1
|
Effect of Ca2+ efflux pathway distribution and exogenous Ca2+ buffers on intracellular Ca2+ dynamics in the rat ventricular myocyte: a simulation study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:920208. [PMID: 24971358 PMCID: PMC4058148 DOI: 10.1155/2014/920208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Abstract
We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca2+ efflux pathways (SERCA, Na+/Ca2+ exchange, and sarcolemmal Ca2+ ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca2+ buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca2+ in the dyad and bulk cytoplasm, on cellular Ca2+ cycling. Increasing the dyadic fraction of a particular Ca2+ efflux pathway increases the amount of Ca2+ removed by that pathway, with corresponding changes in Ca2+ efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca2+ removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca2+-dependent inactivation of the L-type Ca2+ current, resulted from the buffers acting as slow and fast “shuttles,” respectively, removing Ca2+ from the dyadic space. The data suggest that complex changes in dyadic Ca2+ and cellular Ca2+ cycling occur as a result of changes in the location of Ca2+ removal pathways or the presence of exogenous Ca2+ buffers, although changing the distribution of Ca2+ efflux pathways has relatively small effects on the systolic Ca2+ transient.
Collapse
|
2
|
Maltsev VA, Lakatta EG. A novel quantitative explanation for the autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins. Am J Physiol Heart Circ Physiol 2010; 298:H2010-23. [PMID: 20228256 DOI: 10.1152/ajpheart.00783.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Classical numerical models have attributed the regulation of normal cardiac automaticity in sinoatrial node cells (SANCs) largely to G protein-coupled receptor (GPCR) modulation of sarcolemmal ion currents. More recent experimental evidence, however, has indicated that GPCR modulation of SANCs automaticity involves spontaneous, rhythmic, local Ca(2+) releases (LCRs) from the sarcoplasmic reticulum (SR). We explored the GPCR rate modulation of SANCs using a unique and novel numerical model of SANCs in which Ca(2+)-release characteristics are graded by variations in the SR Ca(2+) pumping capability, mimicking the modulation by phospholamban regulated by cAMP-mediated, PKA-activated signaling. The model faithfully predicted the entire range of physiological chronotropic modulation of SANCs by the activation of beta-adrenergic receptors or cholinergic receptors only when experimentally documented changes of sarcolemmal ion channels are combined with a simultaneous increase/decrease in SR Ca(2+) pumping capability. The novel numerical mechanism of GPCR rate modulation is based on numerous complex synergistic interactions between sarcolemmal and intracellular processes via membrane voltage and Ca(2+). Major interactions include changes of diastolic Na(+)/Ca(2+) exchanger current that couple earlier/later diastolic Ca(2+) releases (predicting the experimentally defined LCR period shift) of increased/decreased amplitude (predicting changes in LCR signal mass, i.e., the product of LCR spatial size, amplitude, and number per cycle) to the diastolic depolarization and ultimately to the spontaneous action potential firing rate. Concomitantly, larger/smaller and more/less frequent activation of L-type Ca(2+) current shifts the cellular Ca(2+) balance to support the respective Ca(2+) cycling changes. In conclusion, our model simulations corroborate recent experimental results in rabbit SANCs pointing to a new paradigm for GPCR heart rate modulation by a complex system of dynamically coupled sarcolemmal and intracellular proteins.
Collapse
Affiliation(s)
- Victor A Maltsev
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, MD 21224-6825, USA
| | | |
Collapse
|
3
|
Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circ Res 2010; 106:659-73. [PMID: 20203315 PMCID: PMC2837285 DOI: 10.1161/circresaha.109.206078] [Citation(s) in RCA: 467] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ion channels on the surface membrane of sinoatrial nodal pacemaker cells (SANCs) are the proximal cause of an action potential. Each individual channel type has been thoroughly characterized under voltage clamp, and the ensemble of the ion channel currents reconstructed in silico generates rhythmic action potentials. Thus, this ensemble can be envisioned as a surface "membrane clock" (M clock). Localized subsarcolemmal Ca(2+) releases are generated by the sarcoplasmic reticulum via ryanodine receptors during late diastolic depolarization and are referred to as an intracellular "Ca(2+) clock," because their spontaneous occurrence is periodic during voltage clamp or in detergent-permeabilized SANCs, and in silico as well. In spontaneously firing SANCs, the M and Ca(2+) clocks do not operate in isolation but work together via numerous interactions modulated by membrane voltage, subsarcolemmal Ca(2+), and protein kinase A and CaMKII-dependent protein phosphorylation. Through these interactions, the 2 subsystem clocks become mutually entrained to form a robust, stable, coupled-clock system that drives normal cardiac pacemaker cell automaticity. G protein-coupled receptors signaling creates pacemaker flexibility, ie, effects changes in the rhythmic action potential firing rate, by impacting on these very same factors that regulate robust basal coupled-clock system function. This review examines evidence that forms the basis of this coupled-clock system concept in cardiac SANCs.
Collapse
Affiliation(s)
- Edward G Lakatta
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging/NIH, 5600 Nathan Shock Dr., Baltimore, MD 21224-6825, USA.
| | | | | |
Collapse
|
4
|
Tsang S, Wong SSC, Wu S, Kravtsov GM, Wong TM. Testosterone-augmented contractile responses to α1- and β1-adrenoceptor stimulation are associated with increased activities of RyR, SERCA, and NCX in the heart. Am J Physiol Cell Physiol 2009; 296:C766-82. [DOI: 10.1152/ajpcell.00193.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that testosterone at physiological levels enhances cardiac contractile responses to stimulation of both α1- and β1-adrenoceptors by increasing Ca2+ release from the sarcoplasmic reticulum (SR) and speedier removal of Ca2+ from cytosol via Ca2+-regulatory proteins. We first determined the left ventricular developed pressure, velocity of contraction and relaxation, and heart rate in perfused hearts isolated from control rats, orchiectomized rats, and orchiectomized rats without and with testosterone replacement (200 μg/100 g body wt) in the presence of norepinephrine (10−7 M), the α1-adrenoceptor agonist phenylephrine (10−6 M), or the nonselective β-adrenoceptor agonist isoprenaline (10−7 M) in the presence of 5 × 10−7 M ICI-118,551, a β2-adrenoceptor antagonist. Next, we determined the amplitudes of intracellular Ca2+ concentration transients induced by electrical stimulation or caffeine, which represent, respectively, Ca2+ release via the ryanodine receptor (RyR) or releasable Ca2+ in the SR, in ventricular myocytes isolated from the three groups of rats. We also measured 45Ca2+ release via the RyR. We then determined the time to 50% decay of both transients, which represents, respectively, Ca2+ reuptake by sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and removal via the sarcolemmal Na+/Ca2+ exchanger (NCX). We correlated Ca2+ removal from the cytosol with activities of SERCA and its regulator phospholamban as well as NCX. The results showed that testosterone at physiological levels enhanced positive inotropic and lusitropic responses to stimulation of α1- and β1-adrenoceptors via the androgen receptor. The increased contractility and speedier relaxation were associated with increased Ca2+ release via the RyR and faster Ca2+ removal out of the cytosol via SERCA and NCX.
Collapse
|
5
|
Brette F, Sallé L, Orchard CH. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J 2005; 90:381-9. [PMID: 16214862 PMCID: PMC1367035 DOI: 10.1529/biophysj.105.069013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The action potential of cardiac ventricular myocytes is characterized by its long duration, mainly due to Ca flux through L-type Ca channels. Ca entry also serves to trigger the release of Ca from the sarcoplasmic reticulum. The aim of this study was to investigate the role of cell membrane invaginations called transverse (T)-tubules in determining Ca influx and action potential duration in cardiac ventricular myocytes. We used the whole cell patch clamp technique to record electrophysiological activity in intact rat ventricular myocytes (i.e., from the T-tubules and surface sarcolemma) and in detubulated myocytes (i.e., from the surface sarcolemma only). Action potentials were significantly shorter in detubulated cells than in control cells. In contrast, resting membrane potential and action potential amplitude were similar in control and detubulated myocytes. Experiments under voltage clamp using action potential waveforms were used to quantify Ca entry via the Ca current. Ca entry after detubulation was reduced by approximately 60%, a value similar to the decrease in action potential duration. We calculated that Ca influx at the T-tubules is 1.3 times that at the cell surface (4.9 vs. 3.8 micromol/L cytosol, respectively) during a square voltage clamp pulse. In contrast, during a cardiac action potential, Ca entry at the T-tubules is 2.2 times that at the cell surface (3.0 vs. 1.4 micromol/L cytosol, respectively). However, more Ca entry occurs per microm(2) of junctional membrane at the cell surface than in the T-tubules (in nM/microm(2): 1.43 vs. 1.06 during a cardiac action potential). This difference is unlikely to be due to a difference in the number of Ca channels/junction at each site because we estimate that the same number of Ca channels is present at cell surface and T-tubule junctions ( approximately 35). This study provides the first evidence that the T-tubules are a key site for the regulation of action potential duration in ventricular cardiac myocytes. Our data also provide the first direct measurements of T-tubular Ca influx, which are consistent with the idea that cardiac excitation-contraction coupling largely occurs at the T-tubule dyadic clefts.
Collapse
Affiliation(s)
- F Brette
- Department of Physiology, Medical Sciences Building, University of Bristol, Bristol, United Kingdom.
| | | | | |
Collapse
|
6
|
Saba S, Janczewski AM, Baker LC, Shusterman V, Gursoy EC, Feldman AM, Salama G, McTiernan CF, London B. Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-{alpha}. Am J Physiol Heart Circ Physiol 2005; 289:H1456-67. [PMID: 15923312 DOI: 10.1152/ajpheart.00733.2004] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice overexpressing the inflammatory cytokine TNF-alpha in the heart develop a progressive heart failure syndrome characterized by biventricular dilatation, decreased ejection fraction, decreased survival compared with non-transgenic littermates, and earlier pathology in males. TNF-alpha mice (TNF1.6) develop atrial arrhythmias on ambulatory telemetry monitoring that worsen with age and are more severe in males. We performed in vivo electrophysiological testing in transgenic and control mice, ex vivo optical mapping of voltage in the atria of isolated perfused TNF1.6 hearts, and in vitro studies on isolated atrial muscle and cells to study the mechanisms that lead to the spontaneous arrhythmias. Programmed stimulation induces atrial arrhythmias (n = 8/32) in TNF1.6 but not in control mice (n = 0/37), with a higher inducibility in males. In the isolated perfused hearts, programmed stimulation with single extra beats elicits reentrant atrial arrhythmias (n = 6/6) in TNF1.6 but not control hearts due to slow heterogeneous conduction of the premature beats. Lowering extracellular Ca(2+) normalizes conduction and prevents the arrhythmias. Atrial muscle and cells from TNF1.6 compared with control mice exhibit increased collagen deposition, decreased contractile function, and abnormal systolic and diastolic Ca(2+) handling. Thus abnormalities in action potential propagation and Ca(2+) handling contribute to the initiation of atrial arrhythmias in this mouse model of heart failure.
