1
|
Köster PA, Leipold E, Tigerholm J, Maxion A, Namer B, Stiehl T, Lampert A. Nociceptor sodium channels shape subthreshold phase, upstroke, and shoulder of action potentials. J Gen Physiol 2025; 157:e202313526. [PMID: 39836077 PMCID: PMC11748974 DOI: 10.1085/jgp.202313526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.8 is thought to support the fast AP upstroke. Nav1.9, as it produces large persistent currents, is attributed a role in determining the resting membrane potential. We characterized the gating of Nav1.1-Nav1.3 and Nav1.5-Nav1.9 in manual patch clamp with a focus on the AP subthreshold depolarization phase. Nav1.9 exhibited the most hyperpolarized activation, while its fast inactivation resembled the depolarized inactivation of Nav1.8. For some VGSCs (e.g., Nav1.1 and Nav1.2), a positive correlation between ramp current and window current was detected. Using a modified Hodgkin-Huxley model that accounts for the time needed for inactivation to occur, we used the acquired data to simulate two nociceptive nerve fiber types (an Aδ- and a mechano-insensitive C-nociceptor) containing VGSC conductances according to published human RNAseq data. Our simulations suggest that Nav1.9 is supporting both the AP upstroke and its shoulder. A reduced threshold for AP generation was induced by enhancing Nav1.7 conductivity or shifting its activation to more hyperpolarized potentials, as observed in Nav1.7-related pain disorders. Here, we provide a comprehensive, comparative functional characterization of VGSCs relevant in nociception and describe their gating with Hodgkin-Huxley-like models, which can serve as a tool to study their specific contributions to AP shape and sodium channel-related diseases.
Collapse
Affiliation(s)
- Phil Alexander Köster
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care and CBBM-Center of Brain, Behavior and Metabolism, University of Luebeck, Lübeck, Germany
| | - Jenny Tigerholm
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Joint Research Center for Computational Biomedicine (JRCC), Uniklinik RWTH Aachen University, Aachen, Germany
| | - Anna Maxion
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, Research Group Neurosciences, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Barbara Namer
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, Research Group Neurosciences, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Thomas Stiehl
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
- Joint Research Center for Computational Biomedicine (JRCC), Uniklinik RWTH Aachen University, Aachen, Germany
- Institute for Computational Biomedicine and Disease Modelling With Focus on Phase Transitions Between Phenotypes, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Angelika Lampert
- Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic Pain Aachen SCN, Uniklinik RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Dib-Hajj SD, Waxman SG. Species-specific differences and the role of Na v 1.9 in pain pathophysiology. Pain 2025; 166:231-233. [PMID: 39297718 DOI: 10.1097/j.pain.0000000000003395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 01/12/2025]
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
3
|
Ghovanloo MR, Tyagi S, Zhao P, Waxman SG. Nav1.8, an analgesic target for nonpsychotomimetic phytocannabinoids. Proc Natl Acad Sci U S A 2025; 122:e2416886122. [PMID: 39835903 DOI: 10.1073/pnas.2416886122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.7, Nav1.8, and Nav1.9-play crucial roles in pain signaling. Among these, Nav1.8 has shown promise due to its rapid recovery from inactivation and role in repetitive firing, with recent clinical studies providing proof-of-principal that block of Nav1.8 can reduce pain in humans. We report here that three nonpsychotomimetic cannabinoids-cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN)-effectively inhibit Nav1.8, suggesting their potential as analgesic compounds. In particular, CBG shows significant promise due to its ability to effectively inhibit excitability of peripheral sensory neurons. These findings highlight the therapeutic potential of cannabinoids, particularly CBG, as agents that may attenuate pain via block of Nav1.8, warranting further in vivo studies.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sidharth Tyagi
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06520
| | - Peng Zhao
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
4
|
Jang K, Garraway SM. TrkB Agonist (7,8-DHF)-Induced Responses in Dorsal Root Ganglia Neurons Are Decreased after Spinal Cord Injury: Implication for Peripheral Pain Mechanisms. eNeuro 2025; 12:ENEURO.0219-24.2024. [PMID: 39753357 PMCID: PMC11728855 DOI: 10.1523/eneuro.0219-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkBF616A mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI. To examine potential neural mechanisms underlying the behavioral outcome, patch-clamp recording was performed in small-diameter dissociated thoracic (T) dorsal root ganglia (DRG) neurons to evaluate TrkB signaling in uninjured mice and after T10 contusion SCI. Bath-applied 7,8-dihydroxyflavone (7,8-DHF), a selective TrkB agonist, induced a robust inward current in neurons from uninjured mice, which was attenuated by 1NMP treatment. SCI also decreased 7,8-DHF-induced current while increasing the latency to its peak amplitude. Western blot revealed a concomitant decrease in TrkB expression in DRGs adjacent to the spinal lesion. Analyses of cellular and membrane properties showed that SCI increased neuronal excitability, evident by an increase in resting membrane potential and the number of spiking neurons. However, SCI did not increase spontaneous firing in DRG neurons. These results suggest that SCI induced changes in TrkB activation in DRG neurons even though these alterations are likely not contributing to pain hypersensitivity by nociceptor hyperexcitability. Overall, this reveals complex interactions involving TrkB signaling and provides an opportunity to investigate other, presumably peripheral, mechanisms by which TrkB contributes to pain hypersensitivity after SCI.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
| | - Sandra M Garraway
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
5
|
Vasylyev DV, Liu CJ, Waxman SG. Sodium channels in non-excitable cells: powerful actions and therapeutic targets beyond Hodgkin and Huxley. Trends Cell Biol 2024:S0962-8924(24)00251-4. [PMID: 39743470 DOI: 10.1016/j.tcb.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Voltage-gated sodium channels (VGSCs) are best known for their role in the generation and propagation of action potentials in neurons, muscle cells, and cardiac myocytes, which have traditionally been labeled as 'excitable'. However, emerging evidence challenges this traditional perspective. It is now clear that VGSCs are also expressed in a broad spectrum of cells outside the neuromuscular realm, where they regulate diverse cellular functions. In this review, we summarize current knowledge on the expression, regulation, and function of VGSCs in non-neuromuscular cells, highlighting their contributions to physiological processes and pathological conditions. Dynamic expression patterns of VGSCs in different cell types, involvement of VGSCs in cellular functions, such as phagocytosis, motility, and cytokine release, and their potential as therapeutic targets for diseases that include inflammatory disorders, osteoarthritis (OA), and cancer, are discussed. This new understanding of VGSCs and their effects on cells outside the neuromuscular realm opens new avenues for research and therapeutic interventions.
Collapse
Affiliation(s)
- Dmytro V Vasylyev
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.
| |
Collapse
|
6
|
Wang H, Huang J, Zang J, Jin X, Yan N. Drug discovery targeting Na v1.8: Structural insights and therapeutic potential. Curr Opin Chem Biol 2024; 83:102538. [PMID: 39418835 DOI: 10.1016/j.cbpa.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Voltage-gated sodium (Nav) channels are crucial in transmitting action potentials in neurons. The tetrodotoxin-resistant subtype Nav1.8 is predominantly expressed in the peripheral nervous system, offering a unique opportunity to design selective inhibitors for pain relief. A number of compounds have been reported to specifically block Nav1.8. Among these, VX-548 is already in regulatory review for the treatment of moderate-to-severe acute pain and holds the promise to be the first non-opioid pain killer over the past twenty years. Recent structural studies using cryogenic electron microscopy (cryo-EM) and structure-based predictive modeling have provided unprecedented insights into the structural pharmacology of Nav1.8. In this review, we summarize the latest developments in Nav1.8-selective inhibitors, focusing on the druggable sites and mechanisms that confer subtype specificity. These structural insights highlight the potential for Nav1.8 inhibitors to deliver non-addictive pain management, thus illuminating the avenue to next-generation analgesic development.
