1
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
2
|
Li J, Zhang Z, Bo H, Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic Biol Med 2024; 213:409-425. [PMID: 38295887 DOI: 10.1016/j.freeradbiomed.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, demonstrating substantial plasticity. Physiological or pathological stimuli can induce transitions in muscle fiber types. However, the precise regulatory mechanisms behind these transitions remains unclear. This paper reviews the classification and characteristics of muscle fibers, along with the classical mechanisms of muscle fiber type transitions. Additionally, the role of exercise-induced muscle fiber type transitions in disease intervention is reviewed. Epigenetic pathways mediate cellular adaptations and thus represent potential targets for regulating muscle fiber type transitions. This paper focuses on the mechanisms by which epigenetic modifications couple mitochondrial function and contraction characteristics. Reactive Oxygen Species (ROS) are critical signaling regulators for the health-promoting effects of exercise. Finally, we discuss the role of exercise-induced ROS in regulating epigenetic modifications and the transition of muscle fiber types.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
3
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
4
|
Flockhart M, Tischer D, Nilsson LC, Blackwood SJ, Ekblom B, Katz A, Apró W, Larsen FJ. Reduced glucose tolerance and insulin sensitivity after prolonged exercise in endurance athletes. Acta Physiol (Oxf) 2023; 238:e13972. [PMID: 37017615 DOI: 10.1111/apha.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023]
Abstract
AIM The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms. METHODS Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer. RESULTS Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON. CONCLUSION Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.
Collapse
Affiliation(s)
- Mikael Flockhart
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Dominik Tischer
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Lina C Nilsson
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Sarah J Blackwood
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Abram Katz
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
5
|
Thomas HJ, Ang T, Morrison DJ, Keske MA, Parker L. Acute exercise and high-glucose ingestion elicit dynamic and individualized responses in systemic markers of redox homeostasis. Front Immunol 2023; 14:1127088. [PMID: 37063903 PMCID: PMC10102861 DOI: 10.3389/fimmu.2023.1127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundBiomarkers of oxidation-reduction (redox) homeostasis are commonly measured in human blood to assess whether certain stimuli (e.g., high-glucose ingestion or acute exercise) lead to a state of oxidative distress (detrimental to health) or oxidative eustress (beneficial to health). Emerging research indicates that redox responses are likely to be highly individualized, yet few studies report individual responses. Furthermore, the effects of complex redox stimuli (e.g., high-glucose-ingestion after exercise) on redox homeostasis remains unclear. We investigated the effect of acute exercise (oxidative eustress), high-glucose ingestion (oxidative distress), and high-glucose ingestion after exercise (both oxidative eu/distress), on commonly measured redox biomarkers in serum/plasma.MethodsIn a randomized crossover fashion, eight healthy men (age: 28 ± 4 years; BMI: 24.5 ± 1.5 kg/m2 [mean ± SD]) completed two separate testing conditions; 1) consumption of a high-glucose mixed-nutrient meal (45% carbohydrate [1.1 g glucose.kg-1], 20% protein, and 35% fat) at rest (control trial), and 2) consumption of the same meal 3 h and 24 h after 1 h of moderate-intensity cycling exercise (exercise trial). Plasma and serum were analyzed for an array of commonly studied redox biomarkers.ResultsOxidative stress and antioxidant defense markers (hydrogen peroxide, 8-isoprostanes, catalase, superoxide dismutase, and nitrate levels) increased immediately after exercise (p < 0.05), whereas nitric oxide activity and thiobarbituric acid reactive substances (TBARS) remained similar to baseline (p > 0.118). Nitric oxide activity and nitrate levels decreased at 3 h post-exercise compared to pre-exercise baseline levels. Depending on when the high-glucose mixed nutrient meal was ingested and the postprandial timepoint investigated, oxidative stress and antioxidant defense biomarkers either increased (hydrogen peroxide, TBARS, and superoxide dismutase), decreased (hydrogen peroxide, 8-isoprostanes, superoxide dismutase, nitric oxide activity, nitrate, and nitrite), or remained similar to pre-meal baseline levels (hydrogen peroxide, 8-isoprostanes, TBARS, catalase, superoxide dismutase and nitrite). Redox responses exhibited large inter-individual variability in the magnitude and/or direction of responses.ConclusionFindings highlight the necessity to interpret redox biomarkers in the context of the individual, biomarker measured, and stimuli observed. Individual redox responsiveness may be of physiological relevance and should be explored as a potential means to inform personalized redox intervention.
Collapse
Affiliation(s)
- Hannah J. Thomas
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dale J. Morrison
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle A. Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
- *Correspondence: Lewan Parker,
| |
Collapse
|
6
|
Wen P, Zheng B, Zhang B, Ma T, Hao L, Zhang Y. The role of ageing and oxidative stress in intervertebral disc degeneration. Front Mol Biosci 2022; 9:1052878. [PMID: 36419928 PMCID: PMC9676652 DOI: 10.3389/fmolb.2022.1052878] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 10/10/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary cause of intervertebral disc (IVD) disease. With the increased ageing of society, an increasing number of patients are plagued by intervertebral disc disease. Ageing not only accelerates the decreased vitality and functional loss of intervertebral disc cells but also increases intracellular oxidative stress. Moreover, the speed of intervertebral disc ageing is also linked to high levels of reactive oxygen species (ROS) production. Not only is the production of ROS increased in ageing intervertebral disc cells, but antioxidant levels in degenerative intervertebral discs also decrease. In addition to the intervertebral disc, the structural components of the intervertebral disc matrix are vulnerable to oxidative damage. After chronic mitochondrial dysfunction, ROS can be produced in large quantities, while autophagy can eliminate these impaired mitochondria to reduce the production of ROS. Oxidative stress has a marked impact on the occurrence of IDD. In the future, IDD treatment is aiming to improve oxidative stress by regulating the redox balance in intervertebral disc cells. In summary, ageing and oxidative stress promote the degeneration of IVD, but further basic and clinical trials are needed to determine how to treat oxidative stress. At present, although there are many in-depth studies on the relationship between oxidative stress and degeneration of intervertebral disc cells, the specific mechanism has not been elucidated. In this paper, the main causes of intervertebral disc diseases are studied and summarized, and the impact of oxidative stress on intervertebral disc degeneration is studied.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bolong Zheng
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tao Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yumin Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Yoshioka Y, Kono R, Kuse M, Yamashita Y, Ashida H. Phenylpropanoids and neolignans isolated from Myristica fragrans enhance glucose uptake in myotubes. Food Funct 2022; 13:3879-3893. [PMID: 35275149 DOI: 10.1039/d1fo04408g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nutmeg is the seed of Myristica fragrans or its powder and is used as a spice and a traditional medicine. The antidiabetic effect of nutmeg is not fully understood yet. In this study, we examine the isolation and identification of the active compounds of Myristica fragrans with regards to glucose uptake and elucidate their mechanism in L6 myotubes. Myrisiticin, licarin B, erythro-2-(4-allyl-2,6-dimethoxy-phenoxy)-1-(3,4-dimethoxyphenyl)-propan-1-ol (ADDP) and (7S,8R)-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)-propan-1-ol (ADTP) were isolated and identified as the active compounds. Myristicin or a mixture of ADDP and ADTP promoted the translocation of glucose transporter 4 (GLUT4) through phosphorylation of AMP-activated protein kinase in L6 myotubes 15 min after treatment, while licarin B promoted it 240 min after treatment. Oral administration of the fraction from Myristica fragrans containing these active compounds to ICR mice suppressed post-prandial hyperglycemia. Thus, Myristica fragrans is a promising functional food to prevent post-prandial hyperglycemia and type 2 diabetes mellitus by promoting glucose uptake in muscle.
