1
|
Liu C, Du J, Yang J, Li J, Zhou T, Yu J, Wang X, Lin J, Liang Y, Shi R, Luo R, Shen X, Wang Y, Zhang L, Shu Z. Research on the mechanism of buyang huanwu decoction in the amelioration of age-associated memory impairment based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118819. [PMID: 39303964 DOI: 10.1016/j.jep.2024.118819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brain aging can promote neuronal damage, contributing to aging-related diseases like memory dysfunction. Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula known for tonifying qi and activating blood circulation, shows neuroprotective properties. Despite this, the specific mechanism by which BYHWD improves age-associated memory impairment (AAMI) has not been explored in existing literature. AIM OF THE STUDY This study aimed to investigate the mechanism of BYHWD in the improvement of AAMI based on the "co-occurrence network regulation of intestinal microecology-host metabolism-immune function". MATERIALS AND METHODS Firstly, D-galactose was performed to induce a rat model of AAMI. Learning and memory deficits was assessed by the Morris water maze test. H&E and Nissl staining were used to observe the pathological changes in neurons in the hippocampus of rats. Meanwhile, the levels of pro-inflammatory cytokines and the activation of antioxidant enzymes in rat serum were measured using ELISA. Finally, an integrated pharmacological approach was applied to explore the potential mechanism of BYHWD in improving AAMI. RESULTS Our results indicated that BYHWD significantly mitigated the pathological structure of the hippocampus, reversed the levels of IL-6, TNF-α, GSH, and CAT in the serum, and improved learning and memory in aging rats. Transcriptomics combined with network pharmacology showed that energy metabolism and the inflammatory response were the key biological pathways for BYHWD to ameliorate AAMI. Integrative analysis of the microbiome and metabolomics revealed that BYHWD has the potential to restore the balance of abundance between probiotics and harmful bacteria, and ameliorate the reprogramming of energy metabolism caused by aging in the brain. The co-occurrence network analysis demonstrated that a strong correlation between the treatment of AAMI and the stability of intestinal microecology, host metabolism, and immune network. CONCLUSION The findings of this study collectively support the notion that BYHWD has a superior therapeutic effect in an AAMI rat model. The mechanism involves regulating the "intestinal microecology-metabolism-immune function co-occurrence network" system to restore the composition of gut microbiota and metabolites. This further improves the metabolic phenotype of brain tissue and maintains the homeostasis of central nervous system's immunity, leading to an improvement in AAMI. Consequently, this study offers a unique perspective on the prevention and treatment of AAMI. And, BYHWD is also considered to be a promising preclinical treatment for improving AAMI.
Collapse
Affiliation(s)
- Caiyan Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieyong Du
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaming Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongfeng Luo
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
2
|
Usher A, Babraj J. Impact of sprint interval training on post-fatigue mitochondrial rate in professional boxers. Eur J Appl Physiol 2024:10.1007/s00421-024-05594-0. [PMID: 39227429 DOI: 10.1007/s00421-024-05594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Professional boxing is a sport that requires a high aerobic capacity to prevent fatigue and allow athletes to perform over 4-12 rounds. Typically, athletes will go into a heavy training period in a pre-bout camp lasting 6 to 9 weeks. This study investigates the impact of 3 weeks of repeated Wingate sprint interval training, performed on standard gym ergometer bikes, on skeletal muscle endurance and mitochondrial function. METHODS Ten male professional boxers (age: 26 ± 4 years, height: 175 ± 5 cm, weight: 70 ± 5 kg) participated in the study. Baseline testing involved a NIRS monitor attached to the rectus femoris muscle prior to an incremental time to exhaustion test on a treadmill. After the treadmill test participants underwent a series of arterial occlusions to determine mitochondrial function post-volitional exhaustion. Participants then continued their own training for 3 weeks and then repeated baseline testing. After the second testing session, participants undertook three weekly sprint sessions consisting of 3 × 30 s maximal sprints with 60 s recovery. Testing was repeated 3 weeks later. RESULTS The time to exhaustion increased by > 6% after 3 weeks of sprint interval training as compared to baseline and control (p < 0.05). Skeletal muscle oxygen saturation (SmO2) at exhaustion was increased by 5.5% after 3 weeks of sprint interval training as compared to baseline and control (p = 0.008). Skeletal muscle mitochondrial rate post exhaustion was increased by 160% after 3 weeks of sprint interval training as compared to baseline and control (p < 0.001). CONCLUSION The study demonstrated that SIT led to increased incremental time to exhaustion, higher SmO2 levels at volitional exhaustion and increased mitochondrial rates in professional boxers. These findings suggest that SIT should be an integral part of a boxe's conditioning regimen to improve performance and safety within the ring.
Collapse
Affiliation(s)
- Andrew Usher
- Dept of Sport and Exercise Science, Abertay University, Bell St, Dundee, DD1 1HG, Scotland.