Collapse
Affiliation(s)
- Huan Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Huang
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Jie Zang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Guangming District, Shenzhen 518132, Guangdong Province, China.
| |
Collapse
|
7
|
Ghovanloo MR, Tyagi S, Zhao P, Effraim PR, Dib-Hajj SD, Waxman SG. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Channels (Austin) 2024; 18:2289256. [PMID: 38055732 PMCID: PMC10761158 DOI: 10.1080/19336950.2023.2289256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
Sexual dimorphism has been reported in multiple pre-clinical and clinical studies on pain. Previous investigations have suggested that in at least some states, rodent dorsal root ganglion (DRG) neurons display differential sex-dependent regulation and expression patterns of various proteins involved in the pain pathway. Our goal in this study was to determine whether sexual dimorphism in the biophysical properties of voltage-gated sodium (Nav) currents contributes to these observations in rodents. We recently developed a novel method that enables high-throughput, unbiased, and automated functional analysis of native rodent sensory neurons from naïve WT mice profiled simultaneously under uniform experimental conditions. In our previous study, we performed all experiments in neurons that were obtained from mixed populations of adult males or females, which were combined into single (combined male/female) data sets. Here, we have re-analyzed the same previously published data and segregated the cells based on sex. Although the number of cells in our previously published data sets were uneven for some comparisons, our results do not show sex-dependent differences in the biophysical properties of Nav currents in these native DRG neurons.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Philip R. Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
8
|
Vasylyev DV, Zhao P, Schulman BR, Waxman SG. Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain. J Gen Physiol 2024; 156:e202413596. [PMID: 39378238 PMCID: PMC11465073 DOI: 10.1085/jgp.202413596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
While voltage-gated sodium channels Nav1.7 and Nav1.8 both contribute to electrogenesis in dorsal root ganglion (DRG) neurons, details of their interactions have remained unexplored. Here, we studied the functional contribution of Nav1.8 in DRG neurons using a dynamic clamp to express Nav1.7L848H, a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, and demonstrate a profound functional interaction of Nav1.8 with Nav1.7 close to the threshold for AP generation. At the voltage threshold of -21.9 mV, we observed that Nav1.8 channel open-probability exceeded Nav1.7WT channel open-probability ninefold. Using a kinetic model of Nav1.8, we showed that a reduction of Nav1.8 current by even 25-50% increases rheobase and reduces firing probability in small DRG neurons expressing Nav1.7L848H. Nav1.8 subtraction also reduces the amplitudes of subthreshold membrane potential oscillations in these cells. Our results show that within DRG neurons that express peripheral sodium channel Nav1.7, the Nav1.8 channel amplifies excitability at a broad range of membrane voltages with a predominant effect close to the AP voltage threshold, while Nav1.7 plays a major role at voltages closer to resting membrane potential. Our data show that dynamic-clamp reduction of Nav1.8 conductance by 25-50% can reverse hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes pain in humans and suggests, more generally, that full inhibition of Nav1.8 may not be required for relief of pain due to DRG neuron hyperexcitability.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Betsy R. Schulman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
9
|
Guo W, Yang H, Wang Y, Liu T, Pan Y, Chen X, Xu Q, Zhao D, Shan Z, Cai S. Small-molecule natural product sophoricoside reduces peripheral neuropathic pain via directly blocking of NaV1.6 in dorsal root ganglion nociceptive neurons. Neuropsychopharmacology 2024:10.1038/s41386-024-01998-w. [PMID: 39414988 DOI: 10.1038/s41386-024-01998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Peripheral neuropathic pain poses a significant global health challenge. Current drugs for peripheral neuropathic pain often fall short in efficacy or come with severe side effects, emphasizing the critical need for the development of highly effective and well-tolerated alternatives. Sophoricoside (SOP) is a nature product-derived isoflavone that possesses various pharmacological effects on inflammatory and neuropathy diseases. Here, in this study, analgesic effect was investigated by intrathecally administration of SOP/vehicle to spared nerve injury (SNI) or paclitaxel-induced peripheral neuropathic pain (PINP) rodent models, and mechanical allodynia was measured in Von Frey tests. Ipsilateral L4-L6 dorsal root ganglia (DRG) were used for protein expression. In silico molecular docking analysis was applied for assessing compound-target binding affinity. Primary cultured DRG neurons were utilized to investigate SOP's effect on veratridine-triggered nociceptor activities and its selective inhibition of voltage-gated sodium channels subtype 1.6 (NaV1.6). The results showed SOP treatment alleviated mechanical allodynia in SNI and PINP rodent models (paw withdrawal threshold after 1 h of injection: SNI-vehicle: 1.385 ± 0.338 g; SNI-SOP: 9.963 ± 2.029 g, P < 0.001; PINP-vehicle: 5.040 ± 0.985 g; PINP-SOP: 8.287 ± 3.812 g, P = 0.004). SOP presented effects on both inhibiting veratridine-triggered nociceptor activities (oscillatory population: vehicle: 39.9 ± 7.3%; SOP: 30.7 ± 9.8%, P = 0.021) and selectively blocking NaV1.6 in DRG sensory neurons. Molecular docking analysis indicated direct binding between SOP and NaV1.6, leading to its endocytosis in DRG Sensory Neurons. In conclusion, SOP alleviated nociceptive allodynia induced by peripheral nerve injury via selectively blocking of NaV1.6 in DRG nociceptive neurons. we highlight its potential as an analgesic and elucidate its mechanism involving NaV1.6 endocytosis. This research opens avenues for exploring the analgesic effects of SOP and its potential impact on neuropathic pain therapy.
Collapse
Affiliation(s)
- Weijie Guo
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Haoyi Yang
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuwei Wang
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Tao Liu
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Yunping Pan
- Department of Periodontology & Oral Mucosa, Shenzhen Stomatology Hospital, Shenzhen, China
| | - Xiying Chen
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Qiuyin Xu
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Dizhou Zhao
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhiming Shan
- Department of Anesthesiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Song Cai
- Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
10
|
Alves-Simões M, Teege L, Tomni C, Lürkens M, Schmidt A, Iseppon F, Millet Q, Kühs S, Katona I, Weis J, Heinemann SH, Hübner CA, Wood J, Leipold E, Kurth I, Haag N. NaV1.8/NaV1.9 double deletion mildly affects acute pain responses in mice. Pain 2024:00006396-990000000-00728. [PMID: 39382328 DOI: 10.1097/j.pain.0000000000003411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/30/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The 2 tetrodotoxin-resistant (TTXr) voltage-gated sodium channel subtypes NaV1.8 and NaV1.9 are important for peripheral pain signaling. As determinants of sensory neuron excitability, they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and the release of neurotransmitters from sensory neuron terminals. NaV1.8 and NaV1.9, which are encoded by SCN10A and SCN11A, respectively, are predominantly expressed in pain-sensitive (nociceptive) neurons localized in the dorsal root ganglia (DRG) along the spinal cord and in the trigeminal ganglia. Mutations in these genes cause various pain disorders in humans. Gain-of-function missense variants in SCN10A result in small fiber neuropathy, while distinct SCN11A mutations cause, i. a., congenital insensitivity to pain, episodic pain, painful neuropathy, and cold-induced pain. To determine the impact of loss-of-function of both channels, we generated NaV1.8/NaV1.9 double knockout (DKO) mice using clustered regularly interspaced short palindromic repeats/Cas-mediated gene editing to achieve simultaneous gene disruption. Successful knockout of both channels was verified by whole-cell recordings demonstrating the absence of NaV1.8- and NaV1.9-mediated Na+ currents in NaV1.8/NaV1.9 DKO DRG neurons. Global RNA sequencing identified significant deregulation of C-LTMR marker genes as well as of pain-modulating neuropeptides in NaV1.8/NaV1.9 DKO DRG neurons, which fits to the overall only moderately impaired acute pain behavior observed in DKO mice. Besides addressing the function of both sodium channels in pain perception, we further demonstrate that the null-background is a very valuable tool for investigations on the functional properties of individual human disease-causing variants in NaV1.8 or NaV1.9 in their native physiological environment.
Collapse
Affiliation(s)
- Marta Alves-Simões
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Laura Teege
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Cecilia Tomni
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Martha Lürkens
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annika Schmidt
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Queensta Millet
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Samuel Kühs
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Istvan Katona
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - John Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London, United Kingdom
| | - Enrico Leipold
- Center of Brain, Behavior and Metabolism & Clinic for Anesthesiology and Intensive Care, University of Lübeck, Lübeck, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Martina M, Banderali U, Yogi A, Arbabi Ghahroudi M, Liu H, Sulea T, Durocher Y, Hussack G, van Faassen H, Chakravarty B, Liu QY, Iqbal U, Ling B, Lessard E, Sheff J, Robotham A, Callaghan D, Moreno M, Comas T, Ly D, Stanimirovic D. A Novel Antigen Design Strategy to Isolate Single-Domain Antibodies that Target Human Nav1.7 and Reduce Pain in Animal Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405432. [PMID: 39206821 PMCID: PMC11516162 DOI: 10.1002/advs.202405432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Genetic studies have identified the voltage-gated sodium channel 1.7 (Nav1.7) as pain target. Due to the ineffectiveness of small molecules and monoclonal antibodies as therapeutics for pain, single-domain antibodies (VHHs) are developed against the human Nav1.7 (hNav1.7) using a novel antigen presentation strategy. A 70 amino-acid peptide from the hNav1.7 protein is identified as a target antigen. A recombinant version of this peptide is grafted into the complementarity determining region 3 (CDR3) loop of an inert VHH in order to maintain the native 3D conformation of the peptide. This antigen is used to isolate one VHH able to i) bind hNav1.7, ii) slow the deactivation of hNav1.7, iii) reduce the ability of eliciting action potentials in nociceptors, and iv) reverse hyperalgesia in in vivo rat and mouse models. This VHH exhibits the potential to be developed as a therapeutic capable of suppressing pain. This novel antigen presentation strategy can be applied to develop biologics against other difficult targets such as ion channels, transporters and GPCRs.