Collapse
Affiliation(s)
- Yasukiyo Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.,Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 4228526, Japan
| | - Ryunoshin Kono
- Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.
| | - Masaki Kuse
- Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.
| | - Yoko Yamashita
- Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.
| | - Hitoshi Ashida
- Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 651-8501, Japan.
| |
Collapse
|
8
|
Yan M, Wu MX. Low-level light pre-conditioning promotes C2C12 myoblast differentiation under hypoxic conditions. JOURNAL OF BIOPHOTONICS 2022; 15:e202100246. [PMID: 34751510 DOI: 10.1002/jbio.202100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Exercise, especially anaerobic one, can gradually increase muscle mass over time as a result of adaptive responses of muscle cells to ensure metabolic homeostasis in the tissue. Low-level light therapy (LLLT) or photobiomodulation exhibits beneficial effects on promoting muscular functions, regeneration, and recovery from exhausting exercise, although the underlying cellular mechanisms remain poorly understood. We found that hypoxia, a condition following anaerobic exercise, significantly impeded myotube differentiation from myoblasts. However, this adverse effect was blunted greatly by pre-exposure of myoblast cells to a 980 nm laser at 0.1 J/cm2 , resulting in almost nearly normal myotube differentiation. LLL pre-treatment enhanced myotube formation by 80%, with a tubular diameter of 4.28 ± 0.11 μm on average, representative of a 53.4% increase over sham light treatment. The normalized myoblast differentiation concurred with 68% more mitochondrial mass and myogenin expression over controls. Moreover, LLL pre-treatment appeared to enhance glucose uptake, prevent energy metabolic switch from oxidative phosphorylation to glycolysis, and diminish lactate production under hypoxic conditions. The observation provides valuable guidance with respect to the timing of LLLT and its potential effects on muscle strengths in concert with anaerobic exercise.
Collapse
Affiliation(s)
- Min Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mei X Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Meng J, Lv Z, Wang Y, Chen C. Identification of the redox-stress signaling threshold (RST): Increased RST helps to delay aging in C. elegans. Free Radic Biol Med 2022; 178:54-58. [PMID: 34843919 DOI: 10.1016/j.freeradbiomed.2021.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) play a dual role since they can be either beneficial or harmful to living systems. With increasing ROS concentrations, the roles of ROS change from advantageous to detrimental. There seems to be a concentration threshold that determines the transition from their advantageous to detrimental effects. If we purposefully increase the threshold, that is, increase the range of ROS that plays an advantageous role, it should be beneficial for individuals. To test this hypothesis, in C. elegans, the effects of oxidative challenge induced by different concentrations of paraquat (PQ) on nematode lifespan were evaluated. We found that there is a maximum level below which redox stress has benefits and named this threshold as "Redox-stress Signaling Threshold (RST)". Furthermore, we found that starvation (or heat stress or exercise) stimuli at early stage in C. elegans could increase the RST, indicating that this value is not fixed and can be increased by the adaptive response. More intriguingly, we found that increasing RST could improve Redox-stress Response Capacity (RRC) and healthspan, suggesting that increasing the RST value through early stimulation will be an effective strategy to delay aging.
Collapse
Affiliation(s)
- Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Lv
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Interweaving of Reactive Oxygen Species and Major Neurological and Psychiatric Disorders. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:409-425. [PMID: 34896378 DOI: 10.1016/j.pharma.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species are found to be having a wide range of biological effects ranging from regulating functions in normal physiology to alteration and damaging various processes and cell components causing a number of diseases. Mitochondria is an important organelle responsible for energy production and in many signalling mechanisms. The electron transport chain in mitochondria where oxidative phosphorylation takes place is also coupled with the generation of reactive oxygen species (ROS). Changes in normal homeostasis and overproduction of reactive oxygen species by various sources are found to be involved in multiple neurological and major neurodegenerative diseases. This review summarises the role of reactive oxygen species and the mechanism of neuronal loss in major neuronal disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Depression, and Schizophrenia.
Collapse
|
11
|
McKeegan K, Mason SA, Trewin AJ, Keske MA, Wadley GD, Della Gatta PA, Nikolaidis MG, Parker L. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biol 2021; 44:102005. [PMID: 34049222 PMCID: PMC8167146 DOI: 10.1016/j.redox.2021.102005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are well known for their role in insulin resistance and the development of cardiometabolic disease including type 2 diabetes mellitus (T2D). Conversely, evidence supports the notion that ROS are a necessary component for glucose cell transport and adaptation to physiological stress including exercise and muscle contraction. Although genetic rodent models and cell culture studies indicate antioxidant treatment to be an effective strategy for targeting ROS to promote health, human findings are largely inconsistent. In this review we discuss human research that has investigated antioxidant treatment and glycemic control in the context of health (healthy individuals and during exercise) and disease (insulin resistance and T2D). We have identified key factors that are likely to influence the effectiveness of antioxidant treatment: 1) the context of treatment including whether oxidative distress or eustress is present (e.g., hyperglycemia/lipidaemia or during exercise and muscle contraction); 2) whether specific endogenous antioxidant deficiencies are identified (redox screening); 3) whether antioxidant treatment is specifically designed to target and restore identified deficiencies (antioxidant specificity); 4) and the bioavailability and bioactivity of the antioxidant which are influenced by treatment dose, duration, and method of administration. The majority of human research has failed to account for these factors, limiting their ability to robustly test the effectiveness of antioxidants for health promotion and disease prevention. We propose that a modern "redox screening" and "personalized antioxidant treatment" approach is required to robustly explore redox regulation of human physiology and to elicit more effective antioxidant treatment in humans.
Collapse
Affiliation(s)
- Kathryn McKeegan
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
12
|
Blackwood SJ, Jude B, Mader T, Lanner JT, Katz A. Role of nitration in control of phosphorylase and glycogenolysis in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E691-E701. [PMID: 33554777 DOI: 10.1152/ajpendo.00506.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylase is one of the most carefully studied proteins in history, but knowledge of its regulation during intense muscle contraction is incomplete. Tyrosine nitration of purified preparations of skeletal muscle phosphorylase results in inactivation of the enzyme and this is prevented by antioxidants. Whether an altered redox state affects phosphorylase activity and glycogenolysis in contracting muscle is not known. Here, we investigate the role of the redox state in control of phosphorylase and glycogenolysis in isolated mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscle preparations during repeated contractions. Exposure of crude muscle extracts to H2O2 had little effect on phosphorylase activity. However, exposure of extracts to peroxynitrite (ONOO-), a nitrating/oxidizing agent, resulted in complete inactivation of phosphorylase (half-maximal inhibition at ∼200 µM ONOO-), which was fully reversed by the presence of an ONOO- scavanger, dithiothreitol (DTT). Incubation of isolated muscles with ONOO- resulted in nitration of phosphorylase and marked inhibition of glycogenolysis during repeated contractions. ONOO- also resulted in large decreases in high-energy phosphates (ATP and phosphocreatine) in the rested state and following repeated contractions. These metabolic changes were associated with decreased force production during repeated contractions (to ∼60% of control). In contrast, repeated contractions did not result in nitration of phosphorylase, nor did DTT or the general antioxidant N-acetylcysteine alter glycogenolysis during repeated contractions. These findings demonstrate that ONOO- inhibits phosphorylase and glycogenolysis in living muscle under extreme conditions. However, nitration does not play a significant role in control of phosphorylase and glycogenolysis during repeated contractions.NEW & NOTEWORTHY Here we show that exogenous peroxynitrite results in nitration of phosphorylase as well as inhibition of glycogenolysis in isolated intact mouse skeletal muscle during short-term repeated contractions. However, repeated contractions in the absence of exogenous peroxynitrite do not result in nitration of phosphorylase or affect glycogenolysis, nor does the addition of antioxidants alter glycogenolysis during repeated contractions. Thus phosphorylase is not subject to redox control during repeated contractions.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Baptiste Jude
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Theresa Mader
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Solna, Sweden
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
13
|
Devrim-Lanpir A, Hill L, Knechtle B. How N-Acetylcysteine Supplementation Affects Redox Regulation, Especially at Mitohormesis and Sarcohormesis Level: Current Perspective. Antioxidants (Basel) 2021; 10:antiox10020153. [PMID: 33494270 PMCID: PMC7909817 DOI: 10.3390/antiox10020153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
Exercise frequently alters the metabolic processes of oxidative metabolism in athletes, including exposure to extreme reactive oxygen species impairing exercise performance. Therefore, both researchers and athletes have been consistently investigating the possible strategies to improve metabolic adaptations to exercise-induced oxidative stress. N-acetylcysteine (NAC) has been applied as a therapeutic agent in treating many diseases in humans due to its precursory role in the production of hepatic glutathione, a natural antioxidant. Several studies have investigated NAC’s possible therapeutic role in oxidative metabolism and adaptive response to exercise in the athletic population. However, still conflicting questions regarding NAC supplementation need to be clarified. This narrative review aims to re-evaluate the metabolic effects of NAC on exercise-induced oxidative stress and adaptive response developed by athletes against the exercise, especially mitohormetic and sarcohormetic response.