| | - John Babraj
- Dept of Sport and Exercise Science, Abertay University, Bell St, Dundee, DD1 1HG, Scotland
| |
Collapse
|
3
|
Simon A, Derella C, Looney J, Norland K, Wang X, Harris R. Daily Physical Activity Does Not Contribute to Differences in Muscle Oxidative Capacity Between Overweight and Obesity. Endocrinol Diabetes Metab 2024; 7:e513. [PMID: 39141578 PMCID: PMC11324093 DOI: 10.1002/edm2.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The interaction between physical activity, skeletal muscle health, and adiposity has been explored in normal weight and overweight/obesity grouped together; however, the overall risks associated with being overweight are less than those observed with obesity and can be confounded by disparities in both sex and race. Thus, the present study sought to investigate the intricate interplay of daily physical activity and skeletal muscle oxidative capacity (SMOC) in overweight and obesity, while exploring how sex and race impact this dynamic relationship. METHODS One hundred and forty participants were grouped by body mass index (BMI) as overweight (n = 73; BMI >25-<30 kg/m2) or obese (n = 67; BMI ≥30 kg/m2). SMOC was assessed using near-infrared spectroscopy and daily physical activity was assessed for 7 days using accelerometry. RESULTS Overweight individuals exhibited a higher (p = 0.004) SMOC and engaged in more (p = 0.007) vigorous physical activity compared to obese individuals. In addition, SMOC was lower (p = 0.005) in obese non-Hispanic Black (NHB) men compared to overweight NHB men. No relationships between physical activity and SMOC were observed. CONCLUSION Physical activity is not associated with differences in SMOC in overweight and obesity. Obese individuals engage in less vigorous physical activity and exhibit lower SMOC compared to overweight individuals and these differences are emphasised in NHB men.
Collapse
Affiliation(s)
- Abigayle B. Simon
- Georgia Prevention Institute, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Cassandra C. Derella
- Georgia Prevention Institute, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Jacob C. Looney
- Georgia Prevention Institute, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Kimberly Norland
- Georgia Prevention Institute, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Xiaoling Wang
- Georgia Prevention Institute, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Ryan A. Harris
- Georgia Prevention Institute, Medical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
4
|
Jeskanen T, Ylinen V, Valtonen RIP, Tulppo MP. Reproducibility and sex differences in muscle oxygenation during brachial artery occlusion in healthy participants. Clin Physiol Funct Imaging 2024; 44:388-395. [PMID: 38666417 DOI: 10.1111/cpf.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 08/07/2024]
Abstract
SIGNIFICANCE Near-infrared spectroscopy (NIRS) measurement is a widely used technique to measure muscle oxygenation. A knowledge of the reproducibility of NIRS measurements is essential for the correct interpretation of data. AIM Our aim was to test the reproducibility and sex differences of NIRS measurements during brachial artery occlusion in healthy participants. APPROACH An NIRS device was used to measure muscle oxygenation and microvascular function during a 5 min brachial occlusion. Muscle oxygen consumption (mVO2) and tissue saturation index (TSI%) were used. The occlusion test was performed three times on separate days for males (n = 13, 28 ± 8 years) and females (n = 13, 29 ± 7 years). RESULTS During the occlusion phase, the reproducibility of mVO2 was excellent (intraclass correlation; ICC = 0.90). During the reperfusion phase, the maximal change in TSI% revealed the best reproducibility (ICC = 0.77). There were no sex differences in reproducibility. Male participants had higher muscle oxygenation during occlusion (mVO2, 0.054 ± 0.010 vs. 0.038 ± 0.012 mLO2/min/100 g, p = 0.001, male and female, respectively). There were no sex differences during the reperfusion phase. CONCLUSION The reproducibility of NIRS to measure muscle oxygenation and microvascular function during circulation occlusion and reperfusion is good to excellent. Muscle oxygen capacity measured during occlusion is higher in males compared to females, and there are no sex differences in microvascular function during the reperfusion phase.
Collapse
Affiliation(s)
- Tommi Jeskanen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Venla Ylinen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Rasmus I P Valtonen
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Mikko P Tulppo
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Parenteau F, Denis A, Roberts M, Comtois AS, Bergdahl A. A polyphenol-rich cranberry supplement improves muscle oxidative capacity in healthy adults. Appl Physiol Nutr Metab 2024; 49:1047-1054. [PMID: 38626462 DOI: 10.1139/apnm-2023-0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Cranberries are rich in polyphenols, have a high antioxidant capacity, and may protect against exercise-induced free radical production. Mitochondria are known producers of free radical in skeletal muscle, and preventing overproduction of radicals may be a viable approach to improve muscle health. This study aimed to investigate the effect of a polyphenol-rich cranberry extract (CE) on muscle oxidative capacity and oxygenation metrics in healthy active adults. 17 participants (9 males and 8 females) were tested at: (i) baseline, (ii) 2 h following an acute CE dose (0.7 g/kg of body mass), and (iii) after 4 weeks of daily supplement consumption (0.3 g/kg of body mass). At each time point, muscle oxidative capacity was determined using near-infrared spectroscopy to measure the recovery kinetics of muscle oxygen consumption following a 15-20 s contraction of the vastus lateralis. Cranberry supplementation over 28 days significantly improved muscle oxidative capacity (k-constant, 2.8 ± 1.8 vs. 3.9 ± 2.2; p = 0.02). This was supported by a greater rate of oxygen depletion during a sustained cuff occlusion (-0.04 ± 0.02 vs. -0.07 ± 0.03; p = 0.02). Resting muscle oxygen consumption was not affected by cranberry consumption. Our results suggest that cranberry supplementation may play a role in improving mitochondrial health, which could lead to better muscle oxidative capacity in healthy active adult populations.