Collapse
Affiliation(s)
- Samir Saba
- Cardiovascular Institute, University of Pittsburgh, 200 Lothrop St., Scaife S572, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bradley KN, Craig JW, Muir TC, McCarron JG. The sarcoplasmic reticulum and sarcolemma together form a passive Ca2+ trap in colonic smooth muscle. Cell Calcium 2004; 36:29-41. [PMID: 15126054 DOI: 10.1016/j.ceca.2003.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 11/20/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
In smooth muscle, active Ca(2+) uptake into regions of sarcoplasmic reticulum (SR) which are closely apposed to the sarcolemma has been proposed to substantially limit the increase in the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) following Ca(2+) influx, i.e. the 'superficial buffer barrier hypothesis'. The present study has re-examined this proposal. The results suggest that the SR close to the sarcolemma acts as a passive barrier to Ca(2+) influx limiting [Ca(2+)](c) changes; for this, SR Ca(2+) pump activity is not required. In single voltage-clamped colonic myocytes, sustained opening of the ryanodine receptor (RyR) (and depletion of the SR) using ryanodine increased the amplitude of depolarisation-evoked Ca(2+) transients and accelerated the rate of [Ca(2+)](c) decline following depolarisation. These results could be explained by a reduction in the Ca(2+) buffer power of the cytosol taking place when RyR are opened (i.e. the SR is 'leaky'). Indeed, determination of the Ca(2+) buffer power confirmed it was reduced by approximately 40%. Inhibition of the SR Ca(2+) pump (with thapsigargin) also depleted the SR of Ca(2+) but did not reduce the Ca(2+) buffer power or increase depolarisation-evoked Ca(2+) transients and slowed (rather than accelerated) Ca(2+) removal. However, thapsigargin prevented the ryanodine-induced increase in [Ca(2+)](c) decline following depolarisation. Together, these results suggest that when the SR was rendered 'leaky' (a) more of the Ca(2+) entering the cell reached the bulk cytoplasm and (b) Ca(2+) was removed more quickly at the end of cell activation. Under physiological circumstances in the absence of blocking drugs, it is proposed that the SR limits the [Ca(2+)](c) increase following influx without the need for active Ca(2+) uptake. The SR and sarcolemma may form a passive physical barrier to Ca(2+) influx, a Ca(2+) trap, which limits the [Ca(2+)](c) rise occurring during depolarisation by about 50% and from which the ion only slowly escapes into the main part of the cytoplasm.
Collapse
Affiliation(s)
- Karen N Bradley
- Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | |
Collapse
|
8
|
Chen M, Zhou JJ, Kam KWL, Qi JS, Yan WY, Wu S, Wong TM. Roles of KATP channels in delayed cardioprotection and intracellular Ca(2+) in the rat heart as revealed by kappa-opioid receptor stimulation with U50488H. Br J Pharmacol 2004; 140:750-8. [PMID: 14534156 PMCID: PMC1574065 DOI: 10.1038/sj.bjp.0705475] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effect of preconditioning with U50488 H (UP), a selective kappa-opioid receptor (kappa-OR) agonist, on infarct size and intracellular Ca2+ ([Ca2+]i) in the heart subjected to ischaemic insults were studied and evaluated. U50488 H administered intravenously reduced the infarct size 18-48 h after administration in isolated hearts subjected to regional ischaemia/reperfusion (I/R). The effect was dose dependent. A peak effect was reached at 10 mg x kg-1 U50488 H and at 24 h after administration. The effect of 10 mg x kg-1 U50488 H at 24 h after administration was abolished by nor-binaltorphimine (nor-BNI), a selective kappa-OR antagonist, indicating the effect was kappa-OR mediated. The infarct reducing effect of U50488 H was attenuated when a selective blocker of mitochondrial (5-hydroxydecanoic acid, 5-HD) or sarcolemmal (HRM-1098) ATP-sensitive potassium channel (KATP) was coadministered with U50488 H 24 h before ischaemia or when 5-HD was administered just before ischaemia. U50488 H also attenuated the elevation in [Ca2+]i and reduction in electrically induced [Ca2+]i transient in cardiomyocytes subjected to ischaemic insults. The effects were reversed by blockade of KATP channel, which abolished the protective effect of preconditioning with U50488 H. The results indicated that mitochondrial KATP channel serves as both a trigger and a mediator, while sarcolemmal KATP channel as a trigger only, of delayed cardioprotection of kappa-OR stimulation. The effects of these channels may result from prevention/attenuation of [Ca2+]i overload induced by ischaemic insults.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/antagonists & inhibitors
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use
- Animals
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Coronary Circulation/drug effects
- Coronary Vessels/injuries
- Dose-Response Relationship, Drug
- Heart/drug effects
- Heart/physiology
- Heart Rate/drug effects
- Heart Rate/physiology
- Injections, Intravenous
- Ischemic Preconditioning, Myocardial/methods
- Male
- Myocardial Infarction/complications
- Myocardial Infarction/drug therapy
- Myocardial Reperfusion Injury/complications
- Myocardial Reperfusion Injury/drug therapy
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Potassium Channel Blockers/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channel Blockers/therapeutic use
- Potassium Channels/classification
- Potassium Channels/drug effects
- Potassium Channels/physiology
- Rats/physiology
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Time Factors
Collapse
Affiliation(s)
- Mai Chen
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jing-Jun Zhou
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Wan-Lung Kam
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Song Qi
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing-Yi Yan
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Song Wu
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tak-Ming Wong
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Author for correspondence:
| |
Collapse
|
9
|
Vassalle M, Lin CI. Calcium overload and cardiac function. J Biomed Sci 2004; 11:542-65. [PMID: 15316129 DOI: 10.1007/bf02256119] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 03/19/2004] [Indexed: 10/25/2022] Open
Abstract
The changes in cardiac function caused by calcium overload are reviewed. Intracellular Ca(2+) may increase in different structures [e.g. sarcoplasmic reticulum (SR), cytoplasm and mitochondria] to an excessive level which induces electrical and mechanical abnormalities in cardiac tissues. The electrical manifestations of Ca(2+) overload include arrhythmias caused by oscillatory (V(os)) and non-oscillatory (V(ex)) potentials. The mechanical manifestations include a decrease in force of contraction, contracture and aftercontractions. The underlying mechanisms involve a role of Na(+) in electrical abnormalities as a charge carrier in the Na(+)-Ca(2+) exchange and a role of Ca(2+) in mechanical toxicity. Ca(2+) overload may be induced by an increase in [Na(+)](i) through the inhibition of the Na(+)-K(+) pump (e.g. toxic concentrations of digitalis) or by an increase in Ca(2+) load (e.g. catecholamines). The Ca(2+) overload is enhanced by fast rates. Purkinje fibers are more susceptible to Ca(2+) overload than myocardial fibers, possibly because of their greater Na(+) load. If the SR is predominantly Ca(2+) overloaded, V(os) and fast discharge are induced through an oscillatory release of Ca(2+) in diastole from the SR; if the cytoplasm is Ca(2+) overloaded, the non-oscillatory V(ex) tail is induced at negative potentials. The decrease in contractile force by Ca(2+) overload appears to be associated with a decrease in high energy phosphates, since it is enhanced by metabolic inhibitors and reduced by metabolic substrates. The ionic currents I(os) and I(ex) underlie V(os) and V(ex), respectively, both being due to an electrogenic extrusion of Ca(2+) through the Na(+)-Ca(2+) exchange. I(os) is an oscillatory current due to an oscillatory release of Ca(2+) in early diastole from the Ca(2+)-overloaded SR, and I(ex) is a non-oscillatory current due to the extrusion of Ca(2+) from the Ca(2+)-overloaded cytoplasm. I(os) and I(ex) can be present singly or simultaneously. An increase in [Ca(2+)](i) appears to be involved in the short- and long-term compensatory mechanisms that tend to maintain cardiac output in physiological and pathological conditions. Eventually, [Ca(2+)](i) may increase to overload levels and contribute to cardiac failure. Experimental evidence suggests that clinical concentrations of digitalis increase force in Ca(2+)-overloaded cardiac cells by decreasing the inhibition of the Na(+)-K(+) pump by Ca(2+), thereby leading to a reduction in Ca(2+) overload and to an increase in force of contraction.
Collapse
Affiliation(s)
- Mario Vassalle
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
10
|
Liu J, Kam KWL, Zhou JJ, Yan WY, Chen M, Wu S, Wong TM. Effects of heat shock protein 70 activation by metabolic inhibition preconditioning or kappa-opioid receptor stimulation on Ca2+ homeostasis in rat ventricular myocytes subjected to ischemic insults. J Pharmacol Exp Ther 2004; 310:606-13. [PMID: 15051801 DOI: 10.1124/jpet.104.067926] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Heat shock protein 70 (HSP70) mediates delayed cardioprotection of preconditioning. Cytosolic calcium ([Ca(2+)])(i) overload precipitates injury, whereas attenuation of [Ca(2+)](i) overload is believed to be responsible for cardioprotection. There is evidence suggesting a link between HSP70 and [Ca(2+)](i) homeostasis. We hypothesize that activation of HSP70 by preconditioning may restore [Ca(2+)](i) homeostasis altered by ischemic insults. To test the hypothesis, we determined the effects of preconditioning with metabolic inhibition or pretreating with U50,488H [trans-(+)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide (a kappa-opioid receptor agonist)] on viability and injury, HSP70 expression, and [Ca(2+)](i) in ventricular myocytes subjected to metabolic inhibition and anoxia (MI/A), with blockade of HSP70 synthesis. In myocytes with vehicle pretreatment, the percentage of dead cells determined by trypan blue exclusion, the injury reflected by release of lactate dehydrogenase, and the resting [Ca(2+)](i) measured by spectrofluorometry significantly increased, whereas the amplitude of electrically induced [Ca(2+)](i) transient decreased, after 10 min with 10 mM 2-deoxy-d-glucose and 10 mM sodium dithionite, known to cause MI/A. However, when myocytes were subjected for 30 min to either 20 mM lactate and 10 mM 2-deoxy-d-glucose (MIP) or 30 microM U50,488H (UP) 20 h before MI/A, the changes in viability and injury, and [Ca(2+)](i) responses were significantly attenuated. These were accompanied by a significantly increased HSP70 expression. Furthermore, blockade of HSP70 synthesis with selective antisense oligonucleotides abolished the beneficial effects of MIP or UP. This study provides first evidence that activation of HSP70 induced by preconditioning, which conferred delayed cardioprotection, restored partially the [Ca(2+)](i) homeostasis altered by ischemic insults.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Calcium/metabolism
- Cell Hypoxia/drug effects
- Cell Hypoxia/physiology
- HSP70 Heat-Shock Proteins/metabolism
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Homeostasis/drug effects
- Homeostasis/physiology
- Ischemic Preconditioning, Myocardial/methods
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiology, Institute of Cardiovascular Sciences and Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Pei JM, Kravtsov GM, Wu S, Das R, Fung ML, Wong TM. Calcium homeostasis in rat cardiomyocytes during chronic hypoxia: a time course study. Am J Physiol Cell Physiol 2004; 285:C1420-8. [PMID: 14600077 DOI: 10.1152/ajpcell.00534.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study determined Ca2+ handling in the hearts of rats subjected to chronic hypoxia (CH). Spectrofluorometry was used to measure intracellular Ca2+ concentration ([Ca2+]i) and its responses to electrical stimulation, caffeine, and isoproterenol in myocytes from the right ventricle of rats breathing 10% oxygen for 1, 3, 7, 14, 21, 28, and 56 days and age-matched controls. The protein expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and its ryanodine receptor (RyR) were measured. The uptake of 45Ca2+ by SERCA, release by RyR, and extrusion by Na+/Ca2+ exchange (NCX) were determined. It was found that Ca2+ homeostasis and Ca2+ responses to beta-adrenoceptor stimulation reached a new equilibrium after 4 wk of CH. Ca2+ content in the sarcoplasmic reticulum (SR) was reduced, but cytosolic Ca2+ remained unchanged after CH. Expression of SERCA and its Ca2+ uptake, Ca2+ release via RyR, and NCX activity were suppressed by CH. The results indicate impaired Ca2+ handling, which may be responsible for the attenuated Ca2+ responses to beta-adrenoceptor stimulation in CH.
