1
|
Trotta RJ, Swanson KC, Klotz JL, Harmon DL. Influence of postruminal casein infusion and exogenous glucagon-like peptide 2 administration on the jejunal mucosal transcriptome in cattle. PLoS One 2024; 19:e0308983. [PMID: 39146343 PMCID: PMC11326568 DOI: 10.1371/journal.pone.0308983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/03/2024] [Indexed: 08/17/2024] Open
Abstract
We previously demonstrated that postruminal casein infusion and exogenous glucagon-like peptide 2 (GLP-2) administration independently stimulated growth and carbohydrase activity of the pancreas and jejunal mucosa in cattle. The objective of the current study was to profile the jejunal mucosal transcriptome of cattle using next-generation RNA sequencing in response to postruminal casein infusion and exogenous GLP-2. Twenty-four Holstein steers [250 ± 23.1 kg body weight (BW)] received a continuous abomasal infusion of 3.94 g raw corn starch/kg of BW combined with either 0 or 1.30 g casein/kg of BW for 7 d. Steers received subcutaneous injections at 0800 and 2000 h to provide either 0 or 100 μg GLP-2/kg of BW per day. At the end of the 7-d treatment period, steers were slaughtered for collection of the jejunal mucosa. Total RNA was extracted from jejunal mucosal tissue, strand-specific cDNA libraries were prepared, and RNA sequencing was conducted to generate 150-bp paired-end reads at a depth of 40 M reads per sample. Differentially expressed genes (DEG), KEGG pathway enrichment, and gene ontology enrichment were determined based on the FDR-corrected P-value (padj). Exogenous GLP-2 administration upregulated (padj < 0.05) 667 genes and downregulated 1,101 genes of the jejunal mucosa. Sphingolipid metabolism, bile secretion, adherens junction, and galactose metabolism were among the top KEGG pathways enriched with upregulated DEG (padj < 0.05) in response to exogenous GLP-2 administration. The top gene ontologies enriched with upregulated DEG (padj < 0.05) in response to exogenous GLP-2 administration included nutrient metabolic processes, brush border and bicellular tight junction assembly, and enzyme and transporter activities. Exogenous GLP-2 administration increased or tended to increase (padj < 0.10) brush border carbohydrase (MGAM, LCT, TREH), hexose transporter (SLC5A1, SLC2A2), and associated transcription factor (HNF1, GATA4, KAT2B) mRNA expression of the jejunal mucosa. Gene ontologies and KEGG pathways that were downregulated (padj < 0.05) in response to exogenous GLP-2 were related to genetic information processing. Postruminal casein infusion downregulated (padj < 0.05) 7 jejunal mucosal genes that collectively did not result in enriched KEGG pathways or gene ontologies. This study highlights some of the transcriptional mechanisms associated with increased growth, starch assimilation capacity, and barrier function of the jejunal mucosa in response to exogenous GLP-2 administration.
Collapse
Affiliation(s)
- Ronald J. Trotta
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kendall C. Swanson
- Department of Animal Science, North Dakota State University, Fargo, North Dakota, United States of America
| | - James L. Klotz
- Forage-Animal Production Research Unit, United States Department of Agriculture, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - David L. Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
2
|
Fox EA, Serlin HK. Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli. Am J Physiol Regul Integr Comp Physiol 2024; 327:R173-R187. [PMID: 38860288 DOI: 10.1152/ajpregu.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.
Collapse
Affiliation(s)
- Edward A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Hannah K Serlin
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
3
|
Singh S A, Singh S, Begum RF, Vijayan S, Vellapandian C. Unveiling the profound influence of sucralose on metabolism and its role in shaping obesity trends. Front Nutr 2024; 11:1387646. [PMID: 39015535 PMCID: PMC11250074 DOI: 10.3389/fnut.2024.1387646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Artificial sweeteners, prominently exemplified by sucralose, have become pervasive in contemporary diets, prompting intriguing questions about their impact on metabolism and their potential role in the unfolding trends of obesity. Covering topics from its discovery to analytical methods for detection and determination in food samples, the manuscript scrutinizes the metabolic effects of sucralose. Notably, the association between sucralose intake and obesity is examined, challenging the conventional belief of its role in weight management. The document comprehensively examines in vivo studies, revealing sucralose's implications on insulin resistance, gut microbiota, and metabolic syndrome, providing a nuanced comprehension of its impact on human health. Additionally, it explores sucralose's effects on glucose and lipid metabolism, blood pressure, and cardiovascular health, underscoring its possible involvement in malignancy development. The review concludes with a call for increased public awareness, education, and updated dietary guidelines to help individuals make informed choices about sweetener consumption. The future perspectives section highlights the need for longitudinal studies, exploring alternative sweeteners, and refining acceptable daily intake limits to ensure public health recommendations align with evolving regulatory guidelines. Overall, the manuscript provides a comprehensive overview of sucralose's multifaceted impact on health, urging further research and a balanced perspective on sweetener consumption.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, Faculty of Pharmacy, Dr.M.G.R. Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Srishti Singh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
4
|
Kochem MC, Hanselman EC, Breslin PAS. Activation and inhibition of the sweet taste receptor TAS1R2-TAS1R3 differentially affect glucose tolerance in humans. PLoS One 2024; 19:e0298239. [PMID: 38691547 PMCID: PMC11062524 DOI: 10.1371/journal.pone.0298239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 05/03/2024] Open
Abstract
The sweet taste receptor, TAS1R2-TAS1R3, is expressed in taste bud cells, where it conveys sweetness, and also in intestinal enteroendocrine cells, where it may facilitate glucose absorption and assimilation. In the present study, our objective was to determine whether TAS1R2-TAS1R3 influences glucose metabolism bidirectionally via hyperactivation with 5 mM sucralose (n = 12) and inhibition with 2 mM sodium lactisole (n = 10) in mixture with 75 g glucose loads during oral glucose tolerance tests (OGTTs) in healthy humans. Plasma glucose, insulin, and glucagon were measured before, during, and after OGTTs up to 120 minutes post-prandially. We also assessed individual participants' sweet taste responses to sucralose and their sensitivities to lactisole sweetness inhibition. The addition of sucralose to glucose elevated plasma insulin responses to the OGTT (F(1, 11) = 4.55, p = 0.056). Sucralose sweetness ratings were correlated with early increases in plasma glucose (R2 = 0.41, p<0.05), as well as increases in plasma insulin (R2 = 0.38, p<0.05) when sucralose was added to the OGTT (15 minute AUC). Sensitivity to lactisole sweetness inhibition was correlated with decreased plasma glucose (R2 = 0.84, p<0.01) when lactisole was added to the OGTT over the whole test (120 minute AUC). In summary, stimulation and inhibition of the TAS1R2-TAS1R3 receptor demonstrates that TAS1R2-TAS1R3 helps regulate glucose metabolism in humans and may have translational implications for metabolic disease risk.
Collapse
Affiliation(s)
- Matthew C. Kochem
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Emily C. Hanselman
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Paul A. S. Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| |
Collapse
|
5
|
Lu X, Luo C, Wu J, Deng Y, Mu X, Zhang T, Yang X, Liu Q, Li Z, Tang S, Hu Y, Du Q, Xu J, Xie R. Ion channels and transporters regulate nutrient absorption in health and disease. J Cell Mol Med 2023; 27:2631-2642. [PMID: 37638698 PMCID: PMC10494301 DOI: 10.1111/jcmm.17853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Xianmin Lu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Chen Luo
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jiangbo Wu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ya Deng
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xingyi Mu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ting Zhang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xiaoxu Yang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qi Liu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Zhuo Li
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Siqi Tang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yanxia Hu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qian Du
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jingyu Xu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Rui Xie
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
6
|
Sun B, Chen H, Xue J, Li P, Fu X. The role of GLUT2 in glucose metabolism in multiple organs and tissues. Mol Biol Rep 2023; 50:6963-6974. [PMID: 37358764 PMCID: PMC10374759 DOI: 10.1007/s11033-023-08535-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
The glucose transporter family has an important role in the initial stage of glucose metabolism; Glucose transporters 2 (GLUTs, encoded by the solute carrier family 2, SLC2A genes) is the major glucose transporter in β-cells of pancreatic islets and hepatocytes but is also expressed in the small intestine, kidneys, and central nervous system; GLUT2 has a relatively low affinity to glucose. Under physiological conditions, GLUT2 transports glucose into cells and allows the glucose concentration to reach balance on the bilateral sides of the cellular membrane; Variation of GLUT2 is associated with various endocrine and metabolic disorders; In this study, we discussed the role of GLUT2 in participating in glucose metabolism and regulation in multiple organs and tissues and its effects on maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Bo Sun
- Endorcrine and Metabolism Department, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Department of Infantile Endocrine Genetic Metabolism, Gansu Maternal and child Health Care Hospital, Lanzhou, 730000, China
| | - Hui Chen
- Endorcrine and Metabolism Department, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Jisu Xue
- EndEnorcrine and Metabolism Department, Shenzhen Bao 'an People's Hospital (Group), Shenzhen, 518100, China
| | - Peiwu Li
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| |
Collapse
|
7
|
Li D, Dang DX, Xu H, Zhou H, Lou Y, Liu X, Cui Y. Growth performance, jejunal morphology, disaccharidase activities, and sugar transporter gene expression in Langde geese as affected by the in ovo injection of maltose plus sucrose. Front Vet Sci 2023; 10:1061998. [PMID: 36777674 PMCID: PMC9909528 DOI: 10.3389/fvets.2023.1061998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The vigorous metabolic activity of an embryo increases the risk of low energy supply during incubation. The lack of energy during this critical period will lead to the death of an embryo. To avoid this risk, the in ovo injection technique in ovo allows for the injection of energy substances into an embryo. Methods This study investigated the effects of in ovo injection of maltose and sucrose (MS) in ovo on post-hatching growth performance, jejunal morphology and disaccharidase activities, and sugar transporter gene expression in Langde geese. A total of 300 fertilized eggs (115.75 ± 1.25 g) obtained from 3-year-old Langde geese were used in this study. The eggs were randomly assigned to two groups, and the difference between the two groups was whether 25g/L maltose and 25g/L sucrose (MS) dissolved in 7.5g/L NaCl were injected into the amnion on embryonic day 24. Each group had six replicates, which each replicate containing 25 eggs. The goslings were raised till day 28. Results and discussion The results showed that the in ovo injection of MS increased final body weight, average daily gain (ADG), and feed efficiency. Additionally, MS injection improved post-hatching jejunal morphology, disaccharidase activities, and sugar transporter gene expression at an early stage. Therefore, we considered that the in ovo injection of MS had positive effects on the nutrient absorption capacity of goslings, thus contributing to the improvement in their growth performance.
