1
|
Gonzalo-Skok O, Casuso RA. Effects of Mitoquinone (MitoQ) Supplementation on Aerobic Exercise Performance and Oxidative Damage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2024; 10:77. [PMID: 38981985 PMCID: PMC11233485 DOI: 10.1186/s40798-024-00741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Contracting skeletal muscle produces reactive oxygen species (ROS) originating from both mitochondrial and cytosolic sources. The use of non-specific antioxidants, such as vitamins C and E, during exercise has produced inconsistent results in terms of exercise performance. Consequently, the effects of the mitochondrial-targeted coenzyme Q10, named Mitoquinone (MitoQ) on exercise responses are currently under investigation. METHODS In this study, we conducted a meta-analysis to quantitatively synthesize research assessing the impact of MitoQ on aerobic endurance performance and exercise-induced oxidative damage. PubMed, Web of Science, and SCOPUS databases were used to select articles from inception to January 16th of 2024. Inclusion criteria were MitoQ supplementation must be compared with a placebo group, showing acute exercise responses in both; for crossover designs, at least 14 d of washout was needed, and exercise training can be concomitant to MitoQ or placebo supplementation if the study meets the other inclusion criteria points. The risk of bias was evaluated through the Critical Appraisal Checklist (JBI). RESULTS We identified eight studies encompassing a total sample size of 188 subjects. Our findings indicate that MitoQ supplementation effectively reduces exercise-induced oxidative damage (SMD: -1.33; 95% CI: -2.24 to -0.43). Furthermore, our findings indicate that acute and/or chronic MitoQ supplementation does not improve endurance exercise performance (SMD: -0.50; 95% CI: -1.39 to 0.40) despite reducing exercise-induced oxidative stress. Notably, our sensitivity analysis reveals that MitoQ may benefit subjects with peripheral artery disease (PAD) in improving exercise tolerance. CONCLUSION While MitoQ effectively reduces exercise-induced oxidative damage, no evidence suggests that aerobic exercise performance is enhanced by either acute or chronic MitoQ supplementation. However, acute MitoQ supplementation may improve exercise tolerance in subjects with PAD. Future research should investigate whether MitoQ supplementation concurrent with exercise training (e.g., 4-16 weeks) alters adaptations induced by exercise alone and using different doses.
Collapse
Affiliation(s)
- Oliver Gonzalo-Skok
- Department of Communication and Education, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Sevilla, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Córdoba, Spain.
| |
Collapse
|
2
|
Vanlieshout TL, Stouth DW, Raziee R, Sraka ASJ, Masood HA, Ng SY, Mattina SR, Mikhail AI, Manta A, Ljubicic V. Sex-Specific Effect of CARM1 in Skeletal Muscle Adaptations to Exercise. Med Sci Sports Exerc 2024; 56:486-498. [PMID: 37882083 DOI: 10.1249/mss.0000000000003333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
PURPOSE The purpose of this study was to determine how the intersection of coactivator-associated arginine methyltransferase 1 (CARM1) and biological sex affects skeletal muscle adaptations to chronic physical activity. METHODS Twelve-week-old female (F) and male (M) wild-type (WT) and CARM1 skeletal muscle-specific knockout (mKO) mice were randomly assigned to sedentary (SED) or voluntary wheel running (VWR) experimental groups. For 8 wk, the animals in the VWR cohort had volitional access to running wheels. Subsequently, we performed whole-body functional tests, and 48 h later muscles were harvested for molecular analysis. Western blotting, enzyme activity assays, as well as confocal and transmission electron microscopy were used to examine skeletal muscle biology. RESULTS Our data reveal a sex-dependent reduction in VWR volume caused by muscle-specific ablation of CARM1, as F CARM1 mKO mice performed less chronic, volitional exercise than their WT counterparts. Regardless of VWR output, exercise-induced adaptations in physiological function were similar between experimental groups. A broad panel of protein arginine methyltransferase (PRMT) biology measurements, including markers of arginine methyltransferase expression and activity, were unaffected by VWR, except for CARM1 and PRMT7 protein levels, which decreased and increased with VWR, respectively. Changes in myofiber morphology and mitochondrial protein content showed similar trends among animals. However, a closer examination of transmission electron microscopy images revealed contrasting responses to VWR in CARM1 mKO mice compared with WT littermates, particularly in mitochondrial size and fractional area. CONCLUSIONS The present findings demonstrate that CARM1 mKO reduces daily running volume in F mice, as well as exercise-evoked skeletal muscle mitochondrial plasticity, which indicates that this enzyme plays an essential role in sex-dependent differences in exercise performance and mitochondrial health.
Collapse
|
3
|
Gandouzi I, Fekih S, Selmi O, Chalghaf N, Turki M, Ayedi F, Guelmami N, Azaiez F, Souissi N, Marsigliante S, Muscella A. Oxidative status alteration during aerobic-dominant mixed and anaerobic-dominant mixed effort in judokas. Heliyon 2023; 9:e20442. [PMID: 37829795 PMCID: PMC10565691 DOI: 10.1016/j.heliyon.2023.e20442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to depict the oxidative status variation in judokas during aerobic-dominant mixed effort (AeDME) and anaerobic-dominant mixed effort (AnDME). It is to be expected that the sporting commitment of Judo is a stimulus of oxidative stress leading to the recruitment of antioxidant responses. Blood samples were collected from 17 athletes at rest, immediately after a training session (AeDME) and after a 5-min bout (AnDME). AeDME and AnDME caused significant increases in malondialdehyde (MDA) (p < 0.01 and p < 0.001 respectively) and glutathione (GSH) (p = 0.018 and p < 0.001 respectively). Blood thiol concentrations decreased following AeDME and AnDME (p < 0.001) whilst catalase decreased significantly after AnDME (p = 0.026) only. Uric acid increased significantly after AnDME than after AeDME (p = 0.047) while, conversely, total bilirubin was higher after AnDME than after AeDME (p = 0.02). We may ultimately summarize that AeDME and AnDME caused oxidative stress, higher in AnDME, and some antioxidant response slightly higher in AnDME compared to AeDME. In sports, monitoring of oxidative stress status is recommended as part of the training regimen.
Collapse
Affiliation(s)
- Imed Gandouzi
- Molecular Basis of Human Pathology Laboratory, Faculty of Medicine of Sfax, Tunisia
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- RU: Physical Activity, Sport & Health, The National Observatory of Sport, Tunisia
| | - Soufien Fekih
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
| | - Okba Selmi
- Higher Institute of Sport and Physical Education of Kef ISSEP, Kef, Tunisia
| | - Nasr Chalghaf
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- Group for the Study of Development and Social Environment (GEDES), Faculty of Human and Social Science of Sfax, Sfax, Tunisia
| | - Mouna Turki
- Molecular Basis of Human Pathology Laboratory, Faculty of Medicine of Sfax, Tunisia
- Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Fatma Ayedi
- Biochemistry Laboratory, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Noomen Guelmami
- Higher Institute of Sport and Physical Education of Kef ISSEP, Kef, Tunisia
| | - Fairouz Azaiez
- Higher Institute of Sport and Physical Education of Gafsa ISSEP, Gafsa, Tunisia
- Group for the Study of Development and Social Environment (GEDES), Faculty of Human and Social Science of Sfax, Sfax, Tunisia
| | - Nizar Souissi
- RU: Physical Activity, Sport & Health, The National Observatory of Sport, Tunisia
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| |
Collapse
|
4
|
Martinez-Canton M, Galvan-Alvarez V, Garcia-Gonzalez E, Gallego-Selles A, Gelabert-Rebato M, Garcia-Perez G, Santana A, Lopez-Rios L, Vega-Morales T, Martin-Rincon M, Calbet JAL. A Mango Leaf Extract (Zynamite ®) Combined with Quercetin Has Exercise-Mimetic Properties in Human Skeletal Muscle. Nutrients 2023; 15:2848. [PMID: 37447175 DOI: 10.3390/nu15132848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Zynamite PX®, a mango leaf extract combined with quercetin, enhances exercise performance by unknown molecular mechanisms. Twenty-five volunteers were assigned to a control (17 males) or supplementation group (8 males, receiving 140 mg of Zynamite® + 140 mg quercetin/8 h for 2 days). Then, they performed incremental exercise to exhaustion (IE) followed by occlusion of the circulation in one leg for 60 s. Afterwards, the cuff was released, and a 30 s sprint was performed, followed by 90 s circulatory occlusion (same leg). Vastus lateralis muscle biopsies were obtained at baseline, 20 s after IE (occluded leg) and 10 s after Wingate (occluded leg), and bilaterally at 90 s and 30 min post exercise. Compared to the controls, the Zynamite PX® group showed increased basal protein expression of Thr287-CaMKIIδD (2-fold, p = 0.007) and Ser9-GSK3β (1.3-fold, p = 0.005) and a non-significant increase of total NRF2 (1.7-fold, p = 0.099) and Ser40-NRF2 (1.2-fold, p = 0.061). In the controls, there was upregulation with exercise and recovery of total NRF2, catalase, glutathione reductase, and Thr287-CaMKIIδD (1.2-2.9-fold, all p < 0.05), which was not observed in the Zynamite PX® group. In conclusion, Zynamite PX® elicits muscle signaling changes in resting skeletal muscle resembling those described for exercise training and partly abrogates the stress kinases responses to exercise as observed in trained muscles.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Giovanni Garcia-Perez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Laura Lopez-Rios
- Nektium Pharma, Las Mimosas 8, Agüimes, 35118 Las Palmas de Gran Canaria, Spain
| | | | - Marcos Martin-Rincon
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
- Department of Physical Performance, Norwegian School of Sport Sciences, 0806 Oslo, Norway
| |
Collapse
|
5
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
6
|
Wei M, Fan Y, Lu Z, Niu X, Wu H. Eight weeks of core stability training improves landing kinetics for freestyle skiing aerials athletes. Front Physiol 2022; 13:994818. [PMID: 36406981 PMCID: PMC9669898 DOI: 10.3389/fphys.2022.994818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2023] Open
Abstract
UNLABELLED Freestyle skiing aerials are characterized by technical elements including strength, flexibility and balance. Core stability in aerials can improve sporting performance. OBJECTIVE This study aimed to analyze the effect of 8 weeks of core stability training on core stability performance in aerials. METHODS Participants were randomly assigned to a control group (CG; n = 4male + 5female; age 15.89 ± 1.54 years; height 163.11 ± 6.19 cm; weight 55.33 ± 5.07 Kg) and a training group (TG; n = 4male+5female; age 16.11 ± 2.47 years; height 161.56 ± 5.25 cm; weight 57.56 ± 8.11 Kg). Body shape, the performance of core stability, and landing kinetics were measured after 8 weeks of core stability training. Independent sample t-tests were used to compare baseline values between groups. A two-way repeated-measures analysis of variance (ANOVA) (time × group) was used. RESULTS The TG improved body shape, and waist circumference (t = -2.333, p = 0.020). Performance of core stability, squat (t = -4.082, p = 0.004), trunk flexion isometric test (t = -4.150, p = 0.003), trunk lateral bending isometric test (t = -2.668, p = 0.008), trunk rotation isometric test (t = -2.666, p = 0.008), side bridge (t = -2.666, p = 0.008), back hyperextension (t = -4.116, p = 0.003), single foot triple jump (t = -4.184, p = 0.003), and single-leg balance with eyes closed (t = 4.167, p = 0.003). Performance in landing kinetics, End/Phase (t = -4.015, p = 0.004), sagittal axes (t = -4.598, p = 0.002), frontal axis (t = 3.116, p = 0.014), peak power hip changing range (t = 2.666, p = 0.017), peak power knee changing range (t = 2.256, p = 0.049). CONCLUSION Core stability training leads to improvements in body shape, the performance of core stability, and landing kinetics. Therefore, these improvements can improve the sporting performance in aerials competitions.