Collapse
Affiliation(s)
- Jian-Ming Pei
- Dept. of Physiology, Faculty of Medicine, Univ. of Hong Kong, 21 Sassoon Rd., Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
12
|
Isenberg G, Borschke B, Rueckschloss U. Ca2+ transients of cardiomyocytes from senescent mice peak late and decay slowly. Cell Calcium 2003; 34:271-80. [PMID: 12887974 DOI: 10.1016/s0143-4160(03)00121-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ventricular myocytes were isolated from either young (2 months, "young myocytes") or senescent (20-26 months, "senescent myocytes") mice. Ca2+ transients were evoked by 40ms voltage-clamp pulses depolarising at 0.4, 1, 2, 4 or 8Hz. At 8Hz, Ca2+ transients from senescent cells peaked later (39ms versus 23ms) to smaller systolic [Ca2+](c) (667nM versus 1110nM) and decayed at slower rate (16s(-1) versus 33s(-1)) to higher end-diastolic [Ca2+](c) (411nM versus 220nM) than those from young myocytes. These differences were less pronounced at lower frequencies of pulsing and could not be explained by differences of the time integral of Ca2+ inward current. Since concentrations of SERCA2a and SERCA2b proteins were similar in young and senescent cells, slow rate of Ca2+ decay and high diastolic [Ca2+]c are explained on the assumption that the usual Ca2+ stimulation of SERCA2 activity is attenuated in senescent cells. The prolonged time-to-peak [Ca2+]c is discussed to result from insufficient SR Ca2+ filling by SERCA2 and, in context with confocal images, from a shift of the SERCA2b distribution to the subsarcolemmal space. The age-related changes of the Ca2+ transients are discussed to cause systolic and diastolic failure if senescent mouse hearts beat at high frequencies.
Collapse
MESH Headings
- Actinin/analysis
- Aging/physiology
- Algorithms
- Analysis of Variance
- Animals
- Blotting, Western
- Calcium/analysis
- Calcium/metabolism
- Calcium Channels, L-Type/physiology
- Calcium Signaling/physiology
- Calcium-Transporting ATPases/metabolism
- Data Interpretation, Statistical
- Electric Stimulation
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Indoles/pharmacology
- Kinetics
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal
- Microscopy, Fluorescence
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Patch-Clamp Techniques
- Sarcoplasmic Reticulum/physiology
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
Collapse
Affiliation(s)
- G Isenberg
- Department of Physiology, Martin-Luther-University Halle, Halle 06097, Germany.
| | | | | |
Collapse
|
13
|
Hove-Madsen L, Llach A, Tibbits GF, Tort L. Triggering of sarcoplasmic reticulum Ca2+ release and contraction by reverse mode Na+/Ca2+ exchange in trout atrial myocytes. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1330-9. [PMID: 12531782 DOI: 10.1152/ajpregu.00404.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole cell patch clamp and intracellular Ca(2+) transients in trout atrial cardiomyocytes were used to quantify calcium release from the sarcoplasmic reticulum (SR) and examine its dependency on the Ca(2+) trigger source. Short depolarization pulses (2-20 ms) elicited large caffeine-sensitive tail currents. The Ca(2+) carried by the caffeine-sensitive tail current after a 2-ms depolarization was 0.56 amol Ca(2+)/pF, giving an SR Ca(2+) release rate of 279 amol Ca(2+). pF(-1). s(-1) or 4.3 mM/s. Depolarizing cells for 10 ms to different membrane potentials resulted in a local maximum of SR Ca(2+) release, intracellular Ca(2+) transient, and cell shortening at 10 mV. Although 100 microM CdCl(2) abolished this local maximum, it had no effect on SR Ca(2+) release elicited by a depolarization to 110 or 150 mV, and the SR Ca(2+) release was proportional to the membrane potential in the range -50 to 150 mV with 100 microM CdCl(2). Increasing the intracellular Na(+) concentration ([Na(+)]) from 10 to 16 mM enhanced SR Ca(2+) release but reduced cell shortening at all membrane potentials examined. In the absence of TTX, SR Ca(2+) release was potentiated with 16 mM but not 10 mM pipette [Na(+)]. Comparison of the total sarcolemmal Ca(2+) entry and the Ca(2+) released from the SR gave a gain factor of 18.6 +/- 7.7. Nifedipine (Nif) at 10 microM inhibited L-type Ca(2+) current (I(Ca)) and reduced the time integral of the tail current by 61%. The gain of the Nif-sensitive SR Ca(2+) release was 16.0 +/- 4.7. A 2-ms depolarization still elicited a contraction in the presence of Nif that was abolished by addition of 10 mM NiCl(2). The gain of the Nif-insensitive but NiCl(2)-sensitive SR Ca(2+) release was 14.8 +/- 7.1. Thus both reverse-mode Na(+)/Ca(2+) exchange (NCX) and I(Ca) can elicit Ca(2+) release from the SR, but I(Ca) is more efficient than reverse-mode NCX in activating contraction. This difference may be due to extrusion of a larger fraction of the Ca(2+) released from the SR by reverse-mode NCX rather than a smaller gain for NCX-induced Ca(2+) release.
Collapse
Affiliation(s)
- Leif Hove-Madsen
- Unitat de Fisiologia Animal, Departamento de Biologia Cel.lular, Fisiologia i Immunologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, 08193 Cerdanyola, Barcelona, Spain.
| | | | | | | |
Collapse
|
14
|
Bers DM. Regulation of Cellular Calcium in Cardiac Myocytes. Compr Physiol 2002. [DOI: 10.1002/cphy.cp020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Ho JCS, Wu S, Kam KWL, Sham JSK, Wong TM. Effects of pharmacological preconditioning with U50488H on calcium homeostasis in rat ventricular myocytes subjected to metabolic inhibition and anoxia. Br J Pharmacol 2002; 137:739-48. [PMID: 12411403 PMCID: PMC1573565 DOI: 10.1038/sj.bjp.0704945] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The effects of pharmacological preconditioning with U50488H (U(50)), a selective kappa-opioid receptor agonist, on Ca(2+) homeostasis in rat ventricular myocytes subjected for 9 min to metabolic inhibition (MI) and anoxia (A), consequences of ischaemia, were studied and compared with those of preconditioning with brief periods of MI/A. 2. Precondition with 30 micro M of U(50) for three cycles of 1 min each cycle separated by 3 min of recovery (UP) significantly increased the percentage of non-blue cells following MI/A. The effect of UP is the same as that of preconditioning with an inhibitor of glycolysis and an oxygen scavenger for three 1-min cycles separated by three-minute recovery (MI/AP). The results indicate that like MI/AP, UP also confers cardioprotection. 3. MI/A increased intracellular Ca(2+) ([Ca(2+)](i)) and reduced the amplitude of caffeine-induced [Ca(2+)](i) transients, an indication of Ca(2+) content in the sarcoplasmic reticulum (SR). MI/A also reduced the electrically-induced [Ca(2+)](i) transient, that indicates Ca(2+)-release during excitation-contraction coupling, and Ca(2+) sparks in unstimulated myocytes, that indicates spontaneous Ca(2+)-release from SR. It also prolonged the decline of the electrically-induced [Ca(2+)](i) transient and slowed down the recovery of the electrically-induced [Ca(2+)](i) transient after administration of caffeine. In addition, MI/A prolonged the decline of caffeine induced [Ca(2+)](i) transient, an indication of Na(+)-Ca(2+) exchange activity, and UP prevented it. So UP, that confers cardioprotection, prevented the changes induced by MI/A. With the exception of Ca(2+)-spark, which was not studied, the effects of MI/AP are the same as those of UP. 4. It is concluded that pharmacological preconditioning with U(50), that confers immediate cardioprotection, prevents changes of Ca(2+) homeostasis altered by MI/A in the rat heart. This may be responsible, at least partly, for the cardioprotective action. 5. The study also provided evidence that MI/A causes mobilization of Ca(2+) from SR to cytoplasm causing Ca(2+)-overload which may be due to reduced Ca(2+)-uptake by SR. MI/A also reduces spontaneous and electrically induced Ca(2+) release from SR.
Collapse
Affiliation(s)
- J C S Ho
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - S Wu
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Institute of Cardiovascular Science and Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - K W L Kam
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - T M Wong
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Institute of Cardiovascular Science and Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Author for correspondence:
| |
Collapse
|
16
|
Layland J, Kentish JC. Myofilament-based relaxant effect of isoprenaline revealed during work-loop contractions in rat cardiac trabeculae. J Physiol 2002; 544:171-82. [PMID: 12356890 PMCID: PMC2290578 DOI: 10.1113/jphysiol.2002.022855] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In cardiac muscle, beta-adrenergic stimulation increases contractile force and accelerates relaxation. The relaxant effect is thought to be due primarily to stimulation of Ca(2+) uptake into the sarcoplasmic reticulum (SR), although changes in myofilament properties may also contribute. The present study investigated the contribution of the myofilaments to the beta-adrenergic response in isolated rat cardiac trabeculae undergoing either isometric or work-loop contractions (involving simultaneous force generation and shortening) at different stimulation frequencies (range 0.25-4.5 Hz). SR-dependent effects were eliminated by treatment with ryanodine (1 microM) and cyclopiazonic acid (30 microM). In isometric contractions during SR inhibition, isoprenaline increased the force but did not alter the time course of the twitch. In contrast, in work-loop contractions, the positive inotropic effect was accompanied by a reduced diastolic force between beats, most apparent at higher frequencies (e.g. diastolic stress fell from 58.6 +/- 5.5 to 28.8 +/- 5.8 mN mm(-2) at 1.5 Hz). This relaxant effect contributed to a beta-adrenoceptor-mediated increase in net work and power output at higher frequencies, by reducing the amount of work required to re-lengthen the muscle. Consequently, the frequency for maximum power output increased from 1.1 +/- 0.1 to 1.6 +/- 0.1 Hz. We conclude that the contribution of myofilament properties to the relaxant effect of beta-stimulation may be of greater significance when force and length are changing simultaneously (as occurs in the heart) than during force development under isometric conditions.
