and AMPA (29%, n = 14), but not after application of ACh (n = 20). ACh also excites dLGN cells, but does not interact with amino acid receptors, and ACh receptors are not directly involved in the transmission of visual information. We suggest that this modulation is a form of visually induced potentiation which permits dynamic modification of the strength of visual information to be relayed to the cortex depending upon the history of previous activity levels.
Collapse
Affiliation(s)
- C Rivadulla
- E.U. de Fisioterapia (Univesidade da Coruna) and Unidad de Cirugia Experimental (Hospital Juan Canalejo), Centro Universitario de Oza, Spain
| | | | | |
Collapse
|
14
|
|
15
|
Emri Z, Turner JP, Crunelli V. Tonic activation of presynaptic GABA(B) receptors on thalamic sensory afferents. Neuroscience 1996; 72:689-98. [PMID: 9157315 DOI: 10.1016/0306-4522(95)00590-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The presence and role of presynaptic GABA(B) receptors in the control of excitatory amino acid-medicated transmission were investigated (using sharp electrode recordings) in the rat dorsal lateral geniculate nucleus and ventrobasal thalamus in vitro by comparing the effects of the selective GABA(B) receptor agonist, (+ or -)-baclofen, and of two antagonists, CGP 35348 and 2-hydroxy-saclofen, on the excitatory postsynaptic potentials evoked in thalamocortical neurons by stimulation of the sensory afferents. Application of CGP 35348 alone blocked the GABA(B) receptor-mediated inhibitory postsynaptic potential evoked in the dorsal lateral geniculate nucleus by stimulation of the optic tract (n = 5), but had no effect on the resting membrane potential and input resistance of thalamocortical cells (n = 6). In contrast, 2-hydroxy-saclofen caused a hyperpolarization (6.9 + or - 0.5 mV, n = 10) and a decrease in the apparent input resistance (26.3 + or - 2.6%, n = 10). This effect of 2-hydroxy-saclofen was antagonized by CGP 35348. When bicuculline was present in the perfusion medium and following intracellular injection of QX 314, GABA(A) and GABA(B) receptors in the recorded neurons were blocked. Under this condition, application of baclofen decreased the amplitude of the medial lemniscus- and optic tract-evoked excitatory postsynaptic potentials in the two thalamic nuclei investigated. This effect was fully antagonized by CGP 35348 and only partially by 2-hydroxy-saclofen. CGP 35348 alone increased (19.3 + or - 4.3%, n = 5) and 2-hydroxy-saclofen alone decreased (29.9 + or - 8.6%, n = 5) the amplitude of the excitatory postsynaptic potential. This effect of 2-hydroxy-saclofen was not blocked by CGP 35348. These results indicate that presynaptic GABA(B) receptors are present on the terminals of the sensory afferents in the rat dorsal lateral geniculate nucleus and in the ventrobasal thalamus. These receptors are tonically activated by endogenous GABA, at least in vitro, and provide a negative control mechanism by which the excitatory amino acid-mediated transmission within these nuclei can be regulated. In contrast, the endogenous GABA level is not sufficient for a tonic activation of postsynaptic GABA(B) receptors. Furthermore, these results indicate that 2-hydroxy-saclofen acts as a partial agonist on postsynaptic CGP 35348-sensitive GABA(B) receptors, and that, in addition to its antagonist action on presynaptic CGP 35348-sensitive GABA(B) receptors, it also has an effect on either presynaptic, CGP 35348-insensitive GABA(B) receptors and/or another presynaptic receptor type.
Collapse
Affiliation(s)
- Z Emri
- Physiology Unit, School of Molecular and Medical Biosciences, University of Wales Cardiff, UK
| | | | | |
Collapse
|
16
|
Abstract
The acidic dipeptide N-acetylaspartylglutamate (NAAG), which satisfies many of the criteria for a neurotransmitter, was identified immunohistochemically within two human retinae. We observed NAAG immunoreactivity in retinal ganglion cells, their dendrites in the inner plexiform layer, and their axons in the optic nerve fiber layer. The vast majority of ganglion cells were stained, including displaced ganglion cells, ganglion cells of different sizes, and those whose dendrites arborized in the inner and outer sublaminae of the inner plexiform layer, that is, presumed On- and Off- cells. The sizes of labeled and unlabeled cells in the ganglion cell layer, as measured in counterstained material, suggest that the unlabeled cells consist primarily or only of displaced amacrine cells. We also saw immunoreactivity in small cells along the inner margin of the inner nuclear layer, presumably amacrine cells, and in small cells with little cytoplasm in the inner plexiform and ganglion cell layers, presumably displaced amacrine cells. These results are consistent with a role for NAAG in the transmission of visual information from the retina to the rest of the brain. Further, they are similar to those reported previously in rat, cat and monkey, thus demonstrating the relevance of previous studies to humans.
Collapse
Affiliation(s)
- S B Tieman
- Department of Biological Sciences, State University of New York, Albany 12222, USA.
| | | |
Collapse
|
17
|
Abstract
Relay cells of the lateral geniculate nucleus, like those of other thalamic nuclei, manifest two distinct response modes, and these represent two very different forms of relay of information to cortex. When relatively hyperpolarized, these relay cells respond with a low threshold Ca2+ spike that triggers a brief burst of conventional action potentials. These cells switch to tonic mode when depolarized, since the low threshold Ca2+ spike, being voltage dependent, is inactivated at depolarized levels. In this mode they relay information with much more fidelity. This switch can occur under the influence of afferents from the visual cortex or parabrachial region of the brain stem. It has been previously suggested that the tonic mode is characteristic of the waking state while the burst mode signals an interruption of the geniculate relay during sleep. This review surveys the key properties of these two response modes and discusses the implications of new evidence that the burst mode may also occur in the waking animal.
Collapse
Affiliation(s)
- S M Sherman
- Department of Neurobiology, State University of New York, Stony Brook 11794-5230, USA
| |
Collapse
|
18
|
Li X, Hallqvist A, Jacobson I, Orwar O, Sandberg M. Studies on the identity of the rat optic nerve transmitter. Brain Res 1996; 706:89-96. [PMID: 8720495 DOI: 10.1016/0006-8993(95)01185-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The possible role of glutamate, aspartate, sulfur-containing excitatory amino acids and gamma-glutamyl peptides as major transmitters in the rat optic nerve was evaluated. Four days following optic nerve lesion the K(+)-evoked Ca(2+)-dependent glutamate release was reduced to 31 +/- 16% (+/- S.D., n = 9) comparing release from slices of the denervated (contralateral to the lesion) and non-denervated (ipsilateral) superior colliculus, indicative of a major transmitter function for glutamate. However, significant decreases in glutamate release could not be detected seven days following the lesion (n = 5). Other studies have shown that optic nerve denervation induce formation of synapses of non-retinal origin and cause other cellular changes which may reduce the effect of deafferentation on glutamate release after 7 days. No significant change was observed in aspartate release following the lesion. The concentrations of cysteine sulfinate, cysteate, homocysteine sulfinate, homocysteate and O-sulfo-serine in the optic layers of the superior colliculus were below 1 nmol/g tissue (n = 6). Theoretical considerations indicate that this level is too low for a function of any of these as a major optic nerve transmitter. All postsynaptic components in the rat superior colliculus response, evoked by electrical optic nerve stimulation, were reduced by kynurenate (1-10 mM), a broad spectrum glutamate-receptor antagonist. The study gives further support for the view that glutamate is a major transmitter in the rat optic nerve.