Collapse
Affiliation(s)
- Francis Parenteau
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Antoine Denis
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Mary Roberts
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Alain Steve Comtois
- Département des Sciences de l'activité physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
6
|
Rasica L, Inglis EC, Mazzolari R, Iannetta D, Murias JM. Methodological considerations on near-infrared spectroscopy derived muscle oxidative capacity. Eur J Appl Physiol 2024; 124:2069-2079. [PMID: 38400931 PMCID: PMC11199286 DOI: 10.1007/s00421-024-05421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/15/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Different strategies for near-infrared spectroscopy (NIRS)-derived muscle oxidative capacity assessment have been reported. This study compared and evaluated (I) approaches for averaging trials; (II) NIRS signals and blood volume correction equations; (III) the assessment of vastus lateralis (VL) and tibialis anterior (TA) muscles in two fitness levels groups. METHODS Thirty-six participants [18 chronically trained (CT: 14 males, 4 females) and 18 untrained (UT: 10 males, 8 females)] participated in this study. Two trials of twenty transient arterial occlusions were performed for NIRS-derived muscle oxidative capacity assessment. Muscle oxygen consumption ( V ˙ O2m) was estimated from deoxygenated hemoglobin (HHb), corrected for blood volume changes following Ryan (HHbR) and Beever (HHbB) equations, and from oxygen saturation (StO2) in VL and TA. RESULTS Superimposing or averaging V ˙ O2m or averaging the rate constants (k) from the two trials resulted in equivalent k values [two one-sided tests (TOST) procedure with 5% equivalence margin-P < 0.001]. Whereas HHbR (2.35 ± 0.61 min-1) and HHbB (2.34 ± 0.58 min-1) derived k were equivalent (P < 0.001), StO2 derived k (2.81 ± 0.92 min-1) was greater (P < 0.001) than both. k values were greater in CT vs UT in both muscles (VL: + 0.68 min-1, P = 0.002; TA: + 0.43 min-1, P = 0.01). CONCLUSION Different approaches for averaging trials lead to similar k. HHb and StO2 signals provided different k, although different blood volume corrections did not impact k. Group differences in k were detected in both muscles.
Collapse
Affiliation(s)
- Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - Raffaele Mazzolari
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
7
|
Davis BH, Stampley JE, Granger J, Scott MC, Allerton TD, Johannsen NM, Spielmann G, Irving BA. Impact of low-load resistance exercise with and without blood flow restriction on muscle strength, endurance, and oxidative capacity: A pilot study. Physiol Rep 2024; 12:e16041. [PMID: 38888154 PMCID: PMC11184470 DOI: 10.14814/phy2.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024] Open
Abstract
Low-load resistance exercise (LLRE) to failure can increase muscle mass, strength, endurance, and mitochondrial oxidative capacity (OXPHOS). However, the impact of adding blood flow restriction to low-load resistance exercise (LLBFR) when matched for volume on these outcomes is incompletely understood. This pilot study examined the impact of 6 weeks of single-legged LLBFR and volume-matched LLRE on thigh bone-free lean mass, strength, endurance, and mitochondrial OXPHOS. Twenty (12 males and 8 females) untrained young adults (mean ± SD; 21 ± 2 years, 168 ± 11 cm, 68 ± 12 kg) completed 6 weeks of either single-legged LLBFR or volume-matched LLRE. Participants performed four sets of 30, 15, 15, and 15 repetitions at 25% 1-RM of leg press and knee extension with or without BFR three times per week. LLBFR increased knee extension 1-RM, knee extension endurance, and thigh bone-free lean mass relative to control (all p < 0.05). LLRE increased leg press and knee extension 1-RM relative to control (p = 0.012 and p = 0.054, respectively). LLRE also increased mitochondrial OXPHOS (p = 0.047 (nonparametric)). Our study showed that LLBFR increased muscle strength, muscle endurance, and thigh bone-free lean mass in the absence of improvements in mitochondrial OXPHOS. LLRE improved muscle strength and mitochondrial OXPHOS in the absence of improvements in thigh bone-free lean mass or muscle endurance.
Collapse
Affiliation(s)
- Brett H. Davis
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - James E. Stampley
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - Joshua Granger
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
| | - Matthew C. Scott
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Timothy D. Allerton
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Neil M. Johannsen
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Guillaume Spielmann
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Brian A. Irving
- School of KinesiologyLouisiana State UniversityBaton RougeLouisianaUSA
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
8
|
Pignanelli C, Robertson AA, Hirsch SM, Power GA, Burr JF. The addition of blood flow restriction during resistance exercise does not increase prolonged low-frequency force depression. Exp Physiol 2024; 109:738-753. [PMID: 38562023 PMCID: PMC11061635 DOI: 10.1113/ep091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
At a given exercise intensity, blood flow restriction (BFR) reduces the volume of exercise required to impair post-exercise neuromuscular function. Compared to traditional exercise, the time course of recovery is less clear. After strenuous exercise, force output assessed with electrical muscle stimulation is impaired to a greater extent at low versus high stimulation frequencies, a condition known as prolonged low-frequency force depression (PLFFD). It is unclear if BFR increases PLFFD after exercise. This study tested if BFR during exercise increases PLFFD and slows recovery of neuromuscular function compared to regular exercise. Fifteen physically active participants performed six low-load sets of knee-extensions across four conditions: resistance exercise to task failure (RETF), resistance exercise to task failure with BFR applied continuously (BFRCONT) or intermittently (BFRINT), and resistance exercise matched to the lowest exercise volume condition (REVM). Maximal voluntary contraction (MVC) force output, voluntary activation and a force-frequency (1-100 Hz) curve were measured before and 0, 1, 2, 3, 4 and 24 h after exercise. Exercise to task failure caused similar reductions at 0 h for voluntary activation (RETF = 81.0 ± 14.2%, BFRINT = 80.9 ± 12.4% and BFRCONT = 78.6 ± 10.7%) and MVC force output (RETF = 482 ± 168 N, BFRINT = 432 ± 174 N, and BFRCONT = 443 ± 196 N), which recovered to baseline values between 4 and 24 h. PLFFD occurred only after RETF at 1 h supported by a higher frequency to evoke 50% of the force production at 100 Hz (1 h: 17.5 ± 4.4 vs. baseline: 15 ± 4.1 Hz, P = 0.0023), BFRINT (15.5 ± 4.0 Hz; P = 0.03), and REVM (14.9 ± 3.1 Hz; P = 0.002), with a trend versus BFRCONT (15.7 ± 3.5 Hz; P = 0.063). These findings indicate that, in physically active individuals, using BFR during exercise does not impair the recovery of neuromuscular function by 24 h post-exercise.