Collapse
Affiliation(s)
- Aslı Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul 34862, Turkey;
| | - Lee Hill
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Beat Knechtle
- Medbase St. Gallen am Vadianplatz, 9001 St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-0-71-226-93-00
| |
Collapse
|
14
|
Abstract
The glucose transporter GLUT4 is critical for skeletal muscle glucose uptake in response to insulin and muscle contraction/exercise. Exercise increases GLUT4 translocation to the sarcolemma and t-tubule and, over the longer term, total GLUT4 protein content. Here, we review key aspects of GLUT4 biology in relation to exercise, with a focus on exercise-induced GLUT4 translocation, postexercise metabolism and muscle insulin sensitivity, and exercise effects on GLUT4 expression.
Collapse
Affiliation(s)
- Marcelo Flores-Opazo
- Laboratory of Exercise and Physical Activity Sciences, Department of Physiotherapy, University Finis Terrae, Santiago, Chile
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
16
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
17
|
McConell GK, Wadley GD, Le Plastrier K, Linden KC. Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ∼65% V ̇ O 2 peak in endurance trained men. J Physiol 2020; 598:3859-3870. [PMID: 32588910 PMCID: PMC7540472 DOI: 10.1113/jp277619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Key points AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. However, we previously showed that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we show that there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. It is important that more energy is directed towards examining other potential regulators of exercise metabolism.
Abstract AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. Indeed, AMPK is activated during exercise and activation of AMPK by 5‐aminoimidazole‐4‐carboxyamide‐ribonucleoside (AICAR) increases skeletal muscle glucose uptake and fat oxidation. However, we have previously shown that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we examined whether there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. Eleven untrained (UT; V˙O2peak = 37.9 ± 5.6 ml.kg−1 min−1) and seven endurance trained (ET; V˙O2peak = 61.8 ± 2.2 ml.kg−1 min−1) males completed 120 min of cycling exercise at 66 ± 4% V˙O2peak (UT: 100 ± 21 W; ET: 190 ± 15 W). Muscle biopsies were obtained at rest and following 30 and 120 min of exercise. Muscle glycogen was significantly (P < 0.05) higher before exercise in ET and decreased similarly during exercise in the ET and UT individuals. Exercise significantly increased calculated skeletal muscle free AMP content and more so in the UT individuals. Exercise significantly (P < 0.05) increased skeletal muscle AMPK α2 activity (4‐fold), AMPK αThr172 phosphorylation (2‐fold) and ACCβ Ser222 phosphorylation (2‐fold) in the UT individuals but not in the ET individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. AMP‐activated protein kinase (AMPK) is considered a major regulator of skeletal muscle metabolism during exercise. However, we previously showed that, although AMPK activity increases by 8–10‐fold during ∼120 min of exercise at ∼65% V˙O2peak in untrained individuals, there is no increase in these individuals after only 10 days of exercise training (longitudinal study). In a cross‐sectional study, we show that there is also a lack of activation of skeletal muscle AMPK during 120 min of cycling exercise at 65% V˙O2peak in endurance‐trained individuals. These findings indicate that AMPK is not an important regulator of exercise metabolism during 120 min of exercise at 65% V˙O2peak in endurance trained men. It is important that more energy is directed towards examining other potential regulators of exercise metabolism.
Collapse
Affiliation(s)
- Glenn K McConell
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Glenn D Wadley
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | | | - Kelly C Linden
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Science, Charles Sturt University, Albury, NSW, Australia
| |
Collapse
|
18
|
Henriquez-Olguin C, Meneses-Valdes R, Jensen TE. Compartmentalized muscle redox signals controlling exercise metabolism - Current state, future challenges. Redox Biol 2020; 35:101473. [PMID: 32122793 PMCID: PMC7284909 DOI: 10.1016/j.redox.2020.101473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Exercise imposes cellular stress on contracting skeletal muscle fibers, forcing them to complete molecular adaptations to maintain homeostasis. There is mounting evidence that redox signaling by reactive oxygen species (ROS) is vital for skeletal muscle exercise adaptations across many different exercise modalities. The study of redox signaling is moving towards a growing appreciation that these ROS do not signal in a global unspecific way, but rather elicit their effects in distinct subcellular compartments. This short review will first outline the sources of ROS in exercising skeletal muscle and then discuss some examples of exercise adaptations, which are evidenced to be regulated by compartmentalized redox signaling. We speculate that knowledge of these redox pathways might one day allow targeted manipulation to increase redox-signaling in specific compartments to augment the exercise-hormetic response in health and disease.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Roberto Meneses-Valdes
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Integrated Physiology Unit, Laboratory of Exercise Sciences, MEDS Clinic, Santiago, Chile
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
AVE0991, a Nonpeptide Angiotensin 1-7 Receptor Agonist, Improves Glucose Metabolism in the Skeletal Muscle of Obese Zucker Rats: Possible Involvement of Prooxidant/Antioxidant Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6372935. [PMID: 32089774 PMCID: PMC7008284 DOI: 10.1155/2020/6372935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
Angiotensin 1-7 (Ang 1-7) enhances insulin signaling and glucose transport activity in the skeletal muscle. The aim of our study was to evaluate the effect of AVE0991, a nonpeptide Mas receptor agonist, on the metabolic parameters, expression of RAS components and markers of oxidative stress, and insulin signaling in the skeletal morbidly obese rats. 33-week-old male obese Zucker rats were treated with vehicle and AVE0991 (0.5 mg/kg BW/day) via osmotic minipumps for two weeks. Gene expressions were determined by qPCR and/or Western blot analysis in musculus quadriceps. The enzymatic activities were detected flourometrically (aminopeptidase A) or by colorimetric assay kit (protein tyrosine phosphatase 1B). Administration of AVE0991 enhanced insulin signaling cascade in the skeletal muscle, reflected by improved whole-body glucose tolerance. It has been shown that reactive oxygen species (ROS) have insulin-mimetic action in muscle. The expression of renin receptor, transcription factor PLZF, and prooxidant genes was upregulated by AVE0991 accompanied by elevated expression of genes coding enzymes with antioxidant action. Our results show that AVE0991 administration activates genes involved in both ROS generation and clearance establishing a new prooxidant/antioxidant balance on a higher level, which might contribute to the improved insulin signaling pathway and glucose tolerance of obese Zucker rats.