Collapse
Affiliation(s)
- X Li
- Institute of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
19
|
Cudeiro J, Rivadulla C, Rodriguez R, Martinez-Conde S, Martinez L, Grieve KL, Acu-na C. Further observations on the role of nitric oxide in the feline lateral geniculate nucleus. Eur J Neurosci 1996; 8:144-52. [PMID: 8713458 DOI: 10.1111/j.1460-9568.1996.tb01175.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have examined the responses of a population of 77 cells in the dorsal lateral geniculate nucleus (dLGN) of the anaesthetized, paralysed cat. Here the synthetic enzyme for the production of nitric oxide, nitric oxide synthase, is found only in the presynaptic terminals of the cholinergic input from the brainstem. In our hands, iontophoretic application of inhibitors of this enzyme resulted both in significant decreases in visual responses and decreased responses to exogenous application of NMDA, effects which were reversed by coapplication of the natural substrate for nitric oxide synthase, L-arginine, but not the biologically inactive isomer, D-arginine. Nitroprusside and S-nitroso-N-acetylpenicillamine (SNAP), nitric oxide donors, but not L-arginine, were able to increase markedly both spontaneous activity and the responsiveness to NMDA application. Furthermore, SNAP application facilitated visual responses. Responses of cells in animals without retinal, cortical and parabrachial input to the LGN suggest a postsynaptic site of action of nitric oxide. This modulation of the gain of visual signals transmitted to the cortex suggests a completely novel pathway for nitric oxide regulation of function, as yet described only in primary sensory thalamus of the mammalian central nervous system.
Collapse
Affiliation(s)
- J Cudeiro
- Departamento de Ciencias de la Salud I (Univ. La Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Rogers PC, Pow DV. Immunocytochemical evidence for an axonal localization of GABA in the optic nerves of rabbits, rats, and cats. Vis Neurosci 1995; 12:1143-9. [PMID: 8962833 DOI: 10.1017/s0952523800006787] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have examined, by light-microscopic immunocytochemistry, the distribution of GABA in the optic nerves of adult rabbits, rats, and cats. Within the optic nerves, immunoreactivity for GABA was restricted to a small subset of axons; some axons were strongly labelled, others weakly labelled, whilst most axons were unlabelled. Glia and other non-neuronal elements were always unlabelled. Our ability to detect GABA in optic nerve axons of adult mammals contrasts with previous reports that indicate a lack of GABA immunoreactivity in such axons. We suggest that this discrepancy may be due to the sensitivity of our immunocytochemical techniques which enable us to detect low concentrations of GABA.
Collapse
Affiliation(s)
- P C Rogers
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
21
|
Nie F, Wong-Riley MT. Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: quantitative EM analysis. J Comp Neurol 1995; 356:115-31. [PMID: 7629306 DOI: 10.1002/cne.903560108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the primate striate cortex, cytochrome oxidase (CO)-rich puffs differ from CO-poor interpuffs in their metabolic levels and physiological properties. The neurochemical basis for their metabolic and physiological differences is not well understood. The goal of the present study was to examine the relationship between the distribution of gamma aminobutyric acid (GABA)/non-GABA synapses and CO levels in postsynaptic neuronal profiles and to determine whether or not a difference existed between puffs and interpuffs. By combining CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. In both puffs and interpuffs, GABA-immunoreactive (GABA-IR) neurons were the only cell type that received both non-GABA-IR (presumed excitatory) and GABA-IR (presumed inhibitory) axosomatic synapses, and they had three times as many mitochondria darkly reactive for CO than non-GABA-IR neurons, which received only GABA-IR axosomatic synapses. GABA-IR neurons and terminals in puffs had a larger mean size, about twice as many darkly reactive mitochondria, and a higher ratio of non-GABA-IR to GABA-IR axosomatic synapses than those in interpuffs (2.3:1 vs. 1.6:1; P < 0.01). There were significantly more synapses of both non-GABA-IR and GABA-IR types in the neuropil of puffs than of interpuffs; however, the ratio of non-GABA-IR to GABA-IR synapses was significantly higher in puffs (2.86:1) than in interpuffs (2.08:1; P < 0.01). Our results are consistent with the hypothesis that the level of oxidative metabolism in postsynaptic neurons and neuronal processes is tightly governed by the strength and proportion of excitatory over inhibitory synapses. Thus, the present results suggest that (1) GABA-IR neurons in the macaque striate cortex have a higher level of oxidative metabolism than non-GABA ones because their somata receive direct excitatory synapses and their terminals are more tonically active; (2) the higher proportion of presumed excitatory synapses in puffs imposes a greater energy demand there than in interpuffs; and (3) excitatory synaptic activity may be more prominent in puffs than in interpuffs because puffs receive a greater proportion of excitatory synapses from multiple sources including the lateral geniculate nucleus, which is not known to project to the interpuffs.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
22
|
Abstract
The dorsal lateral geniculate nucleus (LGN) is the major thalamic relay for retinal signals en route to cortex. However, LGN cells operate as more than just a simple relay of their retinal inputs. Rather, they function as a variable gate, determining what, when, and how much retinal information gets passed to visual cortex. Two factors that are key to this control are the innervation patterns and electrophysiological membrane properties of geniculate cells. This paper discusses three active membrane properties and the manner in which they modulate the transfer of retinal signals to cortex. They are the low threshold calcium (Ca2+) conductance, a transient potassium (K+) conductance, and NMDA receptor-mediated excitatory postsynaptic potentials (EPSPs). The low-threshold Ca2+ conductance transforms a geniculate cell from a state of single spike activity to one of bursting discharge, the potassium current leads to a delay in membrane depolarization to reach spike threshold, and NMDA receptor activity modulates EPSP amplitude and duration near spike threshold. Additionally, we consider how nonretinal inputs, such as the ascending cholinergic pathway from the brainstem parabrachial region and the descending pathway from layer VI of visual cortex, influence the expression of these membrane properties through their control of membrane potential.