Collapse
Affiliation(s)
- Christopher Pignanelli
- Department of Human Health & Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Alexa A. Robertson
- Department of Human Health & Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Steven M. Hirsch
- Faculty of Kinesiology and Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Geoffrey A. Power
- Department of Human Health & Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Jamie F. Burr
- Department of Human Health & Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
9
|
Venckunas T, Satas A, Brazaitis M, Eimantas N, Sipaviciene S, Kamandulis S. Near-InfraRed Spectroscopy Provides a Reproducible Estimate of Muscle Aerobic Capacity, but Not Whole-Body Aerobic Power. SENSORS (BASEL, SWITZERLAND) 2024; 24:2277. [PMID: 38610488 PMCID: PMC11014184 DOI: 10.3390/s24072277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Near-infrared spectroscopy (NIRS) during repeated limb occlusions is a noninvasive tool for assessing muscle oxidative capacity. However, the method's reliability and validity remain under investigation. This study aimed to determine the reliability of the NIRS-derived mitochondrial power of the musculus vastus lateralis and its correlation with whole-body (cycling) aerobic power (V̇O2 peak). Eleven healthy active men (28 ± 10 y) twice (2 days apart) underwent repeated arterial occlusions to induce changes in muscle oxygen delivery after 15 s of electrical muscle stimulation. The muscle oxygen consumption (mV̇O2) recovery time and rate (k) constants were calculated from the NIRS O2Hb signal. We assessed the reliability (coefficient of variation and intraclass coefficient of correlation [ICC]) and equivalency (t-test) between visits. The results showed high reproducibility for the mV̇O2 recovery time constant (ICC = 0.859) and moderate reproducibility for the k value (ICC = 0.674), with no significant differences between visits (p > 0.05). NIRS-derived k did not correlate with the V̇O2 peak relative to body mass (r = 0.441, p = 0.17) or the absolute V̇O2 peak (r = 0.366, p = 0.26). In conclusion, NIRS provides a reproducible estimate of muscle mitochondrial power, which, however, was not correlated with whole-body aerobic capacity in the current study, suggesting that even if somewhat overlapping, not the same set of factors underpin these distinct indices of aerobic capacity at the different (peripheral and whole-body systemic) levels.
Collapse
Affiliation(s)
- Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Andrius Satas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Saule Sipaviciene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| |
Collapse
|
10
|
Yoshiko A, Shiozawa K, Niwa S, Takahashi H, Koike T, Watanabe K, Katayama K, Akima H. Association of skeletal muscle oxidative capacity with muscle function, sarcopenia-related exercise performance, and intramuscular adipose tissue in older adults. GeroScience 2024; 46:2715-2727. [PMID: 38153667 PMCID: PMC10828458 DOI: 10.1007/s11357-023-01043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Muscle function and exercise performance measures, such as muscle endurance capacity, maximal strength, chair stand score, gait speed, and Timed Up and Go score, are evaluated to diagnose sarcopenia and frailty in older individuals. Furthermore, intramuscular adipose tissue (IntraMAT) content increases with age. Skeletal muscle oxidative capacity determines muscle metabolism and maintains muscle performance. This study aimed to investigate the association of skeletal muscle oxidative capacity with muscle function, exercise performance, and IntraMAT content in older individuals. Thirteen older men and women participated in this study. Skeletal muscle oxidative capacity was assessed by the recovery speed of muscle oxygen saturation after exercise using near-infrared spectroscopy from the medial gastrocnemius. We assessed two muscle functions, peak torque and time to task failure, and four sarcopenia-related exercise performances: handgrip strength, gait speed, 30-s chair stand, and Timed Up and Go. The IntraMAT content was measured using axial magnetic resonance imaging. The results showed a relationship between skeletal muscle oxidative capacity and gait speed but not with muscle functions and other exercise performance measures. Skeletal muscle oxidative capacity was not related to IntraMAT content. Skeletal muscle oxidative capacity, which may be indicative of the capacity of muscle energy production in the mitochondria, is related to locomotive functions but not to other functional parameters or skeletal fat infiltration.
Collapse
Affiliation(s)
- Akito Yoshiko
- Faculty of Liberal Arts and Sciences, Chukyo University, Toyota, Japan.