Collapse
Affiliation(s)
- Marzia Martina
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Umberto Banderali
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Alvaro Yogi
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Mehdi Arbabi Ghahroudi
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Hong Liu
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Traian Sulea
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Yves Durocher
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Greg Hussack
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Henk van Faassen
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Balu Chakravarty
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Qing Yan Liu
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Umar Iqbal
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Binbing Ling
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Etienne Lessard
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Joey Sheff
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Anna Robotham
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Debbie Callaghan
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Maria Moreno
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Tanya Comas
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Dao Ly
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| |
Collapse
|
12
|
Granata G, Di Iorio R, Ilari S, Angeloni BM, Tomasello F, Cimmino AT, Carrarini C, Marrone A, Iodice F. Phantom limb syndrome: from pathogenesis to treatment. A narrative review. Neurol Sci 2024; 45:4741-4755. [PMID: 38853232 DOI: 10.1007/s10072-024-07634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Phantom Limb Syndrome (PLS) can be defined as the disabling or painful sensation of the presence of a body part that is no longer present after its amputation. Anatomical changes involved in Phantom Limb Syndrome, occurring at peripheral, spinal and brain levels and include the formation of neuromas and scars, dorsal horn sensitization and plasticity, short-term and long-term modifications at molecular and topographical levels. The molecular reorganization processes of Phantom Limb Syndrome include NMDA receptors hyperactivation in the dorsal horn of the spinal column leading to inflammatory mechanisms both at a peripheral and central level. At the brain level, a central role has been recognized for sodium channels, BDNF and adenosine triphosphate receptors. In the paper we discuss current available pharmacological options with a final overview on non-pharmacological options in the pipeline.
Collapse
Affiliation(s)
- Giuseppe Granata
- Institute of Neurology, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Riccardo Di Iorio
- Institute of Neurology, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Sara Ilari
- Laboratory of Physiology and Pharmacology of Pain, IRCCS San Raffaele, Rome, Italy
| | | | - Fabiola Tomasello
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Claudia Carrarini
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
- Institute of Neurology and Neurorehabilitation, IRCCS San Raffaele, Via Della Pisana 235, 00160, Rome, Italy
| | - Antonio Marrone
- Institute of Neurology and Neurorehabilitation, IRCCS San Raffaele, Via Della Pisana 235, 00160, Rome, Italy
| | - Francesco Iodice
- Institute of Neurology and Neurorehabilitation, IRCCS San Raffaele, Via Della Pisana 235, 00160, Rome, Italy.
| |
Collapse
|
13
|
Nascimento de Lima AP, Zhang H, Chen L, Effraim PR, Gomis-Perez C, Cheng X, Huang J, Waxman SG, Dib-Hajj SD. Nav1.8 in small dorsal root ganglion neurons contributes to vincristine-induced mechanical allodynia. Brain 2024; 147:3157-3170. [PMID: 38447953 DOI: 10.1093/brain/awae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common side effect of vincristine treatment, which is accompanied by pain and can be dose-limiting. The molecular mechanisms that underlie vincristine-induced pain are not well understood. We have established an animal model to investigate pathophysiological mechanisms of vincristine-induced pain. Our previous studies have shown that the tetrodotoxin-sensitive voltage-gated sodium channel Nav1.6 in medium-diameter dorsal root ganglion (DRG) neurons contributes to the maintenance of vincristine-induced allodynia. In this study, we investigated the effects of vincristine administration on excitability in small-diameter DRG neurons and whether the tetrodotoxin-resistant (TTX-R) Nav1.8 channels contribute to mechanical allodynia. Current-clamp recordings demonstrated that small DRG neurons become hyper-excitable following vincristine treatment, with both reduced current threshold and increased firing frequency. Using voltage-clamp recordings in small DRG neurons, we now show an increase in TTX-R current density and a -7.3 mV hyperpolarizing shift in the half-maximal potential (V1/2) of activation of Nav1.8 channels in vincristine-treated animals, which likely contributes to the hyperexcitability that we observed in these neurons. Notably, vincristine treatment did not enhance excitability of small DRG neurons from Nav1.8 knockout mice, and the development of mechanical allodynia was delayed but not abrogated in these mice. Together, our data suggest that sodium channel Nav1.8 in small DRG neurons contributes to the development of vincristine-induced mechanical allodynia.
Collapse
Affiliation(s)
- Ana Paula Nascimento de Lima
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Huiran Zhang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Lubin Chen
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Philip R Effraim
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carolina Gomis-Perez
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Xiaoyang Cheng
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jianying Huang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
14
|
Yu X, Zhao X, Li L, Huang Y, Cui C, Hu Q, Xu H, Yin B, Chen X, Zhao D, Qiu Y, Hou Y. Recent advances in small molecule Nav 1.7 inhibitors for cancer pain management. Bioorg Chem 2024; 150:107605. [PMID: 38971095 DOI: 10.1016/j.bioorg.2024.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Xiaoquan Yu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xingyi Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lingjun Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yufeng Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chaoyang Cui
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qiaoguan Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Haoyu Xu
- Yangtze River Pharmaceutical (Group) Co., Ltd., 1 South Yangtze River Road, Taizhou City, Jiangsu Province, 225321, China
| | - Bixi Yin
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Xiao Chen
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Dong Zhao
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yue Qiu
- Yangtze River Pharmaceutical Group Jiangsu Haici Biological Pharmaceutical Co., Ltd., 8 Taizhen Road, Medical New & Hi-tech Industrial Development Zone, Taizhou City, Jiangsu Province, 225321, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
15
|
Elleman AV, Milicic N, Williams DJ, Simko J, Liu CJ, Haynes AL, Ehrlich DE, Makinson CD, Du Bois J. Behavioral control through the direct, focal silencing of neuronal activity. Cell Chem Biol 2024; 31:1324-1335.e20. [PMID: 38729162 PMCID: PMC11260259 DOI: 10.1016/j.chembiol.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The ability to optically stimulate and inhibit neurons has revolutionized neuroscience research. Here, we present a direct, potent, user-friendly chemical approach for optically silencing neurons. We have rendered saxitoxin (STX), a naturally occurring paralytic agent, transiently inert through chemical protection with a previously undisclosed nitrobenzyl-derived photocleavable group. Exposing the caged toxin, STX-bpc, to a brief (5 ms) pulse of light effects rapid release of a potent STX derivative and transient, spatially precise blockade of voltage-gated sodium channels (NaVs). We demonstrate the efficacy of STX-bpc for parametrically manipulating action potentials in mammalian neurons and brain slice. Additionally, we show the effectiveness of this reagent for silencing neural activity by dissecting sensory-evoked swimming in larval zebrafish. Photo-uncaging of STX-bpc is a straightforward method for non-invasive, reversible, spatiotemporally precise neural silencing without the need for genetic access, thus removing barriers for comparative research.
Collapse
Affiliation(s)
- Anna V Elleman
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| | - Nikola Milicic
- Department of Integrative Biology, University of Wisconsin-Madison, 121 Integrative Biology Research Building, 1117 W Johnson St, Madison, WI 53706, USA
| | - Damian J Williams
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032, USA
| | - Jane Simko
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032, USA
| | - Christine J Liu
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032, USA; Department of Neuroscience, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, MC 9872, New York, NY 10027, USA
| | - Allison L Haynes
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA
| | - David E Ehrlich
- Department of Integrative Biology, University of Wisconsin-Madison, 121 Integrative Biology Research Building, 1117 W Johnson St, Madison, WI 53706, USA.
| | - Christopher D Makinson
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 710 W 168th St, New York, NY 10032, USA; Department of Neuroscience, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, MC 9872, New York, NY 10027, USA.
| | - J Du Bois
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Lee KH, Kim UJ, Cha M, Lee BH. Inhibiting Nav1.7 channels in pulpitis: An in vivo study on neuronal hyperexcitability. Biochem Biophys Res Commun 2024; 717:150044. [PMID: 38718567 DOI: 10.1016/j.bbrc.2024.150044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, Republic of Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Taub DG, Woolf CJ. Age-dependent small fiber neuropathy: Mechanistic insights from animal models. Exp Neurol 2024; 377:114811. [PMID: 38723859 PMCID: PMC11131160 DOI: 10.1016/j.expneurol.2024.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/07/2024] [Accepted: 05/05/2024] [Indexed: 05/28/2024]
Abstract
Small fiber neuropathy (SFN) is a common and debilitating disease in which the terminals of small diameter sensory axons degenerate, producing sensory loss, and in many patients neuropathic pain. While a substantial number of cases are attributable to diabetes, almost 50% are idiopathic. An underappreciated aspect of the disease is its late onset in most patients. Animal models of human genetic mutations that produce SFN also display age-dependent phenotypes suggesting that aging is an important contributor to the risk of development of the disease. In this review we define how particular sensory neurons are affected in SFN and discuss how aging may drive the disease. We also evaluate how animal models of SFN can define disease mechanisms that will provide insight into early risk detection and suggest novel therapeutic interventions.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Pozzi E, Terribile G, Cherchi L, Di Girolamo S, Sancini G, Alberti P. Ion Channel and Transporter Involvement in Chemotherapy-Induced Peripheral Neurotoxicity. Int J Mol Sci 2024; 25:6552. [PMID: 38928257 PMCID: PMC11203899 DOI: 10.3390/ijms25126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The peripheral nervous system can encounter alterations due to exposure to some of the most commonly used anticancer drugs (platinum drugs, taxanes, vinca alkaloids, proteasome inhibitors, thalidomide), the so-called chemotherapy-induced peripheral neurotoxicity (CIPN). CIPN can be long-lasting or even permanent, and it is detrimental for the quality of life of cancer survivors, being associated with persistent disturbances such as sensory loss and neuropathic pain at limb extremities due to a mostly sensory axonal polyneuropathy/neuronopathy. In the state of the art, there is no efficacious preventive/curative treatment for this condition. Among the reasons for this unmet clinical and scientific need, there is an uncomplete knowledge of the pathogenetic mechanisms. Ion channels and transporters are pivotal elements in both the central and peripheral nervous system, and there is a growing body of literature suggesting that they might play a role in CIPN development. In this review, we first describe the biophysical properties of these targets and then report existing data for the involvement of ion channels and transporters in CIPN, thus paving the way for new approaches/druggable targets to cure and/or prevent CIPN.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Giulia Terribile
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.T.); (G.S.)
| | - Laura Cherchi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Sara Di Girolamo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
| | - Giulio Sancini
- Human Physiology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.T.); (G.S.)