Collapse
Affiliation(s)
- Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Han Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiao Liu
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,*Correspondence: Yan Cui ✉
| |
Collapse
|
8
|
Wang H, Fu L, Zhang JY, Kim IH. Bacillus subtilis and Pichia farinose mixture improves growth performance and nutrient absorption capacity in broiler chicks. Front Vet Sci 2023; 10:1086349. [PMID: 37035823 PMCID: PMC10076679 DOI: 10.3389/fvets.2023.1086349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction This study evaluated the effects of dietary supplementation of Bacillus subtilis and Pichia farinose mixture (BPM) on growth performance, apparent ileal digestibility, cecal bacteria counts, small intestinal morphology and digestive enzymes activities, and jejunal nutrient transporters gene expression in broiler chicks. Methods A total of 768 one-day-old Ross 308 broiler chicks were randomly Q18 assigned into 3 groups based on the initial body weight (42.00 ± 0.08 g). The experimental periods were 35 days. There were 16 replicates per group and 16 birds per cage. Dietary treatments included a basal diet supplemented with 0, 0.1, or 0.2% BPM to form CON, BPM0.1 (consisting Bacillus subtilis with 1.0 × 107 viable spore and Pichia farinose with 1.0 × 107 viable spore per kg diet), and BPM0.2 (consisting Bacillus subtilis with 2.0 × 107 viable spore and Pichia farinose with 2.0 × 107 viable spore per kg diet) groups. Results and discussion Dietary supplementation of graded levels of BPM has positive effects on growth performance of broiler chicks, manifesting in the increase of body weight gain during days 1-35 as well as the decrease of feed conversion ratio during days 1-7, 21-35, and 1-35. Moreover, BPM supplementation positively improved ileal energy and crude protein digestibility, increased Lactobacillus counts, optimized intestinal morphology, enhanced intestinal digestive enzymes activities, and upregulated jejunal SGLT-1, GLUT-2, and PEPT-1 expression. Therefore, BPM supplementation improved growth performance of broiler chicks, which was partially related to the improvement in intestinal nutrient absorption capacity.
Collapse
Affiliation(s)
- Huan Wang
- School of Biology and Food Engineering, Chuzhou University, Chuzhou, China
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
- China Light Industry Hesheng Technology Co., Ltd, Chuzhou, China
- *Correspondence: Huan Wang
| | - Lu Fu
- School of Biology and Food Engineering, Chuzhou University, Chuzhou, China
| | | | - In Ho Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
- In Ho Kim
| |
Collapse
|
9
|
Dang DX, Li CJ, Zhou H, Lou Y, Liu X, Li D. Development of small intestine and sugar absorptive capacity in goslings during pre- and post-hatching periods. Poult Sci 2022; 102:102316. [PMID: 36463776 PMCID: PMC9719006 DOI: 10.1016/j.psj.2022.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
This study was conducted to investigate the development patterns of small intestine, intestinal morphology, disaccharidase activities, and sugar transporter gene expression in goslings during pre- and post-hatching periods. Small intestine was sampled on embryonic d 23 and 27, day of hatch, and d 1, 4, and 7 post-hatching. A total of 18 eggs with the breed of Jilin White geese were selected at each sampling timepoint for measuring relevant parameters. Three eggs were considered as a group, with 6 groups in each sampling timepoint. Rapid development of small intestine was observed around the hatching, of which jejunum and ileum had relatively higher development rates. Villus surface area from three intestinal segments started to increase on embryonic d 27, and kept relatively stable during day of hatch to d 1 post-hatching, and following increased till d 7 post-hatching. A high priority of villi enrichment was observed in duodenum and jejunum. The activity of disaccharidase increased before hatching and kept relatively high-level post-hatching, of which the activity of disaccharidase was highest in jejunum. The expression of sugar transporter gene increased prior to hatching and then decreased post-hatching, of which jejunum and duodenum were sites with high sugar transporter gene expression. Rapid development in intestinal morphology, disaccharidase activities, and sugar transporter gene expression around the hatching indicated that goslings have high potential to digest and/or assimilate carbohydrates during its early-life, which provided a preparation for further digestion of exogenous feed. This study provided a profile of development patterns for intestinal morphology, disaccharidase activities, and sugar transporter gene expression in goslings, which was beneficial to understanding the characteristics of nutrient absorption during the early-life of goslings.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China,Department of Animal Resource & Science, Dankook University, Cheonan 31116, South Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, South Korea,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun, China
| | - Xiao Liu
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China,Corresponding author:
| |
Collapse
|
10
|
Dang DX, Zhou H, Lou Y, Li D. Effects of in ovo feeding of methionine and/or disaccharide on post-hatching breast development, glycogen reserves, nutrients absorption parameters, and jejunum antioxidant indices in geese. Front Vet Sci 2022; 9:944063. [PMID: 36072396 PMCID: PMC9441801 DOI: 10.3389/fvets.2022.944063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the effects of in ovo injection of methionine (Met) and/or disaccharide (DS) on breast muscle and small intestine development, and the aspect of the glycogen contents, digestive enzymes activities, and jejunal antioxidant parameters in geese after incubation. A total of 600 fertilized eggs were used in this study to be employed in a 2 × 2 factorial experiment. Eggs were randomly assigned to 4 groups, 6 replicates per group, and 25 eggs per replicate. Factors in four groups included non-injection, Met injection (5 g/L Met dissolved in 7.5 g/L NaCl), DS injection (25 g/L maltose and 25 g/L sucrose dissolved in 7.5 g/L NaCl), and DS plus Met injection (25 g/L maltose, 25 g/L sucrose, and 5 g/L Met dissolved in 7.5 g/L NaCl). As a result, birth weight, relative weight of breast muscle, diameter of myofiber, glycogen contents, jejunal villus and surface area, and jejunal digestive enzymes activities improved, while liver glucose-6-phosphatase activity decreased, by DS injection. Additionally, DS administration upregulated the expression of myogenic factor-5 (Myf-5) from breast muscle and sodium/glucose cotransporter protein-1 (SGLT-1) from jejunum. In ovo delivery of DS has long-term effects on the improvement of jejunal glucose transporter-2 (GLUT-2) and sucrase-isomaltase expression. In ovo feeding of Met improved the relative weight of breast muscle and small intestine, diameter of myofiber, length of small intestine, jejunal villus width, jejunal sucrase, Na+/K+ATPase and alkaline phosphatase activities, and jejunal glutathione (GSH) concentration, and decreased the jejunal glutathione disulfide (GSSH) and the ratio of GSSG to GSH, in early-life post-hatching. The breast muscle Myf-5 and myostatin expression, jejunal villus height and surface area, jejunal glutathione peroxidase concentration, and the expression of GLUT-2 in jejunum long-term improved by in ovo delivery of Met. Moreover, in ovo feeding of DS plus Met mixture synergistically improved the diameter of myofiber, jejunal villus height and width, jejunal sucrase, and alkaline phosphatase activities in early-life post-hatching, but long-term upregulated the expression of jejunal GLUT-2. Therefore, we concluded that in ovo injection of Met plus DS is an effective way to improve the development of gosling during post-hatching stages.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Desheng Li
| |
Collapse
|
11
|
Nakashima S, Iwamoto T, Takanashi M, Ogawara KI, Maruyama M, Higaki K. Effect of Excessive Serotonin on Pharmacokinetics of Cephalexin after Oral Administration: Studies with Serotonin-Excessive Model Rats. Pharm Res 2022; 39:2163-2178. [PMID: 35799082 DOI: 10.1007/s11095-022-03325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Serotonin (5-HT) is important for gastrointestinal functions, but its role in drug absorption remains to be clarified. Therefore, the pharmacokinetics and oral absorption of cephalexin (CEX) were examined under 5-HT-excessive condition to understand the role of 5-HT. METHODS 5-HT-excessive rats were prepared by multiple intraperitoneal dosing of 5-HT and clorgyline, an inhibitor for 5-HT metabolism, and utilized to examine the pharmacokinetics, absorption behavior and the intestinal permeability for CEX. RESULTS Higher levels of 5-HT in brain, plasma and small intestines were recognized in 5-HT-excessive rats, where the oral bioavailability of CEX was significantly enhanced. The intestinal mucosal transport via passive diffusion of CEX was significantly increased, while its transport via PEPT1 was markedly decreased specifically in the jejunal segment, which was supported by the decrease in PEPT1 expression on brush border membrane (BBM) of intestinal epithelial cells. Since no change in antipyrine permeability and significant increase in FITC dextran-4 permeability were observed in 5-HT-excessive rats, the enhanced permeability for CEX would be attributed to the opening of tight junction, which was supported by the significant decrease in transmucosal electrical resistance. In 5-HT-excessive rats, furthermore, total body clearance of CEX tended to be larger and the decrease in PEPT2 expression on BBM in kidneys was suggested to be one of the reasons for it. CONCLUSIONS 5-HT-excessive condition enhanced the oral bioavailability of CEX in rats, which would be attributed to the enhanced permeability across the intestinal mucosa via passive diffusion through the paracellular route even though the transport via PEPT1 was decreased.