Collapse
Affiliation(s)
- W Guido
- Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794-5230, USA
| | | |
Collapse
|
23
|
Otawa S, Takagi K, Ogawa H. NMDA and non-NMDA receptors mediate taste afferent inputs to cortical taste neurons in rats. Exp Brain Res 1995; 106:391-402. [PMID: 8983983 DOI: 10.1007/bf00231062] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two main subclasses of ionotropic receptors for excitatory amino acids (EAAs), N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors, are involved in neurotransmission in the cortex of mammals. To examine whether EAAs are transmitters at the cortical taste area (CTA) in rats and to elucidate which types of the two ionotropic receptors operate at these synapses, we studied the effects of microiontophoretic administration of EAA antagonists on the responses of 64 taste cortical neurons to four basic taste stimuli in urethane-anesthetized rats. Both D-2-amino-5-phosphonovalerate (APV), a selective antagonist for NMDA receptors, and 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), a selective antagonist for non-NMDA receptors, suppressed most of the taste responses. The percentage of neurons suppressed by APV (70.3%) was almost the same as that suppressed by CNQX (64.1%). These suppressive effects were independent of the effects of background discharges during the prestimulus, water-rinsing period. The percentage of neurons suppressed by the antagonists did not differ between any pairs of taste stimuli. The number of neurons possessing both receptors was larger in the granular insular area (area GI), one of the two CTAs, than in the dysgranular insular area (area DI). In addition, taste responses were suppressed by CNQX or by both APV and CNQX in area GI in a significantly larger number of layer V neurons than in area DI. The present results indicate that normal excitatory transmission of taste afferents in the CTA in rats was mediated by both NMDA and non-NMDA receptors. The finding that a large fraction of neurons in the CTA in rats mediated taste information through NMDA receptors in normal transmission might be related to the higher potency of the plasticity observed in the CTA.
Collapse
Affiliation(s)
- S Otawa
- Department of Physiology, Kumamoto University School of Medicine, Japan
| | | | | |
Collapse
|
24
|
Schwarz M, Block F. Visual and somatosensory evoked potentials are mediated by excitatory amino acid receptors in the thalamus. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1994; 91:392-8. [PMID: 7525236 DOI: 10.1016/0013-4694(94)90124-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In pentobarbital-anaesthetized rats early somatosensory evoked potentials (SEPs) were recorded from the sensory cortex in response to electrical stimulation of the contralateral forepaw and visual evoked potentials (VEPs) from the primary visual cortex in response to single light flashes. Microapplication of the specific non-NMDA antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the ventro-basal thalamus (VB) resulted in a pronounced decrease in amplitude and an increase in latency of SEPs, whereas injection of DNQX into the dorsal lateral geniculate nucleus (DGL) induced a pronounced decrease in amplitude and an increase in latency of VEPs. These changes were: (1) dose-dependent (DNQX 0.01-1.0 nmol), (2) receptor-specific, and (3) site-specific. In contrast, the specific NMDA antagonist 2-amino-7-phosphonoheptanoate (AP7; 0.5-5 nmol) did not affect SEPs after microapplication into the BV and less potently reduced the amplitude and increased the latency of VEPs after microapplication into the DGL. The present findings are consistent with the assumption that an excitatory amino acid serves as transmitter at synapses in the rat thalamus mediating the nervous impulses responsible for the generation of SEPs and of VEPs. In addition the results suggest that this transmitter preferentially interacts with non-NMDA receptors.
Collapse
Affiliation(s)
- M Schwarz
- Department of Neurology, University Hospital RWTH Aachen, Germany
| | | |
Collapse
|
25
|
Cudeiro J, Grieve KL, Rivadulla C, Rodríguez R, Martínez-Conde S, Acuña C. The role of nitric oxide in the transformation of visual information within the dorsal lateral geniculate nucleus of the cat. Neuropharmacology 1994; 33:1413-8. [PMID: 7532823 DOI: 10.1016/0028-3908(94)90043-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have shown that application of an inhibitor of the enzyme nitric oxide synthase (NOS) effectively suppresses the visual responses of relay cells in the dorsal lateral geniculate nucleus (dLGN) of the anaesthetized paralysed cat. Such suppression seems to result from a specific reduction in transmission via N-methyl-D-aspartic acid (NMDA) receptors, since iontophoretic application of the inhibitor of NOS selectively and in a dose-dependent manner decreased the responses to exogenously applied NMDA. Responses to other exogenously applied amino acid agonists, such as quisqualate (Quis), kainate (Kain) and alpha-amino-3-hydroxy-5-5-methyl-4-isoxazole-propionic acid (AMPA) were largely unaffected. Furthermore, the excitatory action of acetylcholine (ACh), normally co-localized with NOS in axonal terminals within the dLGN arising from the brainstem, was also unaffected. Unlike some other actions of nitric oxide (NO), this role seems not to involve an increase in production of cyclic guanosine-3',5'-mono-phosphate (cGMP), since application of the membrane permeable cGMP analogue 8-bromo-cGMP did not alter the suppressive effect of NOS inhibitors on either visual or NMDA evoked responses. We conclude that the normal function of NO at this level of the visual system is permissive, allowing full expression of NMDA mediated visually elicited information.