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.P.); (L.C.); (S.D.G.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
19
|
Tang C, Duran P, Calderon-Rivera A, Loya-Lopez S, Gomez K, Perez-Miller S, Khanna R. Regulating neuronal excitability: The role of S-palmitoylation in Na V1.7 activity and voltage sensitivity. PNAS NEXUS 2024; 3:pgae222. [PMID: 38894876 PMCID: PMC11184981 DOI: 10.1093/pnasnexus/pgae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
S-palmitoylation, a reversible lipid post-translational modification, regulates the functions of numerous proteins. Voltage-gated sodium channels (NaVs), pivotal in action potential generation and propagation within cardiac cells and sensory neurons, can be directly or indirectly modulated by S-palmitoylation, impacting channel trafficking and function. However, the role of S-palmitoylation in modulating NaV1.7, a significant contributor to pain pathophysiology, has remained unexplored. Here, we addressed this knowledge gap by investigating if S-palmitoylation influences NaV1.7 channel function. Acyl-biotin exchange assays demonstrated that heterologously expressed NaV1.7 channels are modified by S-palmitoylation. Blocking S-palmitoylation with 2-bromopalmitate resulted in reduced NaV1.7 current density and hyperpolarized steady-state inactivation. We identified two S-palmitoylation sites within NaV1.7, both located in the second intracellular loop, which regulated different properties of the channel. Specifically, S-palmitoylation of cysteine 1126 enhanced NaV1.7 current density, while S-palmitoylation of cysteine 1152 modulated voltage-dependent inactivation. Blocking S-palmitoylation altered excitability of rat dorsal root ganglion neurons. Lastly, in human sensory neurons, NaV1.7 undergoes S-palmitoylation, and the attenuation of this post-translational modification results in alterations in the voltage-dependence of activation, leading to decreased neuronal excitability. Our data show, for the first time, that S-palmitoylation affects NaV1.7 channels, exerting regulatory control over their activity and, consequently, impacting rodent and human sensory neuron excitability. These findings provide a foundation for future pharmacological studies, potentially uncovering novel therapeutic avenues in the modulation of S-palmitoylation for NaV1.7 channels.
Collapse
Affiliation(s)
- Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, China
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Xie YF, Yang J, Ratté S, Prescott SA. Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife 2024; 12:RP90960. [PMID: 38687187 PMCID: PMC11060714 DOI: 10.7554/elife.90960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
21
|
Wang Q, Ye Y, Yang L, Xiao L, Liu J, Zhang W, Du G. Painful diabetic neuropathy: The role of ion channels. Biomed Pharmacother 2024; 173:116417. [PMID: 38490158 DOI: 10.1016/j.biopha.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Painful diabetic neuropathy (PDN) is a common chronic complication of diabetes that causes neuropathic pain and negatively affects the quality of life. The management of PDN is far from satisfactory. At present, interventions are primarily focused on symptomatic treatment. Ion channel disorders are a major cause of PDN, and a complete understanding of their roles and mechanisms may provide better options for the clinical treatment of PDN. Therefore, this review summarizes the important role of ion channels in PDN and the current drug development targeting these ion channels.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Ye
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lifan Xiao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Guizhi Du
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Gomez K, Allen HN, Duran P, Loya-Lopez S, Calderon-Rivera A, Moutal A, Tang C, Nelson TS, Perez-Miller S, Khanna R. Targeted transcriptional upregulation of SENP1 by CRISPR activation enhances deSUMOylation pathways to elicit antinociception in the spinal nerve ligation model of neuropathic pain. Pain 2024; 165:866-883. [PMID: 37862053 PMCID: PMC11389604 DOI: 10.1097/j.pain.0000000000003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/04/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT The voltage-gated sodium channel Na V 1.7 is an essential component of human pain signaling. Changes in Na V 1.7 trafficking are considered critical in the development of neuropathic pain. SUMOylation of collapsin response mediator protein 2 (CRMP2) regulates the membrane trafficking and function of Na V 1.7. Enhanced CRMP2 SUMOylation in neuropathic pain correlates with increased Na V 1.7 activity. Pharmacological and genetic interventions that interfere with CRMP2 SUMOylation in rodents with neuropathic pain have been shown to reverse mechanical allodynia. Sentrin or SUMO-specific proteases (SENPs) are vital for balancing SUMOylation and deSUMOylation of substrates. Overexpression of SENP1 and/or SENP2 in CRMP2-expressing cells results in increased deSUMOylation and decreased membrane expression and currents of Na V 1.7. Although SENP1 is present in the spinal cord and dorsal root ganglia, its role in regulating Na V 1.7 function and pain is not known. We hypothesized that favoring SENP1 expression can enhance CRMP2 deSUMOylation to modulate Na V 1.7 channels. In this study, we used a clustered regularly interspaced short palindromic repeats activation (CRISPRa) SENP1 lentivirus to overexpress SENP1 in dorsal root ganglia neurons. We found that SENP1 lentivirus reduced CRMP2 SUMOylation, Na V 1.7-CRMP2 interaction, and Na V 1.7 membrane expression. SENP1 overexpression decreased Na V 1.7 currents through clathrin-mediated endocytosis, directly linked to CRMP2 deSUMOylation. Moreover, enhancing SENP1 expression did not affect the activity of TRPV1 channels or voltage-gated calcium and potassium channels. Intrathecal injection of CRISPRa SENP1 lentivirus reversed mechanical allodynia in male and female rats with spinal nerve injury. These results provide evidence that the pain-regulating effects of SENP1 overexpression involve, in part, the modulation of Na V 1.7 channels through the indirect mechanism of CRMP2 deSUMOylation.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Heather N Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO, United States
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Tyler S Nelson
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- NYU Pain Research Center, New York, NY, United States
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
23
|
Wang Y, Hu S, Chen Y, Chen M, Zhang D, Liu W, Chen C, Gan Y, Luo M, Ke B. Discovery of a novel series of pyridone amides as Na V1.8 inhibitors. Bioorg Med Chem Lett 2024; 101:129655. [PMID: 38350529 DOI: 10.1016/j.bmcl.2024.129655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
The NaV1.8 channel, mainly found in the peripheral nervous system, is recognized as one of the key factors in chronic pain. The molecule VX-150 was initially promising in targeting this channel, but the phase II trials of VX-150 did not show expected pain relief results. By analyzing the interaction mode of VX-150 and NaV1.8, we developed two series with a total of 19 molecules and examined their binding affinity to NaV1.8 in vitro and analgesic effect in vivo. One compound, named 2j, stood out with notable activity against the NaV1.8 channel and showed effective pain relief in models of chronic inflammatory pain and neuropathic pain. Our research points to 2j as a strong contender for developing safer pain-relief treatments.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shilong Hu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhao Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meiyuan Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Di Zhang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wencheng Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chunxia Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Menglan Luo
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
24
|
Tyagi S, Higerd-Rusli GP, Ghovanloo MR, Dib-Hajj F, Zhao P, Liu S, Kim DH, Shim JS, Park KS, Waxman SG, Choi JS, Dib-Hajj SD. Compartment-specific regulation of Na V1.7 in sensory neurons after acute exposure to TNF-α. Cell Rep 2024; 43:113685. [PMID: 38261513 PMCID: PMC10947185 DOI: 10.1016/j.celrep.2024.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Tumor necrosis factor α (TNF-α) is a major pro-inflammatory cytokine, important in many diseases, that sensitizes nociceptors through its action on a variety of ion channels, including voltage-gated sodium (NaV) channels. We show here that TNF-α acutely upregulates sensory neuron excitability and current density of threshold channel NaV1.7. Using electrophysiological recordings and live imaging, we demonstrate that this effect on NaV1.7 is mediated by p38 MAPK and identify serine 110 in the channel's N terminus as the phospho-acceptor site, which triggers NaV1.7 channel insertion into the somatic membrane. We also show that the N terminus of NaV1.7 is sufficient to mediate this effect. Although acute TNF-α treatment increases NaV1.7-carrying vesicle accumulation at axonal endings, we did not observe increased channel insertion into the axonal membrane. These results identify molecular determinants of TNF-α-mediated regulation of NaV1.7 in sensory neurons and demonstrate compartment-specific effects of TNF-α on channel insertion in the neuronal plasma membrane.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06511, USA; Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Grant P Higerd-Rusli
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06511, USA; Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Mohammad-Reza Ghovanloo
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Fadia Dib-Hajj
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Dong-Hyun Kim
- Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, South Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Ji Seon Shim
- Department of Physiology, Kyung Hee University School of Medicine, Seoul 02447, South Korea
| | - Kang-Sik Park
- Department of Physiology, Kyung Hee University School of Medicine, Seoul 02447, South Korea
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Jin-Sung Choi
- Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, South Korea.