Collapse
Affiliation(s)
- Shun Nakashima
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,Global CMC Regulatory Office, Regulatory Affairs Department, Otsuka Pharmaceutical Co. Ltd., 3-2-27 Otedori Chuo-ku, Osaka, 540-10021, Japan
| | - Takeharu Iwamoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,Scientific Crime Laboratory, Kanagawa Prefectural Police Head Quarter, 155-1 Yamashita-cho, Naka-ku, Yokohama, Kanagawa, 231-0023, Japan
| | - Masashi Takanashi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,Central Hyogo Area, Hanshin Dispensing Pharmacy, I & H Co., Ltd., 1-18 Ohmasu-cho, Ashiya, Hyogo, 659-0066, Japan
| | - Ken-Ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo, 658-8558, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
12
|
Li J, Wang Y, Deng Y, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. Toxic mechanisms of the trichothecenes T-2 toxin and deoxynivalenol on protein synthesis. Food Chem Toxicol 2022; 164:113044. [PMID: 35452771 DOI: 10.1016/j.fct.2022.113044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
The toxic mechanisms of trichothecenes, including T-2 toxin and deoxynivalenol (DON), are closely related with their effects on protein synthesis. Increasing lines of evidence show that T-2 toxin can reduce the levels of tight junction proteins, and nuclear factor erythroid 2-related factor 2 (Nrf2) by disrupting cellular barriers and the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Nrf2/heme oxygenase (HO)-1 pathways. Moreover, it can inhibit aggrecan synthesis, thus causing Kashin-Beck disease. Regarding type B trichothecene, DON inhibits activation marker and β-catenin synthesis by acting on immune cells and the wingless/integrated (Wnt) pathway; it also inhibits cell proliferation and immune surveillance. In addition, DON has been shown to destroy tight junctions, glucose transport, and tumor endothelial marker 8, thus disturbing intestinal function and changing cell migration. This review summarizes the inhibitory effects of the trichothecenes T-2 toxin and DON on different protein synthesis, while discussing their underlying mechanisms. Focus is given to the effects of these toxins on tight junctions, aggrecan, activation markers, and hormones including testosterone under the influence of steroidogenic enzymes. This review can extend the current understanding of the effects of trichothecenes on protein synthesis and help to further understand their toxic mechanisms.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Yating Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei, 430070, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
13
|
Dugardin C, Fleury L, Touche V, Ahdach F, Lesage J, Tenenbaum M, Everaert N, Briand O, Lestavel S, Ravallec R, Cudennec B. An Exploratory Study of the Role of Dietary Proteins in the Regulation of Intestinal Glucose Absorption. Front Nutr 2022; 8:769773. [PMID: 35127780 PMCID: PMC8808719 DOI: 10.3389/fnut.2021.769773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
Several studies have demonstrated that high protein diets improve glucose homeostasis. Nevertheless, the mechanisms underlying this effect remain elusive. This exploratory study aims to screen and compare the acute effects of dietary proteins from different sources on intestinal glucose absorption. Six dietary proteins from various sources were thus selected and digested thanks to the INFOGEST static gastrointestinal digestion protocol. The digested proteins were able to decrease intestinal glucose absorption in vitro and ex vivo. Moreover, acute ingestion of casein and fish gelatin led to improved glucose tolerance in Wistar rats without significant effect on insulin secretion. In parallel, GLUT2 mRNA expression in enterocytes was decreased following short-term incubation with some of the digested proteins. These results strengthen the evidence that digested protein-derived peptides and amino acids are key regulators of glucose homeostasis and highlight their role in intestinal glucose absorption.
Collapse
Affiliation(s)
- Camille Dugardin
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- *Correspondence: Camille Dugardin
| | - Léa Fleury
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Véronique Touche
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Farah Ahdach
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE, Lille, France
| | - Mathie Tenenbaum
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Nadia Everaert
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- Animal and Human Health Engineering, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Olivier Briand
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, Lille, France
| | - Rozenn Ravallec
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
| | - Benoit Cudennec
- Univ. Lille, Univ. Artois, Université de Liège, UMRT 1158 BioEcoAgro – Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Lille, France
- Benoit Cudennec
| |
Collapse
|
14
|
Bordier V, Teysseire F, Schlotterbeck G, Senner F, Beglinger C, Meyer-Gerspach AC, Wölnerhanssen BK. Effect of a Chronic Intake of the Natural Sweeteners Xylitol and Erythritol on Glucose Absorption in Humans with Obesity. Nutrients 2021; 13:nu13113950. [PMID: 34836205 PMCID: PMC8618859 DOI: 10.3390/nu13113950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with obesity, accelerated nutrients absorption is observed. Xylitol and erythritol are of interest as alternative sweeteners, and it has been shown in rodent models that their acute ingestion reduces intestinal glucose absorption. This study aims to investigate whether a chronic intake of xylitol and erythritol impacts glucose absorption in humans with obesity. Forty-six participants were randomized to take either 8 g of xylitol or 12 g of erythritol three times a day for five to seven weeks, or to be part of the control group (no substance). Before and after the intervention, intestinal glucose absorption was assessed during an oral glucose tolerance test with 3-Ortho-methyl-glucose (3-OMG). The effect of xylitol or erythritol intake on the area under the curve for 3-OMG concentration was not significant. Neither the time (pre or post intervention), nor the group (control, xylitol, or erythritol), nor the time-by-group interaction effects were significant (p = 0.829, p = 0.821, and p = 0.572, respectively). Therefore, our results show that a chronic intake of the natural sweeteners xylitol and erythritol does not affect intestinal glucose absorption in humans with obesity.
Collapse
Affiliation(s)
- Valentine Bordier
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Fabienne Teysseire
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Götz Schlotterbeck
- Institute for Chemistry and Bioanalytics, School of Life Science, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland; (G.S.); (F.S.)
| | - Frank Senner
- Institute for Chemistry and Bioanalytics, School of Life Science, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland; (G.S.); (F.S.)
| | - Christoph Beglinger
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Anne Christin Meyer-Gerspach
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: (A.C.M.-G.); (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G. & B.K.W.)
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: (A.C.M.-G.); (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G. & B.K.W.)
| |
Collapse
|
15
|
Burman A, Kaji I. Luminal Chemosensory Cells in the Small Intestine. Nutrients 2021; 13:nu13113712. [PMID: 34835968 PMCID: PMC8620795 DOI: 10.3390/nu13113712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to the small intestine's well-known function of nutrient absorption, the small intestine also plays a major role in nutrient sensing. Similar to taste sensors seen on the tongue, GPCR-coupled nutrient sensors are expressed throughout the intestinal epithelium and respond to nutrients found in the lumen. These taste receptors respond to specific ligands, such as digested carbohydrates, fats, and proteins. The activation of nutrient sensors in the intestine allows for the induction of signaling pathways needed for the digestive system to process an influx of nutrients. Such processes include those related to glucose homeostasis and satiety. Defects in intestinal nutrient sensing have been linked to a variety of metabolic disorders, such as type 2 diabetes and obesity. Here, we review recent updates in the mechanisms related to intestinal nutrient sensors, particularly in enteroendocrine cells, and their pathological roles in disease. Additionally, we highlight the emerging nutrient sensing role of tuft cells and recent work using enteroids as a sensory organ model.