Collapse
Affiliation(s)
- Ming Wei
- Capital University of Physical Education and Sports, Beijing, China
| | - Yongzhao Fan
- Capital University of Physical Education and Sports, Beijing, China
| | - Zulei Lu
- School of Sports Training, Shenyang Sport University, Shenyang, China
| | - Xuesong Niu
- School of Sports Training, Shenyang Sport University, Shenyang, China
| | - Hao Wu
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Comprehensive Key Laboratory of Sports Ability Evaluation and Research of the General Administration of Sport of China, Beijing Key Laboratory of Sports Function Assessment and Technical Analysis, Beijing, China
| |
Collapse
|
7
|
Gallego-Selles A, Galvan-Alvarez V, Martinez-Canton M, Garcia-Gonzalez E, Morales-Alamo D, Santana A, Gonzalez-Henriquez JJ, Dorado C, Calbet JAL, Martin-Rincon M. Fast regulation of the NF-κB signalling pathway in human skeletal muscle revealed by high-intensity exercise and ischaemia at exhaustion: Role of oxygenation and metabolite accumulation. Redox Biol 2022; 55:102398. [PMID: 35841628 PMCID: PMC9287614 DOI: 10.1016/j.redox.2022.102398] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
The NF-κB signalling pathway plays a critical role in inflammation, immunity, cell proliferation, apoptosis, and muscle metabolism. NF-κB is activated by extracellular signals and intracellular changes in Ca2+, Pi, H+, metabolites and reactive oxygen and nitrogen species (RONS). However, it remains unknown how NF-κB signalling is activated during exercise and how metabolite accumulation and PO2 influence this process. Eleven active men performed incremental exercise to exhaustion (IE) in normoxia and hypoxia (PIO2:73 mmHg). Immediately after IE, the circulation of one leg was instantaneously occluded (300 mmHg). Muscle biopsies from m. vastus lateralis were taken before (Pre), and 10s (Post, occluded leg) and 60s after exercise from the occluded (Oc1m) and free circulation (FC1m) legs simultaneously together with femoral vein blood samples. NF-κB signalling was activated by exercise to exhaustion, with similar responses in normoxia and acute hypoxia, as reflected by the increase of p105, p50, IKKα, IκBβ and glutathione reductase (GR) protein levels, and the activation of the main kinases implicated, particularly IKKα and CaMKII δD, while IKKβ remained unchanged. Postexercise ischaemia maintained and stimulated further NF-κB signalling by impeding muscle reoxygenation. These changes were quickly reverted at the end of exercise when the muscles recovered with open circulation. Finally, we have shown that Thioredoxin 1 (Trx1) protein expression was reduced immediately after IE and after 1 min of occlusion while the protein expression levels of glutathione peroxidase 1 (Gpx1) and thioredoxin reductase 1 (TrxR1) remained unchanged. These novel data demonstrate that exercising to exhaustion activates NF-κB signalling in human skeletal muscle and regulates the expression levels of antioxidant enzymes in human skeletal muscle. The fast regulation of NF-κB at exercise cessation has implications for the interpretation of published studies and the design of new experiments.
Collapse
Affiliation(s)
- Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alfredo Santana
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Mathematics, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
8
|
Interaction between the Effects of Sustained Swimming Activity and Dietary Macronutrient Proportions on the Redox Status of Gilthead Sea Bream Juveniles (Sparus aurata L.). Antioxidants (Basel) 2022; 11:antiox11020319. [PMID: 35204202 PMCID: PMC8868478 DOI: 10.3390/antiox11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of physical exercise and a balanced diet presents substantial health benefits and could improve fish production. However, the redox balance can be affected by training regimen, dietary macronutrient ratio and their interaction. In this study, we conjointly evaluated the effects of physical activity (by voluntary swimming (VS) or sustained swimming as exercise (Ex)) and diet composition (by high-protein (HP) or high-lipid (HE) commercial diets) after 6 weeks on oxidative stress status in liver, white muscle and red muscle of gilthead sea bream juveniles. The HE diet increased the biochemical redox markers’ thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP) and reduced thiols (-SH) in the different tissues. Exercise increased AOPP and -SH levels in liver but reduced TBARS levels in white muscle. Regarding the expression of oxidative stress, chaperones and apoptosis-related genes, the VSHE group showed the highest values and the VSHP the lowest, whereas the application of sustained swimming partially equalized those differences. Diet composition modulated the enzyme activity, prioritizing the superoxide dismutase and catalase in the HE-fed groups and the glutathione-related enzymes in the HP groups. Exercise also altered enzyme activity, but in a tissue-dependent manner. Overall, the redox balance in gilthead sea bream juveniles can be affected by diet composition and sustained swimming. However, the response will partly depend on the interaction between these factors and the tissue studied. Therefore, the combination of an adequate diet and sustained exercise could be used in fish production to improve the physiological redox status.
Collapse
|
9
|
Cortiula F, Hendriks LEL, van de Worp WRPH, Schols AMWJ, Vaes RDW, Langen RCJ, De Ruysscher D. Physical exercise at the crossroad between muscle wasting and the immune system: implications for lung cancer cachexia. J Cachexia Sarcopenia Muscle 2022; 13:55-67. [PMID: 35014216 PMCID: PMC8818640 DOI: 10.1002/jcsm.12900] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a syndrome characterized by involuntary weight loss and wasting of skeletal muscle mass. It is associated with worse overall survival and quality of life. The cancer-induced systemic inflammation and the consequent host derived catabolic stimuli, trigger cachexia by inhibiting muscle protein synthesis and enhancing muscle catabolism. The muscle itself may further promote chronic inflammation, introducing a vicious catabolic circle. Nutritional support alone plays a limited role in the treatment of cancer cachexia and should be combined with other interventions. Physical exercise lowers systemic inflammation and promotes muscle anabolism. It also attenuates the age-related physical decline in elderly and it might counteract the muscle wasting induced by the cancer cachexia syndrome. This review describes how cancer-induced systemic inflammation promotes muscle wasting and whether physical exercise may represent a suitable treatment for cancer-induced cachexia, particularly in patients with non-small cell lung cancer. We summarized pre-clinical and clinical studies investigating whether physical exercise would improve muscle performance and whether this improvement would translate in a clinically meaningful benefit for patients with cancer, in terms of survival and quality of life. Moreover, this review describes the results of studies investigating the interplay between physical exercise and the immune system, including the role of the intestinal microbiota.
Collapse
Affiliation(s)
- Francesco Cortiula
- Department of Radiation Oncology (MAASTRO), Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center +, Maastricht, The Netherlands
| | - Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rianne D W Vaes
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
10
|
Effects of different lengths of high-intensity interval training microcycles on the systemic and hippocampal inflammatory state and antioxidant balance of immature rats. Mol Biol Rep 2021; 48:5003-5011. [PMID: 34165767 DOI: 10.1007/s11033-021-06484-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023]
Abstract
There is a lack of evidence on the effects of high-intensity interval training (HIIT) microcycle duration on the antioxidant capacity and hippocampal inflammatory response of young (immature) samples. This study compared two HIIT microcycles lengths on adaptation to training, antioxidant balance, and systemic and hippocampal inflammation in immature rats. Twenty-four immature Wistar rats (27 days) were equally divided into groups: control; 4-day HIIT (3 training days + 1 rest day); and 7-day HIIT (6 training days + 1 rest day). Both microcycles of 4 and 7 days were 28 days of training (37-38 m min-1). Running performance improved in all training groups compared to controls (P < 0.05). However, the 7-day HIIT group statistically increased serum interleukin-6 (IL-6) compared to the control and 4-day HIIT groups (P < 0.05). The total serum antioxidant capacity in the 7-day HIIT group was statistically lower than in the control group (P < 0.05). There was no statistical difference for the analysis of serum malondialdehyde between the groups. The hippocampal gene expression of IL-6, IL-1β, IL-10, and tumor necrosis factor-alpha in the training groups was statistically higher than in the control group (P = 0.01), with no significant difference between the 4-day HIIT and 7-day HIIT groups. We concluded that HIIT microcycles with a longer duration decrease the antioxidant capacity and increase the systematic and hippocampal inflammation. Thus, we suggest using short HIIT microcycles for young (immature) groups due to improved running performance with less inflammatory and antioxidant changes.