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| |
Collapse
|
25
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
26
|
Ghovanloo MR, Effraim PR, Tyagi S, Zhao P, Dib-Hajj SD, Waxman SG. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Commun Biol 2024; 7:120. [PMID: 38263462 PMCID: PMC10805714 DOI: 10.1038/s42003-024-05781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Cannabinol (CBN), an incompletely understood metabolite for ∆9-tetrahydrocannabinol, has been suggested as an analgesic. CBN interacts with endocannabinoid (CB) receptors, but is also reported to interact with non-CB targets, including various ion channels. We assessed CBN effects on voltage-dependent sodium (Nav) channels expressed heterologously and in native dorsal root ganglion (DRG) neurons. Our results indicate that CBN is a functionally-selective, but structurally-non-selective Nav current inhibitor. CBN's main effect is on slow inactivation. CBN slows recovery from slow-inactivated states, and hyperpolarizes steady-state inactivation, as channels enter deeper and slower inactivated states. Multielectrode array recordings indicate that CBN attenuates DRG neuron excitability. Voltage- and current-clamp analysis of freshly isolated DRG neurons via our automated patch-clamp platform confirmed these findings. The inhibitory effects of CBN on Nav currents and on DRG neuron excitability add a new dimension to its actions and suggest that this cannabinoid may be useful for neuropathic pain.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Philip R Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
27
|
Tan ZY, Wu B, Su X, Zhou Y, Ji YH. Differential expression of slow and fast-repriming tetrodotoxin-sensitive sodium currents in dorsal root ganglion neurons. Front Mol Neurosci 2024; 16:1336664. [PMID: 38273939 PMCID: PMC10808659 DOI: 10.3389/fnmol.2023.1336664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Sodium channel Nav1.7 triggers the generation of nociceptive action potentials and is important in sending pain signals under physiological and pathological conditions. However, studying endogenous Nav1.7 currents has been confounded by co-expression of multiple sodium channel isoforms in dorsal root ganglion (DRG) neurons. In the current study, slow-repriming (SR) and fast-repriming (FR) tetrodotoxin-sensitive (TTX-S) currents were dissected electrophysiologically in small DRG neurons of both rats and mice. Three subgroups of small DRG neurons were identified based on the expression pattern of SR and FR TTX-S currents. A majority of rat neurons only expressed SR TTX-S currents, while a majority of mouse neurons expressed additional FR TTX-S currents. ProTx-II inhibited SR TTX-S currents with variable efficacy among DRG neurons. The expression of both types of TTX-S currents was higher in Isolectin B4-negative (IB4-) compared to Isolectin B4-positive (IB4+) neurons. Paclitaxel selectively increased SR TTX-S currents in IB4- neurons. In simulation experiments, the Nav1.7-expressing small DRG neuron displayed lower rheobase and higher frequency of action potentials upon threshold current injections compared to Nav1.6. The results suggested a successful dissection of endogenous Nav1.7 currents through electrophysiological manipulation that may provide a useful way to study the functional expression and pharmacology of endogenous Nav1.7 channels in DRG neurons.
Collapse
Affiliation(s)
- Zhi-Yong Tan
- Department of Pathophysiology, Hebei University School of Basic Medicine, Baoding, China
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Institute of Special Environment Medicine, Nantong University, Nantong, China
| | - Xiaolin Su
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - You Zhou
- Department of Physiology, Hebei University School of Basic Medicine, Baoding, China
| | - Yong-Hua Ji
- Department of Physiology, Hebei University School of Basic Medicine, Baoding, China
| |
Collapse
|
28
|
Deuis JR, Kumble S, Keramidas A, Ragnarsson L, Simons C, Pais L, White SM, Vetter I. Erythromelalgia caused by the missense mutation p.Arg220Pro in an alternatively spliced exon of SCN9A (NaV1.7). Hum Mol Genet 2024; 33:103-109. [PMID: 37721535 PMCID: PMC10772039 DOI: 10.1093/hmg/ddad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Erythromelalgia (EM), is a familial pain syndrome characterized by episodic 'burning' pain, warmth, and erythema. EM is caused by monoallelic variants in SCN9A, which encodes the voltage-gated sodium channel (NaV) NaV1.7. Over 25 different SCN9A mutations attributed to EM have been described to date, all identified in the SCN9A transcript utilizing exon 6N. Here we report a novel SCN9A missense variant identified in seven related individuals with stereotypic episodes of bilateral lower limb pain presenting in childhood. The variant, XM_011511617.3:c.659G>C;p.(Arg220Pro), resides in the exon 6A of SCN9A, an exon previously shown to be selectively incorporated by developmentally regulated alternative splicing. The mutation is located in the voltage-sensing S4 segment of domain I, which is important for regulating channel activation. Functional analysis showed the p.Arg220Pro mutation altered voltage-dependent activation and delayed channel inactivation, consistent with a NaV1.7 gain-of-function molecular phenotype. These results demonstrate that alternatively spliced isoforms of SCN9A should be included in all genomic testing of EM.
Collapse
Affiliation(s)
- Jennifer R Deuis
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Smitha Kumble
- Murdoch Children's Research Institute, 50 Flemington Road, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cas Simons
- Murdoch Children's Research Institute, 50 Flemington Road, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Lynn Pais
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, United States
| | - Susan M White
- Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, 306 Carmody Road, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, 20 Cornwall Street, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
29
|
Thompson AC, Aizenman CD. Characterization of Na + currents regulating intrinsic excitability of optic tectal neurons. Life Sci Alliance 2024; 7:e202302232. [PMID: 37918964 PMCID: PMC10622587 DOI: 10.26508/lsa.202302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Developing neurons adapt their intrinsic excitability to maintain stable output despite changing synaptic input. The mechanisms behind this process remain unclear. In this study, we examined Xenopus optic tectal neurons and found that the expressions of Nav1.1 and Nav1.6 voltage-gated Na+ channels are regulated during changes in intrinsic excitability, both during development and becsuse of changes in visual experience. Using whole-cell electrophysiology, we demonstrate the existence of distinct, fast, persistent, and resurgent Na+ currents in the tectum, and show that these Na+ currents are co-regulated with changes in Nav channel expression. Using antisense RNA to suppress the expression of specific Nav subunits, we found that up-regulation of Nav1.6 expression, but not Nav1.1, was necessary for experience-dependent increases in Na+ currents and intrinsic excitability. Furthermore, this regulation was also necessary for normal development of sensory guided behaviors. These data suggest that the regulation of Na+ currents through the modulation of Nav1.6 expression, and to a lesser extent Nav1.1, plays a crucial role in controlling the intrinsic excitability of tectal neurons and guiding normal development of the tectal circuitry.
Collapse
|
30
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
31
|
Chen M, Lu M, Feng X, Wu M, Luo X, Xiang R, Luo R, Wu H, Liu Z, Wang M, Zhou X. LmNaTx15, a novel scorpion toxin, enhances the activity of Nav channels and induces pain in mice. Toxicon 2023; 236:107331. [PMID: 37918718 DOI: 10.1016/j.toxicon.2023.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Polypeptide toxins are major bioactive components found in venomous animals. Many polypeptide toxins can specifically act on targets, such as ion channels and voltage-gated sodium (Nav) channels, in the nervous, muscle, and cardiovascular systems of the recipient to increase defense and predation efficiency. In this study, a novel polypeptide toxin, LmNaTx15, was isolated from the venom of the scorpion Lychas mucronatus, and its activity was analyzed. LmNaTx15 slowed the fast inactivation of Nav1.2, Nav1.3, Nav1.4, Nav1.5, and Nav1.7 and inhibited the peak current of Nav1.5, but it did not affect Nav1.8. In addition, LmNaTx15 altered the voltage-dependent activation and inactivation of these Nav channel subtypes. Furthermore, like site 3 neurotoxins, LmNaTx15 induced pain in mice. These results show a novel scorpion toxin with a modulatory effect on specific Nav channel subtypes and pain induction in mice. Therefore, LmNaTx15 may be a key bioactive component for scorpion defense and predation. Besides, this study provides a basis for analyzing structure-function relationships of the scorpion toxins affecting Nav channel activity.