Collapse
Affiliation(s)
- Andreanna Burman
- Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Izumi Kaji
- Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
16
|
Bury S. Intestinal upregulation and specific dynamic action in snakes - Implications for the 'pay before pumping' hypothesis. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111080. [PMID: 34543726 DOI: 10.1016/j.cbpa.2021.111080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Animals which feed infrequently and on large prey, like many snake species, are characterized by a high magnitude of gut upregulation upon ingesting a meal. The intensity of intestinal upregulation was hypothesized to be proportional to the time and energy required for food processing (Specific-Dynamic-Action; SDA); hence, a positive correlation between the scope of intestinal growth and SDA response can be deduced. Such a correlation would support the so far not well established link between the intestinal and metabolic consequences of digestion. In this study I tested this prediction using an interspecific dataset on snakes gleaned from published sources. I found that SDAduration and SDAscope were positively correlated with post-feeding factorial increase in small intestine mass, but not with microvillar elongation. This indicates that a wide range of whole intestine remodelling (up- but potentially also downregulation) may temporarily prolong meal processing and that a greater magnitude of intestinal growth requires a stronger metabolic elevation. However, these effects do not seem large enough to drive the variation in the entire energetic costs of digestion, because SDAexpenditure was not affected either by intestinal or microvillar growth. I therefore propose that intestinal upregulation elicits non-negligible costs, but that these costs are a fairly small component of the whole SDAexpenditure.
Collapse
Affiliation(s)
- Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
17
|
Liu S, Ai Z, Meng Y, Chen Y, Ni D. Comparative studies on the physicochemical profile and potential hypoglycemic activity of different tea extracts: Effect on sucrase-isomaltase activity and glucose transport in Caco-2 cells. Food Res Int 2021; 148:110604. [PMID: 34507748 DOI: 10.1016/j.foodres.2021.110604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Tea is one of the most popular beverages in the world and is believed to be beneficial for health. The main components in tea change greatly depending on different processes, and thus, the effects of different teas on human health may differ. In this study, we compared the effect of green, oolong, black, and dark tea extracts on sucrase-isomaltase (SI) activity and glucose transport, which are two intervention options for postprandial blood glucose control, using Caco-2 cells as a model. Theaflavin-rich black tea extracts showed the highest inhibition of SI activity and retardation of the hydrolysis of sucrose, maltose, and isomaltose, with IC50 values of 8.34 μg/mL, 16.10 μg/mL, and 21.63 μg/mL, respectively. All four kinds of tea extracts caused a dose-dependent inhibition of glucose transport, which were closely related to the catechin content. Green tea extracts showed the highest inhibition of glucose transport and was more effective against sodium-dependent glucose cotransporter 1 (SGLT1) than glucose transporter 2 (GLUT2) in the management of glucose transport. Black tea extracts also inhibited glucose transport despite low level of catechins. The reason could partly lie in the suppression of Na+/K+-ATPase, which reduced the energy needed for SGLT1 to actively transport glucose. Furthermore, the mRNA level of SI, SGLT1, GLUT2, and Na+/K+-ATPase in Caco-2 cells were significantly reduced after treatment with tea extracts for 2 h. These in vitro studies suggested that tea could be used as a functional food in the diet to modulate postprandial hyperglycaemia for diabetic patients.
Collapse
Affiliation(s)
- Shuyuan Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zeyi Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yang Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
19
|
Mita M, Sugawara I, Harada K, Ito M, Takizawa M, Ishida K, Ueda H, Kitaguchi T, Tsuboi T. Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol 2021; 29:98-108.e4. [PMID: 34197723 DOI: 10.1016/j.chembiol.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Glucose is the main source of energy for organisms, and it is important to understand the spatiotemporal dynamics of intracellular glucose. Single fluorescent protein-based glucose indicators, named "Red Glifons" have been developed that apply to live-cell and dual-color imaging. These indicators exhibited more than 3-fold increase in fluorescence intensity in the presence of 10 mM glucose. The two Red Glifons developed have different half-maximal effective concentration (EC50) values for glucose (300 μM and 3,000 μM) and are able to monitor a wide range of glucose dynamics. Red Glifon combined with green indicators allowing visualization of the interplay between glucose and ATP, lactate, or pyruvate. Glucose influx in the pharyngeal muscle of Caenorhabditis elegans, enteroendocrine cells, and human iPS cell-derived cardiac myocytes was observed using the Red Glifons. Thus these red glucose indicators serve as a multi-color imaging toolkit for investigating complex interactions in energy metabolism.
Collapse
Affiliation(s)
- Marie Mita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Izumi Sugawara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Motoki Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Mai Takizawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Kentaro Ishida
- Myoridge Co. Ltd., 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Kalveram L, Gohlisch J, Brauchmann J, Overberg J, Kühnen P, Wiegand S. Gustatory Function Can Improve after Multimodal Lifestyle Intervention: A Longitudinal Observational Study in Pediatric Patients with Obesity. Child Obes 2021; 17:136-143. [PMID: 33524304 DOI: 10.1089/chi.2020.0318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Obesity is a major health burden in children and adolescents. One influential factor is the choice of food, which is partly determined by gustatory perception. Cross-sectional studies have provided evidence that gustatory function is reduced in patients with obesity compared to individuals with normal weight. This longitudinal study was aimed at investigating potential effects of a multimodal lifestyle intervention program on gustatory function in pediatric patients with obesity. Methods: Gustatory perception of five different taste qualities (sweet, sour, salty, bitter, and umami) was assessed in n = 102 patients (age 6-18) with obesity (BMI >97th percentile). Testing was performed before (T0) and after (T1) a residential multimodal weight reduction program between June and December 2015 using well-established taste strips. Results: Overall, identification performance increased between T0 and T1. Patients were most successful at identifying the taste quality sweet at both time points and reached higher scores at identifying umami and bitter at T1 compared to T0. Moreover, patients rated the highest concentration of sweet significantly sweeter at T1 compared to T0. Conclusion: Gustatory function can improve after a multimodal lifestyle intervention program in pediatric patients with obesity. This may lead to a modified choice of food, possibly resulting in a long-term therapeutic success. Therefore, these findings underline the importance of professional nutritional counseling as part of treatment for obesity.
Collapse
Affiliation(s)
- Laura Kalveram
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jacob Gohlisch
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jana Brauchmann
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johanna Overberg
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanna Wiegand
- Center for Chronically Sick Children, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
21
|
Glucose absorption regulation and mechanism of the compounds in Lilium lancifolium Thunb on Caco-2 cells. Food Chem Toxicol 2021; 149:112010. [PMID: 33493636 DOI: 10.1016/j.fct.2021.112010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 11/22/2022]
Abstract
In this paper, the Caco-2 cell was used to study the glucose absorption regulation and mechanism of kaempferol, caffeic acid and quercetin-3-O-β-D-galactoside in Lilium lancifolium Thunb in vitro. Glucose oxidase-peroxidase (GOD-POD) method was used to measure glucose consumption in supernatant. The fluorescent D-glucose analog (2-NBDG) was used as a tracer probe to study the changes in the fluorescence intensity of 2-NBDG uptake by Caco-2 cells with an inverted fluorescence microscope. Western blotting and quantitative real-time PCR were used to detect the protein expression and mRNA transcription of SGLT1 and GLUT2. The results showed that caffeic acid and quercetin-3-O-β-D-galactoside could significantly promote the absorption of glucose by normal Caco-2 cells compared with the control group (P < 0.001). Both caffeic acid and quercetin-3-O-β-D-galactoside could significantly promote the uptake of glucose tracer 2-NBDG on Caco-2 cells. Caffeic acid and quercetin-3-O-β-D-galactoside could significantly promote SGLT1 and GLUT2 protein expression levels and mRNA transcription (P < 0.001, P < 0.01, P < 0.05). The mechanism might be related to the promotion of SGLT1 and GLUT2 protein expression levels and mRNA transcription.