Collapse
|
11
|
Schmitt A, Brändle AL, Herzog P, Röchner F, Fragasso A, Munz B. Effects of the anti-oxidant PDTC in combination with a single bout of treadmill running on murine skeletal muscle. Redox Rep 2021; 25:70-79. [PMID: 32808587 PMCID: PMC7480603 DOI: 10.1080/13510002.2020.1807088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives: Skeletal muscle adaptation to physical activity is dependent on various factors. Important signaling mediators are reactive oxygen species (ROS). However, recent research suggests that ROS have both beneficial and deleterious effects on exercise adaptation, dependent on training intensity and training status, so that the question of whether anti-oxidants should be taken in connection with exercise cannot easily be answered. Thus, it is important to gain more insight into the complex roles of ROS in regulating training adaptation. Methods: The effects of ROS inhibition on skeletal muscle training adaptation were analyzed by applying the anti-oxidant PDTC, which is also an inhibitor of the ROS-activated transcription factor nuclear factor kappa B (NFκB), to juvenile mice in connection with a single bout of treadmill running. Results: We found that PDTC inhibits exercise-mediated induction of specific stress- and inflammation-associated genes. Other genes, specifically those encoding metabolic and mitochondrial factors, were affected to a lesser extent and there appeared to be little effect on the microRNA (miR) profile. Discussion: Our data suggest that anti-oxidants regulate distinct sets of adaptation-relevant genes, which might have important implications for the design of exercise-based preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Angelika Schmitt
- Department of Sports Medicine, University Hospital Tübingen, Medical Clinic, Tübingen, Germany
| | - Anne-Lena Brändle
- Department of Sports Medicine, University Hospital Tübingen, Medical Clinic, Tübingen, Germany
| | - Pascal Herzog
- Department of Sports Medicine, University Hospital Tübingen, Medical Clinic, Tübingen, Germany
| | - Franziska Röchner
- Department of Sports Medicine, University Hospital Tübingen, Medical Clinic, Tübingen, Germany
| | - Annunziata Fragasso
- Department of Sports Medicine, University Hospital Tübingen, Medical Clinic, Tübingen, Germany
| | - Barbara Munz
- Department of Sports Medicine, University Hospital Tübingen, Medical Clinic, Tübingen, Germany.,Interfaculty Research Institute for Sport and Physical Activity, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Mitochondrial Functionality in Inflammatory Pathology-Modulatory Role of Physical Activity. Life (Basel) 2021; 11:life11010061. [PMID: 33467642 PMCID: PMC7831038 DOI: 10.3390/life11010061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
The incidence and severity of metabolic diseases can be reduced by introducing healthy lifestyle habits including moderate exercise. A common observation in age-related metabolic diseases is an increment in systemic inflammation (the so-called inflammaging) where mitochondrial reactive oxygen species (ROS) production may have a key role. Exercise prevents these metabolic pathologies, at least in part, due to its ability to alter immunometabolism, e.g., reducing systemic inflammation and by improving immune cell metabolism. Here, we review how exercise regulates immunometabolism within contracting muscles. In fact, we discuss how circulating and resident macrophages alter their function due to mitochondrial signaling, and we propose how these effects can be triggered within skeletal muscle in response to exercise. Finally, we also describe how exercise-induced mitochondrial adaptations can help to fight against virus infection. Moreover, the fact that moderate exercise increases circulating immune cells must be taken into account by public health agencies, as it may help prevent virus spread. This is of interest in order to face not only acute respiratory-related coronavirus (SARS-CoV) responsible for the COVID-19 pandemic but also for future virus infection challenges.
Collapse
|
13
|
Małczyńska-Sims P, Chalimoniuk M, Sułek A. The Effect of Endurance Training on Brain-Derived Neurotrophic Factor and Inflammatory Markers in Healthy People and Parkinson's Disease. A Narrative Review. Front Physiol 2020; 11:578981. [PMID: 33329027 PMCID: PMC7711132 DOI: 10.3389/fphys.2020.578981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background: One purpose of the training conducted by people is to lose bodyweight and improve their physical condition. It is well-known that endurance training provides many positive changes in the body, not only those associated with current beauty standards. It also promotes biochemical changes such as a decreased inflammatory status, memory improvements through increased brain-derived neurotrophic factor levels, and reduced stress hormone levels. The positive effects of training may provide a novel solution for people with Parkinson's disease, as a way to reduce the inflammatory status and decrease neurodegeneration through stimulation of neuroplasticity and improved motor conditions. Aim: This narrative review aims to focus on the relationship between an acute bout of endurance exercise, endurance training (continuous and interval), brain-derived neurotrophic factor and inflammatory status in the three subject groups (young adults, older adult, and patients with Parkinson's disease), and to review the current state of knowledge about the possible causes of the differences in brain-derived neurotrophic factor and inflammatory status response to a bout of endurance exercise and endurance training. Furthermore, short practical recommendations for PD patients were formulated for improving the efficacy of the training process during rehabilitation. Methods: A narrative review was performed following an electronic search of the database PubMed/Medline and Web of Science for English-language articles between January 2010 and January 2020. Results: Analysis of the available publications with partial results revealed (1) a possible connection between the brain-derived neurotrophic factor level and inflammatory status, and (2) a more beneficial influence of endurance training compared with acute bouts of endurance exercise. Conclusion: Despite the lack of direct evidence, the results from studies show that endurance training may have a positive effect on inflammatory status and brain-derived neurotrophic factor levels. Introducing endurance training as part of the rehabilitation in Parkinson's disease might provide benefits for patients in addition to pharmacological therapy supplementation.
Collapse
Affiliation(s)
| | - Małgorzata Chalimoniuk
- Department of Physical Education and Health in Biała Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Anna Sułek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
14
|
Antioxidants in Sport Sarcopenia. Nutrients 2020; 12:nu12092869. [PMID: 32961753 PMCID: PMC7551250 DOI: 10.3390/nu12092869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
The decline of skeletal muscle mass and strength that leads to sarcopenia is a pathology that might represent an emergency healthcare issue in future years. Decreased muscle mass is also a condition that mainly affects master athletes involved in endurance physical activities. Skeletal muscles respond to exercise by reshaping the biochemical, morphological, and physiological state of myofibrils. Adaptive responses involve the activation of intracellular signaling pathways and genetic reprogramming, causing alterations in contractile properties, metabolic status, and muscle mass. One of the mechanisms leading to sarcopenia is an increase in reactive oxygen and nitrogen species levels and a reduction in enzymatic antioxidant protection. The present review shows the recent experimental models of sarcopenia that explore molecular mechanisms. Furthermore, the clinical aspect of sport sarcopenia will be highlighted, and new strategies based on nutritional supplements, which may contribute to reducing indices of oxidative stress by reinforcing natural endogenous protection, will be suggested.
Collapse
|
15
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
16
|
Gallego-Selles A, Martin-Rincon M, Martinez-Canton M, Perez-Valera M, Martín-Rodríguez S, Gelabert-Rebato M, Santana A, Morales-Alamo D, Dorado C, Calbet JAL. Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation. Redox Biol 2020; 36:101627. [PMID: 32863217 PMCID: PMC7358388 DOI: 10.1016/j.redox.2020.101627] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 01/07/2023] Open
Abstract
The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent.
Collapse
Affiliation(s)
- Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Saúl Martín-Rodríguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
17
|
Bardi E, Majerczak J, Zoladz JA, Tyrankiewicz U, Skorka T, Chlopicki S, Jablonska M, Bar A, Jasinski K, Buso A, Salvadego D, Nieckarz Z, Grassi B, Bottinelli R, Pellegrino MA. Voluntary physical activity counteracts Chronic Heart Failure progression affecting both cardiac function and skeletal muscle in the transgenic Tgαq*44 mouse model. Physiol Rep 2020; 7:e14161. [PMID: 31267722 PMCID: PMC6606516 DOI: 10.14814/phy2.14161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Physical activity is emerging as an alternative nonpharmaceutical strategy to prevent and treat a variety of cardiovascular diseases due to its cardiac and skeletal muscle beneficial effects. Oxidative stress occurs in skeletal muscle of chronic heart failure (CHF) patients with possible impact on muscle function decline. We determined the effect of voluntary‐free wheel running (VFWR) in preventing protein damage in Tgαq*44 transgenic mice (Tg) characterized by a delayed CHF progression. In the early (6 months) and transition (12 months) phase of CHF, VFWR increased the daily mean distance covered by Tg mice eliminating the difference between Tg and WT present before exercise at 12 months of age (WT Pre‐EX 3.62 ± 1.66 vs. Tg Pre‐EX 1.51 ± 1.09 km, P < 0.005; WT Post‐EX 5.72 ± 3.42 vs. Tg Post‐EX 4.17 ± 1.8 km, P > 0.005). This effect was concomitant with an improvement of in vivo cardiac performance [(Cardiac Index (mL/min/cm2): 6 months, untrained‐Tg 0.167 ± 0.005 vs. trained‐Tg 0.21 ± 0.003, P < 0.005; 12 months, untrained‐Tg 0.1 ± 0.009 vs. trained‐Tg 0.133 ± 0.005, P < 0.005]. Such effects were associated with a skeletal muscle antioxidant response effective in preventing oxidative damage induced by CHF at the transition phase (untrained‐Tg 0.438 ± 0.25 vs. trained‐Tg 0.114 ± 0.010, P < 0.05) and with an increased expression of protein control markers (MuRF‐1, untrained‐Tg 1.12 ± 0.29 vs. trained‐Tg 14.14 ± 3.04, P < 0.0001; Atrogin‐1, untrained‐Tg 0.9 ± 0.38 vs. trained‐Tg 7.79 ± 2.03, P < 0.01; Cathepsin L, untrained‐Tg 0.91 ± 0.27 vs. trained‐Tg 2.14 ± 0.55, P < 0.01). At the end‐stage of CHF (14 months), trained‐Tg mice showed a worsening of physical performance (decrease in daily activity and weekly distance and time of activity) compared to trained age‐matched WT in association with oxidative protein damage of a similar level to that of untrained‐Tg mice (untrained‐Tg 0.62 ± 0.24 vs. trained‐Tg 0.64 ± 0.13, P > 0.05). Prolonged voluntary physical activity performed before the onset of CHF end‐stage, appears to be a useful tool to increase cardiac function and to reduce skeletal muscle oxidative damage counteracting physical activity decline.