Collapse
Affiliation(s)
- Joanne Layland
- Centre for Cardiovascular Biology and Medicine, Kings College London, St Thomas's Campus, Lambeth Palace Road, UK.
| | | |
Collapse
|
17
|
Janczewski AM, Spurgeon HA, Lakatta EG. Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation. J Mol Cell Cardiol 2002; 34:641-8. [PMID: 12054851 DOI: 10.1006/jmcc.2002.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced age in rats is accompanied by reduced expression of the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA-2). The amplitudes of intracellular Ca2+ (Ca2+(i)) transients and contractions in ventricular myocytes isolated from old (23-24-months) rats (OR), however, are similar to those of young (4-6-months) rat myocytes (YR). OR myocytes also manifest slowed inactivation of L-type Ca2+ current (I(CaL)) and marked prolongation of action potential (AP) duration. To determine whether and how age-associated AP prolongation preserves the Ca2+(i) transient amplitude in OR myocytes, we employed an AP-clamp technique with simultaneous measurements of I(CaL) (with Na+ current, K+ currents and Ca2+ influx via sarcolemmal Na+-Ca2+ exchanger blocked) and Ca2+(i) transients in OR rat ventricular myocytes dialyzed with the fluorescent Ca2+ probe, indo-1. Myocytes were stimulated with AP-shaped voltage clamp waveforms approximating the configuration of prolonged, i.e. the native, AP of OR cells (AP-L), or with short AP waveforms (AP-S), typical of YR myocytes. Changes in SR Ca2+ load were assessed by rapid, complete SR Ca2+ depletions with caffeine. As expected, during stimulation with AP-S vs AP-L, peak I(CaL) increased, by 21+/-4%, while the I(CaL) integral decreased, by 19+/-3% (P<0.01 for each). Compared to AP-L, stimulation of OR myocytes with AP-S reduced the amplitudes of the Ca2+(i) transient by 31+/-6%, its maximal rate of rise (+dCa2+(i)/dt(max); a sensitive index of SR Ca2+ release flux) by 37+/-4%, and decreased the SR Ca2+ load by 29+/-4% (P<0.01 for each). Intriguingly, AP-S also reduced the maximal rate of the Ca2+(i) transient relaxation and prolonged its time to 50% decline, by 35+/-5% and 33+/-7%, respectively (P<0.01 for each). During stimulation with AP-S, the gain of Ca2+-induced Ca2+ release (CICR), indexed by +dCa2+(i)/dt(max)/I(CaL), was reduced by 46+/-4% vs AP-L (P<0.01). We conclude that the effects of an application of a shorter AP to OR myocytes to reduce +dCa2+(i)/dt(max) and the Ca2+ transient amplitude are attributable to a reduction in SR Ca2+ load, presumably due to a reduced I(CaL) integral and likely also to an increased Ca2+ extrusion via sarcolemmal Na+-Ca2+ exchanger. The decrease in the Ca2+(i) transient relaxation rate in OR cells stimulated with shorter APs may reflect a reduction of Ca2+/calmodulin-kinase II-regulated modulation of Ca2+ uptake via SERCA-2, consequent to a reduced local Ca2+ release in the vicinity of SERCA-2, also attributable to reduced SR Ca2+ load. Thus, the reduction of CICR gain during stimulation with AP-S is the net result of both a diminished SR Ca2+ release and an increased peak I(CaL). These results suggest that ventricular myocytes of old rats utilize AP prolongation to preserve an optimal SR Ca2+ loading, CICR gain and relaxation of Ca2+(i) transients.
Collapse
Affiliation(s)
- Andrzej M Janczewski
- Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6823, USA
| | | | | |
Collapse
|
18
|
Dumitrescu C, Narayan P, Cheng Y, Efimov IR, Altschuld RA. Phase I and phase II of short-term mechanical restitution in perfused rat left ventricles. Am J Physiol Heart Circ Physiol 2002; 282:H1311-9. [PMID: 11893566 DOI: 10.1152/ajpheart.00464.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the contributions of the Ca(2+) channels of the sarcolemma and of the sarcoplasmic reticulum to electromechanical restitution. Extrasystoles (F(1)) were interpolated 40-600 ms following a steady-state beat (F(0)) in perfused rat ventricles paced at 2 or 3 Hz. Plots of F(1)/F(0) versus the extrasystolic interval consisted of phase I, which occurred before relaxation of the steady-state beat, and phase II, which occurred later. Phase I exhibited a period of enhanced left ventricular pressure development that coincided with action potential prolongation. Phase I was eliminated by -BAY K 8644 (100 nM) and FPL 64176 (150 nM), augmented by 3 microM thapsigargin plus 200 nM ryanodine and unaffected by KN-93 and KB-R7943. Phase II was accelerated by the Ca(2+) channel agonists and by isoproterenol but was eliminated by thapsigargin plus ryanodine. The results suggest that phase I of electromechanical restitution is caused by a transient L-type Ca(2+) current facilitation, whereas phase II represents the recovery of the ability of the sarcoplasmic reticulum to release Ca(2+).
Collapse
Affiliation(s)
- Cristian Dumitrescu
- The Ohio State University Biophysics Program and Dorothy M. Davis Heart and Lung Research Institute, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
19
|
Zhou J, Montrose-Rafizadeh C, Janczewski AM, Pineyro MA, Sollott SJ, Wang Y, Egan JM. Glucagon-like peptide-1 does not mediate amylase release from AR42J cells. J Cell Physiol 1999; 181:470-8. [PMID: 10528233 DOI: 10.1002/(sici)1097-4652(199912)181:3<470::aid-jcp11>3.0.co;2-p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, AR42J pancreatic acinar cells were used to investigate if glucagon-like peptide-1 (GLP-1) or glucagon might influence amylase release and acinar cell function. We first confirmed the presence of GLP-1 receptors on AR42J cells by reverse trasncriptase-polymerase chain reaction (RT-PCR), Western blotting, and partial sequencing analysis. While cholecystokinin (CCK) increased amylase release from AR42J cells, GLP-1, alone or in the presence of CCK, had no effect on amylase release but both CCK and GLP-1 increased intracellular calcium. Similar to GLP-1, glucagon increased both cyclic adenosine monophosphate (cAMP) and intracellular calcium in AR42J cells but it actually decreased CCK-mediated amylase release (n = 20, P < 0.01). CCK stimulation resulted in an increase in tyrosine phosphorylation of several cellular proteins, unlike GLP-1 treatment, where no such increased phosphorylation was seen. Instead, GLP-1 decreased such protein phosphorylations. Genestein blocked CCK-induced phosphorylation events and amylase secretion while vanadate increased amylase secretion. These results provide evidence that tyrosine phosphorylation is necessary for amylase release and that signaling through GLP-1 receptors does not mediate amylase release in AR42J cells. J. Cell. Physiol. 181:470-478, 1999. Published 1999 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J Zhou
- Diabetes Section, Gerontology Research Center, National Institute on Aging, National Institiutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kong JY, Rabkin SW. Thapsigargin enhances camptothecin-induced apoptosis in cardiomyocytes. PHARMACOLOGY & TOXICOLOGY 1999; 85:212-20. [PMID: 10608483 DOI: 10.1111/j.1600-0773.1999.tb02011.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Topoisomerase I inhibitors are promising new chemotherapeutic agents for the treatment of certain malignancies. The present study investigated the impact of the topoisomerase I inhibitor camptothecin on cell death in cardiomyocytes and sought to determine whether the sesquiterpene gamma-lactone--thapsigargin, that alter sarcoplasmic reticulum calcium flux, modulates the effect of camptothecin on the cardiomyocyte. Camptothecin-induced cell death was demonstrated in cardiomyocytes maintained in culture, from 7 day old embryonic chick hearts, by the trypan blue and the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, two independent indicators of the loss of cell viability. The type of cell death was attributed to apoptosis based on cell structure, DNA fragmentation and flow cytometry studies. Camptothecin-treated cardiomyocytes were shrunken with membrane blebs and nuclear fragmentation. Camptothecin produced a dose-dependent increase in DNA fragments of 180 base pairs, or multiples thereof, which are characteristic of apoptosis. A two-fold increase in this type of DNA fragmentation was produced by camptothecin (10 microM) compared to control (diluent-treated) cells. Flow cytometry analysis of populations of 10,000 cardiomyocytes stained with propidium iodide demonstrated a significant increase in the proportion of the population with alterations of DNA content consistent with apoptosis. Pretreatment of cells with thapsigargin, which selectively inhibits sarcoplasmic reticulum and endoplasmic reticulum Ca+2-dependent ATPase, significantly augmented camptothecin-induced apoptosis. Exploring further the role of calcium in camptothecin-induced cell death, we found that the Ca+2 chelator EGTA decreased camptothecin-induced DNA fragmentation. These data indicate the potential for cardiotoxicity from camptothecin through the process of apoptosis and suggest that agents which affect cellular calcium regulation enhance camptothecin-induced apoptosis.
Collapse
Affiliation(s)
- J Y Kong
- University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
21
|
Wang HX, Kwan CY, Wong TM. Electrically induced intracellular Ca2+ transient in single ventricular myocytes: a useful parameter for the study of cardiac drugs. Clin Exp Pharmacol Physiol 1999; 26:835-6. [PMID: 10549416 DOI: 10.1046/j.1440-1681.1999.03140.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Fluorescent Ca2+ indicators, such as fura-2/AM and calcium green-1, have become one of the most popular tools for measuring intracellular calcium ([Ca2+]i). 2. Electrical stimulation triggers a cascade of events in the cardiac muscle, which results in a [Ca2+]i transient and, eventually, contraction. The events that occur in electrically induced cardiac myocytes mimic the normal physiological events in vivo. 3. The electrically induced [Ca2+]i transient represents influx of Ca2+ from outside and mobilization of Ca2+ from the intracellular store and is directly related to contraction. Thus, it is more important to determine the electrically induced [Ca2+]i transient than [Ca2+]i. The [Ca2+]i transient can be easily measured with the spectrofluorescence method using fura 2/AM as the Ca2+ indicator in a single ventricular myocyte preparation. 4. We made use of the results of studies on carbachol, tetrandrine and cardiotoxin to illustrate the usefulness of the electrically induced [Ca2+]i transient in the study of actions of cardiac drugs.