Collapse
|
22
|
Kaji I, Roland JT, Watanabe M, Engevik AC, Goldstein AE, Hodges CA, Goldenring JR. Lysophosphatidic Acid Increases Maturation of Brush Borders and SGLT1 Activity in MYO5B-deficient Mice, a Model of Microvillus Inclusion Disease. Gastroenterology 2020; 159:1390-1405.e20. [PMID: 32534933 PMCID: PMC8240502 DOI: 10.1053/j.gastro.2020.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIM Myosin VB (MYO5B) is an essential trafficking protein for membrane recycling in gastrointestinal epithelial cells. The inactivating mutations of MYO5B cause the congenital diarrheal disease, microvillus inclusion disease (MVID). MYO5B deficiency in mice causes mislocalization of SGLT1 and NHE3, but retained apical function of CFTR, resulting in malabsorption and secretory diarrhea. Activation of lysophosphatidic acid (LPA) receptors can improve diarrhea, but the effect of LPA on MVID symptoms is unclear. We investigated whether LPA administration can reduce the epithelial deficits in MYO5B-knockout mice. METHODS Studies were conducted with tamoxifen-induced, intestine-specific knockout of MYO5B (VilCreERT2;Myo5bflox/flox) and littermate controls. Mice were given LPA, an LPAR2 agonist (GRI977143), or vehicle for 4 days after a single injection of tamoxifen. Apical SGLT1 and CFTR activities were measured in Üssing chambers. Intestinal tissues were collected, and localization of membrane transporters was evaluated by immunofluorescence analysis in tissue sections and enteroids. RNA sequencing and enrichment analysis were performed with isolated jejunal epithelial cells. RESULTS Daily administration of LPA reduced villus blunting, frequency of multivesicular bodies, and levels of cathepsins in intestinal tissues of MYO5B-knockout mice compared with vehicle administration. LPA partially restored the brush border height and the localization of SGLT1 and NHE3 in small intestine of MYO5B-knockout mice and enteroids. The SGLT1-dependent short-circuit current was increased and abnormal CFTR activities were decreased in jejunum from MYO5B-knockout mice given LPA compared with vehicle. CONCLUSIONS LPA may regulate a MYO5B-independent trafficking mechanism and brush border maturation, and therefore be developed for treatment of MVID.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Joseph T. Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | | | - Amy C. Engevik
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | - Anna E. Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan
| | - Craig A. Hodges
- Cystic Fibrosis Mouse Models Resource Center, Case Western Reserve University, Cleveland, OH
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Sapporo, Japan,Epithelial Biology Center, Vanderbilt University School of Medicine, Sapporo, Japan,Cell and Developmental Biology, Vanderbilt University School of Medicine, Sapporo, Japan,Nashville Veterans Affairs Medical Center, Nashville TN
| |
Collapse
|
23
|
Romanet S, Aschenbach JR, Pieper R, Zentek J, Htoo JK, Whelan RA, Mastrototaro L. Dietary Supplementation of dl-Methionine Potently Induces Sodium-Dependent l-Methionine Absorption in Porcine Jejunum Ex Vivo. J Nutr 2020; 150:1782-1789. [PMID: 32359147 DOI: 10.1093/jn/nxaa115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Methionine is an essential amino acid (AA) with many fundamental roles. Humans often supplement l-Met, whereas dl-Met and dl-2-hydroxy-4-(methylthio)butanoic acid (dl-HMTBA) are more frequently used to supplement livestock. OBJECTIVES The study aimed to investigate whether dietary Met source alters the absorptive capacity for Met isomers in the small intestine of piglets. METHODS A total of 27 male 10-wk-old piglets in 3 feeding groups received a diet supplemented with 0.21% dl-Met, 0.21% l-Met, or 0.31% dl-HMTBA to meet the Met + cystine requirement. After ≥10 d, absorptive fluxes of d-Met or l-Met were measured at a physiological concentration of 50 μM and a high concentration of 5 mM in duodenum, middle jejunum, and ileum ex vivo. Data were compared by 2-factor ANOVA. RESULTS Across diets, fluxes of both Met isomers at both tested concentrations increased from duodenum to ileum by a factor of ∼2-5.5 (P < 0.05). Pigs supplemented with dl-Met had greater (P < 0.085) absorptive fluxes at 50 μM l-Met (0.50, 2.07, and 3.86 nmol · cm-2 · h-1) and d-Met (0.62, 1.41, and 1.19 nmol · cm-2 · h-1) than did pigs supplemented with dl-HMTBA (l-Met: 0.28, 0.76, and 1.08 nmol · cm-2 · h-1; d-Met: 0.34, 0.58, and 0.64 nmol · cm-2 · h-1) in duodenum, jejunum, and ileum, respectively. Only in jejunum of dl-Met-fed pigs, fluxes at 50 μM l-Met were reduced by the omission of luminal Na+ (from 3.27 to 0.86 nmol · cm-2 · h-1; P < 0.05) and by a cocktail of 22 luminal AAs (to 1.05 nmol · cm-2 · h-1; P < 0.05). CONCLUSIONS Dietary supplementation of dl-Met increases the efficiency of l-Met and d-Met absorption at physiologically relevant luminal Met concentrations along the small intestine of pigs, including a very prominent induction of an Na+-dependent transport system with preference for l-Met in the mid-jejunum. Dietary supplementation with dl-Met could be a promising tool to improve the absorption of Met and other AAs.
Collapse
Affiliation(s)
- Stella Romanet
- Institute of Veterinary Physiology, Freie Universtität Berlin, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universtität Berlin, Berlin, Germany
| | - Robert Pieper
- Institute of Animal Nutrition, Freie Universtität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universtität Berlin, Berlin, Germany
| | - John K Htoo
- Animal Nutrition Services, Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - Rose A Whelan
- Animal Nutrition Services, Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - Lucia Mastrototaro
- Institute of Veterinary Physiology, Freie Universtität Berlin, Berlin, Germany
| |
Collapse
|
24
|
Venditti C, Musa-Veloso K, Lee HY, Poon T, Mak A, Darch M, Juana J, Fronda D, Noori D, Pateman E, Jack M. Determinants of Sweetness Preference: A Scoping Review of Human Studies. Nutrients 2020; 12:E718. [PMID: 32182697 PMCID: PMC7146214 DOI: 10.3390/nu12030718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
Factors associated with sweetness preference are multi-faceted and incredibly complex. A scoping review was undertaken to identify determinants of sweetness preference in humans. Using an online search tool, ProQuest ™, a total of 99 publications were identified and subsequently grouped into the following categories of determinants: Age, dietary factors, reproductive hormonal factors, body weight status, heritable, weight loss, sound, personality, ethnicity and lifestyle, previous exposure, disease, and 'other' determinants. Methodologies amongst studies were heterogenous in nature (e.g., there was variability across studies in the sweetness concentrations tested, the number of different sweetness concentrations used to assess sweetness preference, and the methods utilized to measure sweetness preference), rendering interpretation of overall findings challenging; however, for certain determinants, the evidence appeared to support predictive capacity of greater sweetness preference, such as age during certain life-stages (i.e., young and old), being in a hungry versus satiated state, and heritable factors (e.g., similar sweetness preferences amongst family members). Recommendations for the design of future studies on sweetness preference determinants are provided herein, including an "investigator checklist" of criteria to consider.
Collapse
Affiliation(s)
- Carolina Venditti
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Kathy Musa-Veloso
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Han Youl Lee
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Theresa Poon
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Alastair Mak
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Maryse Darch
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Justine Juana
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Dylan Fronda
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Daniel Noori
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Erika Pateman
- Intertek Health Sciences, Inc., Suite 201, 2233 Argentia Road, Mississauga, ON L5N 2X7, Canada
| | - Maia Jack
- American Beverage Association, Science and Regulatory Affairs, 1275 Pennsylvania Ave. NW, Washington, DC 200042, USA
| |
Collapse
|
25
|
Xu J, Zeug A, Riederer B, Yeruva S, Griesbeck O, Daniel H, Tuo B, Ponimaskin E, Dong H, Seidler U. Calcium-sensing receptor regulates intestinal dipeptide absorption via Ca 2+ signaling and IK Ca activation. Physiol Rep 2020; 8:e14337. [PMID: 31960592 PMCID: PMC6971415 DOI: 10.14814/phy2.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although absorption of di- and tripeptides into intestinal epithelial cells occurs via the peptide transporter 1 (PEPT1, also called solute carrier family 15 member 1 (SLC15A1)), the detailed regulatory mechanisms are not fully understood. We examined: (a) whether dipeptide absorption in villous enterocytes is associated with a rise in cytosolic Ca2+ ([Ca2+ ]cyt ), (b) whether the calcium sensing receptor (CaSR) is involved in dipeptide-elicited [Ca2+ ]cyt signaling, and (c) what potential consequences of [Ca2+ ]cyt signaling may enhance enterocyte dipeptide absorption. Dipeptide Gly-Sar and CaSR agonist spermine markedly raised [Ca2+ ]cyt in villous enterocytes, which was abolished by NPS-2143, a selective CaSR antagonist and U73122, an phospholipase C (PLC) inhibitor. Apical application of Gly-Sar induced a jejunal short-circuit current (Isc), which was reduced by NPS-2143. CaSR expression was identified in the lamina propria and on the basal enterocyte membrane of mouse jejunal mucosa in both WT and Slc15a1-/- animals, but Gly-Sar-induced [Ca2+ ]cyt signaling was significantly decreased in Slc15a1-/- villi. Clotrimazole and TRM-34, two selective blockers of the intermediate conductance Ca2+ -activated K+ channel (IKCa ), but not iberiotoxin, a selective blocker of the large-conductance K+ channel (BKCa ) and apamin, a selective blocker of the small-conductance K+ channel (SKCa ), significantly inhibited Gly-Sar-induced Isc in native tissues. We reveal a novel CaSR-PLC-Ca2+ -IKCa pathway in the regulation of small intestinal dipeptide absorption, which may be exploited as a target for future drug development in human nutritional disorders.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Andre Zeug
- Cellular NeurophysiologyHannover Medical SchoolHannoverGermany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Sunil Yeruva
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | | | - Hannelore Daniel
- Nutritional PhysiologyTechnical University of MunichFreisingGermany
| | - Biguang Tuo
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | | | - Hui Dong
- Department of MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
26
|