| | - Kana Shiozawa
- Department of Exercise and Sports Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shiori Niwa
- Department of Nursing, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Teruhiko Koike
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kohei Watanabe
- School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Keisho Katayama
- Department of Exercise and Sports Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Hiroshi Akima
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Giacona JM, Petric UB, Kositanurit W, Wang J, Saldanha S, Young BE, Khan G, Connelly MA, Smith SA, Rohatgi A, Vongpatanasin W. HDL-C and apolipoprotein A-I are independently associated with skeletal muscle mitochondrial function in healthy humans. Am J Physiol Heart Circ Physiol 2024; 326:H916-H922. [PMID: 38334968 PMCID: PMC11279711 DOI: 10.1152/ajpheart.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Prior animal and cell studies have demonstrated a direct role of high-density lipoprotein (HDL) and apolipoprotein A-I (ApoA-I) in enhancing skeletal muscle mitochondrial function and exercise capacity. However, the relevance of these animal and cell investigations in humans remains unknown. Therefore, a cross-sectional study was conducted in 48 adults (67% female, 8% Black participants, age 39 ± 15.4 yr old) to characterize the associations between HDL measures, ApoA-I, and muscle mitochondrial function. Forearm muscle oxygen recovery time (tau) from postexercise recovery kinetics was used to assess skeletal muscle mitochondrial function. Lipoprotein measures were assessed by nuclear magnetic resonance. HDL efflux capacity was assessed using J774 macrophages, radiolabeled cholesterol, and apolipoprotein B-depleted plasma both with and without added cyclic adenosine monophosphate. In univariate analyses, faster skeletal muscle oxygen recovery time (lower tau) was significantly associated with higher levels of HDL cholesterol (HDL-C), ApoA-I, and larger mean HDL size, but not HDL cholesterol efflux capacity. Slower recovery time (higher tau) was positively associated with body mass index (BMI) and fasting plasma glucose (FPG). In multivariable linear regression analyses, higher levels of HDL-C and ApoA-I, as well as larger HDL size, were independently associated with faster skeletal muscle oxygen recovery times that persisted after adjusting for BMI and FPG (all P < 0.05). In conclusion, higher levels of HDL-C, ApoA-I, and larger mean HDL size were independently associated with enhanced skeletal muscle mitochondrial function in healthy humans.NEW & NOTEWORTHY Our study provides the first direct evidence supporting the beneficial role of HDL-C and ApoA-I on enhanced skeletal muscle mitochondrial function in healthy young to middle-aged humans without cardiometabolic disease.
Collapse
Affiliation(s)
- John M Giacona
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ursa B Petric
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Weerapat Kositanurit
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jijia Wang
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Suzanne Saldanha
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Benjamin E Young
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ghazi Khan
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | | - Scott A Smith
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Anand Rohatgi
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Wanpen Vongpatanasin
- Hypertension Section, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
12
|
Tuesta M, Yáñez-Sepúlveda R, Monsalves-Álvarez M, Vásquez-Bonilla A, Olivares-Arancibia J, Rojas-Valverde D, Alvear-Órdenes I. Muscle Oxygen Extraction during Vascular Occlusion Test in Physically Very Active versus Inactive Healthy Men: A Comparative Study. J Funct Morphol Kinesiol 2024; 9:57. [PMID: 38525758 PMCID: PMC10961797 DOI: 10.3390/jfmk9020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
An increase in the delivery and use of oxygen to the musculature in physically active subjects are determinants of improving health-related aerobic capacity. Additional health benefits, such as an increase in the muscle mass and a decrease in fat mass, principally in the legs, could be achieved with weekly global physical activity levels of more than 300 min. The objective was to compare the muscle vascular and metabolic profiles of physically very active and inactive subjects. Twenty healthy men participated in the study; ten were assigned to the physically very active group (25.5 ± 4.2 years; 72.7 ± 8.1 kg; 173.7 ± 7.6 cm) and ten to the physically inactive group (30.0 ± 7.4 years; 74.9 ± 11.8 kg; 173.0 ± 6.4 cm). The level of physical activity was determined by the Global Physical Activity Questionnaire (GPAQ). A resting vascular occlusion test (5 min of an ischemic phase and 3 min of a reperfusion phase) was used, whereas a near-field infrared spectroscopy (NIRS) device was used to evaluate the muscle oxygenation in the right vastus lateralis of the quadriceps muscle. The area under the curve of the deoxyhemoglobin (HHb) during the ischemic phase and above the curve of the tissue saturation index (TSI) during the reperfusion phase were obtained to determine muscle metabolic and vascular responses, respectively. Physically very active group showed a higher absolute HHb (3331.9 ± 995.7 vs. 6182.7 ± 1632.5 mmol/s) and lower TSI (7615.0 ± 1111.9 vs. 5420.0 ± 781.4 %/s) and relative to body weight (46.3 ± 14.6 vs. 84.4 ± 27.1 mmol/s/kg and 106.0 ± 20.6 vs. 73.6 ± 13.8 %/s/kg, respectively), muscle mass (369.9 ± 122.2 vs. 707.5 ± 225.8 mmol/kg and 829.7 ± 163.4 vs. 611.9 ± 154.2 %/s/kg) and fat mass (1760.8 ± 522.9 vs. 2981.0 ± 1239.9 mmol/s/kg and 4160.0 ± 1257.3 vs. ±2638.4 ± 994.3 %/s/kg, respectively) than physically inactive subjects. A negative correlation was observed between HHb levels and TSI (r = -0.6; p < 0.05). Physically very active men (>300 min/week) present better muscle oxidative metabolism and perfusion and perform significantly more physical activity than physically inactive subjects. Extra benefits for vascular health and muscle oxidative metabolism are achieved when a subject becomes physically very active, as recommended by the World Health Organization. In addition, a higher level of physical activity determined by GPAQ is related to better vascular function and oxidative metabolism of the main locomotor musculature, i.e., the quadriceps.