Collapse
Affiliation(s)
- H X Wang
- Department of Pharmacology, Jin Zhou Medical College, Jin Zhou, China.
| | | | | |
Collapse
|
22
|
Liu QY, Vassalle M. Role of Na-Ca exchange in the action potential changes caused by drive in cardiac myocytes exposed to different Ca2+ loads. Can J Physiol Pharmacol 1999. [DOI: 10.1139/y99-040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of Na-Ca exchange in the membrane potential changes caused by repetitive activity ("drive") was studied in guinea pig single ventricular myocytes exposed to different [Ca2+]o. The following results were obtained. (i) In 5.4 mM [Ca2+]o, the action potentials (APs) gradually shortened during drive, and the outward current during a train of depolarizing voltage clamp steps gradually increased. (ii) The APs shortened more and were followed by a decaying voltage tail during drive in the presence of 5 mM caffeine; the outward current became larger and there was an inward tail current on repolarization during a train of depolarizing steps. (iii) These effects outlasted drive so that immediately after a train of APs, currents were already bigger and, after a train of steps, APs were already shorter. (iv) In 0.54 mM [Ca2+]o, the above effects were much smaller. (v) In high [Ca2+]o APs were shorter and outward currents larger than in low [Ca2+]o. (vi) In 10.8 mM [Ca2+]o, both outward and inward currents during long steps were exaggerated by prior drive, even with steps (+80 and +120 mV) at which there was no apparent inward current identifiable as ICa. (vii) In 0.54 mM [Ca2+]o, the time-dependent outward current was small and prior drive slightly increased it. (viii) During long steps, caffeine markedly increased outward and inward tail currents, and these effects were greatly decreased by low [Ca2+]o. (ix) After drive in the presence of caffeine, Ni2+ decreased the outward and inward tail currents. It is concluded that in the presence of high [Ca2+]o drive activates outward and inward Na-Ca exchange currents. During drive, the outward current participates in the plateau shortening and the inward tail current in the voltage tail after the action potential.Key words: ventricular myocytes, repetitive activity, outward and inward Na-Ca exchange currents, caffeine, nickel.
Collapse
|
23
|
Shen JB, Vassalle M. On the mechanism of cesium-induced voltage and current tails in single ventricular myocytes. J Biomed Sci 1999; 6:161-75. [PMID: 10343165 DOI: 10.1007/bf02255900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The mechanisms by which different concentrations of cesium modify membrane potentials and currents were investigated in guinea pig single ventricular myocytes. In a dose-dependent manner, cesium reversibly decreases the resting potential and action potential amplitude and duration, and induces a diastolic decaying voltage tail (Vex), which increases at more negative and reverses at less negative potentials. In voltage-clamped myocytes, Cs+ increases the holding current, increases the outward current at plateau levels while decreasing it at potentials closer to resting potential, induces an inward tail current (Iex) on return to resting potential and causes a negative shift of the threshold for the inward current. During depolarizing ramps, Cs+ decreases the outward current negative to inward rectification range, whereas it increases the current past that range. During repolarizing ramps, Cs+ shifts the threshold for removal of inward rectification negative slope to less negative values. Cs+-induced voltage and current tails are increased by repetitive activity, caffeine (5 mM) and high [Ca2+]O (8.1 mM), and are reduced by low Ca2+ (0.45 mM), Cd2+ (0.2 mM) and Ni2+ (2 mM). Ni2+ also abolishes the tail current that follows steps more positive than ECa. We conclude that Cs+ (1) decreases the resting potential by decreasing the outward current at more negative potentials, (2) shortens the action potential by increasing the outward current at potentials positive to the negative slope of inward rectification, and (3) induces diastolic tails through a Ca2+-dependent mechanism, which apparently is an enhanced electrogenic Na-Ca exchange.
Collapse
Affiliation(s)
- J B Shen
- Department of Physiology and Pharmacology, State University of New York, Health Science Center, Brooklyn, NY 11203, USA
| | | |
Collapse
|
24
|
Bian JS, Wang HX, Zhang WM, Wong TM. Effects of kappa-opioid receptor stimulation in the heart and the involvement of protein kinase C. Br J Pharmacol 1998; 124:600-6. [PMID: 9647487 PMCID: PMC1565412 DOI: 10.1038/sj.bjp.0701857] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. The role of protein kinase C (PKC) in mediating the action of kappa-receptor stimulation on intracellular Ca2+ and cyclic AMP production was determined by studying the effects of trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl] cyclohexyl) benzeneacetamide methanesulphonate (U50,488H), a selective kappa-receptor agonist, and phorbol 12-myristate 13-acetate (PMA), a PKC agonist, on the electrically-induced [Ca2+]i transient and forskolin-stimulated cyclic AMP accumulation in the presence and absence of a PKC antagonist, staurosporine or chelerythrine, in the single rat ventricular myocyte. 2. U50,488H at 2.5-40 microM decreased both the electrically-induced [Ca2+]i transient and forskolin-stimulated cyclic AMP accumulation dose-dependently, effects which PMA mimicked. The effects of the kappa-agonist, that were blocked by a selective kappa-antagonist, nor-binaltorphimine, were significantly antagonized by the PKC antagonists, staurosporine and/or chelerythrine. The results indicate that PKC mediates the actions of kappa-receptor stimulation. 3. To determine whether the action of PKC was at the sarcoplasmic reticulum (SR) or not, the [Ca2+]i transient induced by caffeine, that depletes the SR of Ca2+, was used as an indicator of Ca2+ content in the SR. The caffeine-induced [Ca2+]i transient was significantly reduced by U50,488H at 20 microM. This effect of U50,488H on caffeine-induced [Ca2+]i transient was significantly attenuated by 1 microM chelerythrine, indicating that the action of PKC involves mobilization of Ca2+ from the SR. When the increase in IP3 production in response to K-receptor stimulation with U50,488H in the ventricular myocyte was determined, the effect of U50,488H was the same in the presence and absence of staurosporine, suggesting that the effect of PKC activation subsequent to kappa-receptor stimulation does not involve IP3. The observations suggest that PKC may act directly at the SR. 4. In conclusion, the present study has provided evidence for the first time that PKC may be involved in the action of kappa-receptor stimulation on Ca2+ in the SR and cyclic AMP production, both of which play an essential role in Ca2+ homeostasis in the heart.
Collapse
Affiliation(s)
- J S Bian
- Department of Physiology, Institute of Cardiovascular Science and Medicine, Faculty of Medicine, The University of Hong Kong, China
| | | | | | | |
Collapse
|
25
|
Hüser J, Bers DM, Blatter LA. Subcellular properties of [Ca2+]i transients in phospholamban-deficient mouse ventricular cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H1800-11. [PMID: 9612393 DOI: 10.1152/ajpheart.1998.274.5.h1800] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regulatory protein phospholamban exerts a physiological inhibitory effect on the sarcoplasmic reticulum (SR) Ca2+ pump that is relieved with phosphorylation. We have studied the subcellular properties of intracellular Ca2+ ([Ca2+]i) transients in ventricular myocytes isolated from wild-type (WT) and phospholamban-deficient (PLB-KO) mice. In PLB-KO myocytes, steady-state twitch [Ca2+]i transients revealed an accelerated relaxation and the occurrence of highly localized failures of Ca2+ release. The acceleration of SR Ca2+ uptake caused an increase in SR Ca2+ load with the frequent occurrence of spontaneous [Ca2+]i waves and Ca2+ sparks. [Ca2+]i waves in PLB-KO cells showed a marked decrease in spatial width and more frequently appeared to abort. Local Ca2+ release events (Ca2+ sparks) were larger and more variable in amplitude and [Ca2+]i declined faster in PLB-KO myocytes. Increased local buffering and reduction in the refractoriness of SR Ca2+ release caused by the increased SR pump rate led to an overall enhancement of local [Ca2+]i gradients and inhomogeneities in the [Ca2+]i distribution during spontaneous Ca2+ release, [Ca2+]i waves, and excitation-contraction coupling.
Collapse
Affiliation(s)
- J Hüser
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
26
|
Tang XL, Wang HX, Cho CH, Wong TM. Reduced responsiveness of [Ca2+]i to adenosine A1- and A2-receptor stimulation in the isoproterenol-stimulated ventricular myocytes of spontaneously hypertensive rats. J Cardiovasc Pharmacol 1998; 31:493-8. [PMID: 9554795 DOI: 10.1097/00005344-199804000-00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To determine the modulatory action of adenosine-receptor stimulation on [Ca2+]i responses to beta-adrenoceptor stimulation in the heart of the spontaneously hypertensive rat (SHR), the electrically induced [Ca2+]i transient in response to isoproterenol (ISO) in single ventricular myocytes pretreated with adenosine agonists in SHRs and its normotensive control Wistar-Kyoto (WKY) rats was measured with a spectrofluorometric method by using fura-2/AM as the calcium indicator. In both types of rat, ISO at 0.001-1 microM augmented the electrically induced [Ca2+]i transient, and the effect was blocked by a beta-adrenoceptor blocker, propranolol. In SHRs that did not exhibit cardiac hypertrophy, the resting level of [Ca2+]i and the amplitude of the electrically induced [Ca2+]i transient were the same as those in WKY rats, whereas the augmentation of the electrically induced [Ca2+]i transient in response to ISO was significantly lower than that in WKY rats. In WKY rats, the effects of ISO on the electrically induced [Ca2+]i transient were inhibited by the adenosine A1-receptor agonist, R(-)-N6-(2-phenylisopropyl)adenosine (R-PIA) at 0.01-10 microM. In contrast, the effects of ISO were further enhanced by the adenosine A2-receptor agonist, N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl)]adenosine (DPMA) at 1-10 microM. In SHRs, the inhibitory effect of R-PIA was significantly reduced, whereas the excitatory effect of DPMA was absent. The effects of both adenosine-receptor agonists in both types of rat were abolished by the respective adenosine-receptor antagonists, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 3,7-dimethyl-1-propargylxanthine (DMPX). The results indicate that the modulatory actions of adenosine-receptor stimulation on [Ca2+]i response to beta-adrenoceptor stimulation in the hearts of SHRs are reduced, which is independent of cardiac hypertrophy.