The senses of the choroid plexus. Prog Neurobiol 2019; 182:101680. [DOI: 10.1016/j.pneurobio.2019.101680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|
27
|
Raka F, Farr S, Kelly J, Stoianov A, Adeli K. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis. Am J Physiol Endocrinol Metab 2019; 317:E559-E572. [PMID: 31310579 DOI: 10.1152/ajpendo.00036.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nutrient sensing plays an important role in ensuring that appropriate digestive or hormonal responses are elicited following the ingestion of fuel substrates. Mechanisms of nutrient sensing in the oral cavity have been fairly well characterized and involve lingual taste receptors. These include heterodimers of G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family for sensing sweet (T1R2-T1R3) and umami (T1R1-T1R3) stimuli, the T2R family for sensing bitter stimuli, and ion channels for conferring sour and salty tastes. In recent years, several studies have revealed the existence of additional nutrient-sensing mechanisms along the gastrointestinal tract. Glucose sensing is achieved by the T1R2-T1R3 heterodimer on enteroendocrine cells, which plays a role in triggering the secretion of incretin hormones for improved glycemic and lipemic control. Protein hydrolysates are detected by Ca2+-sensing receptor, the T1R1-T1R3 heterodimer, and G protein-coupled receptor 92/93 (GPR92/93), which leads to the release of the gut-derived satiety factor cholecystokinin. Furthermore, several GPCRs have been implicated in fatty acid sensing: GPR40 and GPR120 respond to medium- and long-chain fatty acids, GPR41 and GPR43 to short-chain fatty acids, and GPR119 to endogenous lipid derivatives. Aside from the recognition of fuel substrates, both the oral cavity and the gastrointestinal tract also possess T2R-mediated mechanisms of recognizing nonnutrients such as environmental contaminants, bacterial toxins, and secondary plant metabolites that evoke a bitter taste. These gastrointestinal sensing mechanisms result in the transmission of neuronal signals to the brain through the release of gastrointestinal hormones that act on vagal and enteric afferents to modulate the physiological response to nutrients, particularly satiety and energy homeostasis. Modulating these orally accessible nutrient-sensing pathways using particular foods, dietary supplements, or pharmaceutical compounds may have therapeutic potential for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Fitore Raka
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jacalyn Kelly
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandra Stoianov
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Selle P, Liu SY. The Relevance of Starch and Protein Digestive Dynamics in Poultry. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Dalesio NM, Barreto Ortiz SF, Pluznick JL, Berkowitz DE. Olfactory, Taste, and Photo Sensory Receptors in Non-sensory Organs: It Just Makes Sense. Front Physiol 2018; 9:1673. [PMID: 30542293 PMCID: PMC6278613 DOI: 10.3389/fphys.2018.01673] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023] Open
Abstract
Sensory receptors that detect and respond to light, taste, and smell primarily belong to the G-protein-coupled receptor (GPCR) superfamily. In addition to their established roles in the nose, tongue, and eyes, these sensory GPCRs have been found in many ‘non-sensory' organs where they respond to different physicochemical stimuli, initiating signaling cascades in these extrasensory systems. For example, taste receptors in the airway, and photoreceptors in vascular smooth muscle cells, both cause smooth muscle relaxation when activated. In addition, olfactory receptors are present within the vascular system, where they play roles in angiogenesis as well as in modulating vascular tone. By better understanding the physiological and pathophysiological roles of sensory receptors in non-sensory organs, novel therapeutic agents can be developed targeting these receptors, ultimately leading to treatments for pathological conditions and potential cures for various disease states.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Otolaryngology/Head & Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Sebastian F Barreto Ortiz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
30
|
Zopun M, Liszt KI, Stoeger V, Behrens M, Redel U, Ley JP, Hans J, Somoza V. Human Sweet Receptor T1R3 is Functional in Human Gastric Parietal Tumor Cells (HGT-1) and Modulates Cyclamate and Acesulfame K-Induced Mechanisms of Gastric Acid Secretion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4842-4852. [PMID: 29665689 DOI: 10.1021/acs.jafc.8b00658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The noncaloric sweeteners (NCSs) cyclamate (Cycl) and acesulfame K (AceK) are widely added to foods and beverages. Little is known about their impact on gastric acid secretion (GAS), which is stimulated by dietary protein and bitter-tasting compounds. Since Cycl and AceK have a bitter off taste in addition to their sweet taste, we hypothesized they modulate mechanisms of GAS in human gastric parietal cells (HGT-1). HGT-1 cells were exposed to sweet tastants (50 mM of glucose, d-threonine, Cycl, or AceK) and analyzed for their intracellular pH index (IPX), as an indicator of proton secretion by means of a pH-sensitive dye, and for mRNA levels of GAS-associated genes by RT-qPCR. Since the NCSs act via the sweet taste-sensing receptor T1R2/T1R3, mRNA expression of the corresponding genes was analyzed in addition to immunocytochemical localization of the T1R2 and T1R3 receptor proteins. Exposure of HGT-1 cells to AceK or d-threonine increased the IPX to 0.60 ± 0.05 and 0.80 ± 0.04 ( P ≤ 0.05), respectively, thereby indicating a reduced secretion of protons, whereas Cycl demonstrated the opposite effect with IPX values of -0.69 ± 0.08 ( P ≤ 0.05) compared to controls (IPX = 0). Cotreatment with the T1R3-inhibitor lactisole as well as a TAS1R3 siRNA knock-down approach reduced the impact of Cycl, AceK, and d-thr on proton release ( P ≤ 0.05), whereas cotreatment with 10 mM glucose enhanced the NCS-induced effect ( P ≤ 0.05). Overall, we demonstrated Cycl and AceK as modulators of proton secretion in HGT-1 cells and identified T1R3 as a key element in this response.
Collapse
Affiliation(s)
- Muhammet Zopun
- Faculty of Chemistry, Department of Physiological Chemistry , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
| | - Kathrin I Liszt
- Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
| | - Verena Stoeger
- Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
| | - Maik Behrens
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee , 114-116 Nuthetal , Germany
| | - Ulrike Redel
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee , 114-116 Nuthetal , Germany
| | - Jakob P Ley
- Symrise AG , Mühlenfeldstraße 1 , 37603 Holzminden , Germany
| | - Joachim Hans
- Symrise AG , Mühlenfeldstraße 1 , 37603 Holzminden , Germany
| | - Veronika Somoza
- Faculty of Chemistry, Department of Physiological Chemistry , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
- Faculty of Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds , University of Vienna , Althanstraße 14 , Vienna 1090 , Austria
| |
Collapse
|
31
|
Memory Function in Feeding Habit Transformation of Mandarin Fish ( Siniperca chuatsi). Int J Mol Sci 2018; 19:ijms19041254. [PMID: 29690543 PMCID: PMC5979507 DOI: 10.3390/ijms19041254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/03/2022] Open
Abstract
Mandarin fish refuse dead prey fish or artificial diets and can be trained to transform their inborn feeding habit. To investigate the effect of memory on feeding habit transformation, we compared the reaction time to dead prey fish and the success rate of feeding habit transformation to dead prey fish with training of mandarin fish in the 1st experimental group (trained once) and the 2nd experimental group (trained twice). The mandarin fish in the 2nd group had higher success rate of feeding habit transformation (100%) than those in the 1st group (67%), and shorter reaction time to dead prey fish (<1 s) than those in the 1st group (>1 s). Gene expression of cAMP responsive element binding protein I (Creb I), brain-derived neurotrophic factor (Bdnf), CCAAT enhancer binding protein delta (C/EBPD), fos-related antigen 2 (Fra2), and proto-oncogenes c-fos (c-fos) involved in long-term memory formation were significantly increased in the 2nd group after repeated training, and taste 1 receptor member 1 (T1R1), involved in feeding habit formation, was significantly increased in brains of the 2nd group after repeated training. DNA methylation levels at five candidate CpG (cytosine–guanine) sites contained in the predicted CpG island in the 5′-flanking region of T1R1 were significantly decreased in brains of the 2nd group compared with that of the 1st group. These results indicated that the repeated training can improve the feeding habit transformation through the memory formation of accepting dead prey fish. DNA methylation of the T1R1 might be a regulatory factor for feeding habit transformation from live prey fish to dead prey fish in mandarin fish.
Collapse
|
32
|
Spanier B, Rohm F. Proton Coupled Oligopeptide Transporter 1 (PepT1) Function, Regulation, and Influence on the Intestinal Homeostasis. Compr Physiol 2018; 8:843-869. [PMID: 29687907 DOI: 10.1002/cphy.c170038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Zhou H, Yu B, Gao J, Htoo JK, Chen D. Regulation of intestinal health by branched-chain amino acids. Anim Sci J 2017; 89:3-11. [PMID: 29164733 DOI: 10.1111/asj.12937] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
Abstract
Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans.
Collapse
Affiliation(s)
- Hua Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The continued success of bariatric surgery to treat obesity and obesity-associated metabolic conditions creates a need for a strong understanding of clinical nutrition both before and after these procedures. RECENT FINDINGS Surgically induced alteration of gastrointestinal physiology can affect the nutrition of individuals, especially among those who have undergone malabsorptive procedures. While uncommon, a subset of patients may develop protein-calorie malnutrition. In these cases, nutrition support should be tailored to the severity of malnutrition. Among all patients who undergo bariatric surgery, high rates of micronutrient deficiencies have been observed. To mitigate these deficiencies, empiric supplementation with multivitamins, calcium citrate, and vitamin D is generally recommended. Periodic surveillance should be performed for commonly deficient micronutrients, including thiamin (B1), folate (B9), cobalamin (B12), iron, and vitamin D. Following Roux-en-Y gastric bypass, serum levels of copper and zinc should also be monitored. In addition, lipid-soluble vitamins should be monitored following biliopancreatic diversion with/without duodenal switch.