Collapse
Affiliation(s)
- Marcelo Tuesta
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
- Laboratory of Sport Sciences, Centro de Medicina Deportiva Sports MD, Viña del Mar 2521156, Chile
| | - Rodrigo Yáñez-Sepúlveda
- Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | | | | - Jorge Olivares-Arancibia
- Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8320000, Chile
| | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD-NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 86-3000, Costa Rica;
- Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Ildefonso Alvear-Órdenes
- Applied Physiology Laboratory (FISAP), Institute of Biomedicine (IBIOMED), University of León, 24001 León, Spain;
| |
Collapse
|
13
|
Koutlas A, Smilios I, Kokkinou EM, Myrkos A, Kounoupis A, Dipla K, Zafeiridis A. NIRS-Derived Muscle-Deoxygenation and Microvascular Reactivity During Occlusion-Reperfusion at Rest Are Associated With Whole-Body Aerobic Fitness. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:127-139. [PMID: 36689603 DOI: 10.1080/02701367.2022.2159309] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Purpose: Near-infrared spectroscopy (NIRS) indices during arterial occlusion-reperfusion maneuver have been used to examine the muscle's oxidative metabolism and microvascular function-important determinants of whole-body aerobic-fitness. The association of NIRS-derived parameters with whole-body VO2max was previously examined using a method requiring exercise (or electrical stimulation) followed by multiple arterial occlusions. We examined whether NIRS-derived indices of muscle deoxygenation and microvascular reactivity assessed during a single occlusion-reperfusion at rest are (a) associated with maximal/submaximal indices of whole-body aerobic-fitness and (b) could discriminate individuals with different VO2max. We, also, investigated which NIRS-parameter during occlusion-reperfusion correlates best with whole-body aerobic-fitness. Methods: Twenty-five young individuals performed an arterial occlusion-reperfusion at rest. Changes in oxygenated- and deoxygenated-hemoglobin (O2Hb and HHb, respectively) in vastus-lateralis were monitored; adipose tissue thickness (ATT) at NIRS-application was assessed. Participants also underwent a maximal incremental exercise test for VO2max, maximal aerobic velocity (MAV), and ventilatory-thresholds (VTs) assessments. Results: The HHbslope and HHbmagnitude of increase (occlusion-phase) and O2Hbmagnitude of increase (reperfusion-phase) were strongly correlated with VO2max (r = .695-.763, p < .001) and moderately with MAV (r = .468-.530; p < .05). O2Hbmagnitude was moderately correlated with VTs (r = .399-.414; p < .05). After controlling for ATT, the correlations remained significant for VO2max (r = .672-.704; p < .001) and MAV (r = .407; p < .05). Individuals in the high percentiles after median and tritile splits for HHbslope and O2Hbmagnitude had significantly greater VO2max vs. those in low percentiles (p < .01-.05). The HHbslope during occlusion was the best predictor of VO2max. Conclusion: NIRS-derived muscle deoxygenation/reoxygenation indices during a single arterial occlusion-reperfusion maneuver are strongly associated with whole-body maximal indices of aerobic-fitness (VO2max, MAV) and may discriminate individuals with different VO2max.
Collapse
|
14
|
Ryan TE, Torres MJ, Lin CT, Clark AH, Brophy PM, Smith CA, Smith CD, Morris EM, Thyfault JP, Neufer PD. High-dose atorvastatin therapy progressively decreases skeletal muscle mitochondrial respiratory capacity in humans. JCI Insight 2024; 9:e174125. [PMID: 38385748 DOI: 10.1172/jci.insight.174125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUNDWhile the benefits of statin therapy on atherosclerotic cardiovascular disease are clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.METHODSEight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) therapy.RESULTSMaximal ADP-stimulated respiration, measured in permeabilized fiber bundles from muscle biopsies taken at each time point, declined gradually over the course of atorvastatin treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was inhibited at low nanomolar concentrations.CONCLUSIONThese findings demonstrate that high-dose atorvastatin treatment elicits a striking progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for longer-term dose-response studies in different patient populations to thoroughly define the effect of statin therapy on skeletal muscle health.FUNDINGNIH R01 AR071263.
Collapse
Affiliation(s)
- Terence E Ryan
- East Carolina Diabetes and Obesity Institute and
- Department of Physiology, Brody School of Medicine Greenville, North Carolina, USA
| | - Maria J Torres
- East Carolina Diabetes and Obesity Institute and
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute and
- Department of Physiology, Brody School of Medicine Greenville, North Carolina, USA
| | | | | | - Cheryl A Smith
- East Carolina Diabetes and Obesity Institute and
- Department of Physiology, Brody School of Medicine Greenville, North Carolina, USA
| | - Cody D Smith
- East Carolina Diabetes and Obesity Institute and
- Department of Physiology, Brody School of Medicine Greenville, North Carolina, USA
| | | | - John P Thyfault
- Cell Biology and Physiology and
- Kansas University Diabetes Institute and Department of Internal Medicine, Division of Endocrinology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute and
- Department of Physiology, Brody School of Medicine Greenville, North Carolina, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, Greenville, North Carolina, USA
| |
Collapse
|
15
|
Tripp TR, McDougall RM, Frankish BP, Wiley JP, Lun V, MacInnis MJ. Contraction intensity affects NIRS-derived skeletal muscle oxidative capacity but not its relationships to mitochondrial protein content or aerobic fitness. J Appl Physiol (1985) 2024; 136:298-312. [PMID: 38059287 DOI: 10.1152/japplphysiol.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/16/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