Collapse
|
20
|
Effect of Mild Hypothermia on the Diaphragmatic Microcirculation and Function in A Murine Cardiopulmonary Resuscitated Model. Shock 2019; 54:555-562. [DOI: 10.1097/shk.0000000000001501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Grotle AK, Stone AJ. Exaggerated exercise pressor reflex in type 2 diabetes: Potential role of oxidative stress. Auton Neurosci 2019; 222:102591. [PMID: 31669797 PMCID: PMC6858935 DOI: 10.1016/j.autneu.2019.102591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) leads to exaggerated cardiovascular responses to exercise, in part due to an exaggerated exercise pressor reflex. Accumulating data suggest excessive oxidative stress contributes to an exaggerated exercise pressor reflex in cardiovascular-related diseases. Excessive oxidative stress is also a primary underlying mechanism for the development and progression of T2DM. However, whether oxidative stress plays a role in mediating the exaggerated exercise pressor reflex in T2DM is not known. Therefore, this review explores the potential role of oxidative stress leading to increased activation of the afferent arm of the exercise pressor reflex. Several lines of evidence support direct and indirect effects of oxidative stress on the exercise pressor reflex. For example, intramuscular ROS may directly and indirectly (by attenuating contracting muscle blood flow) increase group III and IV afferent activity. Oxidative stress is a primary underlying mechanism for the development of neuropathic pain, which in turn is associated with increased group III and IV afferent activity. These are the same type of afferents that evoke muscle pain and the exercise pressor reflex. Furthermore, oxidative stress-induced release of inflammatory mediators may modulate afferent activity. Collectively, these alterations may result in a positive feedback loop that further amplifies the exercise pressor reflex. An exaggerated reflex increases the risk of adverse cardiovascular events. Thus, identifying the contribution of oxidative stress could provide a potential therapeutic target to reduce this risk in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
23
|
Sylow L, Richter EA. Current advances in our understanding of exercise as medicine in metabolic disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Lee HJ, Moon J, Chung I, Chung JH, Park C, Lee JO, Han JA, Kang MJ, Yoo EH, Kwak SY, Jo G, Park W, Park J, Kim KM, Lim S, Ngoei KRW, Ling NXY, Oakhill JS, Galic S, Murray-Segal L, Kemp BE, Mantzoros CS, Krauss RM, Shin MJ, Kim HS. ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways. FASEB J 2019; 33:14825-14840. [PMID: 31670977 DOI: 10.1096/fj.201901440rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
ATPase inhibitory factor 1 (IF1) is an ATP synthase-interacting protein that suppresses the hydrolysis activity of ATP synthase. In this study, we observed that the expression of IF1 was up-regulated in response to electrical pulse stimulation of skeletal muscle cells and in exercized mice and healthy men. IF1 stimulates glucose uptake via AMPK in skeletal muscle cells and primary cultured myoblasts. Reactive oxygen species and Rac family small GTPase 1 (Rac1) function in the upstream and downstream of AMPK, respectively, in IF1-mediated glucose uptake. In diabetic animal models, the administration of recombinant IF1 improved glucose tolerance and down-regulated blood glucose level. In addition, IF1 inhibits ATP hydrolysis by β-F1-ATPase in plasma membrane, thereby increasing extracellular ATP and activating the protein kinase B (Akt) pathway, ultimately leading to glucose uptake. Thus, we suggest that IF1 is a novel myokine and propose a mechanism by which AMPK and Akt contribute independently to IF1-mediated improvement of glucose tolerance impairment. These results demonstrate the importance of IF1 as a potential antidiabetic agent.-Lee, H. J., Moon, J., Chung, I., Chung, J. H., Park, C., Lee, J. O., Han, J. A., Kang, M. J., Yoo, E. H., Kwak, S.-Y., Jo, G., Park, W., Park, J., Kim, K. M., Lim, S., Ngoei, K. R. W., Ling, N. X. Y., Oakhill, J. S., Galic, S., Murray-Segal, L., Kemp, B. E., Mantzoros, C. S., Krauss, R. M., Shin, M.-J., Kim, H. S. ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Jiyoung Moon
- Department of Public Health Sciences, Korea University, Seoul, South Korea
- Laboratory of Gene Regulation and Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - InHyeok Chung
- Department of Public Health Sciences, Korea University, Seoul, South Korea
| | - Ji Hyung Chung
- Department of Biotechnology, CHA University, Pocheon, South Korea
| | - Chan Park
- Department of Biotechnology, CHA University, Pocheon, South Korea
| | - Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Jeong Ah Han
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Min Ju Kang
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Eun Hye Yoo
- Department of Public Health Sciences, Korea University, Seoul, South Korea
| | - So-Young Kwak
- Department of Public Health Sciences, Korea University, Seoul, South Korea
| | - Garam Jo
- Department of Public Health Sciences, Korea University, Seoul, South Korea
| | - Wonil Park
- Department of Physical Education, Korea University, Seoul, South Korea
| | - Jonghoon Park
- Department of Physical Education, Korea University, Seoul, South Korea
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kevin R W Ngoei
- Protein Chemistry and Metabolism, University of Melbourne, Fitzroy, Victoria, Australia
| | - Naomi X Y Ling
- Metabolic Signaling Laboratory, St Vincenf's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signaling Laboratory, St Vincenf's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Sandra Galic
- Protein Chemistry and Metabolism, University of Melbourne, Fitzroy, Victoria, Australia
| | - Lisa Murray-Segal
- Protein Chemistry and Metabolism, University of Melbourne, Fitzroy, Victoria, Australia
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, University of Melbourne, Fitzroy, Victoria, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Christos S Mantzoros
- Division of Endocrinology, Beth-Israel Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Min-Jeong Shin
- Department of Public Health Sciences, Korea University, Seoul, South Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Zhu J, Kovacs L, Han W, Liu G, Huo Y, Lucas R, Fulton D, Greer PA, Su Y. Reactive Oxygen Species-Dependent Calpain Activation Contributes to Airway and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease. Antioxid Redox Signal 2019; 31:804-818. [PMID: 31088299 PMCID: PMC7061305 DOI: 10.1089/ars.2018.7648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/25/2023]
Abstract
Aims: Airway and pulmonary vascular remodeling is an important pathological feature in the pathogenesis of chronic obstructive pulmonary disease (COPD). Tobacco smoke (TS) induces the production of large amounts of reactive oxygen species (ROS) in COPD lungs. We investigated how ROS lead to airway and pulmonary vascular remodeling in COPD. Results: We used in vitro bronchial and pulmonary artery smooth muscle cells (BSMCs and PASMCs), in vivo TS-induced COPD rodent models, and lung tissues of COPD patients. We found that H2O2 and TS extract (TSE) induced calpain activation in BSMCs and PASMCs. Calpain activation was elevated in smooth muscle of bronchi and pulmonary arterioles in COPD patients and TS-induced COPD rodent models. Calpain inhibition attenuated H2O2- and TSE-induced collagen synthesis and proliferation of BSMCs and PASMCs. Exposure to TS causes increases in airway resistance, right ventricular systolic pressure (RVSP), and thickening of bronchi and pulmonary arteries. Calpain inhibition by smooth muscle-specific knockout of calpain and the calpain inhibitor MDL28170 attenuated increases in airway resistance, RVSP, and thickening of bronchi and pulmonary arteries. Moreover, smooth muscle-specific knockout of calpain did not reduce TS-induced emphysema in the mouse model, but MDL28170 did reduce TS-induced emphysema in the rat model. Innovation: This study provides the first evidence that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling in TS-induced COPD. Calpain might be a novel therapeutic target for the treatment of COPD. Conclusion: These results indicate that ROS-induced calpain activation contributes to airway and pulmonary vascular remodeling and pulmonary hypertension in COPD.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, the People's Hospital of China Three Gorges University, Yichang, China
| | - Laszlo Kovacs
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Weihong Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Guojun Liu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Peter A. Greer
- Queen's University Cancer Research Institute, Kingston, Canada
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
26
|
Henríquez-Olguin C, Knudsen JR, Raun SH, Li Z, Dalbram E, Treebak JT, Sylow L, Holmdahl R, Richter EA, Jaimovich E, Jensen TE. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 2019; 10:4623. [PMID: 31604916 PMCID: PMC6789013 DOI: 10.1038/s41467-019-12523-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) act as intracellular compartmentalized second messengers, mediating metabolic stress-adaptation. In skeletal muscle fibers, ROS have been suggested to stimulate glucose transporter 4 (GLUT4)-dependent glucose transport during artificially evoked contraction ex vivo, but whether myocellular ROS production is stimulated by in vivo exercise to control metabolism is unclear. Here, we combined exercise in humans and mice with fluorescent dyes, genetically-encoded biosensors, and NADPH oxidase 2 (NOX2) loss-of-function models to demonstrate that NOX2 is the main source of cytosolic ROS during moderate-intensity exercise in skeletal muscle. Furthermore, two NOX2 loss-of-function mouse models lacking either p47phox or Rac1 presented striking phenotypic similarities, including greatly reduced exercise-stimulated glucose uptake and GLUT4 translocation. These findings indicate that NOX2 is a major myocellular ROS source, regulating glucose transport capacity during moderate-intensity exercise.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguin
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.,Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Jonas R Knudsen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Steffen H Raun
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Zhencheng Li
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influence, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influence, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 65, Solna, Sweden
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
27
|
Christiansen D, Eibye KH, Hostrup M, Bangsbo J. Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans. Metabolism 2019; 98:1-15. [PMID: 31199953 DOI: 10.1016/j.metabol.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
This study examined the effects of blood-flow-restricted (BFR)-training on thigh glucose uptake at rest and during exercise in humans and the muscular mechanisms involved. Ten active men (~25 y; VO2max ~50 mL/kg/min) completed six weeks of training, where one leg trained with BFR (cuff pressure: ~180 mmHg) and the other leg without BFR. Before and after training, thigh glucose uptake was determined at rest and during exercise at 25% and 90% of leg incremental peak power output by sampling of femoral arterial and venous blood and measurement of femoral arterial blood flow. Furthermore, resting muscle samples were collected. After training, thigh glucose uptake during exercise was higher than before training only in the BFR-trained leg (p < 0.05) due to increased glucose extraction (p < 0.05). Further, BFR-training substantially improved time to exhaustion during exhaustive exercise (11 ± 5% vs. CON-leg; p = 0.001). After but not before training, NAC infusion attenuated (~50-100%) leg net glucose uptake and extraction during exercise only in the BFR-trained leg, which coincided with an increased muscle abundance of Cu/Zn-SOD (39%), GPX-1 (29%), GLUT4 (28%), and nNOS (18%) (p < 0.05). Training did not affect Mn-SOD, catalase, and VEGF abundance in either leg (p > 0.05), although Mn-SOD was higher in BFR-leg vs. CON-leg after training (p < 0.05). The ratios of p-AMPK-Thr172/AMPK and p-ACC-Ser79/ACC, and p-ACC-Ser79, remained unchanged in both legs (p > 0.05), despite a higher p-AMPK-Thr172 in BFR-leg after training (38%; p < 0.05). In conclusion, BFR-training enhances glucose uptake by exercising muscles in humans probably due to an increase in antioxidant function, GLUT4 abundance, and/or NO availability.