Collapse
Affiliation(s)
- Minzhi Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Minjuan Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xujun Feng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meijing Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoqing Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ren Luo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hang Wu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meichi Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
32
|
Hussein RA, Ahmed M, Heinemann SH. Selenomethionine mis-incorporation and redox-dependent voltage-gated sodium channel gain of function. J Neurochem 2023; 167:262-276. [PMID: 37679952 DOI: 10.1111/jnc.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Selenomethionine (SeMet) readily replaces methionine (Met) residues in proteins during translation. Long-term dietary SeMet intake results in the accumulation of the amino acid in tissue proteins. Despite the high rates of SeMet incorporation in proteins and its stronger susceptibility to oxidation compared to Met, little is known about the effect of SeMet mis-incorporation on electrical excitability and ion channels. Fast inactivation of voltage-gated sodium (NaV ) channels is essential for exact action potential shaping with even minute impairment of inactivation resulting in a plethora of adverse phenotypes. Met oxidation of the NaV channel inactivation motif (Ile-Phe-Met) and further Met residues causes a marked loss of inactivation. Here, we examined the impact of SeMet mis-incorporation on the function of NaV channels. While extensive SeMet incorporation into recombinant rat NaV 1.4 channels preserved their normal function, it greatly sensitized the channels to mild oxidative stress, resulting in loss of inactivation and diminished maximal current, both reversible by dithiothreitol-induced reduction. SeMet incorporation similarly affected human NaV 1.4, NaV 1.2, NaV 1.5, and NaV 1.7. In mouse dorsal root ganglia (DRG) neurons, 1 day of SeMet exposure exacerbated the oxidation-mediated broadening of action potentials. SeMet-treated DRGs also exhibited a stronger increase in the persistent NaV current in response to oxidation. SeMet incorporation in NaV proteins coinciding with oxidative insults may therefore result in hyperexcitability pathologies, such as cardiac arrhythmias and neuropathies, like congenital NaV channel gain-of-function mutations.
Collapse
Affiliation(s)
- Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| |
Collapse
|
33
|
Varrassi G, Tamburin S, Zis P, Guardamagna VA, Paladini A, Rekatsina M. What's New in Neuropathy? Cureus 2023; 15:e44952. [PMID: 37818524 PMCID: PMC10561699 DOI: 10.7759/cureus.44952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Neuropathic pain presents diagnostic and treatment challenges. Despite recent advances in our understanding of the diagnosis and treatment of neuropathy, much remains to be elucidated. Familiar with neuropathy is the paradox that aberrant nerve signaling causes both sensory loss and pain. Voltage-gated sodium channels play an important role in neuronal electrogenesis and communication among neurons, and their dysregulation leads to hyperexcitability and pain. While numerous validated diagnostic assessment tools are available for neuropathy, patients often experience a diagnostic delay about the cause of their neuropathy. New research is defining more specific types of neuropathy beyond peripheral and central forms. The prevalence of pain varies by type of neuropathy, with chronic idiopathic axonal polyneuropathy associated with the highest proportion of patients experiencing pain. In the majority of types, it exceeds 50%. Gluten neuropathy, a form of peripheral neuropathy, is a new diagnostic consideration. It may require electrochemical conductance testing of hands and feet to test for sudomotor dysfunction. Among those with serologically confirmed gluten sensitivity or celiac disease, gluten neuropathy is a common neurological manifestation and may be addressed at least partially by a gluten-free diet. In Greece, a new neuropathic pain registry was created in 2014 in order to help gather data from real-world neuropathic pain patients. While still in its earliest phase, this registry has already produced demographic and treatment data that suggest suboptimal prescribing and less than recommended use of interventional procedures. Awareness campaigns are underway to encourage more Greek pain clinics to participate in this important registry.
Collapse
Affiliation(s)
| | | | - Panagiotis Zis
- Department of Neurology, University of Cyprus, Nicosia, CYP
| | | | - Antonella Paladini
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, L'Aquila, ITA
| | - Martina Rekatsina
- Department of Anesthesiology and Pain Management, University of Athens, Athens, GRC
| |
Collapse
|
34
|
Gomez K, Stratton HJ, Duran P, Loya S, Tang C, Calderon-Rivera A, François-Moutal L, Khanna M, Madura CL, Luo S, McKiver B, Choi E, Ran D, Boinon L, Perez-Miller S, Damaj MI, Moutal A, Khanna R. Identification and targeting of a unique Na V1.7 domain driving chronic pain. Proc Natl Acad Sci U S A 2023; 120:e2217800120. [PMID: 37498871 PMCID: PMC10410761 DOI: 10.1073/pnas.2217800120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Santiago Loya
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | | | - May Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Bryan McKiver
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Edward Choi
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO63104
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY10010
| |
Collapse
|
35
|
Okuda H, Inoue S, Oyamada Y, Koizumi A, Youssefian S. Reduced pain sensitivity of episodic pain syndrome model mice carrying a Nav1.9 mutation by ANP-230, a novel sodium channel blocker. Heliyon 2023; 9:e15423. [PMID: 37151704 PMCID: PMC10161610 DOI: 10.1016/j.heliyon.2023.e15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The sodium channel Nav1.9 is expressed in the sensory neurons of small diameter dorsal root ganglia that transmit pain signals, and gain-of-function Nav1.9 mutations have been associated with both painful and painless disorders. We initially determined that some Nav1.9 mutations are responsible for familial episodic pain syndrome observed in the Japanese population. We therefore generated model mice harboring one of the more painful Japanese mutations, R222S, and determined that dorsal root ganglia hyperexcitability was the cause of the associated pain. ANP-230 is a novel non-opioid drug with strong inhibitory effects on Nav1.7, 1.8 and 1.9, and is currently under clinical trials for patients suffering from familial episodic pain syndrome. However, little is known about its mechanism of action and effects on pain sensitivity. In this study, we therefore investigated the inhibitory effects of ANP-230 on the hypersensitivity of Nav1.9 p.R222S mutant model mouse to pain. In behavioral tests, ANP-230 reduced the pain response of the mice, particularly to heat or mechanical stimuli, in a concentration- and time-dependent manner. Furthermore, ANP-230 suppressed the repetitive firing of dorsal root ganglion neurons of these mutant mice. Our results clearly demonstrate that ANP-230 is an effective analgesic for familial episodic pain syndrome resulting from DRG neuron hyperexcitability, and that such analgesic effects are likely to be of clinical significance.
Collapse
Affiliation(s)
- Hiroko Okuda
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo‐ward, Kyoto, 602‐8566, Japan
- Corresponding author.
| | - Sumiko Inoue
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshihiro Oyamada
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- AlphaNavi Pharma Inc., Osaka, 564-0053, Japan
| | - Akio Koizumi
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Institute of Public Health and Welfare Research, Kyoto, 616-8141, Japan
- Corresponding author. Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Shohab Youssefian
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Laboratory of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
36
|
Zhao Z, Pan T, Chen S, Harvey PJ, Zhang J, Li X, Yang M, Huang L, Wang S, Craik DJ, Jiang T, Yu R. Design, synthesis, and mechanism of action of novel μ-conotoxin KIIIA analogues for inhibition of the voltage-gated sodium channel Na v1.7. J Biol Chem 2023; 299:103068. [PMID: 36842500 PMCID: PMC10074208 DOI: 10.1016/j.jbc.2023.103068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023] Open
Abstract
μ-Conotoxin KIIIA, a selective blocker of sodium channels, has strong inhibitory activity against several Nav isoforms, including Nav1.7, and has potent analgesic effects, but it contains three pairs of disulfide bonds, making structural modification difficult and synthesis complex. To circumvent these difficulties, we designed and synthesized three KIIIA analogues with one disulfide bond deleted. The most active analogue, KIIIA-1, was further analyzed, and its binding pattern to hNav1.7 was determined by molecular dynamics simulations. Guided by the molecular dynamics computational model, we designed and tested 32 second-generation and 6 third-generation analogues of KIIIA-1 on hNav1.7 expressed in HEK293 cells. Several analogues showed significantly improved inhibitory activity on hNav1.7, and the most potent peptide, 37, was approximately 4-fold more potent than the KIIIA Isomer I and 8-fold more potent than the wildtype (WT) KIIIA in inhibiting hNav1.7 current. Intraperitoneally injected 37 exhibited potent in vivo analgesic activity in a formalin-induced inflammatory pain model, with activity reaching ∼350-fold of the positive control drug morphine. Overall, peptide 37 has a simplified disulfide-bond framework and exhibits potent in vivo analgesic effects and has promising potential for development as a pain therapy in the future.