To further refine the near-infrared spectroscopy (NIRS)-derived measure of skeletal muscle oxidative capacity in humans, we sought to determine whether the exercise stimulus intensity affected the τ value and/or influenced the magnitude of correlations with in vitro measures of mitochondrial content and in vivo indices of exercise performance. Males (n = 12) and females (n = 12), matched for maximal aerobic fitness per fat-free mass, completed NIRS-derived skeletal muscle oxidative capacity tests for the vastus lateralis following repeated contractions at 40% (τ40) and 100% (τ100) of maximum voluntary contraction, underwent a skeletal muscle biopsy of the same muscle, and performed multiple intermittent isometric knee extension tests to task failure to establish critical torque (CT). The value of τ100 (34.4 ± 7.0 s) was greater than τ40 (24.2 ± 6.9 s, P < 0.001), but the values were correlated (r = 0.688; P < 0.001). The values of τ40 (r = -0.692, P < 0.001) and τ100 (r = -0.488, P = 0.016) correlated with myosin heavy chain I percentage and several markers of mitochondrial content, including COX II protein content in whole muscle (τ40: r = -0.547, P = 0.006; τ100: r = -0.466, P = 0.022), type I pooled fibers (τ40: r = -0.547, P = 0.006; τ100: r = -0.547, P = 0.006), and type II pooled fibers (τ40: r = -0.516, P = 0.009; τ100: r = -0.635, P = 0.001). The value of τ40 (r = -0.702, P < 0.001), but not τ100 (r = -0.378, P = 0.083) correlated with critical torque (CT); however, neither value correlated with W' (τ40: r = 0.071, P = 0.753; τ100: r = 0.054, P = 0.812). Overall, the NIRS method of assessing skeletal muscle oxidative capacity is sensitive to the intensity of skeletal muscle contraction but maintains relationships to whole body fitness, isolated limb critical intensity, and mitochondrial content regardless of intensity.NEW & NOTEWORTHY Skeletal muscle oxidative capacity measured using near-infrared spectroscopy (NIRS) was lower following high-intensity compared with low-intensity isometric knee extension contractions. At both intensities, skeletal muscle oxidative capacity was correlated with protein markers of mitochondrial content (in whole muscle and pooled type I and type II muscle fibers) and critical torque. These findings highlight the importance of standardizing contraction intensity while using the NIRS method with isometric contractions and further demonstrate its validity.
Collapse
Affiliation(s)
- Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Victor Lun
- Faculty of Kinesiology, University of Calgary Sport Medicine Centre, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
Maliszewski K, Feldmann A, McCully KK, Julian R. A systematic review of the relationship between muscle oxygen dynamics and energy rich phosphates. Can NIRS help? BMC Sports Sci Med Rehabil 2024; 16:25. [PMID: 38245757 PMCID: PMC10799478 DOI: 10.1186/s13102-024-00809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Phosphocreatine dynamics provide the gold standard evaluation of in-vivo mitochondrial function and is tightly coupled with oxygen availability. Low mitochondrial oxidative capacity has been associated with health issues and low exercise performance. METHODS To evaluate the relationship between near-infrared spectroscopy-based muscle oxygen dynamics and magnetic resonance spectroscopy-based energy-rich phosphates, a systematic review of the literature related to muscle oxygen dynamics and energy-rich phosphates was conducted. PRISMA guidelines were followed to perform a comprehensive and systematic search of four databases on 02-11-2021 (PubMed, MEDLINE, Scopus and Web of Science). Beforehand pre-registration with the Open Science Framework was performed. Studies had to include healthy humans aged 18-55, measures related to NIRS-based muscle oxygen measures in combination with energy-rich phosphates. Exclusion criteria were clinical populations, laboratory animals, acutely injured subjects, data that only assessed oxygen dynamics or energy-rich phosphates, or grey literature. The Effective Public Health Practice Project Quality Assessment Tool was used to assess methodological quality, and data extraction was presented in a table. RESULTS Out of 1483 records, 28 were eligible. All included studies were rated moderate. The studies suggest muscle oxygen dynamics could indicate energy-rich phosphates under appropriate protocol settings. CONCLUSION Arterial occlusion and exercise intensity might be important factors to control if NIRS application should be used to examine energetics. However, more research needs to be conducted without arterial occlusion and with high-intensity exercises to support the applicability of NIRS and provide an agreement level in the concurrent course of muscle oxygen kinetics and muscle energetics. TRIAL REGISTRATION https://osf.io/py32n/ . KEY POINTS 1. NIRS derived measures of muscle oxygenation agree with gold-standard measures of high energy phosphates when assessed in an appropriate protocol setting. 2. At rest when applying the AO protocol, in the absence of muscle activity, an initial disjunction between the NIRS signal and high energy phosphates can been seen, suggesting a cascading relationship. 3. During exercise and recovery a disruption of oxygen delivery is required to provide the appropriate setting for evaluation through either an AO protocol or high intensity contractions.
Collapse
Affiliation(s)
- Kevin Maliszewski
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, 48149, Germany
| | - Andri Feldmann
- Institute of Sport Science, University of Bern, Bern, Switzerland
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, USA
| | - Ross Julian
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Münster, 48149, Germany.
- School of Sport and Exercise, University of Gloucestershire, Cheltenham, England.