Collapse
Affiliation(s)
- J Cudeiro
- Departamento de Ciencias de la Salud I, E. U. Fisioterapia, Universidad de la Coruña, La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Turner JP, Leresche N, Guyon A, Soltesz I, Crunelli V. Sensory input and burst firing output of rat and cat thalamocortical cells: the role of NMDA and non-NMDA receptors. J Physiol 1994; 480 ( Pt 2):281-95. [PMID: 7869244 PMCID: PMC1155845 DOI: 10.1113/jphysiol.1994.sp020359] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Intracellular and patch-clamp recordings were obtained from thalamocortical (TC) cells in the rat and cat dorsal lateral geniculate nucleus (dLGN) in vitro to study the role of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the synaptic potential and burst firing evoked by electrical stimulation of the optic tract. 2. At membrane potentials more positive than -65 mV, the sensory synaptic potential consisted of a fast EPSP that was followed by a smaller, slower component. At membrane potentials more negative than -65 mV, this slower component became more prominent owing to the presence of a low-threshold (LT) Ca2+ potential, which in turn evoked a high-frequency (> 150 Hz) burst of action potentials. The lower, but not the upper limit of the range of membrane potential over which burst firing occurred was dependent on the amplitude of the fast EPSP. 3. The non-NMDA receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5-10 microM) and 1-(4-amino-phenyl)-4-methyl-7,8-methylene-dioxy-5H-2,3- benzodiazepine (GYKI 52466, 100 microM) greatly depressed the fast EPSP, abolished the burst firing generated by the LT Ca2+ potential, and left a relatively small, slow EPSP, which was sensitive to the NMDA antagonist DL-2-amino-5-phosphonovaleric acid (DL-AP5, 50-100 microM). 4. In the absence of CNQX or GYKI 52466, DL-AP5 depressed the slow but not the fast EPSP. DL-AP5 also increased the latency of the first action potential evoked by the LT Ca2+ potential or even abolished the LT Ca2+ potential and associated burst firing. The latter effect was only present when this type of firing occurred within a small membrane potential range. 5. DL-AP5 had no effect on the properties of the LT Ca2+ current IT, indicating that its effect on the burst firing was not mediated by a direct action on IT. 6. The response of TC cells to high-frequency (100 Hz) stimulation consisted of an initial burst firing response, followed by a sustained depolarization that could reach firing threshold. This sustained depolarization was markedly depressed by DL-AP5 but not by CNQX. 7. These results demonstrate that with low-frequency stimulation of the sensory afferents, the generation of TC cell output in the rat and cat dLGN is mainly controlled by non-NMDA receptors, while the contribution of NMDA receptors is limited to the burst firing generated by the LT Ca2+ potential, and depends on the membrane potential range over which this type of firing occurs.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J P Turner
- Department of Physiology, University of Wales College of Cardiff, UK
| | | | | | | | | |
Collapse
|
27
|
Montero VM. Quantitative immunogold evidence for enrichment of glutamate but not aspartate in synaptic terminals of retino-geniculate, geniculo-cortical, and cortico-geniculate axons in the cat. Vis Neurosci 1994; 11:675-81. [PMID: 7918218 DOI: 10.1017/s0952523800002984] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A postembedding immunogold procedure was used on thin sections of the dorsal lateral geniculate nucleus (LGN) and perigeniculate nucleus (PGN) of the cat to estimate qualitatively and quantitatively, at the electron-microscopic (EM) level, the intensity of glutamate or aspartate immunoreactivities on identifiable synaptic terminals and other profiles of the neuropil. On sections incubated with a glutamate antibody, terminals of retinal and cortical axons in the LGN, and of collaterals of geniculo-cortical axons in the PGN, contain significantly higher density of immunogold particles than GABAergic terminals, glial cells, dendrites, and cytoplasm of geniculate cells. By contrast, in sections incubated with an aspartate antibody, terminals of retino-geniculate, cortico-geniculate, and geniculo-cortical axons did not show a selective enrichment of immunoreactivity, but instead the density of immunogold particles was generally low in the different profiles of the neuropil, with the exception of nucleoli. These results suggest that glutamate, but not aspartate, is a neurotransmitter candidate in the retino-geniculo-cortical pathways.
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, University of Wisconsin, Madison
| |
Collapse
|
28
|
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the vertebrate central nervous system. It is widely assumed that neurons using this transmitter derive it from several sources: (i) synthesizing it themselves from alpha-ketoglutarate or aspartate, (ii) synthesize it from glial-derived glutamine, or (iii) take up glutamate from the extracellular space. By use of immunocytochemistry we show that glutamate is abundant in the retinal ganglion and bipolar cells of the rabbit, but that immunoreactivity for glutamate in these neurons is reduced below immunocytochemical detection limits after the specific inhibition of glutamine synthesis in glial cells by D,L-methionine D,L-sulphoximine. GABA immunoreactivity in retinal amacrine cells was also reduced after inhibition of glutamine synthetase but the patterns and densities of immunoreactivity for taurine and glycine were unaffected. Therefore, this experimental paradigm does not induce generalized metabolic changes in neurons or glia. This study demonstrates that some glutamatergic neurons are dependent on the synthetic processes in glia for their neurotransmitter content.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
29
|
Vahle-Hinz C, Hicks TP, Gottschaldt KM. Amino acids modify thalamo-cortical response transformation expressed by neurons of the ventrobasal complex. Brain Res 1994; 637:139-55. [PMID: 8180791 DOI: 10.1016/0006-8993(94)91227-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The hypothesis has been tested that inhibitory mechanisms, active spatially and temporally between the input and the output of thalamic neurons, determine the nature of the information transmitted to the cerebral cortex. To enable this assessment, in barbiturate-anesthetized cats and urethane-anesthetized rats juxtacellular recordings were performed together with microiontophoretic ejection of transmitter agonists and antagonists. The effects of these drugs were studied on responses evoked by mechanical stimulation of cutaneous receptive fields (RFs) of neurons in the thalamic ventrobasal complex (VB). Neurons from different parts of the VB were investigated: 29 units were located medially, in the ventral posteromedial nucleus (VPM; facial RFs), and 11 units were located laterally, in the ventral posterolateral nucleus (VPL; forepaw and body RFs). A further eleven VB units had no detectable RF. Twenty-six neurons were tested with electrical stimulation of the somatosensory cortex (SI), 17 of these being identified as thalamo-cortical relay neurons and 5 being classified as presumed interneurons; the remaining 4 could not be activated. Four additional recordings were from trigemino-thalamic or thalamo-cortical fibers. For the quantitative assessment of the neurons' input and output, neuronal activity was induced by feedback-controlled, mechanical trapezoidal and/or sinusoidal stimuli applied to sinus hairs, fur or skin and the numbers of prepotentials and soma spikes were compared in peristimulus time histograms (PSTHs) generated simultaneously for both types of signal from 'DC' recordings. Iontophoretic administration of excitatory amino acids (EAAs) or bicuculline methiodide (BMI) increased output-input ratios in 87% of the cases tested, due to a higher rate of conversion of prepotentials into soma spikes taking place. In cases of neurons exhibiting a sustained-to-transient response pattern, changes to sustained-to-sustained patterns were demonstrated. Tests with gamma-aminobutyric acid (GABA) produced decreased output-input ratios in 90% of the neurons, due to a lower conversion rate of prepotentials into soma spikes taking place. In cases of neurons exhibiting high output-input ratios (sustained-to-sustained type), the responses changed to the sustained-to-transient pattern. For cortically evoked antidromic spikes of VB neurons, GABA produced a failure of the initial segment (IS-) spike to invade the soma, whereas BMI and glutamate (Glu) facilitated soma depolarization. When ejected with relatively higher currents than those needed to alter output-input ratios, EAAs decreased prepotential amplitudes while GABA produced increases in 16 of 18 neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Vahle-Hinz
- Abt. Neurobiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | | | |
Collapse
|
30
|
Miguel-Hidalgo JJ, Senba E, Takatsuji K, Tohyama M. Projections of tachykinin- and glutaminase-containing rat retinal ganglion cells. Brain Res Bull 1994; 35:73-84. [PMID: 7953761 DOI: 10.1016/0361-9230(94)90219-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glutamate (Glu) and the tachykinin substance P (SP) have been proposed as neurotransmitters or neuromodulators of the retinal projection to the brain. In the present study, we demonstrate that tachykinin-like (TK) immunoreactivity (IR) accumulates in rat retinal axons following electrical lesions to the optic tract, indicating that SP is conveyed in the optic nerve to its central targets. In addition, we show that eye enucleation causes a dramatic decrease in TK-IR fibers in the pretectal olivary nucleus (PON), but not in other retinorecipient nuclei of the thalamus and the midbrain, and that Fluorogold injected into the pretectum is retrogradely transported to the somata of TK-IR retinal ganglion cells (RGCs), indicating an important projection of TK-IR RGCs to the PON. We also show that most rat RGCs are labeled with antibodies against phosphate-activated glutaminase, an enzyme considered to generate the transmitter pool of glutamate. Unlike TK-IR fibers, phosphate-activated glutaminase-IR structures disappear in most retinorecipient nuclei following eye enucleation. The present results give neuroanatomical support to the idea that glutamate is a neurotransmitter in the retinal projection and suggest an important role for TK-IR RGCs in the relay of visual information to the PON.