Collapse
Affiliation(s)
- Michael A Via
- Division of Endocrinology, Diabetes, and Bone Disease, Mount Sinai Beth Israel Medical Center, 317 East 17th St., New York, NY, 10003, USA.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeffrey I Mechanick
- Marie-Josee and Henry R. Kravis Center For Cardiovascular Health, Mount Sinai Heart, New York, NY, USA
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Metabolic Support, Division of Endocrinology, Diabetes, and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2. Br J Nutr 2017; 116:593-602. [PMID: 27464458 DOI: 10.1017/s0007114516002439] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Knowledge of regulation of glucose transport contributes to our understanding of whole-body glucose homoeostasis and human metabolic diseases. Isoleucine has been reported to participate in regulation of glucose levels in many studies; therefore, this study was designed to examine the effect of isoleucine on intestinal and muscular GLUT expressions. In an animal experiment, muscular GLUT and intestinal GLUT were determined in weaning pigs fed control or isoleucine-supplemented diets. Supplementation of isoleucine in the diet significantly increased piglet average daily gain, enhanced GLUT1 expression in red muscle and GLUT4 expression in red muscle, white muscle and intermediate muscle (P<0·05). In additional, expressions of Na+/glucose co-transporter 1 and GLUT2 were up-regulated in the small intestine when pigs were fed isoleucine-supplemented diets (P<0·05). C2C12 cells were used to examine the expressions of muscular GLUT and glucose uptake in vitro. In C2C12 cells supplemented with isoleucine in the medium, cellular 2-deoxyglucose uptake was increased (P<0·05) through enhancement of the expressions of GLUT4 and GLUT1 (P<0·05). The effect of isoleucine was greater than that of leucine on glucose uptake (P<0·05). Compared with newborn piglets, 35-d-old piglets have comparatively higher GLUT4, GLUT2 and GLUT5 expressions. The results of this study demonstrated that isoleucine supplementation enhanced the intestinal and muscular GLUT expressions, which have important implications that suggest that isoleucine could potentially increase muscle growth and intestinal development by enhancing local glucose uptake in animals and human beings.
Collapse
|
36
|
Steensels S, Lannoo M, Avau B, Laermans J, Vancleef L, Farré R, Verbeke K, Depoortere I. The role of nutrient sensing in the metabolic changes after gastric bypass surgery. J Endocrinol 2017; 232:363-376. [PMID: 27980002 DOI: 10.1530/joe-16-0541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022]
Abstract
Taste receptors coupled to the gustatory G-protein, gustducin, on enteroendocrine cells sense nutrients to regulate gut hormone release. During Roux-en-Y gastric bypass (RYGB) surgery, the altered nutrient flow to more distal regions can affect gustducin-mediated gut hormone release and hence energy and glucose homeostasis. We studied the role of gustducin-mediated signaling in the metabolic improvements and intestinal adaptations along the gut after RYGB surgery in wild-type (WT) and α-gustducin-/- (α-gust-/-) mice. RYGB surgery decreased body weight in WT and α-gust-/- mice, whereas food intake was only decreased in WT mice. Pair-feeding to the RYGB group improved glucose homeostasis to a similar extent in WT mice. GLP1 levels were increased in both genotypes, PYY levels in α-gust-/- mice and octanoyl ghrelin levels were not affected after RYGB surgery. In WT mice, nutrients act via α-gustducin to increase L-cell differentiation (foregut) and L-cell number (foregut and hindgut) in a region-dependent manner. In α-gust-/- mice, the effect on gut hormone levels is probably tuned via increased peptide sensor and glucose transporter expression in the Roux limb and increased caecal butyrate and propionate levels in the hindgut that activate free fatty acid receptors. Finally, signaling via α-gustducin plays a role in the increased ion transport of the foregut but not in the improvement in colonic barrier function. In conclusion, RYGB surgery decreased body weight in both WT and α-gust-/- mice. Elevated plasma GLP1 and PYY levels might mediate this effect, although α-gustducin differentially affects several regulatory systems in the foregut and hindgut, tuning gut hormone release.
Collapse
Affiliation(s)
| | - Matthias Lannoo
- Abdominal SurgeryUniversity Hospital of Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
38
|
Expression of genes related to sweet taste receptors and monosaccharides transporters along the gastrointestinal tracts at different development stages in goats. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Chichger H, Cleasby ME, Srai SK, Unwin RJ, Debnam ES, Marks J. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane. Exp Physiol 2016; 101:731-42. [DOI: 10.1113/ep085670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Havovi Chichger
- Biomedical Research Group, Department of Biomedical and Forensic Sciences; Anglia Ruskin University; Cambridge UK
| | - Mark E. Cleasby
- Department of Veterinary Basic Sciences; Royal Veterinary College; London UK
| | - Surjit K. Srai
- Institute of Structural and Molecular Biology; University College London; London UK
| | - Robert J. Unwin
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
- Centre for Nephrology; University College London; London UK
| | - Edward S. Debnam
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
| | - Joanne Marks
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
| |
Collapse
|
40
|
Bradford EM, Vairamani K, Shull GE. Differential expression of pancreatic protein and chemosensing receptor mRNAs in NKCC1-null intestine. World J Gastrointest Pathophysiol 2016; 7:138-149. [PMID: 26909237 PMCID: PMC4753180 DOI: 10.4291/wjgp.v7.i1.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/10/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the intestinal functions of the NKCC1 Na+-K+-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed.
METHODS: Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed.
RESULTS: Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations.
CONCLUSION: The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors.
Collapse
|
41
|
Arakawa H, Ohmachi T, Ichiba K, Kamioka H, Tomono T, Kanagawa M, Idota Y, Hatano Y, Yano K, Morimoto K, Ogihara T. Interaction of Peptide Transporter 1 With d-Glucose and l-Glutamic Acid; Possible Involvement of Taste Receptors. J Pharm Sci 2016; 105:339-42. [DOI: 10.1016/j.xphs.2015.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/22/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
|
42
|
Ciullo DL, Dotson CD. Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. CHEMOSENS PERCEPT 2015; 8:61-77. [PMID: 26557212 PMCID: PMC4636125 DOI: 10.1007/s12078-015-9190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.
Collapse
Affiliation(s)
- Dana L Ciullo
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| | - Cedrick D Dotson
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| |
Collapse
|
43
|
Enzymatically Modified Starch Ameliorates Postprandial Serum Triglycerides and Lipid Metabolome in Growing Pigs. PLoS One 2015; 10:e0130553. [PMID: 26076487 PMCID: PMC4468079 DOI: 10.1371/journal.pone.0130553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/22/2015] [Indexed: 01/10/2023] Open
Abstract
Developing host digestion-resistant starches to promote human health is of great research interest. Chemically modified starches (CMS) are widely used in processed foods and although the modification of the starch molecule allows specific reduction in digestibility, the metabolic effects of CMS have been less well described. This short-term study evaluated the impact of enzymatically modified starch (EMS) on fasting and postprandial profiles of blood glucose, insulin and lipids, and serum metabolome in growing pigs. Eight jugular-vein catheterized pigs (initial body weight, 37.4 kg; 4 months of age) were fed 2 diets containing 72% purified starch (EMS or waxy corn starch (control)) in a cross-over design for 7 days. On day 8, an 8-hour meal tolerance test (MTT) was performed with serial blood samplings. Besides biochemical analysis, serum was analysed for 201 metabolites through targeted mass spectrometry-based metabolomic approaches. Pigs fed the EMS diet showed increased (P<0.05) immediate serum insulin and plasma glucose response compared to pigs fed the control diet; however, area-under-the-curves for insulin and glucose were not different among diets. Results from MTT indicated reduced postprandial serum triglycerides with EMS versus control diet (P<0.05). Likewise, serum metabolome profiling identified characteristic changes in glycerophospholipid, lysophospholipids, sphingomyelins and amino acid metabolome profiles with EMS diet compared to control diet. Results showed rapid adaptations of blood metabolites to dietary starch shifts within 7 days. In conclusion, EMS ingestion showed potential to attenuate postprandial raise in serum lipids and suggested constant alteration in the synthesis or breakdown of sphingolipids and phospholipids which might be a health benefit of EMS consumption. Because serum insulin was not lowered, more research is warranted to reveal possible underlying mechanisms behind the observed changes in the profile of serum lipid metabolome in response to EMS consumption.
Collapse
|
44
|
Dietary L-arginine supplementation protects weanling pigs from deoxynivalenol-induced toxicity. Toxins (Basel) 2015; 7:1341-54. [PMID: 25884909 PMCID: PMC4417970 DOI: 10.3390/toxins7041341] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to determine the positive effects of dietary supplementation with l-arginine (Arg) on piglets fed a deoxynivalenol (DON)-contaminated diet. A total of eighteen, 28-day-old healthy weanling pigs were randomly assigned into one of three groups: uncontaminated basal diet (control group), 6 mg/kg DON-contaminated diet (DON group) and 6 mg/kg DON + 1% l-arginine (DON + ARG group). After 21 days of Arg supplementation, piglets in the DON and DON + ARG groups were challenged by feeding 6 mg/kg DON-contaminated diet for seven days. The results showed that DON resulted in damage to piglets. However, clinical parameters, including jejunal morphology, amino acid concentrations in the serum, jejunum and ileum, were improved by Arg (p < 0.05). Furthermore, the mRNA levels for sodium-glucose transporter-1 (SGLT-1), glucose transporter type-2 (GLUT-2) and y+l-type amino acid transporter-1 (y+LAT-1) were downregulated in the DON group, but the values were increased in the DON + ARG group (p < 0.05). Collectively, these results indicate that dietary supplementation with Arg exerts a protective role in pigs fed DON-contaminated diets.