Collapse
Affiliation(s)
- Eleonora Bardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Joanna Majerczak
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland.,Department of Neurobiology, Poznan University of Physical Education, Poznan, Poland
| | - Jerzy A Zoladz
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Skorka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University Medical College, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Jablonska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Jasinski
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Alessia Buso
- Department of Medicine, University of Udine, Udine, Italy
| | - Desy Salvadego
- Department of Medicine, University of Udine, Udine, Italy
| | - Zenon Nieckarz
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council, Milano, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy.,Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia, Italy
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia, Italy.,Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Smith TTG, Barr-Gillespie AE, Klyne DM, Harris MY, Amin M, Paul RW, Cruz GE, Zhao H, Gallagher S, Barbe MF. Forced treadmill running reduces systemic inflammation yet worsens upper limb discomfort in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet Disord 2020; 21:57. [PMID: 32000751 PMCID: PMC6993343 DOI: 10.1186/s12891-020-3085-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Musculoskeletal disorders can result from prolonged repetitive and/or forceful movements. Performance of an upper extremity high repetition high force task increases serum pro-inflammatory cytokines and upper extremity sensorimotor declines in a rat model of work-related musculoskeletal disorders. Since one of the most efficacious treatments for musculoskeletal pain is exercise, this study investigated the effectiveness of treadmill running in preventing these responses. METHODS Twenty-nine young adult female Sprague-Dawley rats were used. Nineteen were trained for 5 weeks to pull a lever bar at high force (15 min/day). Thirteen went on to perform a high repetition high force reaching and lever-pulling task for 10 weeks (10-wk HRHF; 2 h/day, 3 days/wk). From this group, five were randomly selected to undergo forced treadmill running exercise (TM) during the last 6 weeks of task performance (10-wk HRHF+TM, 1 h/day, 5 days/wk). Results were compared to 10 control rats and 6 rats that underwent 6 weeks of treadmill running following training only (TR-then-TM). Voluntary task and reflexive sensorimotor behavioral outcomes were assessed. Serum was assayed for inflammatory cytokines and corticosterone, reach limb median nerves for CD68+ macrophages and extraneural thickening, and reach limb flexor digitorum muscles and tendons for pathological changes. RESULTS 10-wk HRHF rats had higher serum levels of IL-1α, IL-1β and TNFα, than control rats. In the 10-wk HRHF+TM group, IL-1β and TNFα were lower, whereas IL-10 and corticosterone were higher, compared to 10-wk HRHF only rats. Unexpectedly, several voluntary task performance outcomes (grasp force, reach success, and participation) worsened in rats that underwent treadmill running, compared to untreated 10-wk HRHF rats. Examination of forelimb tissues revealed lower cellularity within the flexor digitorum epitendon but higher numbers of CD68+ macrophages within and extraneural fibrosis around median nerves in 10-wk HRHF+TM than 10-wk HRHF rats. CONCLUSIONS Treadmill running was associated with lower systemic inflammation and moderate tendinosis, yet higher median nerve inflammation/fibrosis and worse task performance and sensorimotor behaviors. Continued loading of the injured tissues in addition to stress-related factors associated with forced running/exercise likely contributed to our findings.
Collapse
Affiliation(s)
- Tianqi Tenchi Gao Smith
- Department of Industrial and Systems Engineering, Auburn University, 3323 Shelby Engineering Center, Auburn, AL 36849 USA
- Department of Systems Science and Industrial Engineering, SUNY – Binghamton, Vestal, NY USA
| | - Ann E. Barr-Gillespie
- College of Health Professions, Pacific University, 190 S.E. 8th Avenue, Suite 230, Hillsboro, OR 97123 USA
| | - David M. Klyne
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Michelle Y. Harris
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | | | - Geneva E. Cruz
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Temple University Medical School, 3440 North Broad Street, Philadelphia, PA 19140 USA
| | - Sean Gallagher
- Department of Industrial and Systems Engineering, Auburn University, 3323 Shelby Engineering Center, Auburn, AL 36849 USA
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University Medical School, 3500 North Broad Street, Philadelphia, PA 19140 USA
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
19
|
Stay Fit, Stay Young: Mitochondria in Movement: The Role of Exercise in the New Mitochondrial Paradigm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7058350. [PMID: 31320983 PMCID: PMC6607712 DOI: 10.1155/2019/7058350] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022]
Abstract
Skeletal muscles require the proper production and distribution of energy to sustain their work. To ensure this requirement is met, mitochondria form large networks within skeletal muscle cells, and during exercise, they can enhance their functions. In the present review, we discuss recent findings on exercise-induced mitochondrial adaptations. We emphasize the importance of mitochondrial biogenesis, morphological changes, and increases in respiratory supercomplex formation as mechanisms triggered by exercise that may increase the function of skeletal muscles. Finally, we highlight the possible effects of nutraceutical compounds on mitochondrial performance during exercise and outline the use of exercise as a therapeutic tool in noncommunicable disease prevention. The resulting picture shows that the modulation of mitochondrial activity by exercise is not only fundamental for physical performance but also a key point for whole-organism well-being.
Collapse
|
20
|
Manta A, Stouth DW, Xhuti D, Chi L, Rebalka IA, Kalmar JM, Hawke TJ, Ljubicic V. Chronic exercise mitigates disease mechanisms and improves muscle function in myotonic dystrophy type 1 mice. J Physiol 2019; 597:1361-1381. [PMID: 30628727 DOI: 10.1113/jp277123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Myotonic dystrophy type 1 (DM1), the second most common muscular dystrophy and most prevalent adult form of muscular dystrophy, is characterized by muscle weakness, wasting and myotonia. A microsatellite repeat expansion mutation results in RNA toxicity and dysregulation of mRNA processing, which are the primary downstream causes of the disorder. Recent studies with DM1 participants demonstrate that exercise is safe, enjoyable and elicits benefits in muscle strength and function; however, the molecular mechanisms of exercise adaptation in DM1 are undefined. Our results demonstrate that 7 weeks of volitional running wheel exercise in a pre-clinical DM1 mouse model resulted in significantly improved motor performance, muscle strength and endurance, as well as reduced myotonia. At the cellular level, chronic physical activity attenuated RNA toxicity, liberated Muscleblind-like 1 protein from myonuclear foci and improved mRNA alternative splicing. ABSTRACT Myotonic dystrophy type 1 (DM1) is a trinucleotide repeat expansion neuromuscular disorder that is most prominently characterized by skeletal muscle weakness, wasting and myotonia. Chronic physical activity is safe and satisfying, and can elicit functional benefits such as improved strength and endurance in DM1 patients, but the underlying cellular basis of exercise adaptation is undefined. Our purpose was to examine the mechanisms of exercise biology in DM1. Healthy, sedentary wild-type (SED-WT) mice, as well as sedentary human skeletal actin-long repeat animals, a murine model of DM1 myopathy (SED-DM1), and DM1 mice with volitional access to a running wheel for 7 weeks (EX-DM1), were utilized. Chronic exercise augmented strength and endurance in vivo and in situ in DM1 mice. These alterations coincided with normalized measures of myopathy, as well as increased mitochondrial content. Electromyography revealed a 70-85% decrease in the duration of myotonic discharges in muscles from EX-DM1 compared to SED-DM1 animals. The exercise-induced enhancements in muscle function corresponded at the molecular level with mitigated spliceopathy, specifically the processing of bridging integrator 1 and muscle-specific chloride channel (CLC-1) transcripts. CLC-1 protein content and sarcolemmal expression were lower in SED-DM1 versus SED-WT animals, but they were similar between SED-WT and EX-DM1 groups. Chronic exercise also attenuated RNA toxicity, as indicated by reduced (CUG)n foci-positive myonuclei and sequestered Muscleblind-like 1 (MBNL1). Our data indicate that chronic exercise-induced physiological improvements in DM1 occur in concert with mitigated primary downstream disease mechanisms, including RNA toxicity, MBNL1 loss-of-function, and alternative mRNA splicing.
Collapse
Affiliation(s)
- Alexander Manta
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Donald Xhuti
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Leon Chi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jayne M Kalmar
- Department of Kinesiology & Physical Education, Wilfred Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
21
|
He F, Chuang CC, Zhou T, Jiang Q, Sedlock DA, Zuo L. Redox correlation in muscle lengthening and immune response in eccentric exercise. PLoS One 2018; 13:e0208799. [PMID: 30589838 PMCID: PMC6307742 DOI: 10.1371/journal.pone.0208799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022] Open
Abstract
This study was designed to examine the potential involvement of reactive oxygen species in skeletal muscle dysfunction linked with stretching in a mouse model and to explore the effects of combined antioxidant intake on peripheral leukocyte apoptosis following eccentrically-biased downhill runs in human subjects. In the mouse model, diaphragmatic muscle was stretched by 30% of its optimal length, followed by 5-min contraction. Muscle function and extracellular reactive oxygen species release was measured ex vivo. In human models, participants performed two trials of downhill running either with or without antioxidant supplementation, followed by apoptotic assay of inflammatory cells in the blood. The results showed that stretch led to decreased muscle function and prominent ROS increase during muscle contraction. In human models, we observed an elevation in circulating leukocyte apoptosis 24-48 hours following acute downhill runs. However, there is an attenuated leukocyte apoptosis following the second bout of downhill run. Interestingly, the combination of ascorbic acid (vitamin C) and α-tocopherol (vitamin E) supplementation attenuated the decrease in B-cell lymphoma 2 (Bcl-2) at 24 hours following acute downhill running. These data collectively suggest that significant ROS formation can be induced by muscle-lengthening associated with eccentric exercise, which is accompanied by compromised muscle function. The combination of antioxidants supplementation appears to have a protective role via the attenuation of decrease in anti-apoptotic protein.