Collapse
Affiliation(s)
- X L Tang
- Department of Physiology, Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
27
|
Zheng JS, O'Neill L, Long X, Webb TE, Barnard EA, Lakatta EG, Boluyt MO. Stimulation of P2Y receptors activates c-fos gene expression and inhibits DNA synthesis in cultured cardiac fibroblasts. Cardiovasc Res 1998; 37:718-28. [PMID: 9659456 DOI: 10.1016/s0008-6363(97)00245-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The aims of this study were to determine (1) whether neonatal rat cardiac fibroblasts (CAFB) express P2Y receptors; (2) whether CAFB respond to extracellular ATP by inducing expression of c-fos mRNA; and (3) whether extracellular ATP modulates norepinephrine (NE)-stimulated cell growth in CAFB. METHODS Expression of P2Y1 and P2Y2 receptors and induction of c-fos were examined by Northern blot analysis. CAFB growth was assessed by measuring [3H]thymidine incorporation and DNA content. P2Y receptor pharmacology was studied using various ATP analogues. RESULTS Northern blot analysis of polyA enriched RNA confirmed that at least 2 subtypes of P2Y receptors (P2Y1 and P2Y2) are expressed in cultured CAFB. Extracellular ATP induced the expression of c-fos mRNA through a pathway that was sensitive to inhibitors of protein kinase C (PKC), but not to inhibitors of intracellular Ca2+ signaling. Extracellular ATP inhibited the NE-stimulated increases in DNA content and in [3H]thymidine incorporation into DNA. Whereas the potency order for stimulation of c-fos expression was ATP = UTP > ADP > adenosine, the potency order to inhibit the NE-induced increase of [3H]thymidine incorporation into DNA was ATP > ADP > UTP > adenosine. CONCLUSIONS These data demonstrate that CAFB express both P2Y1 and P2Y2 receptor mRNA and that CAFB respond to P2Y receptor stimulation by induction of c-fos and inhibition of DNA synthesis. These findings suggest that the effects of ATP on [3H]thymidine incorporation into DNA and on expression of c-fos mRNA are exerted via distinct P2Y receptor subtypes.
Collapse
Affiliation(s)
- J S Zheng
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Toraason M, Richards DE, Mathias PI. Ca2+ mobilization in fetal-human cardiac myocytes is stimulated by isoproterenol and inhibited by ryanodine. In Vitro Cell Dev Biol Anim 1998; 34:19-21. [PMID: 9542628 DOI: 10.1007/s11626-998-0045-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Yu XC, Wang HX, Wong TM. Reduced inhibitory actions of adenosine A1 and kappa 1-opioid receptor agonists on beta-adrenoceptors in spontaneously hypertensive rat heart. Clin Exp Pharmacol Physiol 1997; 24:976-7. [PMID: 9406669 DOI: 10.1111/j.1440-1681.1997.tb02732.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. The modulatory actions of both adenosine A1 and kappa 1-opioid receptor agonists on beta-adrenoceptor stimulation in the heart of both spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were compared. 2. In both types of rats, both R(-)-N6-(2-phenylisopropyl)adenosine (R-PIA), an adenosine A1 receptor agonist, and U50 488H, a kappa 1-opioid receptor agonist, inhibited the stimulatory effects of beta-adrenoceptor activation on electrically induced [Ca2+]i transients measured by a spectrofluorometric method with fura-2/AM as the calcium indicator. The effects of these two agonists were blocked by their respective antagonists, namely 8-cyclopentyl-1,3-diprolxanthine and norbinaltorphimine. 3. The inhibitory actions of both R-PIA and U50 488H on beta-adrenoceptor augmentation of electrically induced [Ca2+]i transients in the heart were more significantly reduced in SHR than in WKY rats, suggesting the negative modulatory actions of endogenous substances on beta-adrenoceptors were impaired in SHR, which may contribute to hypertension.
Collapse
Affiliation(s)
- X C Yu
- Department of Physiology, Faculty of Medicine, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
30
|
Wang SQ, Huang YH, Liu KS, Zhou ZQ. Dependence of myocardial hypothermia tolerance on sources of activator calcium. Cryobiology 1997; 35:193-200. [PMID: 9367607 DOI: 10.1006/cryo.1997.2040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To determine the relationship between cardiac hypothermia tolerance and the sources of activator calcium, we selectively modified either the sarcolemmal calcium permeability by nifedipine or the sarcoplasmic reticulum function by caffeine in papillary muscles from both the rat, as a cold sensitive model, and the ground squirrel, Citellus dauricus, a deep hibernator. Both force-interval relationship and cooling performance were investigated. At 25 degrees C, the slope of the force-interval curve of the ground squirrel was nearly double that of the rat. At shorter test intervals 0.5 muM nifedipine moved the curve down with little effect at longer intervals, and the curve slope increased. Caffeine (1 mM) decreased the peak force and eliminated its dependence upon test interval. When the temperature was lowered, rat preparations showed a marked increase of resting tension and aftercontraction between 7 and 12 degrees C and became inexcitable. In contrast, they maintained contractility down to a few degrees above 0 degrees C without aftercontraction and increased resting tension in the ground squirrel. In the rat nifedipine shortened the contractions, prevented the increase of resting tension, and minimized aftercontractions, with little improvement of contractility. Caffeine prolonged the contractions, caused a striking increase of resting tension and aftercontractions, and finally disabled the contractility at about 5-10 degrees C, even in the ground squirrel. We conclude that depressed calcium influx helps to prevent hypothermic calcium overload of the cardiac cells. Good function of the sarcoplasmic reticulum is essential for tolerance of hypothermia by cardiac cells. A suggestion that may improve the hypothermic tolerance of the myocardium from nonhibernators is postulated.
Collapse
Affiliation(s)
- S Q Wang
- College of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Trafford AW, Díaz ME, Negretti N, Eisner DA. Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion. Circ Res 1997; 81:477-84. [PMID: 9314828 DOI: 10.1161/01.res.81.4.477] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
[Ca2+]i was measured using the fluorescent indicator indo 1 in voltage-clamped ferret and rat ventricular myocytes. The Ca2+ content of the sarcoplasmic reticulum (SR) was estimated from the integral of the Na(+)-Ca2+ exchange current activated by caffeine. Refilling of the SR after caffeine removal was enhanced by stimulation. As the systolic Ca2+ transient recovered, the integral of the L-type Ca2+ current decreased and that of the Na(+)-Ca2+ exchange tail current increased. For the early pulses, the gain of Ca2+ via the Ca2+ current is greater than the loss via the exchanger, and during steady state stimulation, the fluxes are equal. The difference in the integrals gives a measure of the net gain of cell Ca2+ with each pulse. When these are summed, the calculated gain of cell Ca2+ agrees well with the increase of SR Ca2+ produced by stimulation, as measured from the caffeine-evoked currents. There was a nonlinear relationship between SR Ca2+ content and the magnitude of the systolic Ca2+ transient such that at high SR Ca2+ content a given increase of content had a greater effect on the Ca2+ transient than did an increase at low SR content. In conclusion, the effects of systolic Ca2+ on the Ca2+ current and Na(+)-Ca2+ exchange current provide a means to regulate SR Ca2+ content and thence the systolic Ca2+ transient.
Collapse
Affiliation(s)
- A W Trafford
- Department of Veterinary Preclinical Sciences, University of Liverpool, UK
| | | | | | | |
Collapse
|
32
|
Montrose-Rafizadeh C, Wang Y, Janczewski AM, Henderson TE, Egan JM. Overexpression of glucagon-like peptide-1 receptor in an insulin-secreting cell line enhances glucose responsiveness. Mol Cell Endocrinol 1997; 130:109-17. [PMID: 9220027 DOI: 10.1016/s0303-7207(97)00079-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted from intestine in response to food intake, enhances insulin secretion from pancreatic beta-cells. In this study, we evaluated the effects of stably transfecting the GLP-1 receptor into an insulinoma cell line, RIN 1046-38, on basal and glucose-mediated insulin secretion and on second messenger pathways involved in insulin secretion. The GLP-1 receptor transfected cells had similar insulin mRNA levels but higher insulin content compared with parental cells. In GLP-1 receptor transfected cells, glucose (0.5 mM)-mediated insulin release was increased compared with parental cells (4.52 +/- 0.79 pmol insulin/l per mg protein x h vs. 2.21 +/- 0.36 pmol insulin/l per mg protein x h; mean +/- S.E., n = 6, P = 0.015, in transfected vs. parental cells, respectively). By hemolytic plaque assay measuring single cell insulin secretion, we observed that in the GLP-1 receptor transfected cells versus parental cells the increased insulin secretion was due to the presence of more glucose-responsive cells as well as more insulin released in response to glucose per cell. Resting intracellular cAMP was higher in the GLP-1 transfected cells (35.96 +/- 3.88 vs. 18.6 +/- 2.01 nmol/l per mg protein x h; mean +/- S.E., n = 4, P = 0.039, in transfected vs. parental cells, respectively). In response to GLP-1, both GLP-1 receptor transfected cells and parental cells showed increased cAMP levels independent of glucose. Resting intracellular calcium was the same in both parental and GLP-1 receptor transfected cells. However, more cells were responsive to glucose in the GLP-1 receptor transfected cells and the calcium transients attained in the presence of glucose developed at a faster rate and reached a higher amplitude than in parental cells. We conclude that having an excess of GLP-1 receptors renders beta-cells more sensitive to glucose.
Collapse
Affiliation(s)
- C Montrose-Rafizadeh
- Laboratory of Clinical Physiology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
33
|
Terracciano CM, MacLeod KT. Measurements of Ca2+ entry and sarcoplasmic reticulum Ca2+ content during the cardiac cycle in guinea pig and rat ventricular myocytes. Biophys J 1997; 72:1319-26. [PMID: 9138577 PMCID: PMC1184514 DOI: 10.1016/s0006-3495(97)78778-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study investigates the contribution of Ca2+ entry via sarcolemmal (SL) Ca2+ channels to the Ca2+ transient and its relationship with sarcoplasmic reticulum (SR) Ca2+ content during steady-state contraction in guinea pig and rat ventricular myocytes. The action potential clamp technique was used to obtain physiologically relevant changes in membrane potential. A method is shown that allows calculation of Ca2+ entry through the SL Ca2+ channels by measuring Cd(2+)-sensitive current during the whole cardiac cycle. SR Ca2+ content was calculated from caffeine-induced transient inward current. In guinea pig cardiac myocytes stimulated at 0.5 Hz and 0.2 Hz, Ca2+ entry through SL Ca2+ channels during a cardiac cycle was approximately 30% and approximately 50%, respectively, of the SR Ca2+ content. In rat myocytes Ca2+ entry via SL Ca2+ channels at 0.5 Hz was approximately 3.5% of the SR Ca2+ content. In the presence of 500 nM thapsigargin Ca2+ entry via SL Ca2+ channels in guinea pig cardiac cells was 39% greater than in controls, suggesting a larger contribution of this mechanism to the Ca2+ transient when the SR is depleted of Ca2+. These results provide quantitative support to the understanding of the relationship between Ca2+ entry and the SR Ca2+ content and may help to explain differences in the Ca2+ handling observed in different species.