Collapse
Affiliation(s)
- J J Miguel-Hidalgo
- Department of Anatomy and Neuroscience, Osaka University Medical School, Japan
| | | | | | | |
Collapse
|
31
|
Specificity of neuronal responses evoked in the medial geniculate body by stimulation of its different main inputs:In vivo andin vitro investigations. NEUROPHYSIOLOGY+ 1994. [DOI: 10.1007/bf01053146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
van der Togt C, van der Want J, Schmidt M. Segregation of direction selective neurons and synaptic organization of inhibitory intranuclear connections in the medial terminal nucleus of the rat: an electrophysiological and immunoelectron microscopical study. J Comp Neurol 1993; 338:175-92. [PMID: 8308166 DOI: 10.1002/cne.903380204] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A combined electrophysiological and morphological investigation of the medial terminal nucleus (MTN) in the rat was undertaken, aimed at a better understanding of the relationship between structure and function in this nucleus. The locations of upward and downward direction selective units in the MTN were documented with extracellular electrophysiological recording. By means of tracer experiments, with Phaseolus vulgaris-leucoagglutinin, biocytin, and cholera toxin subunit B-horseradish peroxidase, the internal connections of the MTN, its retinal afferents, and the projection neurons to the inferior olive were visualized. Terminals originating from the retina and from internal connections were characterized at the ultrastructural level. Their termination pattern on cells in the MTN, including identified inferior olive projection neurons, were determined. Additionally, postembedding GABA immunocytochemistry was performed to identify GABAergic elements. From reconstructions of the positions of electrophysiologically recorded units in the MTN, a local segregation between upward and downward direction selective units was revealed. Upward direction selective units were found in the dorsal part and ventromedially, whereas downward direction selective units were found ventral and laterally in the MTN. The MTN receives optic fibers via two separate routes which, based on their trajectory, presumably terminate in different parts of the MTN: the inferior fascicle of the accessory optic tract in the dorsal part, and the posterior fiber bundle of the superior fascicle in the ventral part of the MTN. A correspondence has been found between the segregation of direction selective units and the areas in the MTN where the retinal fibers from the two pathways distribute. It is, therefore, proposed that the inferior fasciculus conveys upward direction selectivity and the posterior fiber bundle downward direction selectivity, and that the two fiber bundles terminate segregated in the MTN. After anterograde tracing from the eye, retinal terminals were found evenly distributed throughout the MTN. They are characterized as GABA negative R-type terminals. After retrograde tracing from the inferior olive, identified MTN-inferior olive projection neurons were found in the dorsal MTN and medially in the ventral MTN. Their location in the MTN suggests that MTN-inferior olive projection neurons are upward direction selective. MTN-inferior olive projection neurons are large non-GABAergic cells, with a variable form. A majority of both F- and R-type terminals were found to make synaptic contacts on the dendrites of MTN cells. MTN-inferior olive projection neurons did not differ from other neurons in this respect.
Collapse
Affiliation(s)
- C van der Togt
- The Netherlands Ophthalmic Research Institute, Department of Morphology, Amsterdam
| | | | | |
Collapse
|
33
|
Abstract
Axon terminals from retinal ganglion cells in the left and right eyes initially overlap with each other in the lateral geniculate nucleus of the neonatal ferret, then segregate into eye-specific layers via an activity-dependent process. Brain slices were used to show that, during this period of reorganization, retinal terminals within the lateral geniculate nucleus evoke excitatory postsynaptic currents composed of both NMDA and non-NMDA receptor-mediated currents. The amplitude of these currents could be enhanced for several tens of minutes to more than an hour by several bursts of high frequency synaptic stimulation, and the induction of enhancement appears to depend on NMDA receptor activation. Synaptic enhancement such as this could provide one of the physiological mechanisms by which retinal terminals segregate into eye-specific layers during development.
Collapse
Affiliation(s)
- R Mooney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305
| | | | | |
Collapse
|
34
|
Arakawa K, Peachey NS, Celesia GG. Spatial frequency response functions obtained from cat visual evoked potentials. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1993; 88:143-50. [PMID: 7681755 DOI: 10.1016/0168-5597(93)90065-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Visual evoked potentials (VEPs) were obtained from the surface of the cat visual cortex in response to contrast reversing sinusoidal gratings. Gratings of different spatial frequency were presented either separately, using signal averaging to increase the signal-to-noise ratio, or as a spatial frequency sweep, in which spatial frequency was sequentially increased every 5 sec during a 40 sec trial (3.99 Hz) or every 3 sec during a 24 sec trial (6.65 Hz). The second harmonic amplitude- and phase-spatial frequency functions derived from averaging or from sweep trials were similar, indicating that the swept stimulus method can be used to provide a rapid and reliable measure of the VEP-spatial frequency function. Intravenous administration of physostigmine, an acetylcholinesterase inhibitor, evoked a spatial frequency-dependent change in VEP amplitude. At 3.99 Hz, responses to low spatial frequencies were enhanced to a greater extent than were responses to high spatial frequency stimuli. At 6.65 Hz, responses to mid-range spatial frequencies were enhanced to a greater extent than were responses to low and high spatial frequency stimuli. VEP phase at both 3.99 and 6.65 Hz was advanced to a greater degree at the higher spatial frequencies. These results indicate that the swept spatial frequency method may be useful in studying spatial frequency-dependent pharmacological effects on the VEP and support the possibility that pharmacological disruption of the cholinergic visual system can produce such changes.