Collapse
Affiliation(s)
- Danny Christiansen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Kasper H Eibye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
28
|
Waller JD, McNeill EH, Zhong F, Vervaecke LS, Goldfarb AH. Plasma Apelin Unchanged With Acute Exercise Insulin Sensitization. J Sports Sci Med 2019; 18:537-543. [PMID: 31427876 PMCID: PMC6683609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Blood glucose and insulin responses to aerobic exercise are well defined yet the mechanisms effecting post-exercise insulin sensitization remain incomplete. Apelin has been reported to enhance glucose uptake and insulin sensitivity in vivo, but its role as a regulator of insulin sensitivity following acute aerobic exercise has not been investigated. Therefore, the purpose of this study was to investigate apelin's response to acute bouts of maximal and submaximal aerobic exercise and to elucidate apelin's influence on insulin sensitivity. Twelve (22.8 ± 2.9 yrs) healthy male (n = 7) and female (n = 5) subjects completed a graded to maximal (VO2max) and submaximal (70-75% VO2max) treadmill running bouts, as well as a 50g glucose challenge (GC). Blood was obtained at four time points (pre, post, 1hr post and 24hrs post) and assessed for glucose, insulin and apelin. Hepatic insulin sensitivity was assessed at rest and at 1hr and 24hrs via HOMA-IR and QUICKI indices. Results demonstrated that plasma apelin did not significantly change by condition (p = 0.324) or time (p = 0.633). Blood glucose and plasma insulin were significantly elevated immediately after VO2max and GC, but remained stable after submaximal exercise. Insulin sensitivity was significantly improved 1hr post-submaximal exercise, per HOMA-IR (p = 0.034) and QUICKI (p = 0.018) indices. Plasma apelin was significantly correlated with plasma insulin (r = 0.699, p = 0.011), HOMA-IR (r = 0.626, p = 0.029) and QUICKI (r = 0.660, p = 0.019) at rest. We conclude that, although hepatic insulin sensitivity was improved 1hr post-submaximal exercise, this exercise-induced insulin sensitization occurred independent of plasma apelin changes.
Collapse
Affiliation(s)
- Justin D Waller
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Emily H McNeill
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Frank Zhong
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Lauren S Vervaecke
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Allan H Goldfarb
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
29
|
Huang W, Zeng J, Liu Z, Su M, Li Q, Zhu B. Acetylshikonin stimulates glucose uptake in L6 myotubes via a PLC-β3/PKCδ-dependent pathway. Biomed Pharmacother 2019; 112:108588. [PMID: 30780104 DOI: 10.1016/j.biopha.2019.01.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022] Open
Abstract
Acetylshikonin, a naphthoquinone derivative derived from Lithospermum erythrorhizon, has been shown to have various pharmacological activities; however, its effect on diabetes has rarely been reported. We investigated the hypoglycemic effect of acetylshikonin and found that it decreased blood glucose to a greater extent than insulin and improved glucose tolerance in mice. It also increased glucose uptake in L6 myotubes by inducing the expression and translocation of glucose transporter 4 via decomposition of phosphatidylinositol, increased generation of diacylglycerol, and activation of protein kinase C delta cascades; this is an insulin-, reactive oxygen species-, and AMP-activated protein kinase-independent pathway for glucose uptake. Our findings highlight the antidiabetic potential of acetylshikonin via a possible novel pathway for glucose uptake in L6 myotubes.
Collapse
Affiliation(s)
- Wendong Huang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Jiacheng Zeng
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhaochun Liu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Meiling Su
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qisen Li
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Banghao Zhu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
30
|
Mitochondrial dynamics in exercise physiology. Pflugers Arch 2019; 472:137-153. [DOI: 10.1007/s00424-019-02258-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
31
|
Sahiner UM, Birben E, Erzurum S, Sackesen C, Kalayci Ö. Oxidative stress in asthma: Part of the puzzle. Pediatr Allergy Immunol 2018; 29:789-800. [PMID: 30069955 DOI: 10.1111/pai.12965] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/08/2018] [Accepted: 07/23/2018] [Indexed: 01/17/2023]
Abstract
An imbalance between the production of reactive oxygen species and the capacity of antioxidant defense mechanisms favoring oxidants is called oxidative stress and is implicated in asthmatic inflammation and severity. Major reactive oxygen species that are formed endogenously include hydrogen peroxide, superoxide anion, hydroxyl radical, and hypohalite radical; and the major antioxidants that fight against the endogenous and environmental oxidants are superoxide dismutase, catalase, and glutathione. Despite the well-known presence of oxidative stress in asthma, studies that target oxidative burden using a variety of nutritional, pharmacological, and environmental approaches have generally been disappointing. In this review, we summarize the current knowledge on oxidative stress and antioxidant imbalance in asthma. In addition, we focus on possible biomarkers of oxidative stress in asthma and on current and future treatment strategies using the modulation of oxidative stress to treat asthma patients.
Collapse
Affiliation(s)
- Umit M Sahiner
- Department of Pediatric Allergy and Asthma, Hacettepe University School of Medicine, Ankara, Turkey
| | - Esra Birben
- Department of Pediatric Allergy and Asthma, Hacettepe University School of Medicine, Ankara, Turkey
| | - Serpil Erzurum
- Department of Pathobiology, Cleveland Clinic, Lerner Research Institute, and the Respiratory Institute, Cleveland, Ohio
| | - Cansin Sackesen
- Department of Pediatric Allergy, Koc University School of Medicine, Istanbul, Turkey
| | - Ömer Kalayci
- Department of Pediatric Allergy and Asthma, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
32
|
Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, ALSalamat HA, Bashatwah RM. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J Med 2018; 50:193-201. [PMID: 30515042 DOI: 10.5152/eurasianjmed.2018.17397] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) are well-known for playing a dual role as destructive and constructive species. Indeed, ROS are engaged in many redox-governing activities of the cells for the preservation of cellular homeostasis. However, its overproduction has been reported to result in oxidative stress, which is considered as a deleterious process, and is involved in the damage of cell structures that causes various diseased states. This review provides a concise view on some of the current research published in this topic for an improved understanding of the key roles of ROS in diverse conditions of health and disease. Previous research demonstrated that ROS perform as potential signaling molecules to control several normal physiological functions at the cellular level. Additionally, there is a growing body of evidence supporting the role of ROS in various pathological states. The binary nature of ROS with their profitable and injurious characteristics indicates the complexities of their specific roles at a biological compartment and the difficulties in establishing convenient intervention procedures to treat ROS-related diseases.