Collapse
Affiliation(s)
- Feng He
- Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States of America
- Department of Kinesiology, California State University-Chico, Chico, CA, United States of America
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States of America
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States of America
| | - Qing Jiang
- Department of Nutrition Science, College of Health and Human Science, Purdue University, West Lafayette, IN, United States of America
| | - Darlene A. Sedlock
- Department of Health and Kinesiology, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (LZ); (DAS)
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States of America
- Molecular Physiology and Biophysics Laboratory, College of Arts and Sciences, University of Maine, Presque Isle, ME, United States of America
- * E-mail: (LZ); (DAS)
| |
Collapse
|
22
|
Gorini G, Gamberi T, Fiaschi T, Mannelli M, Modesti A, Magherini F. Irreversible plasma and muscle protein oxidation and physical exercise. Free Radic Res 2018; 53:126-138. [PMID: 30513020 DOI: 10.1080/10715762.2018.1542141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins - the most susceptible to oxidative modification - lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.
Collapse
Affiliation(s)
- Giulia Gorini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Gamberi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Tania Fiaschi
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Michele Mannelli
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Alessandra Modesti
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| | - Francesca Magherini
- a Department of Biomedical, Experimental and Clinical Sciences "Mario Serio" , University of Florence , Florence , Italy
| |
Collapse
|
23
|
Schmitt A, Haug AL, Schlegel F, Fragasso A, Munz B. Effects of 10 weeks of regular running exercise with and without parallel PDTC treatment on expression of genes encoding sarcomere-associated proteins in murine skeletal muscle. Cell Stress Chaperones 2018; 23:1041-1054. [PMID: 29797237 PMCID: PMC6111093 DOI: 10.1007/s12192-018-0914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Physical exercise can induce various adaptation reactions in skeletal muscle tissue, such as sarcomere remodeling. The latter involves degradation of damaged sarcomere components, as well as de novo protein synthesis and sarcomere assembly. These processes are controlled by specific protease systems in parallel with molecular chaperones that assist in folding of newly synthesized polypeptide chains and their incorporation into sarcomeres. Since acute exercise induces oxidative stress and inflammation, leading to activation of the transcription factor NFκB (nuclear factor kappa B), we speculated that this transcription factor might also play a role in the regulation of long-term adaptation to regular exercise. Thus, we studied skeletal muscle adaptation to running exercise in a murine model system, with and without parallel treatment with the NFκB-inhibitory, anti-oxidant and anti-inflammatory drug pyrrolidine dithiocarbamate (PDTC). In control mice, 10 weeks of uphill (15° incline) treadmill running for 60 min thrice a week at a final speed of 14 m/min had differential, but only minor effects on many genes encoding molecular chaperones for sarcomere proteins, and/or factors involved in the degradation of the latter. Furthermore, there were marked differences between individual muscles. PDTC treatment modulated gene expression patterns as well, both in sedentary and exercising mice; however, most of these effects were also modest and there was little effect of PDTC treatment on exercise-induced changes in gene expression. Taken together, our data suggest that moderate-intensity treadmill running, with or without parallel PDTC treatment, had little effect on the expression of genes encoding sarcomere components and sarcomere-associated factors in murine skeletal muscle tissue.
Collapse
Affiliation(s)
- Angelika Schmitt
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany
| | - Anne-Lena Haug
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany
| | - Franziska Schlegel
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany
| | - Annunziata Fragasso
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany
| | - Barbara Munz
- Department of Sports Medicine, Medical Clinic, University Hospital Tübingen, Hoppe-Seyler-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
24
|
Al Fazazi S, Casuso RA, Aragón-Vela J, Casals C, Huertas JR. Effects of hydroxytyrosol dose on the redox status of exercised rats: the role of hydroxytyrosol in exercise performance. J Int Soc Sports Nutr 2018; 15:20. [PMID: 29719493 PMCID: PMC5921979 DOI: 10.1186/s12970-018-0221-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background Hydroxytyrosol (HT) is a polyphenol found in olive oil that is known for its antioxidant effects. Here, we aimed to describe the effects of a low and high HT dose on the physical running capacity and redox state in both sedentary and exercised rats. Methods Male Wistar rats were allocated into 6 groups: sedentary (SED; n = 10); SED consuming 20 mg/kg/d HT (SED20; n = 7); SED consuming 300 mg/kg/d HT (SED300; n = 7); exercised (EXE; n = 10); EXE consuming 20 mg/kg/d HT (EXE20; n = 10) and EXE consuming 300 mg/kg/d HT (EXE300; n = 10). All the interventions lasted 10 weeks; the maximal running velocity was assessed throughout the study, whereas daily physical work was monitored during each training session. At the end of the study, the rats were sacrificed by bleeding. Hemoglobin (HGB) and hematocrit (HCT) were measured in the terminal blood sample. Moreover, plasma hydroperoxide (HPx) concentrations were quantified as markers of lipid peroxidation. Results In sedentary rats, HT induced an antioxidant effect in a dose-dependent manner without implications on running performance. However, if combined with exercise, the 300 mg/kg/d HT dosage exhibited a pro-oxidant effect in the EXE300 group compared with the EXE and EXE20 groups. The EXE20 rats showed a reduction in daily physical work and a lower maximal velocity than the EXE and EXE300 rats. The higher physical capacity exhibited by the EXE300 group was achieved despite the EXE300 rats expressing lower HGB levels and a lower HCT than the EXE20 rats. Conclusions Our results suggest that a high HT dose induces a systemic pro-oxidant effect and may prevent the loss of performance that was observed with the low HT dose.
Collapse
Affiliation(s)
- Saad Al Fazazi
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Rafael A Casuso
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Jerónimo Aragón-Vela
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Cristina Casals
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | - Jesús R Huertas
- "José Mataix" Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, University of Granada, laboratory 116. Av. del Conocimiento s/n, Armilla, 18100 Granada, Spain
| |
Collapse
|
25
|
Huertas JR, Al Fazazi S, Hidalgo-Gutierrez A, López LC, Casuso RA. Antioxidant effect of exercise: Exploring the role of the mitochondrial complex I superassembly. Redox Biol 2017; 13:477-481. [PMID: 28719865 PMCID: PMC5512182 DOI: 10.1016/j.redox.2017.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial respiratory complexes become assembled into supercomplexes (SC) under physiological conditions. One of the functional roles of these entities is the limitation of reactive oxygen species (ROS) produced by complex I (CI) of the respiratory chain. We sought to determine whether the systemic antioxidant effect of exercise is mediated by the assembly of mitochondrial CIs into SCs in rats. Male Wistar rats were exercise trained or remained sedentary for ten weeks; then, blood samples were collected, and the gastrocnemius muscle was isolated. The assembly of mitochondrial SCs and the lipid peroxidation of the mitochondrial and plasmatic fractions were assessed. Our results demonstrate that exercise induced the assembly of CI into SCs in the gastrocnemius and induced a systemic decrease in lipid peroxidation. We also found an inverse association between the superassembly of CIs and mitochondrial lipid peroxidation (p < 0.01) and protein carbonyls (p < 0.05). We conclude that exercise induces the chronic assembly of CIs into SCs, which provide mitochondrial protection against oxidative damage, at least in the studied muscle. Given the relevant role that mitochondria play in health and disease, these findings should help to elucidate the role of exercise as a therapeutic approach for metabolic diseases.
Collapse
Affiliation(s)
- J R Huertas
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Spain.
| | - S Al Fazazi
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Spain
| | - A Hidalgo-Gutierrez
- Institute of Biotechnology, Biomedical Research Centre, Department of Physiology, Faculty of Medicine, University of Granada, Spain
| | - L C López
- Institute of Biotechnology, Biomedical Research Centre, Department of Physiology, Faculty of Medicine, University of Granada, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Spain
| | - R A Casuso
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Spain.
| |
Collapse
|
26
|
Zarebska A, Jastrzebski Z, Ahmetov II, Zmijewski P, Cieszczyk P, Leonska-Duniec A, Sawczuk M, Leznicka K, Trybek G, Semenova EA, Maciejewska-Skrendo A. GSTP1 c.313A>G polymorphism in Russian and Polish athletes. Physiol Genomics 2017; 49:127-131. [PMID: 28062686 DOI: 10.1152/physiolgenomics.00014.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022] Open
Abstract
The GSTP1 gene encodes glutathione S-transferase P1, which is a member of the glutathione S-transferases (GSTs), a family of enzymes playing an important role in detoxification and in the antioxidant defense system. There is some evidence indicating that GSTP1 c.313A>G polymorphism may be beneficial for exercise performance. Therefore, we decided to verify the association between the frequency of GSTP1 c.313A>G variants, physical performance, and athletes' status in two cohorts: in a group of Russian athletes (n = 507) and in an independent population of Polish athletes (n = 510) in a replication study. The initial association study conducted with the Russian athletes revealed that the frequency of the minor G allele was significantly higher in all athletes than in controls; that was confirmed in the replication study of Polish athletes. In the combined cohort, the differences between athletes (n = 1017) and controls (n = 1246) were even more pronounced (32.7 vs 25.0%, P < 0.0001). Our findings emphasize that the G allele of the GSTP1 gene c.313A>G single nucleotide polymorphism is associated with improved endurance performance. These observations could support the hypothesis that the GSTP1 G allele may improve exercise performance by better elimination of exercise-induced ROS.