Collapse
Affiliation(s)
- K Arakawa
- Department of Neurology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL
| | | | | |
Collapse
|
35
|
Sillito AM. The cholinergic neuromodulatory system: an evaluation of its functional roles. PROGRESS IN BRAIN RESEARCH 1993; 98:371-8. [PMID: 8248525 DOI: 10.1016/s0079-6123(08)62421-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A M Sillito
- Department of Visual Sciences, Institute of Ophthalmology, London, UK
| |
Collapse
|
36
|
McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 1992; 39:337-88. [PMID: 1354387 DOI: 10.1016/0301-0082(92)90012-4] [Citation(s) in RCA: 828] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- D A McCormick
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
37
|
Sakurai T, Okada Y. Selective reduction of glutamate in the rat superior colliculus and dorsal lateral geniculate nucleus after contralateral enucleation. Brain Res 1992; 573:197-203. [PMID: 1354547 DOI: 10.1016/0006-8993(92)90763-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of afferent lesions on the levels of glutamate, aspartate and gamma-aminobutyric acid (GABA) in the laminae of the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN) of the rat were studied, using microassay methods for these amino acids. The analysis was performed 12-14 days after left eye enucleation, or ablation of right visual cortical area, or both left eye enucleation and ablation of right visual cortex. Superficial gray layer (SGL) and deep layers in the SC were dissected out from the thin-sectioned, freeze-dried sample. In the dLGN, the outer and inner laminae were separately dissected. The glutamate contents in the upper half of SGL and outer lamina of dLGN contralateral to eye enucleation decreased significantly (15%). Combination of eye enucleation and visual cortical ablation further decreased the glutamate content in the upper half of the right SGL (29.3%). On the other hand, aspartate and GABA concentrations in the SC and dLGN exhibited no significant reduction after deafferentations. These results indicate that the retino-tectal and retino-geniculate pathway of the rat may be glutamatergic in nature.
Collapse
Affiliation(s)
- T Sakurai
- Department of Physiology, School of Medicine, Kobe University, Japan
| | | |
Collapse
|
38
|
Sillito AM. GABA mediated inhibitory processes in the function of the geniculo-striate system. PROGRESS IN BRAIN RESEARCH 1992; 90:349-84. [PMID: 1631305 DOI: 10.1016/s0079-6123(08)63622-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A M Sillito
- Department of Visual Science, Institute of Ophthalmology, London, England, UK
| |
Collapse
|
39
|
Soltesz I, Crunelli V. GABAA and pre- and post-synaptic GABAB receptor-mediated responses in the lateral geniculate nucleus. PROGRESS IN BRAIN RESEARCH 1992; 90:151-69. [PMID: 1321458 DOI: 10.1016/s0079-6123(08)63613-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- I Soltesz
- Department of Visual Science, Institute of Ophthalmology, London, England, UK
| | | |
Collapse
|
40
|
Tieman SB, Neale JH, Tieman DG. N-acetylaspartylglutamate immunoreactivity in neurons of the monkey's visual pathway. J Comp Neurol 1991; 313:45-64. [PMID: 1662235 DOI: 10.1002/cne.903130105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The acidic dipeptide N-acetylaspartylglutamate (NAAG) was identified immunohistochemically within neurons of the visual pathways of two adult macaque monkeys which had undergone midsagittal sectioning of the optic chiasm 6 or 9 years earlier. In both temporal and nasal retinae, amacrine cells, including some displaced amacrine cells, expressed NAAG immunoreactivity. In temporal but not nasal retina, retinal ganglion cells were stained, as were their dendrites in the inner plexiform layer, and their axons in the optic nerve fiber layer. In nasal retina, the ganglion cells had degenerated because they were axotomized by the optic chiasm section. In the target regions of the retinal ganglion cells, the superior colliculus and the lateral geniculate nucleus (LGN), both neuropil and cell bodies were stained. In LGN, staining was confined to layers 2, 3, and 5, that is, to the layers innervated by the intact ipsilateral pathway. Immunoreactivity was also seen in the cells of layers 2, 3A, 4B, 5, and 6 of area 17 and layers 3 and 5 of area 18. The neuropil was stained in all layers of area 17, but more heavily in layers 1, 2, 4B, the bottom of 4C beta, 5B, and 6B. Within 4C the staining was patchy; in tangential sections there were alternating bands of light and dark label which matched the ocular dominance bands demonstrated by cytochrome oxidase histochemistry in adjacent sections. This banding pattern is consistent with the presence of NAAG in geniculocortical terminals of the intact ipsilateral pathway and the absence of such terminals for the contralateral pathway, which had undergone transneuronal degeneration due to the optic chiasm sectioning. Overall, our results for monkey are very similar to those in cat and suggest that NAAG or a structurally related molecule may have a prominent role in the communication of visual signals at retinal, thalamic, and cortical levels.
Collapse
Affiliation(s)
- S B Tieman
- Neurobiology Research Center, State University of New York, Albany 12222
| | | | | |
Collapse
|
41
|
Tieman SB, Moffett JR, Irtenkauf SM. Effect of eye removal on N-acetylaspartylglutamate immunoreactivity in retinal targets of the cat. Brain Res 1991; 562:318-22. [PMID: 1685346 DOI: 10.1016/0006-8993(91)90638-c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The endogenous brain dipeptide N-acetylaspartylglutamate (NAAG) has previously been demonstrated in the somata of retinal ganglion cells and the neuropil of retinal targets. In this paper we report that the NAAG immunoreactivity of the neuropil in the retinal targets is dependent on an intact optic pathway. Removal of one eye produced a marked decrease in the staining of the neuropil in layer A of the contralateral geniculate nucleus (LGN) and layer A1 of the ipsilateral LGN. There was also decreased staining in the superficial layers of the superior colliculus contralateral to the removal. These results suggest that NAAG is present in the terminals of retinal ganglion cells and is consistent with a role for NAAG in visual synaptic transmission.