Collapse
Affiliation(s)
- Zitong Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Teng Pan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linhong Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
37
|
Ghovanloo MR, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj SD, Waxman SG. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. CELL REPORTS METHODS 2023; 3:100385. [PMID: 36814833 PMCID: PMC9939380 DOI: 10.1016/j.crmeth.2022.100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The patch-clamp technique is the gold-standard methodology for analysis of excitable cells. However, throughput of manual patch-clamp is slow, and high-throughput robotic patch-clamp, while helpful for applications like drug screening, has been primarily used to study channels and receptors expressed in heterologous systems. We introduce an approach for automated high-throughput patch-clamping that enhances analysis of excitable cells at the channel and cellular levels. This involves dissociating and isolating neurons from intact tissues and patch-clamping using a robotic instrument, followed by using an open-source Python script for analysis and filtration. As a proof of concept, we apply this approach to investigate the biophysical properties of voltage-gated sodium (Nav) channels in dorsal root ganglion (DRG) neurons, which are among the most diverse and complex neuronal cells. Our approach enables voltage- and current-clamp recordings in the same cell, allowing unbiased, fast, simultaneous, and head-to-head electrophysiological recordings from a wide range of freshly isolated neurons without requiring culturing on coverslips.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Emre Kiziltug
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
38
|
Alsaloum M, Labau JIR, Liu S, Effraim PR, Waxman SG. Stem cell-derived sensory neurons modelling inherited erythromelalgia: normalization of excitability. Brain 2023; 146:359-371. [PMID: 35088838 DOI: 10.1093/brain/awac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 01/11/2023] Open
Abstract
Effective treatment of pain remains an unmet healthcare need that requires new and effective therapeutic approaches. NaV1.7 has been genetically and functionally validated as a mediator of pain. Preclinical studies of NaV1.7-selective blockers have shown limited success and translation to clinical studies has been limited. The degree of NaV1.7 channel blockade necessary to attenuate neuronal excitability and ameliorate pain is an unanswered question important for drug discovery. Here, we utilize dynamic clamp electrophysiology and induced pluripotent stem cell-derived sensory neurons (iPSC-SNs) to answer this question for inherited erythromelalgia, a pain disorder caused by gain-of-function mutations in Nav1.7. We show that dynamic clamp can produce hyperexcitability in iPSC-SNs associated with two different inherited erythromelalgia mutations, NaV1.7-S241T and NaV1.7-I848T. We further show that blockade of approximately 50% of NaV1.7 currents can reverse neuronal hyperexcitability to baseline levels.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06510, USA.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Julie I R Labau
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA.,Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Shujun Liu
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Philip R Effraim
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA.,Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
39
|
Combinations of classical and non-classical voltage dependent potassium channel openers suppress nociceptor discharge and reverse chronic pain signs in a rat model of Gulf War illness. Neurotoxicology 2022; 93:186-199. [PMID: 36216193 DOI: 10.1016/j.neuro.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2022]
Abstract
In a companion paper we examined whether combinations of Kv7 channel openers (Retigabine and Diclofenac; RET, DIC) could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. In the present report, we examined the combinations of Retigabine/Meclofenamate (RET/MEC) and Meclofenamate/Diclofenac (MEC/DIC). Voltage clamp experiments were performed on deep tissue nociceptors isolated from rat DRG (dorsal root ganglion). In voltage clamp studies, a stepped voltage protocol was applied (-55 to -40 mV; Vh=-60 mV; 1500 msec) and Kv7 evoked currents were subsequently isolated by Linopirdine subtraction. MEC greatly enhanced voltage dependent conductance and produced exceptional maximum sustained currents of 6.01 ± 0.26 pA/pF (EC50: 62.2 ± 8.99 μM). Combinations of RET/MEC, and MEC/DIC substantially amplified resting currents at low concentrations. MEC/DIC also greatly improved voltage dependent conductance. In current clamp experiments, a cholinergic challenge test (Oxotremorine-M, 10 μM; OXO), associated with our GWI rat model, produced powerful action potential (AP) bursts (85 APs). Optimized combinations of RET/MEC (5 and 0.5 μM) and MEC/DIC (0.5 and 2.5 μM) significantly reduced AP discharges to 3 and 7 Aps, respectively. Treatment of pain-like ambulatory behavior in our rat model with a RET/MEC combination (5 and 0.5 mg/kg) successfully rescued ambulation deficits, but could not be fully separated from the effect of RET alone. Further development of this approach is recommended.
Collapse
|
40
|
Effects of Photodynamic Therapy on Nav1.7 Expression in Spinal Dorsal Root Ganglion Neurons. Curr Med Sci 2022; 42:1267-1272. [PMID: 36462133 DOI: 10.1007/s11596-022-2640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/17/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE The aim of this study was to examine the effects of photodynamic therapy (PDT) on the expression of Nav1.7 in spinal dorsal root ganglion (DRG) neurons. METHODS The primary DRG neurons from newborn SD rats were cultured. The cells were identified by neuron-specific enolase immunofluorescence staining. DRG neurons were divided into four groups: control group, photosensitizer group, laser group, and PDT group. The cell viability was detected by a cell counting kit-8 (CCK8) assay. qRT-PCR and Western blotting were used to determine the mRNA and protein expression levels of Nav1.7 in DRG neurons. RESULTS The purity of the cultured primary DRG neurons was greater than 90%. Compared with the control group, no significant change was found in the cell viability of the photosensitizer group, while the viability in the laser group and the PDT group was significantly reduced. The mRNA and protein expression levels of Nav1.7 were significantly greater in the laser group and the PDT group than in the control group. At the same time, the mRNA and protein expression levels of Nav1.7 were greater in the laser group than in the PDT group. CONCLUSION Both laser and PDT could upregulate the expression of Nav1.7 in DRG neurons, and the promoting effect might be related to the pain induced by clinical treatment. This study provides a research basis for the use of laser and PDT to treat pain. A better understanding of the relationship between Nav1.7 and PDT can help clinicians better manage PDT-related pain.
Collapse
|
41
|
Yang H, Shan Z, Guo W, Wang Y, Cai S, Li F, Huang Q, Liu JA, Cheung CW, Cai S. Reversal of Peripheral Neuropathic Pain by the Small-Molecule Natural Product Narirutin via Block of Na v1.7 Voltage-Gated Sodium Channel. Int J Mol Sci 2022; 23:ijms232314842. [PMID: 36499167 PMCID: PMC9738487 DOI: 10.3390/ijms232314842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Neuropathic pain is a refractory chronic disease affecting millions of people worldwide. Given that present painkillers have poor efficacy or severe side effects, developing novel analgesics is badly needed. The multiplex structure of active ingredients isolated from natural products provides a new source for phytochemical compound synthesis. Here, we identified a natural product, Narirutin, a flavonoid compound isolated from the Citrus unshiu, showing antinociceptive effects in rodent models of neuropathic pain. Using calcium imaging, whole-cell electrophysiology, western blotting, and immunofluorescence, we uncovered a molecular target for Narirutin's antinociceptive actions. We found that Narirutin (i) inhibits Veratridine-triggered nociceptor activities in L4-L6 rat dorsal root ganglion (DRG) neurons, (ii) blocks voltage-gated sodium (NaV) channels subtype 1.7 in both small-diameter DRG nociceptive neurons and human embryonic kidney (HEK) 293 cell line, (iii) does not affect tetrodotoxin-resistant (TTX-R) NaV channels, and (iv) blunts the upregulation of Nav1.7 in calcitonin gene-related peptide (CGRP)-labeled DRG sensory neurons after spared nerve injury (SNI) surgery. Identifying Nav1.7 as a molecular target of Narirutin may further clarify the analgesic mechanism of natural flavonoid compounds and provide an optimal idea to produce novel selective and efficient analgesic drugs.
Collapse
Affiliation(s)
- Haoyi Yang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhiming Shan
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen 518020, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen 518020, China
| | - Weijie Guo
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yuwei Wang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shuxian Cai
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Fuyi Li
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Qiaojie Huang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Correspondence: (C.W.C.); (S.C.)
| | - Song Cai
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
- Correspondence: (C.W.C.); (S.C.)
| |
Collapse
|
42
|
Bigsby S, Neapetung J, Campanucci VA. Voltage-gated sodium channels in diabetic sensory neuropathy: Function, modulation, and therapeutic potential. Front Cell Neurosci 2022; 16:994585. [PMID: 36467605 PMCID: PMC9713017 DOI: 10.3389/fncel.2022.994585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Voltage-gated sodium channels (Na V ) are the main contributors to action potential generation and essential players in establishing neuronal excitability. Na V channels have been widely studied in pain pathologies, including those that develop during diabetes. Diabetic sensory neuropathy (DSN) is one of the most common complications of the disease. DSN is the result of sensory nerve damage by the hyperglycemic state, resulting in a number of debilitating symptoms that have a significant negative impact in the quality of life of diabetic patients. Among those symptoms are tingling and numbness of hands and feet, as well as exacerbated pain responses to noxious and non-noxious stimuli. DSN is also a major contributor to the development of diabetic foot, which may lead to lower limb amputations in long-term diabetic patients. Unfortunately, current treatments fail to reverse or successfully manage DSN. In the current review we provide an updated report on Na V channels including structure/function and contribution to DSN. Furthermore, we summarize current research on the therapeutic potential of targeting Na V channels in pain pathologies, including DSN.
Collapse
Affiliation(s)
| | | | - Verónica A. Campanucci
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
43
|
Ghovanloo MR, Dib-Hajj SD, Goodchild SJ, Ruben PC, Waxman SG. Non-psychotropic phytocannabinoid interactions with voltage-gated sodium channels: An update on cannabidiol and cannabigerol. Front Physiol 2022; 13:1066455. [PMID: 36439273 PMCID: PMC9691960 DOI: 10.3389/fphys.2022.1066455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2023] Open
Abstract
Phytocannabinoids, found in the plant, Cannabis sativa, are an important class of natural compounds with physiological effects. These compounds can be generally divided into two classes: psychoactive and non-psychoactive. Those which do not impart psychoactivity are assumed to predominantly function via endocannabinoid receptor (CB) -independent pathways and molecular targets, including other receptors and ion channels. Among these targets, the voltage-gated sodium (Nav) channels are particularly interesting due to their well-established role in electrical signalling in the nervous system. The interactions between the main non-psychoactive phytocannabinoid, cannabidiol (CBD), and Nav channels were studied in detail. In addition to CBD, cannabigerol (CBG), is another non-psychoactive molecule implicated as a potential therapeutic for several conditions, including pain via interactions with Nav channels. In this mini review, we provide an update on the interactions of Nav channels with CBD and CBG.