Collapse
Affiliation(s)
- Aleksandra Zarebska
- Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Zbigniew Jastrzebski
- Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Ildus I Ahmetov
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Piotr Zmijewski
- Department of Physiology, Institute of Sport - National Research Institute, Warsaw, Poland;
| | - Pawel Cieszczyk
- Centre for Human Functional and Structural Research, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland
| | - Agata Leonska-Duniec
- Centre for Human Functional and Structural Research, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland
| | - Marek Sawczuk
- Centre for Human Functional and Structural Research, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland
| | - Katarzyna Leznicka
- Centre for Human Functional and Structural Research, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University, Szczecin, Poland; and
| | - Ekaterina A Semenova
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Biochemistry, Kazan Federal University, Kazan, Russia
| | - Agnieszka Maciejewska-Skrendo
- Centre for Human Functional and Structural Research, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland
| |
Collapse
|
27
|
Casuso RA, Aragón-Vela J, López-Contreras G, Gomes SN, Casals C, Barranco-Ruiz Y, Mercadé JJ, Huertas JR. Does Swimming at a Moderate Altitude Favor a Lower Oxidative Stress in an Intensity-Dependent Manner? Role of Nonenzymatic Antioxidants. High Alt Med Biol 2016; 18:46-55. [PMID: 27906593 DOI: 10.1089/ham.2016.0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Casuso, Rafael A., Jerónimo Aragón-Vela, Gracia López-Contreras, Silvana N. Gomes, Cristina Casals, Yaira Barranco-Ruiz, Jordi J. Mercadé, and Jesus R. Huertas. Does swimming at a moderate altitude favor a lower oxidative stress in an intensity-dependent manner? Role of nonenzymatic antioxidants. High-Alt Med Biol. 18:46-55, 2017.-we aimed to describe oxidative damage and enzymatic and nonenzymatic antioxidant responses to swimming at different intensities in hypoxia. We recruited 12 highly experienced swimmers who have been involved in competitive swimming for at least 9 years. They performed a total of six swimming sessions carried out at low (LOW), moderate (MOD), or high (HIGH) intensity at low altitude (630 m) and at 2320 m above sea level. Blood samples were collected before the session (Pre), after the cool down (Post), and after 15 minutes of recovery (Rec). Blood lactate (BL) and heart rate were recorded throughout the main part of the session. Average velocities did not change between hypoxia and normoxia. We found a higher BL in response to MOD intensity in hypoxia. Plasmatic hydroperoxide level decreased at all intensities when swimming in hypoxia. This effect coincided with a lower glutation peroxidase activity and a marked mobilization of the circulating levels of α-tocopherol and coenzyme Q10 in an intensity-dependent manner. Our results suggest that, regardless of the intensity, no oxidative damage is found in response to hypoxic swimming in well-trained swimmers. Indeed, swimmers show a highly efficient antioxidant system by stimulating the mobilization of nonenzymatic antioxidants.
Collapse
Affiliation(s)
- Rafael A Casuso
- 1 Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada , Granada, Spain
| | - Jerónimo Aragón-Vela
- 1 Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada , Granada, Spain
| | - Gracia López-Contreras
- 2 Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada , Granada, Spain
| | - Silvana N Gomes
- 1 Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada , Granada, Spain
| | - Cristina Casals
- 1 Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada , Granada, Spain
| | - Yaira Barranco-Ruiz
- 3 Department of Physical Culture, Faculty of Health Sciences, School of Health Sciences, National University of Chimborazo Riobamba , Riobamba, Ecuador
| | - Jordi J Mercadé
- 4 Department of Athletic and Sport Management. University of Granada , Granada, Spain
| | - Jesus R Huertas
- 1 Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada , Granada, Spain
| |
Collapse
|
28
|
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front Physiol 2016; 7:486. [PMID: 27872595 PMCID: PMC5097959 DOI: 10.3389/fphys.2016.00486] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023] Open
Abstract
It is well known that regular exercise can benefit health by enhancing antioxidant defenses in the body. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS), leading to oxidative stress-related tissue damages and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Mitochondria, NADPH oxidases and xanthine oxidases have all been identified as potential contributors to ROS production, yet the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce body's adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this review updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing. In addition, we will examine the corresponding antioxidant defense systems as well as dietary manipulation against damages caused by ROS.
Collapse
Affiliation(s)
- Feng He
- Department of Kinesiology, California State University-Chico Chico, CA, USA
| | - Juan Li
- Department of Physical Education, Anhui University Anhui, China
| | - Zewen Liu
- Affiliated Ezhou Central Hospital at Medical School of Wuhan UniversityHubei, China; Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| | - Wenge Yang
- Department of Physical Education, China University of Geosciences Beijing, China
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
29
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Going retro: Oxidative stress biomarkers in modern redox biology. Free Radic Biol Med 2016; 98:2-12. [PMID: 26855421 DOI: 10.1016/j.freeradbiomed.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/23/2022]
Abstract
The field of redox biology is inherently intertwined with oxidative stress biomarkers. Oxidative stress biomarkers have been utilized for many different objectives. Our analysis indicates that oxidative stress biomarkers have several salient applications: (1) diagnosing oxidative stress, (2) pinpointing likely redox components in a physiological or pathological process and (3) estimating the severity, progression and/or regression of a disease. On the contrary, oxidative stress biomarkers do not report on redox signaling. Alternative approaches to gain more mechanistic insights are: (1) measuring molecules that are integrated in pathways linking redox biochemistry with physiology, (2) using the exomarker approach and (3) exploiting -omics techniques. More sophisticated approaches and large trials are needed to establish oxidative stress biomarkers in the clinical setting.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece; Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - J N Cobley
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - V Paschalis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A S Veskoukis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
30
|
Valencia AP, Iyer SR, Pratt SJP, Gilotra MN, Lovering RM. A method to test contractility of the supraspinatus muscle in mouse, rat, and rabbit. J Appl Physiol (1985) 2015; 120:310-7. [PMID: 26586911 DOI: 10.1152/japplphysiol.00788.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023] Open
Abstract
The rotator cuff (RTC) muscles not only generate movement but also provide important shoulder joint stability. RTC tears, particularly in the supraspinatus muscle, are a common clinical problem. Despite some biological healing after RTC repair, persistent problems include poor functional outcomes with high retear rates after surgical repair. Animal models allow further exploration of the sequela of RTC injury such as fibrosis, inflammation, and fatty infiltration, but there are few options regarding contractility for mouse, rat, and rabbit. Histological findings can provide a "direct measure" of damage, but the most comprehensive measure of the overall health of the muscle is contractile force. However, information regarding normal supraspinatus size and contractile function is scarce. Animal models provide the means to compare muscle histology, imaging, and contractility within individual muscles in various models of injury and disease, but to date, most testing of animal contractile force has been limited primarily to hindlimb muscles. Here, we describe an in vivo method to assess contractility of the supraspinatus muscle and describe differences in methods and representative outcomes for mouse, rat, and rabbit.
Collapse
Affiliation(s)
- Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Mohit N Gilotra
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
31
|
Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med 2015; 86:37-46. [PMID: 25889822 DOI: 10.1016/j.freeradbiomed.2015.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely due to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect. In fact, we proposed that exercise itself can be considered as an antioxidant because training increases the expression of classical antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and, in general, lowering the endogenous antioxidant enzymes by administration of antioxidant supplements may not be a good strategy when training. Antioxidant enzymes are not the only ones to be activated by training. Mitochondriogenesis is an important process activated in exercise. Many redox-sensitive enzymes are involved in this process. Important signaling molecules like MAP kinases, NF-κB, PGC-1α, p53, heat shock factor, and others modulate muscle adaptation to exercise. Interventions aimed at modifying the production of ROS in exercise must be performed with care as they may be detrimental in that they may lower useful adaptations to exercise.
Collapse
Affiliation(s)
- Mari Carmen Gomez-Cabrera
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Andrea Salvador-Pascual
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Helena Cabo
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Beatriz Ferrando
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Jose Viña
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Spain.
| |
Collapse
|
32
|
Ma X, Fu Y, Xiao H, Song Y, Chen R, Shen J, An X, Shen Q, Li Z, Zhang Y. Cardiac Fibrosis Alleviated by Exercise Training Is AMPK-Dependent. PLoS One 2015; 10:e0129971. [PMID: 26068068 PMCID: PMC4466316 DOI: 10.1371/journal.pone.0129971] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/14/2015] [Indexed: 01/04/2023] Open
Abstract
Regular exercise can protect the heart against external stimuli, but the mechanism is not well understood. We determined the role of adenosine monophosphate-activated protein kinase (AMPK) in regulating swimming exercise-mediated cardiac protection against β-adrenergic receptor overstimulation with isoproterenol (ISO) in mice. Ten-week-old AMPKα2+/+ and AMPKα2-knockout (AMPKα2-/-) littermates were subjected to 4 weeks of swimming training (50 min daily, 6 days a week) or housed under sedentary conditions. The mice received daily subcutaneous injection of ISO (5 mg/kg/d), a nonselective β-adrenergic receptor agonist, during the last 2 weeks of swimming training. Swimming training alleviated ISO-induced cardiac fibrosis in AMPKα2+/+ mice but not AMPKα2-/- mice. Swimming training activated cardiac AMPK in AMPKα2+/+ mice. Furthermore, swimming training attenuated ISO-induced production of reactive oxygen species (ROS) and expression of NADPH oxidase and promoted the expression of antioxidant enzymes in AMPKα2+/+ mice but not AMPKα2-/- mice. In conclusion, swimming training attenuates ISO-induced cardiac fibrosis by inhibiting the NADPH oxidase–ROS pathway mediated by AMPK activation. Our findings provide a new mechanism for the cardioprotective effects of exercise.