Collapse
Affiliation(s)
- Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| | - Mustafa Gul
- Department of Physiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Muhammad Alzweiri
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| | - Aman Ishaqat
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| | - Husam A ALSalamat
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| | - Rasha M Bashatwah
- Department of Pharmaceutical Sciences, University of Jordan School of Pharmacy, Amman, Jordan
| |
Collapse
|
33
|
Nemes R, Koltai E, Taylor AW, Suzuki K, Gyori F, Radak Z. Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle. Antioxidants (Basel) 2018; 7:antiox7070085. [PMID: 29976853 PMCID: PMC6071245 DOI: 10.3390/antiox7070085] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are important cellular regulators of key physiological processes in skeletal muscle. In this review, we explain how RONS regulate muscle contraction and signaling, and why they are important for membrane remodeling, protein turnover, gene expression, and epigenetic adaptation. We discuss how RONS regulate carbohydrate uptake and metabolism of skeletal muscle, and how they indirectly regulate fat metabolism through silent mating type information regulation 2 homolog 3 (SIRT3). RONS are causative/associative signaling molecules, which cause sarcopenia or muscle hypertrophy. Regular exercise influences redox biology, metabolism, and anabolic/catabolic pathways in skeletal muscle in an intensity dependent manner.
Collapse
Affiliation(s)
- Roland Nemes
- Faculty of Sports and Health Studies, Hosei University, Tokyo 194-0298, Japan.
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary.
| | - Albert W Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 1H1, Canada.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| | - Ferenc Gyori
- Institute of Sport Science, University of Szeged, H-6726 Szeged, Hungary.
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary.
- Institute of Sport Science, University of Szeged, H-6726 Szeged, Hungary.
| |
Collapse
|
34
|
Madsen AB, Knudsen JR, Henriquez-Olguin C, Angin Y, Zaal KJ, Sylow L, Schjerling P, Ralston E, Jensen TE. β-Actin shows limited mobility and is required only for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle. Am J Physiol Endocrinol Metab 2018; 315. [PMID: 29533739 PMCID: PMC6087721 DOI: 10.1152/ajpendo.00392.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies in skeletal muscle cell cultures suggest that the cortical actin cytoskeleton is a major requirement for insulin-stimulated glucose transport, implicating the β-actin isoform, which in many cell types is the main actin isoform. However, it is not clear that β-actin plays such a role in mature skeletal muscle. Neither dependency of glucose transport on β-actin nor actin reorganization upon glucose transport have been tested in mature muscle. To investigate the role of β-actin in fully differentiated muscle, we performed a detailed characterization of wild type and muscle-specific β-actin knockout (KO) mice. The effects of the β-actin KO were subtle; however, we confirmed the previously reported decline in running performance of β-actin KO mice compared with wild type during repeated maximal running tests. We also found insulin-stimulated glucose transport into incubated muscles reduced in soleus but not in extensor digitorum longus muscle of young adult mice. Contraction-stimulated glucose transport trended toward the same pattern, but the glucose transport phenotype disappeared in soleus muscles from mature adult mice. No genotype-related differences were found in body composition or glucose tolerance or by indirect calorimetry measurements. To evaluate β-actin mobility in mature muscle, we electroporated green fluorescent protein (GFP)-β-actin into flexor digitorum brevis muscle fibers and measured fluorescence recovery after photobleaching. GFP-β-actin showed limited unstimulated mobility and no changes after insulin stimulation. In conclusion, β-actin is not required for glucose transport regulation in mature mouse muscle under the majority of the tested conditions. Thus, our work reveals fundamental differences in the role of the cortical β-actin cytoskeleton in mature muscle compared with cell culture.
Collapse
Affiliation(s)
- Agnete B Madsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Jonas R Knudsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Carlos Henriquez-Olguin
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Universidad de Chile ; Laboratory of Exercise Sciences, Clínica MEDS, Santiago , Chile
| | - Yeliz Angin
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Kristien J Zaal
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda, Maryland
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital , Copenhagen , Denmark
- Center of Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Evelyn Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health , Bethesda, Maryland
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
35
|
Vereshchaka IV, Bulgakova NV, Maznychenko AV, Gonchar OO, Prylutskyy YI, Ritter U, Moska W, Tomiak T, Nozdrenko DM, Mishchenko IV, Kostyukov AI. C 60 Fullerenes Diminish Muscle Fatigue in Rats Comparable to N-acetylcysteine or β-Alanine. Front Physiol 2018; 9:517. [PMID: 29867560 PMCID: PMC5962757 DOI: 10.3389/fphys.2018.00517] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to detect the effects of C60 fullerenes, which possess pronounced antioxidant properties, in comparison with the actions of the known exogenous antioxidants N-acetylcysteine (NAC) and β-Alanine in terms of exercise tolerance and contractile property changes of the m. triceps surae (TS) during development of the muscle fatigue in rats. The electrical stimulation of the TS muscle during four 30 min series in control rats led to total reduction of the muscle contraction force. Furthermore, the effects of prior intraperitoneal (i.p.) or oral C60FAS application and preliminary i.p. injection of NAC or β-Alanine on muscle contraction force under fatigue development conditions is studied. In contrast to control rats, animals with C60FAS, NAC, or β-Alanine administration could maintain a constant level of muscle effort over five stimulation series. The accumulation of secondary products and changes in antioxidant levels in the muscle tissues were also determined after the fatigue tests. The increased levels of lactic acid, thiobarbituric acid reactive substances and H2O2 after stimulation were statistically significant with respect to intact muscles. In the working muscle, there was a significant (p < 0.05) increase in the activity of endogenous antioxidants: reduced glutathione, catalase, glutathione peroxidase, and superoxide dismutase. Treated animal groups showed a decrease in endogenous antioxidant activity relative to the fatigue-induced animals (P < 0.05). Oral C60FAS administration clearly demonstrated an action on skeletal muscle fatigue development similar to the effects of i.p. injections of the exogenous antioxidants NAC or β-Alanine. This creates opportunities to oral use of C60FAS as a potential therapeutic agent. Due to the membranotropic activity of C60 fullerenes, non-toxic C60FAS has a more pronounced effect on the prooxidant-antioxidant homeostasis of muscle tissues in rats.
Collapse
Affiliation(s)
- Inna V. Vereshchaka
- The Unit of the Theory of Physical Education, The Chair of Physical Education, Gdansk University of Physical Education and SportGdańsk, Poland
| | - Nataliya V. Bulgakova
- Department of Movement Physiology, Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
| | - Andriy V. Maznychenko
- Department of Movement Physiology, Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
| | - Olga O. Gonchar
- Department of Hypoxic States Investigation, Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
| | - Yuriy I. Prylutskyy
- ESC “Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Ilmenau, Germany
| | - Waldemar Moska
- The Unit of the Theory of Physical Education, The Chair of Physical Education, Gdansk University of Physical Education and SportGdańsk, Poland
| | - Tomasz Tomiak
- The Unit of the Theory of Physical Education, The Chair of Physical Education, Gdansk University of Physical Education and SportGdańsk, Poland
| | - Dmytro M. Nozdrenko
- ESC “Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Alexander I. Kostyukov
- Department of Movement Physiology, Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
| |
Collapse
|
36
|
Hanya E, Katz A. Increased temperature accelerates glycogen synthesis and delays fatigue in isolated mouse muscle during repeated contractions. Acta Physiol (Oxf) 2018; 223:e13027. [PMID: 29297989 DOI: 10.1111/apha.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Abstract
AIM Elevated glycogen content in muscle delays fatigue during exercise. We examined if increasing muscle temperature during recovery from exercise affects glycogen synthesis and muscle performance during a subsequent bout of exercise. METHODS Isolated mouse extensor digitorum longus muscles were stimulated electrically to perform repeated tetanic contractions until force decreased to 40% of initial at 25°C. Thereafter, muscles recovered for 120 minutes at 25°C (control), 120 minutes at 35°C or 60 minutes at 35°C followed by 60 minutes at 25°C. After recovery, muscles were again stimulated to fatigue at 25°C. RESULTS In the control group, the number of contractions in the second run was slightly less than during the first run (92 ± 5%). Following recovery for 120 minutes at 35°C, the number of contractions was similar to the first run (98 ± 6%). Allowing recovery for 120 minutes at 35°C in the presence of the antioxidant N-acetylcysteine also did not alter the number of contractions in the second run (98 ± 3%). However, recovery for 60 minutes at 35°C followed by 60 minutes at 25°C resulted in an increase in the number of contractions during the second run (110 ± 2%, P < .001). Incorporation of [14 C]glucose into glycogen (glycogen synthesis) during recovery was 1.7-fold higher at 35°C vs 25°C (1.44 ± 0.08 μmol (30 min)-1 (g wet muscle)-1 vs 0.84 ± 0.04; P < .001). CONCLUSION These data demonstrate that, under the conditions studied, elevating muscle temperature for 60 minutes following a bout of repeated contractions delays muscle fatigue during a subsequent bout of repeated contractions and this is associated with enhanced glycogen synthesis in isolated muscle.