Collapse
|
45
|
Awad WA, Smorodchenko A, Hess C, Aschenbach JR, Molnár A, Dublecz K, Khayal B, Pohl EE, Hess M. Increased intracellular calcium level and impaired nutrient absorption are important pathogenicity traits in the chicken intestinal epithelium during Campylobacter jejuni colonization. Appl Microbiol Biotechnol 2015; 99:6431-41. [PMID: 25825050 DOI: 10.1007/s00253-015-6543-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Although a high number of chickens carry Campylobacter jejuni, the mechanistic action of colonization in the intestine is still poorly understood. The current study was therefore designed to investigate the effects of C. jejuni on glucose uptake, amino acids availability in digesta, and intracellular calcium [Ca(2+)]i signaling in the intestines of broiler chickens. For this, we compared: control birds (n = 60) and C. jejuni-infected birds (n = 60; infected orally with 1 × 10(8) CFU of C. jejuni NCTC 12744 at 14 days of age). Our results showed that glucose uptake was reduced due to C. jejuni infection in isolated jejunal, but not in cecal mucosa at 14 days postinfection (dpi). The decrease in intestinal glucose absorption coincided with a decrease in body weight gain during the 2-week post-infectious period. A reduction in the amount of the amino acids (serine, proline, valine, leucine, phenylalanine, arginine, histidine, and lysine) in ileal digesta of the infected birds at 2 and/or 7 dpi was found, indicating that Campylobacter utilizes amino acids as a carbon source for their multiplication. Applying the cell-permeable Ca(2+) indicator Fluo-4 and two-photon microscopy, we revealed that [Ca(2+)]i was increased in the jejunal and cecal mucosa of infected birds. The muscarinic agonist carbachol induced an increase in [Ca(2+)]i in jejunum and cecum mucosa of control chickens, a response absent in the mucosa of infected chickens, demonstrating that the modulation of [Ca(2+)]i by Campylobacter might be involved in facilitating the necessary cytoskeletal rearrangements that occur during the bacterial invasion of epithelial cells. In conclusion, this study demonstrates the multifaceted interactions of C. jejuni with the gastrointestinal mucosa of broiler chickens. For the first time, it could be shown that a Campylobacter infection could interfere with intracellular Ca(2+) signaling and nutrient absorption in the small intestine with consequences on intestinal function, performance, and Campylobacter colonization. Altogether, these findings indicate that Campylobacter is not entirely a commensal and can be recognized as an important factor contributing to an impaired chicken gut health.
Collapse
Affiliation(s)
- Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Foster SR, Roura E, Molenaar P, Thomas WG. G protein-coupled receptors in cardiac biology: old and new receptors. Biophys Rev 2015; 7:77-89. [PMID: 28509979 DOI: 10.1007/s12551-014-0154-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven-transmembrane-spanning proteins that mediate cellular and physiological responses. They are critical for cardiovascular function and are targeted for the treatment of hypertension and heart failure. Nevertheless, current therapies only target a small fraction of the cardiac GPCR repertoire, indicating that there are many opportunities to investigate unappreciated aspects of heart biology. Here, we offer an update on the contemporary view of GPCRs and the complexities of their signalling, and review the roles of the 'classical' GPCRs in cardiovascular physiology and disease. We then provide insights into other GPCRs that have been less extensively studied in the heart, including orphan, odorant and taste receptors. We contend that these novel cardiac GPCRs contribute to heart function in health and disease and thereby offer exciting opportunities to therapeutically modulate heart function.
Collapse
Affiliation(s)
- Simon R Foster
- School of Biomedical Sciences, University of Queensland, St Lucia Campus, 4072, Brisbane, Australia
| | - Eugeni Roura
- School of Biomedical Sciences, University of Queensland, St Lucia Campus, 4072, Brisbane, Australia.,Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia Campus, Brisbane, Australia
| | - Peter Molenaar
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, St Lucia Campus, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia Campus, Brisbane, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, University of Queensland, St Lucia Campus, 4072, Brisbane, Australia.
| |
Collapse
|
47
|
Welcome MO, Mastorakis NE, Pereverzev VA. Sweet taste receptor signaling network: possible implication for cognitive functioning. Neurol Res Int 2015; 2015:606479. [PMID: 25653876 PMCID: PMC4306214 DOI: 10.1155/2015/606479] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/20/2014] [Indexed: 01/01/2023] Open
Abstract
Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special "sweet" molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose) regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.
Collapse
Affiliation(s)
- Menizibeya O. Welcome
- World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zografou, 15773 Athens, Greece
| | - Nikos E. Mastorakis
- World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zografou, 15773 Athens, Greece
- Department of Industrial Engineering, Technical University of Sofia, 8 Kl. Ohridski Boulevard, 1000 Sofia, Bulgaria
| | - Vladimir A. Pereverzev
- Department of Normal Physiology, Belarusian State Medical University, Dzerzhinsky Avenue 83, 220116 Minsk, Belarus
| |
Collapse
|
48
|
Abstract
It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations.
Collapse
Affiliation(s)
- Richard J Naftalin
- Department of Physiology and BHF Centre of Research Excellence, King's College London, School of Medicine, London, SE1 9HN, UK
| |
Collapse
|
49
|
Lin M, Zhang B, Yu C, Li J, Zhang L, Sun H, Gao F, Zhou G. L-Glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. PLoS One 2014; 9:e111950. [PMID: 25368996 PMCID: PMC4219819 DOI: 10.1371/journal.pone.0111950] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022] Open
Abstract
L-Glutamate is a major oxidative fuel for the small intestine. However, few studies have demonstrated the effect of L-glutamate on the intestinal architecture and signaling of amino acids in the small intestine. The aim of this study was to investigate the effects of dietary L-glutamate supplementation on the intestinal architecture and expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. A total of 120 weaning piglets aged 35 ± 1 days with an average body weight at 8.91 ± 0.45 kg were randomly allocated to two treatments with six replicates of ten piglets each, fed with diets containing 1.21% alanine, or 2% L-glutamate. L-Glutamate supplementation increased the activity of glutamate oxaloacetate transaminase (GOT) in the jejunal mucosa. Also, the mRNA expression level of jejunal mucosa glutamine synthetase (GS) was increased by L-glutamate supplementation. The height of villi in duodenal and jejunal segments, and the relative mRNA expression of occludin and zonula occludens protein-1 (ZO-1) in jejunal mucosa were increased by dietary L-glutamate supplementation. L-Glutamate supplementation increased plasma concentrations of glutamate, arginine, histidine, isoleucine, leucine, methionine, phenylalanine and threonine. L-Glutamate supplementation also increased the relative mRNA expression of the jejunal mucosa Ca(2+)-sensing receptor (CaR), metabotropic glutamate receptor 1 (mGluR1) and metabotropic glutamate receptor 4 (mGluR4), and neutral amino acid transporter B(0)-like (SLC1A5) in the jejunal mucosa. These findings suggest that dietary addition of 2% L-glutamate improves the intestinal integrity and influences the expression of amino acid receptors and transporters in the jejunum of weaning, which is beneficial for the improvement of jejunal nutrients for digestion and absorption.
Collapse
Affiliation(s)
- Meng Lin
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bolin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Changning Yu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail:
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur J Nutr 2014; 54:1-24. [PMID: 25296886 PMCID: PMC4303703 DOI: 10.1007/s00394-014-0776-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022]
Abstract
Background Substantial increases in dietary sugar intake together with the increasing prevalence of obesity worldwide, as well as the parallels found between sugar overconsumption and drug abuse, have motivated research on the adverse effects of sugars on health and eating behaviour. Given that the gut–brain axis depends on multiple interactions between peripheral and central signals, and because these signals are interdependent, it is crucial to have a holistic view about dietary sugar effects on health. Methods Recent data on the effects of dietary sugars (i.e. sucrose, glucose, and fructose) at both peripheral and central levels and their interactions will be critically discussed in order to improve our understanding of the effects of sugars on health and diseases. This will contribute to the development of more efficient strategies for the prevention and treatment for obesity and associated co-morbidities. Results This review highlights opposing effects of glucose and fructose on metabolism and eating behaviour. Peripheral glucose and fructose sensing may influence eating behaviour by sweet-tasting mechanisms in the mouth and gut, and by glucose-sensing mechanisms in the gut. Glucose may impact brain reward regions and eating behaviour directly by crossing the blood–brain barrier, and indirectly by peripheral neural input and by oral and intestinal sweet taste/sugar-sensing mechanisms, whereas those promoted by fructose orally ingested seem to rely only on these indirect mechanisms. Conclusions Given the discrepancies between studies regarding the metabolic effects of sugars, more studies using physiological experimental conditions and in animal models closer to humans are needed. Additional studies directly comparing the effects of sucrose, glucose, and fructose should be performed to elucidate possible differences between these sugars on the reward circuitry.
Collapse
|