Collapse
Affiliation(s)
- S B Tieman
- Neurobiology Research Center, State University of New York, Albany 12222
| | | | | |
Collapse
|
42
|
Schmidt M. Mediation of visual responses in the nucleus of the optic tract in cats and rats by excitatory amino acid receptors. Neurosci Res 1991; 12:111-21. [PMID: 1684237 DOI: 10.1016/0168-0102(91)90104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The contribution of excitatory amino acid receptors to visual responses of directional selective neurons in the nucleus of the optic tract (NOT) was examined in anesthetized cats and rats by iontophoretic application of glutamate (GLU), quisqualate (QQL), N-methyl-D-aspartate (NMDA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 2-amino-5-phosphonovalerate (APV). Spontaneous and visually evoked NOT cell activities were increased by GLU, QQL and NMDA. CNQX and DNQX decreased activities predominantly during stimulus movement in the preferred direction, while APV decreased activities to preferred and non-preferred directed stimulus movement. Spontaneous activities were suppressed only following APV application. The results were similar in both species. Furthermore, the effects were similar during binocular stimulation and during monocular stimulation of either eye in the cat. The results indicate a functional role of both non-NMDA and NMDA receptors for the transfer of visual input to directional selective NOT cells in cat and rat.
Collapse
Affiliation(s)
- M Schmidt
- Department of Zoology and Neurobiology, Ruhr University of Bochum, F.R.G
| |
Collapse
|
43
|
Davanger S, Ottersen OP, Storm-Mathisen J. Glutamate, GABA, and glycine in the human retina: an immunocytochemical investigation. J Comp Neurol 1991; 311:483-94. [PMID: 1684589 DOI: 10.1002/cne.903110404] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of the neuroactive amino acids glutamate, GABA, and glycine in the human retina was examined in consecutive semithin sections treated with antisera specific for fixed glutamate, GABA, and glycine, respectively. Glutamate immunoreactivity was conspicuous in all photoreceptor cells (rods more strongly labelled than cones), and in a majority (85-89%) of the cells in the inner nuclear layer (INL). Rod spherules and cone pedicles showed a greater enrichment of glutamate immunoreactivity than the parent cell bodies and inner segments. Also, structures of the inner plexiform layer (IPL) were labelled. A large majority (83-91%) of cells in the ganglion cell layer (GCL) was strongly stained, as were most axons in the nerve fibre layer. Müller cell processes appeared unstained. GABA immunoreactivity was present in presumed amacrine but not in bipolar-like cells. The stained cells were restricted to the inner 1/3 of the INL and were more frequent in central than in peripheral retina (40% and 26% of all cells in the inner 1/2 of INL, respectively). GABA positive cell processes, probably originating from interplexiform cells, appeared to traverse the INL and end in the outer plexiform layer. Dense immunolabeling was found in the IPL. GABA immunoreactive cells (some also stained for glutamate) comprised 23% of all GCL cells in the peripheral retina, but only 5% in the central retina. Most of them were localized adjacent to the IPL. A few GABA positive (possibly ganglion) cells extended a single fibre toward the nerve fibre layer. Solitary GABA positive fibres were seen in this layer and in the optic nerve. Glycine immunoreactivity was observed in cells with the location typical of amacrine and bipolar (peripheral retina) cells, as well as in punctate structures of the IPL. In contrast to the GABA positive cells, the glycine positive cells were more frequent in the peripheral than in the central retina (42% and 23% of all cells in inner 1/3 of INL, respectively). A few cells in the GCL (0.5-1.5%) were glycine positive. Glutamate colocalized with GABA or glycine in a majority of the cells stained for either of these inhibitory transmitters (90-95% of the GABA positive cells, and 80-86% of the glycine positive cells, in the INL). Some bipolar cells were stained for both glutamate and glycine. Colocalization of GABA and glycine occurred in a subpopulation (3-4%) of presumed amacrine cells, about half of which was also glutamate positive.
Collapse
Affiliation(s)
- S Davanger
- Department of Anatomy, University of Oslo, Norway
| | | | | |
Collapse
|
44
|
Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V. Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol 1991; 441:155-74. [PMID: 1840071 PMCID: PMC1180191 DOI: 10.1113/jphysiol.1991.sp018744] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. Low-frequency membrane potential oscillations recorded intracellularly from thalamocortical (TC) cells of the rat and cat dorsal lateral geniculate nucleus (dLGN) and of the rat ventrobasal nucleus (VB) maintained in vitro were investigated. On the basis of their electrophysiological and pharmacological properties, four types of activity were distinguished and named: the pacemaker oscillations, the spindle-like oscillations, the 'very slow' oscillations and the 'N-methyl-D-aspartate' (NMDA) oscillations. 2. The pacemaker oscillations (95 out of 173 cells) consisted of rhythmic, large-amplitude (10-30 mV) depolarizations which occurred at a frequency of 1.8 +/- 0.3 Hz (range, 0.5-2.9 Hz) and could often give rise to single or a burst of action potentials. Pacemaker oscillations were observed when the membrane potential was moved negative to -55 and positive to -80 mV, but in a given cell the upper and lower limits of this voltage range were separated by only 13.1 +/- 0.5 mV. Above -45 mV tonic firing consisting of single action potentials was seen in the cells showing this or the other types of low-frequency oscillations. 3. The spindle-like oscillations were observed in thirty-nine (out of 173) TC cells and consisted of rhythmic (2.1 +/- 0.3 Hz), large-amplitude depolarizations (and often associated burst firing) similar to the pacemaker oscillations but occurring in discrete periods every 5-25 s and lasting for 1.5-28 s. The spindle-like oscillations were observed when the membrane potential was moved negative to -55 and positive to -80 mV and in two cells they were transformed into continuous pacemaker oscillations by depolarization of the membrane potential to -60 mV. 4. Pacemaker and spindle-like oscillations were unaffected by tetrodotoxin (TTX) or by selective blockade of NMDA, non-NMDA, GABAA, GABAB, nicotinic, muscarinic, alpha- and beta-noradrenergic receptors. 5. The 'very slow' oscillations consisted of a TTX-insensitive, slow hyperpolarization-depolarization sequence (5-15 mV in amplitude) which lasted up to 90 s and was observed in nine dLGN cells and in two VB cells. The pacemaker and the spindle-like oscillations were recorded in one cell each which also showed the 'very slow' oscillations. 6. The 'NMDA' oscillations were observed only in a 'Mg(2+)-free' medium (0 mM-Mg2+, 2-4 mM-Ca2+; 64 out of 72 cells) and consisted of large-amplitude (10-25 mV) depolarizations that did not occur at regular intervals and were intermixed with smaller depolarizations present on the baseline and on the falling phase of the larger ones.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N Leresche
- Department of Visual Science, Institute of Ophthalmology, London
| | | | | | | | | |
Collapse
|
45
|
Roberts WA, Eaton SA, Salt TE. Excitatory amino acid receptors mediate synaptic responses to visual stimuli in superior colliculus neurones of the rat. Neurosci Lett 1991; 129:161-4. [PMID: 1684025 DOI: 10.1016/0304-3940(91)90451-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Excitatory amino acid receptors are involved in synaptic transmission throughout the central nervous system. As the specific synaptic pharmacology of visually responsive superior colliculus (SC) neurones has not been evaluated, we have attempted to antagonize visual responses of these neurones with selective excitatory amino acid antagonists. The N-methyl-D-aspartate (NMDA) receptor antagonist 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were applied iontophoretically in the vicinity of single visually responsive SC neurones. Visually evoked responses were antagonized by non-NMDA receptor selective currents of CNQX in 13 of 14 cells studied. Of 18 cells studied with NMDA receptor selective currents of CPP, visual responses were antagonized in only two cases. This study demonstrates that excitatory amino acid receptors are involved in synaptic transmission of visual information to the rat superior colliculus, but that NMDA receptors may play a relatively minor role.