Collapse
Affiliation(s)
- Xiaowei Ma
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yongnan Fu
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Han Xiao
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Ruifei Chen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Jing Shen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xiangbo An
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Qiang Shen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Zijian Li
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Wiggs MP. Can endurance exercise preconditioning prevention disuse muscle atrophy? Front Physiol 2015; 6:63. [PMID: 25814955 PMCID: PMC4356230 DOI: 10.3389/fphys.2015.00063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity -induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase), the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
34
|
Rodriguez-Miguelez P, Lima-Cabello E, Martínez-Flórez S, Almar M, Cuevas MJ, González-Gallego J. Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise. J Appl Physiol (1985) 2015; 118:1075-83. [PMID: 25749442 DOI: 10.1152/japplphysiol.00780.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/12/2015] [Indexed: 01/08/2023] Open
Abstract
The present study investigated the effects of acute and chronic eccentric exercise on the hypoxia-inducible factor (HIF)-1α activation response and the concomitant modulation of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) expression in rat skeletal muscle. Twenty-four male Wistar rats were randomly assigned to three experimental groups: rested control group, acutely exercised group after an intermittent downhill protocol for 90 min, and acutely exercise group with a previous eccentric training of 8 wk. HIF-1α activation, VEGF and eNOS gene expression, protein content, and promoter activation were assessed in vastus lateralis muscle biopsies. Acute eccentric exercise induced a marked activation of HIF-1α and resulted in increased VEGF and eNOS mRNA level and protein concentration. The binding of HIF-1α to the VEGF and eNOS promoters, measured by a chromatin immunoprecipitation assay, was undetectable in rested rats, whereas it was evident in acutely exercised animals. Acute exercise also increased myeloperoxidase, toll-like receptor-4, tumor necrosis factor-α, and interleukin-1β protein content, suggesting a contribution of proinflammatory stimuli to HIF-1α activation and VEGF overexpression. All of these effects were partially abolished by training. Moreover, training resulted in an increased capillary density. In summary, our findings indicate that eccentric exercise prompts an HIF-1α response in untrained skeletal muscle that contributes to the upregulation of VEGF and eNOS gene expression and is attenuated after an eccentric training program.
Collapse
Affiliation(s)
| | | | | | - Mar Almar
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - María J Cuevas
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | |
Collapse
|
35
|
Leite MR, Cechella JL, Mantovani AC, Duarte MM, Nogueira CW, Zeni G. Swimming exercise and diphenyl diselenide-supplemented diet affect the serum levels of pro- and anti-inflammatory cytokines differently depending on the age of rats. Cytokine 2015; 71:119-23. [DOI: 10.1016/j.cyto.2014.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/02/2023]
|
36
|
Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never! Biogerontology 2014; 16:249-64. [PMID: 25537184 DOI: 10.1007/s10522-014-9546-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).
Collapse
|
37
|
Kim KB. Effect of different training mode on Interleukin-6 (IL-6) and C-reactive protein (CRP) in type 2 diabetes mellitus (T2DM) patients. J Exerc Nutrition Biochem 2014; 18:371-8. [PMID: 25671204 PMCID: PMC4322028 DOI: 10.5717/jenb.2014.18.4.371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023] Open
Abstract
PURPOSE This study was carried out to investigate the effects of different training modes on IL-6 and CRP in patients with type 2 diabetes mellitus (T2DM). METHODS The subjects consisted of 16 middle-aged women with type 2 diabetes mellitus (T2DM), all of whom had no other complications. The 16 subjects were randomly assigned to two experimental groups: the circuit training group (CTG, n = 8) and aerobic training group (ATG, n = 8). Based on measured THR (target heart rate) for maximum oxygen consumption rate, the circuit training group (CTG) exercised at 60% intensity, 60 min/day, 5 sets, 3 days/week for 12 weeks. Based on measured THR (target heart rate) for maximum oxygen consumption rate, the aerobic training group (ATG) exercised at 60% intensity (which was increased gradually in weeks 4, 7, and 10) 60 min/day, 3 days/week for 12 weeks. RESULTS The results are as follows. Significant decreases in the post training values of weight, % Fat, BMI, IL-6 and CRP (p < .05) were observed in the CTG compared to pre-training. However, there were no differences in the physical characteristic and blood inflammatory factors between the groups (ATG & CTG). CONCLUSION In conclusion, the results of this study suggest that circuit training (CT) may be considered as an effective training mode for helping to decrease the blood inflammatory factors (IL-6 and CRP) in patients with type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Kwi Baek Kim
- Department of Sports & Health Management, Youngsan University, Yangsan, Korea
| |
Collapse
|
38
|
Sánchez M, Anitua E, Delgado D, Sánchez P, Orive G, Padilla S. Muscle repair: platelet-rich plasma derivates as a bridge from spontaneity to intervention. Injury 2014; 45 Suppl 4:S7-14. [PMID: 25384475 DOI: 10.1016/s0020-1383(14)70004-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Muscle injuries account for between 10% and 55% of all sporting injuries. Although the skeletal muscle is a plastic organ capable of responding efficiently to environmental changes, the appropriate treatment of muscle injuries remains a daunting clinical challenge in sports medicine. There is considerable evidence to indicate that growth factors, such as transforming growth factor-β (TGFβ), hepatocyte growth factor (HGF) or insulin-like growth factor (IGF), and fibrin matrix are key in cellular events required for muscle repair and regeneration, namely myogenesis, angiogenesis and fibrogenesis. An innovative biological approach to the treatment of muscle injuries is the application of Plasma Rich in Growth Factors (PRGF) in intramuscular infiltrations. PRGF delivers growth factors, cytokines and adhesive proteins present in platelets and plasma, as well as other biologically-active proteins conveyed by the plasma, such as fibrinogen, prothrombin and fibronectin. This autologous, mimetic biomaterial embedded with a pool of growth factors acts as a smart dynamic scaffold, and should be applied taking into account a biological approach. A clinical trial is required to assess the functional repair outcome of PRGF infiltrations in muscle injuries.
Collapse
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit (ASU). Hospital Vithas San Jose. C/Beato Tomás de Zumárraga 10, 01008 Vitoria-Gasteiz, Spain; ASU Research AIE. Hospital Vithas San Jose. C/Beato Tomás de Zumárraga 10, 01008 Vitoria-Gasteiz, Spain
| | - Eduardo Anitua
- Biotechnology Institute (BTI) Vitoria, Vitoria-Gasteiz, Spain; Foundation Eduardo Anitua. C/José María Cagigal 19, 01007 Vitoria-Gasteiz, Spain
| | - Diego Delgado
- ASU Research AIE. Hospital Vithas San Jose. C/Beato Tomás de Zumárraga 10, 01008 Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- ASU Research AIE. Hospital Vithas San Jose. C/Beato Tomás de Zumárraga 10, 01008 Vitoria-Gasteiz, Spain
| | - Gorka Orive
- Foundation Eduardo Anitua. C/José María Cagigal 19, 01007 Vitoria-Gasteiz, Spain
| | - Sabino Padilla
- Biotechnology Institute (BTI) Vitoria, Vitoria-Gasteiz, Spain; Foundation Eduardo Anitua. C/José María Cagigal 19, 01007 Vitoria-Gasteiz, Spain.
| |
Collapse
|
39
|
Zarebska A, Jastrzebski Z, Kaczmarczyk M, Ficek K, Maciejewska-Karlowska A, Sawczuk M, Leońska-Duniec A, Krol P, Cieszczyk P, Zmijewski P, Eynon N. THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING. Biol Sport 2014; 31:261-6. [PMID: 25435667 PMCID: PMC4203841 DOI: 10.5604/20831862.1120932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 11/29/2022] Open
Abstract
The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes.
Collapse
Affiliation(s)
- A Zarebska
- Academy of Physical Education and Sport, Department of Tourism and Recreation, Gdansk, Poland
| | - Z Jastrzebski
- Academy of Physical Education and Sport, Department of Tourism and Recreation, Gdansk, Poland
| | - M Kaczmarczyk
- Academy of Physical Education and Sport, Department of Tourism and Recreation, Gdansk, Poland ; Pomeranian Medical University, Department of Clinical and Molecular Biochemistry, Szczecin, Poland
| | - K Ficek
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - A Maciejewska-Karlowska
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - M Sawczuk
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - A Leońska-Duniec
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - P Krol
- University of Rzeszów, Department of Physical Culture, Rzeszow, Poland
| | - P Cieszczyk
- University of Szczecin, Department of Physical Culture and Health Promotion, Szczecin, Poland
| | - P Zmijewski
- Institute of Sport, Department of Physiology, Institute of Sport, Warsaw, Poland
| | - N Eynon
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Australia
| |
Collapse
|
40
|
|
41
|
Tantimonaco M, Ceci R, Sabatini S, Catani MV, Rossi A, Gasperi V, Maccarrone M. Physical activity and the endocannabinoid system: an overview. Cell Mol Life Sci 2014; 71:2681-98. [PMID: 24526057 PMCID: PMC11113821 DOI: 10.1007/s00018-014-1575-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 02/06/2023]
Abstract
Recognized as a "disease modifier", physical activity (PA) is increasingly viewed as a more holistic, cost-saving method for prevention, treatment and management of human disease conditions. The traditional view that PA engages the monoaminergic and endorphinergic systems has been challenged by the discovery of the endocannabinoid system (ECS), composed of endogenous lipids, their target receptors, and metabolic enzymes. Indeed, direct and indirect evidence suggests that the ECS might mediate some of the PA-triggered effects throughout the body. Moreover, it is now emerging that PA itself is able to modulate ECS in different ways. Against this background, in the present review we shall discuss evidence of the cross-talk between PA and the ECS, ranging from brain to peripheral districts and highlighting how ECS must be tightly regulated during PA, in order to maintain its beneficial effects on cognition, mood, and nociception, while avoiding impaired energy metabolism, oxidative stress, and inflammatory processes.