Collapse
Affiliation(s)
- C M Terracciano
- Imperial College School of Medicine, National Heart and Lung Institute, London, England.
| | | |
Collapse
|
34
|
Wang HX, Zhang WM, Sheng JZ, Wong TM. High carbachol increases the electrically induced [Ca2+]i transient in the single isolated ventricular myocyte of rats. Eur J Pharmacol 1997; 319:91-9. [PMID: 9030903 DOI: 10.1016/s0014-2999(96)00825-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to investigate the mechanisms responsible for the inotropic effects of muscarinic acetylcholine receptor stimulation by high concentrations of muscarinic receptor agonists, we studied the effects of carbachol at 30-300 microM on the electrically induced [Ca2+]i transient of rat isolated ventricular myocytes. Carbachol at this dose range increased the amplitude and duration of the electrically induced [Ca2+]i transient time and dose dependently. It also increased the resting fluorescence ratio and time to 80% decline of amplitude from the peak. At 100-300 microM the increase in [Ca2+]i transient was followed by a cluster of Ca2+ oscillations in 50-83% of the cells studied. The effects were blocked by atropine, but not pertussis toxin. Depletion of Ca2+ from sarcoplasmic reticulum by ryanodine, which itself reduced the amplitude of the [Ca2+]i transient and increase resting fluorescence, abolished the effect of carbachol on the [Ca2+]i transient without affecting its effect on resting fluorescence ratio. The caffeine-induced [Ca2+]i transient was unaffected by prior addition of carbachol in a Ca2+ free and low Na+ solution. Inhibition of Ca2+ by the L-type Ca2+ channel blocker, verapamil, which itself reduced the amplitude of the [Ca2+]i transient without affecting the resting fluorescence ratio, attenuated the augmentation of the amplitude of the [Ca2+]i transient elicited by carbachol. Ni2+, a non-specific Ca2+ channel blocker and an inhibitor of Na(+)-Ca2+ exchange, abolished the effects of carbachol on both [Ca2+]i transient and resting fluorescence ratio. Low external Na+, which increased the resting fluorescence ratio due to its inhibitory effect on Na(+)-Ca2+ exchange, also abolished the effects of carbachol. The results indicate that the inotropic effect of muscarinic acetylcholine receptor stimulation by high concentrations of a muscarinic receptor agonist may be due to an increase in the electrically induced [Ca2+]i transient in ventricular myocytes via a process which is not pertussis toxin sensitive. The increase in the electrically induced [Ca2+]i transient may result from increases in Na2(+)-Ca2+ exchange and influx of Ca2+ via voltage-gated Ca2+ channels, and mobilization of Ca2+ from the intracellular store. The mobilization of Ca2+ from the intracellular store is a secondary event. The study has provided for the first time that muscarinic acetylcholine receptor stimulation by high concentrations of carbachol increases Ca2+ influx via the Ca2+ channel and mobilization of Ca2+ from its intracellular store. The study has also demonstrated for the first time the occurrence of Ca2+ oscillations induced by high concentrations of carbachol.
Collapse
Affiliation(s)
- H X Wang
- Department of Physiology, University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
35
|
Wang HX, Kwan CY, Wong TM. Tetrandrine inhibits electrically induced [Ca2+]i transient in the isolated single rat cardiomyocyte. Eur J Pharmacol 1997; 319:115-22. [PMID: 9030906 DOI: 10.1016/s0014-2999(96)00834-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of tetrandrine on the electrically induced elevation of cytosolic Ca2+ concentration, [Ca2+]i, in the single isolated rat cardiomyocyte was studied with a fluorometric ratio method using fura-2 acetomethylester (fura-2/AM) was Ca2+ indicator. Tetrandrine (3-100 microM) concentration and time dependently inhibited the amplitude of the [Ca2+]i transient without any significant effect on the resting level of [Ca2+]i. At high concentrations (60-100 microM), tetrandrine also prolonged the time to reach the peak (t1.0) and the time to decline the 20% of the peak level (t0.2) of the electrically induced [Ca2+]i transient. The effect of tetrandrine was fast in onset and fully reversible upon washout. Tetrandrine (10 microM) partially inhibited the elevation of [Ca2+]i in response to KCl-induced depolarization. Verapamil and diltiazem mimicked the effects of tetrandrine given at low concentrations, but not at high concentrations. At high concentrations, tetrandrine reduced the magnitude of the caffeine-induced [Ca2+]i transient. Tetrandrine (100 microM) administered after thapsigargin, which itself decreased the amplitude and prolonged the duration of the electrically induced [Ca2+]i transient, further decreased the amplitude of the [Ca2+]i elevation. After ryanodine, which itself decreased the amplitude of the [Ca2+]i transient, 100 microM tetrandrine not only further reduced the amplitude, but also prolonged the duration of the electrically induced [Ca2+]i transient. These results provide evidence that in addition to its inhibitory effect on Ca2+ influx at the sarcolemma at the therapeutically relevant concentrations, tetrandrine at high concentrations may inhibit Ca2+ uptake into the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- H X Wang
- Department of Physiology, Faculty of Medicine, University of Hong Kong, Pokfulum, Hong Kong
| | | | | |
Collapse
|
36
|
Webb TE, Boluyt MO, Barnard EA. Molecular biology of P2Y purinoceptors: expression in rat heart. JOURNAL OF AUTONOMIC PHARMACOLOGY 1996; 16:303-7. [PMID: 9131403 DOI: 10.1111/j.1474-8673.1996.tb00040.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Application of molecular biology to the study of P2Y purinoceptors has led to the identification of seven such receptors. Here we briefly review their properties and investigate qualitatively the expression of four rat receptor transcripts in heart. 2. The reverse transcriptase-polymerase chain reaction was used to ascertain whether the rat P2Y1, P2Y2, P2Y4 and P2Y6 receptor transcripts were expressed in whole heart, neonatal cardiac fibroblasts, neonatal cardiac myocytes and adult cardiac myocytes. 3. All receptor sequences could be amplified from neonatal rat whole heart, with P2Y6 appearing the most abundant transcript of the four. P2Y1 is expressed at higher levels in comparison to P2Y2, P2Y4 and P2Y6 in the neonatal myocyte. In the adult myocyte P2Y1, P2Y2 and P2Y6 could be amplified but P2Y4 could not be detected. In the neonatal fibroblast, P2Y1 and P2Y6 appear to be expressed at higher levels than P2Y2 and P2Y4. 4. In summary, it is concluded that multiple P2Y receptor subtypes are expressed in heart and that the expression in myocytes changes from the neonate to the adult.
Collapse
Affiliation(s)
- T E Webb
- Molecular Neurobiology Unit, Royal Free Hospital School of Medicine, London, UK
| | | | | |
Collapse
|
37
|
Janiak R, Lewartowski B. Early after-depolarisations induced by noradrenaline may be initiated by calcium released from sarcoplasmic reticulum. Mol Cell Biochem 1996; 163-164:125-30. [PMID: 8974047 DOI: 10.1007/bf00408648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the effect of 10(-8) M noradrenaline (NA) on [Ca2+]i and electrical activity of single myocytes of guinea-pig ventricular myocardium loaded with Indo 1-AM. Membrane potential was recorded by means of the patch electrode and patch amplifier set to the current clamp mode. Cells were stimulated at a rate of 30/min by 3 ms pulses of the current injected through the recording electrode. Superfusion of NA resulted in slight shortening of action potentials (APs), increase in rate of rise and amplitude of the respective Ca2+ transients, and appearance of secondary Ca2+ transients of two kinds: 1. appearing before repolarisation of AP and decay of the preceding Ca2+ transient were completed and 2. appearing between the APs. We named them early after-transients (EAT) and delayed after-transients (DAT), respectively. Without any additional intervention EATs caused some prolongation of APs duration and DATs resulted in subthreshold delayed after-depolarisations (DADs). When sarcolemmal K+ conductance was decreased by tetraethylammonium (TEA) in the patch electrode or 20 microM BaCl2 in the Tyrode solution, EATs initiated early after depolarizations (EADs) and DATs initiated suprathreshold DADs triggering full-sized APs. Superfusion of 30.0 mM Na+ (replaced with LiCl) resulted in reduction of AP duration by 70% and appearance of DATs. Also, the frequent multiple oscillations of Ca2+ concentration were often observed. Neither DATs nor the oscillations had any affect on electrical activity of the cells. Their electrogenicity could not be increased by TEA or 20.0 microM Ba2+. EATs and DATs and their respective EADs and DADs could not be initiated by NA or low Na+ superfusion in the cells pretreated with 2 x 10(-7) M thapsigargin, a selective blocker of Ca(2+)-ATPase of sarcoplasmic reticulum (SR). We conclude that in contrast to the current hypothesis, EADs can be initiated by Ca2+ released early in the cardiac cycle from the overloaded SR, and that electrogenicity of both types of Ca2+ oscillations critically depends on the sarcolemmal K+ conductance.
Collapse
Affiliation(s)
- R Janiak
- Department of Clinical Physiology, Medical Center of Postgraduate Education, Warsaw, Poland
| | | |
Collapse
|
38
|
Baudet S, Do E, Noireaud J, Le Marec H. Alterations in the force-frequency relationship by tert-butylbenzohydroquinone, a putative SR Ca2+ pump inhibitor, in rabbit and rat ventricular muscle. Br J Pharmacol 1996; 117:258-67. [PMID: 8789377 PMCID: PMC1909275 DOI: 10.1111/j.1476-5381.1996.tb15185.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The effects of 2,5 di-(tert-butyl)-1,4-benzohydroquinone (TBQ), a putative inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, on twitch tension, time course and SR Ca2+ content have been studied at different stimulation frequencies (0.5-3 Hz) in isolated preparations from the rabbit and rat right ventricle, at 37 degrees C. 2. At 0.5Hz, 30 microM TBQ induced a marked negative inotropic effect in both species (-57% in the rabbit and -68% in the rat) and decreased the rate of rise and fall of twitch tension. In parallel, SR Ca2+ content (assessed by rapid cooling contractures) was depressed in the rabbit by 42%. The force-frequency relationship (positive for the rabbit and negative for the rat) was significantly attenuated. In the rabbit, this alteration was shown to rely on insufficient SR Ca2+ reloading with increasing frequencies. 3. Exposure of TBQ-treated preparations to 8 mM extracellular Ca2+ or 5 microM isoprenaline were effective in reloading the SR with Ca2+ whereas 20 mM caffeine emptied this compartment. 4. In the rabbit ventricle, increase in stimulation frequency shortened control twitch time course by decreasing both the time to peak tension (TTP) and the time to half relaxation (t1/2). TBQ did not differentially affect the pattern for t1/2 but significantly attenuated the frequency-induced decrease of TTP. 5. In rabbit ventricular muscle, the action potential duration increased between 0.5 and 3 Hz whether or not TBQ was present. However, TBQ induced a small but significant additional action potential shortening. 6. TBQ decreased twitch tension in the rat ventricle between 0.5 and 3 Hz but the negative staircase was not differentially affected by the SR Ca2+ pump inhibitor. In control conditions and in the presence of 30 microM TBQ, t1/2 was frequency-independent but TBQ consistently increased this parameter (by approximately 29%). 7. These data argue in favour of a specific and partial inhibition of the SR Ca2+ pump by 30 microM TBQ in the rabbit and rat ventricle and emphasise the importance of SR Ca2+ uptake in the force-frequency phenomenon.