Collapse
Affiliation(s)
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Samuel J. Goodchild
- Department of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., Burnaby, BC, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
44
|
Edenfield S, Sims AM, Porretta C, Gould HJ, Paul D. Effect of Cell Cycle on Cell Surface Expression of Voltage-Gated Sodium Channels and Na +,K +-ATPase. Cells 2022; 11:cells11203240. [PMID: 36291108 PMCID: PMC9600173 DOI: 10.3390/cells11203240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the target for many therapies. Variation in membrane potential occurs throughout the cell cycle, yet little attention has been devoted to the role of VGSCs and Na+,K+-ATPases. We hypothesized that in addition to doubling DNA and cell membrane in anticipation of cell division, there should be a doubling of VGSCs and Na+,K+-ATPase compared to non-dividing cells. We tested this hypothesis in eight immortalized cell lines by correlating immunocytofluorescent labeling of VGSCs or Na+,K+-ATPase with propidium iodide or DAPI fluorescence using flow cytometry and imaging. Cell surface expression of VGSCs during phases S through M was double that seen during phases G0–G1. By contrast, Na+,K+-ATPase expression increased only 1.5-fold. The increases were independent of baseline expression of channels or pumps. The variation in VGSC and Na+,K+-ATPase expression has implications for both our understanding of sodium’s role in controlling the cell cycle and variability of treatments targeted at these components of the Na+ handling system.
Collapse
Affiliation(s)
- Samantha Edenfield
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Abigail M. Sims
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Constance Porretta
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Harry J. Gould
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence: (H.J.G.III); (D.P.)
| | - Dennis Paul
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Dental and Craniofacial Biology Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70119, USA
- Correspondence: (H.J.G.III); (D.P.)
| |
Collapse
|
45
|
Shen Y, Zheng Y, Hong D. Familial Episodic Pain Syndromes. J Pain Res 2022; 15:2505-2515. [PMID: 36051609 PMCID: PMC9427007 DOI: 10.2147/jpr.s375299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past decades, advances in genetic sequencing have opened a new world of discovery of causative genes associated with numerous pain-related syndromes. Familial episodic pain syndromes (FEPS) are one of the distinctive syndromes characterized by early-childhood onset of severe episodic pain mainly affecting the distal extremities and tend to attenuate or diminish with age. According to the phenotypic and genetic properties, FEPS at least includes four subtypes of FEPS1, FEPS2, FEPS3, and FEPS4, which are caused by mutations in the TRPA1, SCN10A, SCN11A, and SCN9A genes, respectively. Functional studies have revealed that all missense mutations in these genes are closely associated with the gain-of-function of cation channels. Because some FEPS patients may show a relative treatability and favorable prognosis, it is worth paying attention to the diagnosis and management of FEPS as early as possible. In this review, we state the common clinical manifestations, pathogenic mechanisms, and potential therapies of the disease, and provide preliminary opinions about future research for FEPS.
Collapse
Affiliation(s)
- Yu Shen
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
46
|
Pathophysiological and Neuroplastic Changes in Postamputation and Neuropathic Pain: Review of the Literature. Plast Reconstr Surg Glob Open 2022; 10:e4549. [PMID: 36187278 PMCID: PMC9521753 DOI: 10.1097/gox.0000000000004549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/05/2022] [Indexed: 10/24/2022]
Abstract
Despite advancements in surgical and rehabilitation strategies, extremity amputations are frequently associated with disability, phantom limb sensations, and chronic pain. Investigation into potential treatment modalities has focused on the pathophysiological changes in both the peripheral and central nervous systems to better understand the underlying mechanism in the development of chronic pain in persons with amputations. Methods Presented in this article is a discussion outlining the physiological changes that occur in the peripheral and central nervous systems following amputation. In this review, the authors examine the molecular and neuroplastic changes occurring in the nervous system, as well as the state-of-the-art treatment to help reduce the development of postamputation pain. Results This review summarizes the current literature regarding neurological changes following amputation. Development of both central sensitization and neuronal remodeling in the spinal cord and cerebral cortex allows for the development of neuropathic and phantom limb pain postamputation. Recently developed treatments targeting these pathophysiological changes have enabled a reduction in the severity of pain; however, complete resolution remains elusive. Conclusions Changes in the peripheral and central nervous systems following amputation should not be viewed as separate pathologies, but rather two interdependent mechanisms that underlie the development of pathological pain. A better understanding of the physiological changes following amputation will allow for improvements in therapeutic treatments to minimize pathological pain caused by amputation.
Collapse
|
47
|
Zeidler M, Kummer KK, Kress M. Towards bridging the translational gap by improved modeling of human nociception in health and disease. Pflugers Arch 2022; 474:965-978. [PMID: 35655042 PMCID: PMC9393146 DOI: 10.1007/s00424-022-02707-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive neurons by involving other cell types in 3D model systems are described.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
48
|
Landmann G, Stockinger L, Gerber B, Benrath J, Schmelz M, Rukwied R. Local hyperexcitability of C-nociceptors may predict responsiveness to topical lidocaine in neuropathic pain. PLoS One 2022; 17:e0271327. [PMID: 35834539 PMCID: PMC9282664 DOI: 10.1371/journal.pone.0271327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
We explored whether increased C-nociceptor excitability predicts analgesic effects of topical lidocaine in 33 patients with mono- (n = 15) or poly-neuropathy (n = 18). Excitability of C-nociceptors was tested by transcutaneous electrical sinusoidal (4 Hz) and half sine wave (single 500 ms pulse) stimulation delivered to affected and non-affected sites. Analgesic effects of 24 hrs topical lidocaine were recorded. About 50% of patients reported increased pain from symptomatic skin upon continuous 4 Hz sinusoidal and about 25% upon 500 ms half sine wave stimulation. Electrically-evoked half sine wave pain correlated to their clinical pain level (r = 0.37, p < 0.05). Lidocaine-patches reduced spontaneous pain by >1-point NRS in 8 of 28 patients (p < 0.0001, ANOVA). Patients with increased pain to 2.5 sec sinusoidal stimulation at 0.2 and 0.4 mA intensity had significantly stronger analgesic effects of lidocaine and in reverse, patients with a pain reduction of >1 NRS had significantly higher pain ratings to continuous 1 min supra-threshold sinusoidal stimulation. In the assessed control skin areas of the patients, enhanced pain upon 1 min 4 Hz stimulation correlated to increased depression scores (HADS). Electrically assessed C-nociceptor excitability identified by slowly depolarizing electrical stimuli might reflect the source of neuropathic pain in some patients and can be useful for patient stratification to predict potential success of topical analgesics. Central neuronal circuitry assessment reflected by increased pain in control skin associated with higher HADS scores suggest central sensitization phenomena in a sub-population of neuropathic pain patients.
Collapse
Affiliation(s)
- Gunther Landmann
- Centre for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Lenka Stockinger
- Centre for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Benjamin Gerber
- Department of Anesthesiology and Intensive Care, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Justus Benrath
- Department of Anesthesiology and Intensive Care, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
49
|
Elleman AV, Du Bois J. Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception. Chembiochem 2022; 23:e202100625. [PMID: 35315190 PMCID: PMC9359671 DOI: 10.1002/cbic.202100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
The malfunction and misregulation of voltage-gated sodium channels (NaV s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaV s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.
Collapse
Affiliation(s)
- Anna V Elleman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Contribution of tetrodotoxin-resistant persistent Na + currents to the excitability of C-type dural afferent neurons in rats. J Headache Pain 2022; 23:73. [PMID: 35764917 PMCID: PMC9238149 DOI: 10.1186/s10194-022-01443-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Growing evidence supports the important role of persistent sodium currents (INaP) in the neuronal excitability of various central neurons. However, the role of tetrodotoxin-resistant (TTX-R) Na+ channel-mediated INaP in the neuronal excitability of nociceptive neurons remains poorly understood. METHODS We investigated the functional role of TTX-R INaP in the excitability of C-type nociceptive dural afferent neurons, which was identified using a fluorescent dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchloride (DiI), and a whole-cell patch-clamp technique. RESULTS TTX-R INaP were found in most DiI-positive neurons, but their density was proportional to neuronal size. Although the voltage dependence of TTX-R Na+ channels did not differ among DiI-positive neurons, the extent of the onset of slow inactivation, recovery from inactivation, and use-dependent inhibition of these channels was highly correlated with neuronal size and, to a great extent, the density of TTX-R INaP. In the presence of TTX, treatment with a specific INaP inhibitor, riluzole, substantially decreased the number of action potentials generated by depolarizing current injection, suggesting that TTX-R INaP are related to the excitability of dural afferent neurons. In animals treated chronically with inflammatory mediators, the density of TTX-R INaP was significantly increased, and it was difficult to inactivate TTX-R Na+ channels. CONCLUSIONS TTX-R INaP apparently contributes to the differential properties of TTX-R Na+ channels and neuronal excitability. Consequently, the selective modulation of TTX-R INaP could be, at least in part, a new approach for the treatment of migraine headaches.
Collapse
|