Collapse
Affiliation(s)
- Mirko Tantimonaco
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Roberta Ceci
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Maria Valeria Catani
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Antonello Rossi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
42
|
Aerobic exercise and not a diet supplemented with jussara açaí (Euterpe edulis Martius) alters hepatic oxidative and inflammatory biomarkers in ApoE-deficient mice. Br J Nutr 2014; 112:285-94. [PMID: 24787366 DOI: 10.1017/s000711451400083x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pulp of jussara açaí (Euterpe edulis Martius) fruit is rich in anthocyanins that exert antioxidant and anti-inflammatory effects similar to those exerted by aerobic exercise. In the present study, we investigated the effects of jussara açaí fruit pulp consumption, either alone or in combination with aerobic exercise, on the hepatic oxidative and inflammatory status of ApoE-deficient (ApoE - / - ) mice. Male mice were divided into four groups (control (C), control plus açaí, exercise plus açaí (EXA) and exercise (EX)) and fed the AIN-93M diet or the AIN-93M diet formulated to contain 2 % freeze-dried açaí pulp. Mice in the EX and EXA groups were subjected to a progressive running programme (5 d/week, 60 min/d, 16 m/min) for 12 weeks. Mice that were made to exercise exhibited reduced (40·85 %; P< 0·05) hepatic superoxide dismutase activity when compared with the C mice, independent of the açaí diet. Mice in the EX group exhibited a lower (42 %; P< 0·05) mRNA expression of monocyte chemotactic protein-1 in the liver compared with the C mice. Mice in the EXA and EX groups had lower percentages of hepatic lipid droplets (70 % and 56 %, respectively; P< 0·05) when compared with the C mice. Mice in the EX group had smaller (58 %; P< 0·05) area of lesions in the aorta when compared with the C mice. Serum lipid profile was not affected (P>0·05). In conclusion, aerobic exercise training rather than açaí fruit pulp consumption or a combination of both enhances the hepatic oxidative and inflammatory status of ApoE - / - mice.
Collapse
|
43
|
Anti-inflammatory effect of recreational exercise in TNBS-induced colitis in rats: role of NOS/HO/MPO system. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:925981. [PMID: 24683438 PMCID: PMC3941240 DOI: 10.1155/2014/925981] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 01/08/2023]
Abstract
There are opposite views in the available literature: Whether physical exercise has a protective effect or not on the onset of inflammatory bowel disease (IBD). Therefore, we investigated the effects of recreational physical exercise before the induction of colitis. After 6 weeks of voluntary physical activity (running wheel), male Wistar rats were treated with TNBS (10 mg). 72 hrs after trinitrobenzene sulphonic acid (TNBS) challenge we measured colonic gene (TNF-α, IL-1β, CXCL1 and IL-10) and protein (TNF-α) expressions of various inflammatory mediators and enzyme activities of heme oxygenase (HO), nitric oxide synthase (NOS), and myeloperoxidase (MPO) enzymes. Wheel running significantly increased the activities of HO, constitutive NOS (cNOS) isoform. Furthermore, 6 weeks of running significantly decreased TNBS-induced inflammatory markers, including extent of lesions, severity of mucosal damage, and gene expression of IL-1β, CXCL1, and MPO activity, while IL-10 gene expression and cNOS activity were increased. iNOS activity decreased and the activity of HO enzyme increased, but not significantly, compared to the sedentary TNBS-treated group. In conclusion, recreational physical exercise can play an anti-inflammatory role by downregulating the gene expression of proinflammatory mediators, inducing anti-inflammatory mediators, and modulating the activities of HO and NOS enzymes in a rat model of colitis.
Collapse
|
44
|
Increase of pro-oxidants with no evidence of lipid peroxidation in exhaled breath condensate after a 10-km race in non-athletes. J Physiol Biochem 2013; 70:107-15. [DOI: 10.1007/s13105-013-0285-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
|
45
|
Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals. Pflugers Arch 2013; 465:1785-95. [PMID: 23838844 DOI: 10.1007/s00424-013-1318-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation following exercise. Previously, we demonstrated that mTOR is preferentially activated in response to resistance exercise compared to endurance exercise in trained individuals without concomitant activation of Akt. In the present study, we extended this investigation by examining IκB kinase complex (IKK), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major finding was that IKKβ phosphorylation increased exclusively after resistance exercise. No changes in TSC1, Erk1/2, insulin receptor, or insulin receptor substrate 1 phosphorylation were observed in any of the groups, while p38 phosphorylation was higher in the resistance exercise group compared to both other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect of repeated biopsy sampling on protein expression and phosphorylation was observed. In conclusion, resistance exercise, but not endurance exercise, increases IKKβ phosphorylation in trained human subjects, which support the idea that IKKβ can influence the activation of mTORC1 in human skeletal muscle.
Collapse
|
46
|
Trewin AJ, Petersen AC, Billaut F, McQuade LR, McInerney BV, Stepto NK. N-acetylcysteine alters substrate metabolism during high-intensity cycle exercise in well-trained humans. Appl Physiol Nutr Metab 2013; 38:1217-27. [PMID: 24195622 DOI: 10.1139/apnm-2012-0482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We investigated the effects of N-acetylcysteine (NAC) on metabolism during fixed work rate high-intensity interval exercise (HIIE) and self-paced 10-min time-trial (TT10) performance. Nine well-trained male cyclists (V̇O2peak, 69.4 ± 5.8 mL · kg(-1) · min(-1); peak power output (PPO), 385 ± 43 W; mean ± SD) participated in a double-blind, repeated-measures, randomised crossover trial. Two trials (NAC supplementation and placebo) were performed 7 days apart consisting of 6 × 5 min HIIE bouts at 82% PPO (316 ± 40 W) separated by 1 min at 100 W, and then after 2 min of recovery at 100 W, TT10 was performed. Expired gases, venous blood, and electromyographic (EMG) data were collected. NAC did not influence blood glutathione but decreased lipid peroxidation compared with the placebo (P < 0.05). Fat oxidation was elevated with NAC compared with the placebo during HIIE bouts 5 and 6 (9.9 ± 8.9 vs. 3.9 ± 4.8 μmol · kg(-1) · min(-1); P < 0.05), as was blood glucose throughout HIIE (4.3 ± 0.6 vs. 3.8 ± 0.6 mmol · L(-1); P < 0.05). Blood lactate was lower with NAC after TT10 (3.3 ± 1.3 vs. 4.2 ± 1.3 mmol · L(-1); P < 0.05). Median EMG frequency of the vastus lateralis was lower with NAC during HIIE (79 ± 10 vs. 85 ± 10 Hz; P < 0.05), but not TT10 (82 ± 11 Hz). Finally, NAC decreased mean power output 4.9% ± 6.6% (effect size = -0.3 ± 0.4, mean ± 90% CI) during TT10 (305 ± 57 W vs. 319 ± 45 W). These data suggest that NAC alters substrate metabolism and muscle fibre type recruitment during HIIE, which is detrimental to time-trial performance.
Collapse
Affiliation(s)
- Adam J Trewin
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria 8001, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Interaction between overtraining and the interindividual variability may (not) trigger muscle oxidative stress and cardiomyocyte apoptosis in rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:935483. [PMID: 22848785 PMCID: PMC3403087 DOI: 10.1155/2012/935483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/16/2012] [Indexed: 12/13/2022]
Abstract
Severe endurance training (overtraining) may cause underperformance related to muscle oxidative stress and cardiomyocyte alterations. Currently, such relationship has not been empirically established. In this study, Wistar rats (n = 19) underwent eight weeks of daily exercise sessions followed by three overtraining weeks in which the daily frequency of exercise sessions increased. After the 11th training week, eight rats exhibited a reduction of 38% in performance (nonfunctional overreaching group (NFOR)), whereas eleven rats exhibited an increase of 18% in performance (functional overreaching group (FOR)). The red gastrocnemius of NFOR presented significantly lower citrate synthase activity compared to FOR, but similar to that of the control. The activity of mitochondrial complex IV in NFOR was lower than that of the control and FOR. This impaired mitochondrial adaptation in NFOR was associated with increased antioxidant enzyme activities and increased lipid peroxidation (in muscle and plasma) relative to FOR and control. Cardiomyocyte apoptosis was higher in NFOR. Plasma creatine kinase levels were unchanged. We observed that some rats that presented evidence of muscle oxidative stress are also subject to cardiomyocyte apoptosis under endurance overtraining. Blood lipid peroxides may be a suitable biomarker for muscle oxidative stress that is unrelated to severe muscle damage.
Collapse
|
50
|
Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Vrabas IS. Redox biology of exercise: an integrative and comparative consideration of some overlooked issues. J Exp Biol 2012; 215:1615-25. [DOI: 10.1242/jeb.067470] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Summary
The central aim of this review is to address the highly multidisciplinary topic of redox biology as related to exercise using an integrative and comparative approach rather than focusing on blood, skeletal muscle or humans. An attempt is also made to re-define ‘oxidative stress’ as well as to introduce the term ‘alterations in redox homeostasis’ to describe changes in redox homeostasis indicating oxidative stress, reductive stress or both. The literature analysis shows that the effects of non-muscle-damaging exercise and muscle-damaging exercise on redox homeostasis are completely different. Non-muscle-damaging exercise induces alterations in redox homeostasis that last a few hours post exercise, whereas muscle-damaging exercise causes alterations in redox homeostasis that may persist for and/or appear several days post exercise. Both exhaustive maximal exercise lasting only 30 s and isometric exercise lasting 1–3 min (the latter activating in addition a small muscle mass) induce systemic oxidative stress. With the necessary modifications, exercise is capable of inducing redox homeostasis alterations in all fluids, cells, tissues and organs studied so far, irrespective of strains and species. More importantly, ‘exercise-induced oxidative stress’ is not an ‘oddity’ associated with a particular type of exercise, tissue or species. Rather, oxidative stress constitutes a ubiquitous fundamental biological response to the alteration of redox homeostasis imposed by exercise. The hormesis concept could provide an interpretative framework to reconcile differences that emerge among studies in the field of exercise redox biology. Integrative and comparative approaches can help determine the interactions of key redox responses at multiple levels of biological organization.
Collapse
Affiliation(s)
- Michalis G. Nikolaidis
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Antonios Kyparos
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Chrysoula Spanou
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sports Science, University of Thessaly, Karies, 42100 Trikala, Greece
| | - Anastasios A. Theodorou
- Laboratory of Exercise, Health and Human Performance, Research Center, European University of Cyprus, Nicosia, Cyprus
| | - Ioannis S. Vrabas
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| |
Collapse
|