Collapse
Affiliation(s)
- S Baudet
- Laboratoire de Physiologie et Pharmacologie Cellulaire et Moléculaire, Hôpital G. R. Laënnec, Nantes, France
| | | | | | | |
Collapse
|
39
|
Delbridge LM, Bassani JW, Bers DM. Steady-state twitch Ca2+ fluxes and cytosolic Ca2+ buffering in rabbit ventricular myocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C192-9. [PMID: 8772444 DOI: 10.1152/ajpcell.1996.270.1.c192] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intracellular Ca2+ ([Ca2+]i) transients and transsarcolemmal Ca2+ currents were measured in indo 1-loaded isolated rabbit ventricular myocytes during whole cell voltage clamp to quantitate the components of cytosolic Ca2+ influx and to describe the dynamic aspects of cytosolic Ca2+ buffering during steady-state contraction (0.5 Hz, 22 degrees C). Sarcolemmal Ca2+ influx was directly measured from the integrated Ca2+ current (Ica) recorded during the clamp (158 +/- 10 attomoles; amol). Sarcoplasmic reticulum (SR) Ca2+ content was determined from the integrated electrogenic Na+/Ca2+ exchange current (Ix) induced during rapid application and sustained exposure of cells to caffeine to elicit the release of the SR Ca2+ load (1,208 +/- 170 amol). The mean steady-state SR Ca2+ load was calculated to be 87 +/- 13 microM (mumol/l nonmitochondrial cytosolic volume). Ca2+ influx via Ica represented approximately 14% of the stored SR Ca2+ and 23% of the total cytosolic Ca2+ flux during a twitch (47 +/- 6 microM). Comparison of electrophysiologically measured Ca2+ fluxes with Ca2+ transients yields apparent buffering values of 60 for caffeine contractures and 110 for twitches (delta Ca2+ total/delta Ca2+ free). This is consistent with the occurrence of "active" buffering of cytosolic Ca2+ by SR Ca2+ uptake during the twitch.
Collapse
Affiliation(s)
- L M Delbridge
- Department of Physiology, Loyola University School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
40
|
Corda S, Spurgeon HA, Lakatta EG, Capogrossi MC, Ziegelstein RC. Endoplasmic reticulum Ca2+ depletion unmasks a caffeine-induced Ca2+ influx in human aortic endothelial cells. Circ Res 1995; 77:927-35. [PMID: 7554146 DOI: 10.1161/01.res.77.5.927] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intracellular Ca2+ pools contribute to changes in cytosolic [Ca2+] ([Ca2+]i), which play an important role in endothelial cell signaling. Recently, endothelial ryanodine-sensitive Ca2+ stores were shown to regulate agonist-sensitive intracellular Ca2+ pools. Since caffeine binds the ryanodine Ca2+ release channel on the endoplasmic reticulum in a variety of cell types, we examined the effect of caffeine on [Ca2+]i in human aortic endothelial cell monolayers loaded with the fluorescent probe indo 1. Under baseline conditions, 10 mmol/L caffeine induced a small increase in [Ca2+]i from 86 +/- 10 to 115 +/- 17 nmol/L (mean +/- SEM); this effect was similar to that of 5 mumol/L ryanodine and was unaffected by buffer Ca2+ removal. After depletion of an intracellular Ca2+ store by the irreversible endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin (1 mumol/L), ryanodine did not affect [Ca2+]i. In contrast, caffeine induced a large rapid increase in [Ca2+]i (176 +/- 19 to 338 +/- 35 nmol/L, P < .001) after thapsigargin exposure; this effect of caffeine was only observed when extracellular Ca2+ was present. A similar increase in [Ca2+]i was induced by caffeine after depletion of ryanodine- and histamine-sensitive Ca2+ stores or after pretreatment with the endoplasmic reticulum Ca(2+)-ATPase inhibitor cyclopiazonic acid (10 mumol/L). Thus, under baseline conditions the effect of caffeine on [Ca2+]i is similar to that of ryanodine and appears to be due to the release of an intracellular store. However, after depletion of an endoplasmic reticulum Ca2+ store, caffeine, but not ryanodine, stimulates Ca2+ influx, resulting in a large increase in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Corda
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Md., USA
| | | | | | | | | |
Collapse
|
41
|
Terracciano CM, Naqvi RU, MacLeod KT. Effects of rest interval on the release of calcium from the sarcoplasmic reticulum in isolated guinea pig ventricular myocytes. Circ Res 1995; 77:354-60. [PMID: 7614721 DOI: 10.1161/01.res.77.2.354] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Guinea pig cardiac myocytes were loaded with the fluorescent dye indo 1, and cell contraction was measured by a video edge-detection system. Ca2+ was released from the sarcoplasmic reticulum (SR) by rapidly cooling the myocytes or by rapid application of 10 mmol/L caffeine. Estimates of the amount of Ca2+ released from the SR after different rest intervals (ie, under different loading conditions) were obtained by measuring the current evoked by rapid application of 10 mmol/L caffeine, which we call Na+/Ca2+ exchange current. This current is completely inhibited by removal of extracellular Na+ and Ca2+ or by application of 5 mmol/L Ni2+. SR Ca2+ release after rest intervals of 5 to 120 seconds (assuming cell volume to be 30 x 10(-12) L) was estimated to be 57.8 +/- 5.7 to 25.7 +/- 4.5 mumol/L accessible cell volume, respectively, equivalent to 23 to 10 mumol/kg wet wt, respectively. There was an exponential decline in Ca2+ release from the SR after rest intervals of 2 to 120 seconds (rate constant, 0.029 s-1; t1/2, 24 seconds); thereafter, there remained a portion (56%) of Ca2+ releasable to caffeine application. We found a similar exponential decay (rate constant, 0.020 s-1; t1/2, 35 seconds) of the size of rapid cooling contractures with increasing rest intervals. The time to peak of the Na+/Ca2+ exchange current in the presence of caffeine slowed at long rest intervals, ie, at smaller SR loads. A decrease in SR load of 50% increased the time to peak of the exchange current by 213 +/- 37% (n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C M Terracciano
- Department of Cardiac Medicine, National Heart and Lung Institute, University of London, UK
| | | | | |
Collapse
|
42
|
Bouchard RA, Clark RB, Giles WR. Effects of action potential duration on excitation-contraction coupling in rat ventricular myocytes. Action potential voltage-clamp measurements. Circ Res 1995; 76:790-801. [PMID: 7728996 DOI: 10.1161/01.res.76.5.790] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although each of the fundamental processes involved in excitation-contraction coupling in mammalian heart has been identified, many quantitative details remain unclear. The initial goal of our experiments was to measure both the transmembrane Ca2+ current, which triggers contraction, and the Ca2+ extrusion due to Na(+)-Ca2+ exchange in a single ventricular myocyte. An action potential waveform was used as the command for the voltage-clamp circuit, and the membrane potential, membrane current, [Ca2+]i, and contraction (unloaded cell shortening) were monitored simultaneously. Ca(2+)-dependent membrane current during an action potential consists of two components: (1) Ca2+ influx through L-type Ca2+ channels (ICa-L) during the plateau of the action potential and (2) a slow inward tail current that develops during repolarization negative to approximately -25 mV and continues during diastole. This slow inward tail current can be abolished completely by replacement of extracellular Na+ with Li+, suggesting that it is due to electrogenic Na(+)-Ca2+ exchange. In agreement with this, the net charge movement corresponding to the inward component of the Ca(2+)-dependent current (ICa-L) was approximately twice that during the slow inward tail current, a finding that is predicted by a scheme in which the Ca2+ that enters during ICa is extruded during diastole by a 3 Na(+)-1 Ca2+ electrogenic exchanger. Action potential duration is known to be a significant inotropic variable, but the quantitative relation between changes in Ca2+ current, action potential duration, and developed tension has not been described in a single myocyte. We used the action potential voltage-clamp technique on ventricular myocytes loaded with indo 1 or rhod 2, both Ca2+ indicators, to study the relation between action potential duration, ICa-L, and cell shortening (inotropic effect). A rapid change from a "short" to a "long" action potential command waveform resulted in an immediate decrease in peak ICa-L and a marked slowing of its decline (inactivation). Prolongation of the action potential also resulted in slowly developing increases in the magnitude of Ca2+ transients (145 +/- 2%) and unloaded cell shortening (4.0 +/- 0.4 to 7.6 +/- 0.4 microns). The time-dependent nature of these effects suggests that a change in Ca2+ content (loading) of the sarcoplasmic reticulum is responsible. Measurement of [Ca2+]i by use of rhod 2 showed that changes in the rate of rise of the [Ca2+]i transient (which in rat ventricle is due to the rate of Ca2+ release from the sarcoplasmic reticulum) were closely correlated with changes in the magnitude and the time course of ICa-L.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R A Bouchard
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
43
|
Subbaiah CC, Bush DS, Sachs MM. Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. THE PLANT CELL 1994; 6:1747-62. [PMID: 7866021 PMCID: PMC160559 DOI: 10.1105/tpc.6.12.1747] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Based on pharmacological evidence, we previously proposed that intracellular Ca2+ mediates the perception of O2 deprivation in maize seedlings. Herein, using fluorescence imaging and photometry of Ca2+ in maize suspension-cultured cells, the proposal was further investigated. Two complementary approaches were taken: (1) real time analysis of anoxia-induced changes in cytosolic Ca2+ concentration ([Ca]i) and (2) experimental manipulation of [Ca]i and then assay of the resultant anoxia-specific responses. O2 depletion caused an immediate increase in [Ca2+]i, and this was reversible within a few seconds of reoxygenation. The [Ca]i elevation proceeded independent of extracellular Ca2+. The kinetics of the Ca2+ response showed that it occurred much earlier than any detectable changes in gene expression. Ruthenium red blocked the anoxic [Ca]i elevation and also the induction of adh1 (encoding alcohol dehydrogenase) and sh1 (encoding sucrose synthase) mRNA. Ca2+, when added along with ruthenium red, prevented the effects of the antagonist on the anoxic responses. Verapamil and bepridil failed to block the [Ca]i rise induced by anoxia and were equally ineffective on anoxic gene expression. Caffeine induced an elevation of [Ca]i as well as ADH activity under normoxia. The data provide direct evidence for [Ca]i elevation in maize cells as a result of anoxia-induced mobilization of Ca2+ from intracellular stores. Furthermore, any manipulation that modified the [Ca]i rise brought about a parallel change in the expression of two anoxia-inducible genes. Thus, these results corroborate our proposal that [Ca]i is a physiological transducer of anoxia signals in plants.
Collapse
Affiliation(s)
- C C Subbaiah
- Department of Agronomy, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
44
|
Berlin JR, Bassani JW, Bers DM. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys J 1994; 67:1775-87. [PMID: 7819510 PMCID: PMC1225540 DOI: 10.1016/s0006-3495(94)80652-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires approximately 50 microM Ca2+ to be added to the cytosol.
Collapse
Affiliation(s)
- J R Berlin
- Bockus Research Institute, Graduate Hospital, Philadelphia, Pennsylvania 19146
| | | | | |
Collapse
|