Collapse
Affiliation(s)
- W A Roberts
- Department of Visual Science, Institute of Ophthalmology, London, U.K
| | | | | |
Collapse
|
46
|
Colwell CS, Foster RG, Menaker M. NMDA receptor antagonists block the effects of light on circadian behavior in the mouse. Brain Res 1991; 554:105-10. [PMID: 1834303 DOI: 10.1016/0006-8993(91)90177-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report here the results of experiments designed to evaluate whether NMDA receptors mediate the phase shifting effects of light on the circadian rhythm of wheel-running activity in mice. Intraperitoneal administration of either the non-competitive NMDA receptor antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]cyclohepten-5,10-imine maleate (MK-801), or the competitive NMDA receptor antagonist, 3(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) blocked light-induced phase advances and delays. Neither drug, by itself, caused any consistent effect on the phase of the rhythm. Furthermore, there was no significant difference between the effects of MK-801 on light-induced phase shifts in a retinally degenerate and retinally normal strain of C57 mouse. These data, coupled with previous findings, indicate that excitatory amino acid receptors play an important role in the transmission of light information from the retina to the circadian system.
Collapse
Affiliation(s)
- C S Colwell
- Department of Biology, University of Virginia, Charlottesville 22901
| | | | | |
Collapse
|
47
|
Pearson HE, Sonstein WJ, Stoffler DJ. Selectivity of kainic acid as a neurotoxin within the dorsal lateral geniculate nucleus of the cat: a model for transneuronal retrograde degeneration. JOURNAL OF NEUROCYTOLOGY 1991; 20:376-86. [PMID: 1869878 DOI: 10.1007/bf01355534] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In situ injections of the cytotoxin kainic acid were used to make localized lesions of the dorsal lateral geniculate nucleus in the adult cat to produce a model for studying the effects of postsynaptic target loss. Kainic acid has been used extensively to produce lesions of neuronal cell bodies within the central nervous system. However, the selectivity of kainic acid has been questioned, as it may also affect afferent terminals or axons of passage. Retinal projections to degenerated geniculate nuclei were visualized 1 week after kainate injection using anterograde labelling with horseradish peroxidase and electron microscopy. The results demonstrate the presence of afferent terminals within regions of neuronal loss, and hence the selectivity of kainic acid for intrinsic geniculate neurons.
Collapse
Affiliation(s)
- H E Pearson
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | |
Collapse
|
48
|
Moffett JR, Williamson LC, Neale JH, Palkovits M, Namboodiri MA. Effect of optic nerve transection on N-acetylaspartylglutamate immunoreactivity in the primary and accessory optic projection systems in the rat. Brain Res 1991; 538:86-94. [PMID: 2018935 DOI: 10.1016/0006-8993(91)90380-e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Evidence has been presented in recent years that support the hypothesis that N-acetylaspartylglutamate (NAAG) may be involved in synaptic transmission in the optic tract of mammals. Using a modified fixation protocol, we have determined the detailed distribution of NAAG immunoreactivity (NAAG-IR) in retinal ganglion cells and optic projections of the rat. Following optic nerve transection, dramatic losses of NAAG-IR were observed in the neuropil of all retinal target zones including the lateral geniculate nucleus, superior colliculus, nucleus of the optic tract, the dorsal and medial terminal nuclei and suprachiasmatic nucleus. Brain regions were microdissected and NAAG levels measured by a radioimmunoassay (RIA) (IC50: NAAG = 2.5 nM, NAA = 100 microM; smallest detectable amount = 1-2 pg/assay). Large decreases (50-60%) in NAAG levels were detected in the lateral geniculate, superior colliculus and suprachiasmatic nucleus. Moderate losses (25-45%) were noted in the pretectal nucleus and the nucleus of the optic tract. Smaller changes (15-20%) were detected in the paraventricular nucleus and the pretectal area. These results are consistent with a synaptic communication role for NAAG in the visual system.
Collapse
Affiliation(s)
- J R Moffett
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | | | | | | |
Collapse
|
49
|
van Deusen EB, Meyer RL. Pharmacologic evidence for NMDA, APB and kainate/quisqualate retinotectal transmission in the isolated whole tectum of goldfish. Brain Res 1990; 536:86-96. [PMID: 1964834 DOI: 10.1016/0006-8993(90)90012-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The optic tectum of goldfish with intact optic and toral marginal fiber tracts was isolated in a perfusion chamber where the effectiveness of antagonists was tested on synaptic field potential responses to stimulation of each afferent system. There were 3 main conclusions about excitatory synapses. First, monosynaptic activation of retinotectal synapses was not detectably antagonized by D-tubocurarine, implying there is no nicotinic cholinergic component to optic transmission nor strong cholinergic gating of optic terminals. Second, a significant component of retinotectal transmission was shown to be mediated by kainate and quisqualate receptors since 6,7-dinitroquinoxaline-2,3-dione and kynurenate strongly suppressed the optic field potential. In addition, activation of these synapses involves two previously undescribed N-methyl-D-aspartate (NMDA) and APB receptor subtypes since optic field potentials were partially suppressed by 2-amino-5-phosphonovalerate (APV), 2-amino-4-phosphonobutyrate (APB) and MK-801. This is the first evidence that APB receptors exist in the visual system central to the retina. Together, these results are consistent with the possibility that retinal ganglion cells use multiple glutamate receptor subtypes. Third, the optic tectum contains a population of intrinsic glutaminergic synapses activated by a non-optic input, the marginal fibers, which can be suppressed by both APV and kynurenate. The existence of tectal NMDA receptors which are not at primary optic synapses implies that APV used to interfere with rearrangement of optic fibers during development may act not only at afferent synapses but also at a more central component of the circuit.
Collapse
Affiliation(s)
- E B van Deusen
- Developmental and Cell Biology, Developmental Biology Center, University of California, Irvine 92717
| | | |
Collapse
|
50
|
Affiliation(s)
- C J Shatz
- Department of Neurobiology, Stanford University School of Medicine, California 94305
| |
Collapse
|