Collapse
Affiliation(s)
- E. Hanya
- Department of Physical Therapy; School of Health Sciences; Ariel University; Ariel Israel
| | - A. Katz
- Department of Physical Therapy; School of Health Sciences; Ariel University; Ariel Israel
| |
Collapse
|
37
|
Gandra PG, Shiah AA, Nogueira L, Hogan MC. A mitochondrial-targeted antioxidant improves myofilament Ca 2+ sensitivity during prolonged low frequency force depression at low PO2. J Physiol 2018; 596:1079-1089. [PMID: 29334129 DOI: 10.1113/jp275470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Skeletal muscle contractile activity is associated with an enhanced reactive oxygen species (ROS) generation. At very low PO2, ROS generation by mitochondria can be elevated in intact cells. An elevated intracellular oxidant activity may affect muscle force development and recovery from fatigue. We treated intact single muscle fibres with a mitochondrial antioxidant and stimulated the fibres to contract at a low extracellular PO2 that is similar to the intracellular PO2 that is observed during moderate to intense exercise in vivo. The mitochondrial antioxidant prevented a sustained decrease in the myofibrillar Ca2+ sensitivity and improved muscle submaximal force development after fatigue at low extracellular PO2. ABSTRACT Skeletal muscle can develop a prolonged low frequency-stimulation force depression (PLFFD) following fatigue-inducing contractions. Increased levels of reactive oxygen species (ROS) have been implicated in the development of PLFFD. During exercise the skeletal muscle intracellular PO2 decreases to relatively low levels, and can be further decreased when there is an impairment in O2 diffusion or availability, such as in certain chronic diseases and during exercise at high altitude. Since ROS generation by mitochondria is elevated at very low PO2 in cells, we tested the hypothesis that treatment of muscle fibres with a mitochondrial-targeted antioxidant at a very low, near hypoxic, PO2 can attenuate PLFFD. We treated intact single fibres from mice with the mitochondrial-specific antioxidant SS31, and measured force development and intracellular [Ca2+ ] 30 min after fatigue at an extracellular PO2 of ∼5 Torr. After 30 min following the end of the fatiguing contractions, fibres treated with SS31 showed significantly less impairment in force development compared to untreated fibres at submaximal frequencies of stimulation. The cytosolic peak [Ca2+ ] transients (peak [Ca2+ ]c ) were equally decreased in both groups compared to pre-fatigue values. The combined force and peak [Ca2+ ]c data demonstrated that myofibrillar Ca2+ sensitivity was diminished in the untreated fibres 30 min after fatigue compared to pre-fatigue values, but Ca2+ sensitivity was unaltered in the SS31 treated fibres. These results demonstrate that at a very low PO2, treatment of skeletal muscle fibres with a mitochondrial antioxidant prevents a decrease in the myofibrillar Ca2+ sensitivity, which alleviates the fatigue induced PLFFD.
Collapse
Affiliation(s)
- Paulo G Gandra
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Amy A Shiah
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leonardo Nogueira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Michael C Hogan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
38
|
Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle. Int J Mol Sci 2018; 19:ijms19020417. [PMID: 29385043 PMCID: PMC5855639 DOI: 10.3390/ijms19020417] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/14/2018] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion (IR), present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS). Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activation of the mitochondrial permeability transition pore. Elevated ROS levels can also decrease myofibrillar Ca2+ sensitivity, thereby compromising muscle contractile function. Low levels of ROS can act as signaling molecules involved in the protective pathways of ischemic preconditioning (IPC). By scavenging ROS, antioxidant therapies aim to prevent IR injuries with positive treatment outcomes. Novel therapies such as postconditioning and pharmacological interventions that target IPC pathways hold great potential in attenuating IR injuries. Factors such as aging and diabetes could have a significant impact on the severity of IR injuries. The current paper aims to provide a comprehensive review on the multifaceted roles of ROS in IR injuries, with a focus on cardiac and skeletal muscle, as well as recent advancement in ROS-related therapies.
Collapse
Affiliation(s)
- Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Evan R Prather
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Davis E Garrison
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Cho A, Christine M, Malicdan V, Miyakawa M, Nonaka I, Nishino I, Noguchi S. Sialic acid deficiency is associated with oxidative stress leading to muscle atrophy and weakness in GNE myopathy. Hum Mol Genet 2018; 26:3081-3093. [PMID: 28505249 DOI: 10.1093/hmg/ddx192] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Sialic acids are monosaccharides found in terminal sugar chains of cell surfaces and proteins; they have various biological functions and have been implicated in health and disease. Genetic defects of the GNE gene which encodes a critical bifunctional enzyme for sialic acid biosynthesis, lead to GNE myopathy, a disease manifesting with progressive muscle atrophy and weakness. The likely mechanism of disease is a lack of sialic acids. There remains, however, an unexplained link between hyposialylation and the muscle atrophy and weakness. In this study, we found that muscle proteins were highly modified by S-nitrosylation, and that oxidative stress-responsive genes were significantly upregulated, in hyposialylated muscles from human GNE myopathy patients and model mice. In both in vitro and in vivo models, the production of reactive oxygen species (ROS) was elevated with cellular hyposialylation, and increasing overall sialylation by extrinsic sialic acid intake reduced ROS and protein S-nitrosylation. More importantly, the antioxidant, oral N-acetylcysteine led to amelioration of the muscle atrophy and weakness in Gne mutant mice. Our data provide evidence of additional important function of sialic acids as a ROS scavenger in skeletal muscles, expanding our understanding on how sialic acid deficiency contributes to disease pathology, and identify oxidative stress as a therapeutic target in GNE myopathy.
Collapse
Affiliation(s)
- Anna Cho
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.,Department of Pediatrics, Ewha Womans University School of Medicine, Yangcheon-gu, Seoul 158-710, Korea
| | | | - V Malicdan
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.,Medical Genetics Branch, National Human Genome Research Institute.,NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miho Miyakawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Ikuya Nonaka
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
40
|
Kumar N, Shaw P, Razzokov J, Yusupov M, Attri P, Uhm HS, Choi EH, Bogaerts A. Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy. RSC Adv 2018; 8:9887-9894. [PMID: 35540836 PMCID: PMC9078705 DOI: 10.1039/c7ra13389h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/03/2018] [Indexed: 12/16/2022] Open
Abstract
It is generally known that antidiabetic activity is associated with an increased level of glucose uptake in adipocytes and skeletal muscle cells. However, the role of exogenous reactive oxygen and nitrogen species (RONS) in muscle development and more importantly in glucose uptake is largely unknown. We investigate the effect of RONS generated by cold atmospheric plasma (CAP) in glucose uptake. We show that the glucose uptake is significantly enhanced in differentiated L6 skeletal muscle cells after CAP treatment. We also observe a significant increase of the intracellular Ca++ and ROS level, without causing toxicity. One of the possible reasons for an elevated level of glucose uptake as well as intracellular ROS and Ca++ ions is probably the increased oxidative stress leading to glucose transport. Influenence of biocompatible microsecond dielectric barrier discharge (μs-DBD) plasma in glucose uptake and cell differentiation.![]()
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Chemistry
- University of Antwerp
- Belgium
| | | | | | | | - Pankaj Attri
- Department of Chemistry
- University of Antwerp
- Belgium
| | - Han Sup Uhm
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 139-701
- Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics
- Kwangwoon University
- Seoul 139-701
- Korea
| | | |
Collapse
|
41
|
Effects of resistance training on oxidative stress-related biomarkers in metabolic diseases: a review. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-017-0402-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Kellogg DL, McCammon KM, Hinchee-Rodriguez KS, Adamo ML, Roman LJ. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes. Free Radic Biol Med 2017; 110:261-269. [PMID: 28666850 PMCID: PMC5554434 DOI: 10.1016/j.freeradbiomed.2017.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H2O2) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H2O2-induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H2O2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H2O2-stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H2O2-activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance.
Collapse
Affiliation(s)
- Dean L Kellogg
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Karen M McCammon
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Kathryn S Hinchee-Rodriguez
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Martin L Adamo
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States
| | - Linda J Roman
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, United States.
| |
Collapse
|
43
|
Bricard G, Cadassou O, Cassagnes LE, Cros-Perrial E, Payen-Gay L, Puy JY, Lefebvre-Tournier I, Tozzi MG, Dumontet C, Jordheim LP. The cytosolic 5'-nucleotidase cN-II lowers the adaptability to glucose deprivation in human breast cancer cells. Oncotarget 2017; 8:67380-67393. [PMID: 28978040 PMCID: PMC5620180 DOI: 10.18632/oncotarget.18653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/22/2017] [Indexed: 01/24/2023] Open
Abstract
The cytosolic 5'-nucleotidase cN-II is a highly conserved enzyme implicated in nucleotide metabolism. Based on recent observations suggesting additional roles not directly associated to its enzymatic activity, we studied human cancer cell models with basal or decreased cN-II expression. We developed cancer cells with stable inhibition of cN-II expression by transfection of shRNA-coding plasmids, and studied their biology. We show that human breast cancer cells MDA-MB-231 with decreased cN-II expression better adapt to the disappearance of glucose in growth medium under normoxic conditions than cells with a baseline expression level. This is associated with enhanced in vivo growth and a lower content of ROS in cells cultivated in absence of glucose due to more efficient mechanisms of elimination of ROS. Conversely, cells with low cN-II expression are more sensitive to glucose deprivation in hypoxic conditions. Overall, our results show that cN-II regulates the cellular response to glucose deprivation through a mechanism related to ROS metabolism and defence.
Collapse
Affiliation(s)
- Gabriel Bricard
- Université De Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Octavia Cadassou
- Université De Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Laure-Estelle Cassagnes
- Université De Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Emeline Cros-Perrial
- Université De Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Léa Payen-Gay
- Université De Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Biochemistry Laboratory of Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Puy
- IBMM, UMR 5247, CNRS - UM - ENSCM, Université de Montpellier, Montpellier, France
| | | | - Maria Grazia Tozzi
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | - Charles Dumontet
- Université De Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Lars Petter Jordheim
- Université De Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
44
|
Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2017; 473:4527-4550. [PMID: 27941030 DOI: 10.1042/bcj20160503c] [Citation(s) in RCA: 536] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Oxidative stress describes an imbalance between production and degradation of reactive oxygen species (ROS), which can damage macromolecules. However, ROS may also serve as signaling molecules activating cellular pathways involved in cell proliferation and adaptation. This review describes alterations in metabolic diseases including obesity, insulin resistance, and/or diabetes mellitus as well as responses to acute and chronic physical exercise. RECENT FINDINGS Chronic upregulation of oxidative stress associates with the development of insulin resistance and type 2 diabetes (T2D). While single bouts of exercise can transiently induce oxidative stress, chronic exercise promotes favorable oxidative adaptations with improvements in muscle mitochondrial biogenesis and glucose uptake. Although impaired antioxidant defense fails to scavenge ROS in metabolic diseases, chronic exercising can restore this abnormality. The different metabolic effects are likely due to variability of reactive species and discrepancies in temporal (acute vs. chronic) and local (subcellular distribution) patterns of production.
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Munich, Neuherberg, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, c/o Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
| |
Collapse
|
46
|
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13:133-148. [PMID: 27739515 DOI: 10.1038/nrendo.2016.162] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2840643. [PMID: 27974950 PMCID: PMC5126438 DOI: 10.1155/2016/2840643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.
Collapse
|
48
|
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front Physiol 2016; 7:486. [PMID: 27872595 PMCID: PMC5097959 DOI: 10.3389/fphys.2016.00486] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023] Open
Abstract
It is well known that regular exercise can benefit health by enhancing antioxidant defenses in the body. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS), leading to oxidative stress-related tissue damages and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Mitochondria, NADPH oxidases and xanthine oxidases have all been identified as potential contributors to ROS production, yet the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce body's adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this review updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing. In addition, we will examine the corresponding antioxidant defense systems as well as dietary manipulation against damages caused by ROS.
Collapse
Affiliation(s)
- Feng He
- Department of Kinesiology, California State University-Chico Chico, CA, USA
| | - Juan Li
- Department of Physical Education, Anhui University Anhui, China
| | - Zewen Liu
- Affiliated Ezhou Central Hospital at Medical School of Wuhan UniversityHubei, China; Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| | - Wenge Yang
- Department of Physical Education, China University of Geosciences Beijing, China
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
49
|
Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Kyparos A, Nikolaidis MG. Experimental verification of regression to the mean in redox biology: differential responses to exercise. Free Radic Res 2016; 50:1237-1244. [PMID: 27596985 DOI: 10.1080/10715762.2016.1233330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An important methodological threat when selecting individuals based on initial values for a given trait is the "regression to the mean" artifact. This artifact appears when a group with an extreme mean value during a first measurement tends to obtain a less extreme value (i.e. tends toward the mean) on a subsequent measurement. The main aim was to experimentally confirm the presence of this artifact in the responses of the reference oxidative stress biomarker (F2-isoprostanes) after exercise. Urine samples were collected before and immediately following acute exercise in order to determine the level of exercise-induced oxidative stress. Afterwards, participants were arranged into three groups based on their levels of exercise-induced oxidative stress (low, moderate and high oxidative stress groups; n = 12 per group). In order to verify the existence of the regression to the mean artifact, the three groups were subjected to a second exercise trial one week after the first trial. This study confirmed the regression to the mean artifact in a redox biology context and showed that this artifact can be minimized by performing a duplicate pretreatment measurement after completing a nonrandom sorting based on the first assessment. This study also indicated that different individuals experience high oxidative stress or reductive stress (or no stress) to the same exercise stimulus even after adjusting for regression to the mean. This finding substantiates the methodological choice to divide individuals based on their degree of exercise-induced oxidative stress in future experiments to investigate the role of reactive species in exercise adaptations.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece.,b Intensive Care Unit , 424 General Military Hospital of Thessaloniki , Thessaloniki , Greece
| | - Anastasios A Theodorou
- c Department of Health Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus
| | - Vassilis Paschalis
- c Department of Health Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus.,d Department of Physical Education and Sport Science , University of Thessaly , Karies , Trikala , Greece
| | - Aristidis S Veskoukis
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - Konstantina Dipla
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - Andreas Zafeiridis
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - George Panayiotou
- c Department of Health Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus
| | - Ioannis S Vrabas
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - Antonios Kyparos
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| | - Michalis G Nikolaidis
- a Department of Physical Education and Sports Science at Serres , Aristotle University of Thessaloniki , Serres , Greece
| |
Collapse
|
50
|
Parker L, Stepto NK, Shaw CS, Serpiello FR, Anderson M, Hare DL, Levinger I. Acute High-Intensity Interval Exercise-Induced Redox Signaling Is Associated with Enhanced Insulin Sensitivity in Obese Middle-Aged Men. Front Physiol 2016; 7:411. [PMID: 27695421 PMCID: PMC5026033 DOI: 10.3389/fphys.2016.00411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/01/2016] [Indexed: 01/07/2023] Open
Abstract
Background: Obesity and aging are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK), and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE) on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods: Participants completed a 2 h hyperinsulinaemic-euglycaemic clamp at rest, and 60 min after HIIE (4 × 4 mins at 95% HRpeak; 2 min recovery periods), separated by 1–3 weeks. Results: Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160Ser588, were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SOD activity, JNK, p38 MAPK and NF-κB phosphorylation (r = 0.63, r = 0.71, r = 0.72, r = 0.71; p < 0.05, respectively). Conclusion:These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 h after HIIE.
Collapse
Affiliation(s)
- Lewan Parker
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Nigel K Stepto
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Christopher S Shaw
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Geelong, VIC, Australia
| | - Fabio R Serpiello
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Mitchell Anderson
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - David L Hare
- University of Melbourne and the Department of Cardiology, Austin Health Melbourne, VIC, Australia
| | - Itamar Levinger
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| |
Collapse
|