| |
Collapse
|
17
|
Possamai LT, de Aguiar RA, Borszcz FK, do Nascimento Salvador PC, de Lucas RD, Turnes T. Muscle Oxidative Capacity in Vivo Is Associated With Physiological Parameters in Trained Rowers. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1020-1027. [PMID: 36048498 DOI: 10.1080/02701367.2022.2100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Purpose: The muscle oxygen uptake (m V ˙ O 2 ) kinetics following exercise, measured by near-infrared spectroscopy, has been used as a functional evaluation of muscle oxidative metabolism. This study aimed to determine the m V ˙ O 2 off-kinetics and verify the relationship of the recovery rate of m V ˙ O 2 (k) with time-trial performance and different aerobic parameters in trained rowers. Methods: Eleven male rowers (age: 20 ± 3 years; V ˙ O 2 m a x : 4.28 ± 0.35 L·min-1) used a rowing ergometer to perform (I) an incremental test to determine the maximal oxygen uptake (V ˙ O 2 m a x ) and peak power output (Ppeak); (II) several visits to determine maximal lactate steady state (MLSS); and (III) a 2000-m rowing ergometer performance test. Also, one test to determine m V ˙ O 2 off-kinetics of the vastus lateralis muscle using a repeated arterial occlusions protocol. Results: The m V ˙ O 2 generated a good monoexponential fit (R2 = 0.960 ± 0.030; SEE = 0.041 ± 0.018%.s-1). The k of m V ˙ O 2 (2.06 ± 0.58 min-1) was associated with relative V ˙ O 2 m a x (r = 0.79), power output at MLSS (r = 0.76), and Ppeak (r = 0.83); however, it was not related with 2000-m rowing performance (r = -0.38 to 0.52; p > .152). Conclusion: These findings suggest that although not associated with rowing performance, the m V ˙ O 2 off-kinetics determined after a submaximal isometric knee extension may be a practical and less-exhaustive approach than invasive responses and incremental tests to assess the muscle oxidative metabolism during a training program.
Collapse
|
18
|
Batterson PM, Kirby BS, Hasselmann G, Feldmann A. Muscle oxygen saturation rates coincide with lactate-based exercise thresholds. Eur J Appl Physiol 2023; 123:2249-2258. [PMID: 37261552 DOI: 10.1007/s00421-023-05238-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Monitoring muscle metabolic activity via blood lactate is a useful tool for understanding the physiological response to a given exercise intensity. Recent indications suggest that skeletal muscle oxygen saturation (SmO2), an index of the balance between local O2 supply and demand, may describe and predict endurance performance outcomes. PURPOSE We tested the hypothesis that SmO2 rate is tightly related to blood lactate concentration across exercise intensities, and that deflections in SmO2 rate would coincide with established blood lactate thresholds (i.e., lactate thresholds 1 and 2). METHODS Ten elite male soccer players completed an incremental running protocol to exhaustion using 3-min work to 30 s rest intervals. Blood lactate samples were collected during rest and SmO2 was collected continuously via near-infrared spectroscopy from the right and left vastus lateralis, left biceps femoris and the left gastrocnemius. RESULTS Muscle O2 saturation rate (%/min) was quantified after the initial 60 s of each 3-min segment. The SmO2 rate was significantly correlated with blood lactate concentrations for all muscle sites; RVL, r = - 0.974; LVL, r = - 0.969; LG, r = - 0.942; LHAM, r = - 0.907. Breakpoints in SmO2 rate were not significantly different from LT1 or LT2 at any muscle sites (P > 0.05). Bland-Altman analysis showed speed threshold estimates via SmO2 rate and lactate are similar at LT2, but slightly greater for SmO2 rate at LT1. CONCLUSIONS Muscle O2 saturation rate appears to provide actionable information about maximal metabolic steady state and is consistent with bioenergetic reliance on oxygen and its involvement in the attainment of metabolic steady state.
Collapse
Affiliation(s)
- Philip M Batterson
- Biological and Population Health Sciences, Oregon State University, 17 Milam Hall, Corvallis, OR, 97331, USA.
| | - Brett S Kirby
- Nike Sport Research Lab, Nike Inc, Beaverton, OR, USA
| | | | - Andri Feldmann
- Institute of Sport Science, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Dunst AK, Manunzio C, Feldmann A, Hesse C. Applications of near-infrared spectroscopy in "anaerobic" diagnostics - SmO 2 kinetics reflect PCr dephosphorylation and correlate with maximal lactate accumulation and maximal pedalling rate. Biol Sport 2023; 40:1019-1031. [PMID: 37867743 PMCID: PMC10588566 DOI: 10.5114/biolsport.2023.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 11/19/2022] [Indexed: 10/24/2023] Open
Abstract
We investigated the relationship of the time-dependent behaviour of muscle oxygen saturation SmO2(t), phosphagen energy supply WPCr(t) and blood lactate accumulation ΔBLC(t) during a 60-s all-out cycling sprint and tested SmO2(t) for correlations with the end of the fatigue-free state tFf, maximal pedalling rate PRmax and maximal blood lactate accumulation rate v̇Lamax. Nine male elite track cyclists performed four maximal sprints (3, 8, 12, 60 s) on a cycle ergometer. Crank force and cadence were monitored continuously to determine PRmax and tFf based on force-velocity profiles. SmO2 of the vastus lateralis muscle and respiratory gases were measured until the 30th minute after exercise. WPCr was calculated based on the fast component of the post-exercise oxygen uptake for each sprint. Before and for 30 minutes after each sprint, capillary blood samples were taken to determine the associated ΔBLC. Temporal changes of SmO2, WPCr and ΔBLC were analysed via non-linear regression analysis. v̇Lamax was calculated based on ΔBLC(t) as the highest blood lactate accumulation rate. All models showed excellent quality (R2 > 0.95). The time constant of SmO2(t) τSmO2 = 2.93 ± 0.65 s was correlated with the time constant of WPCr(t) τPCr = 3.23 ± 0.67 s (r = 0.790, p < 0.012), v̇Lamax = 0.95 ± 0.18 mmol · l-1 · s-1 (r = 0.768, p < 0.017) and PRmax = 299.51 ± 14.70 rpm (r = -0.670, p < 0.049). tFf was correlated with τSmO2 (r = 0.885, p < 0.001). Our results show a time-dependent reflection of SmO2 kinetics and phosphagen energy contribution during a 60-s maximal cycling sprint. A high v̇Lamax results in a reduction, a high PRmax in an increase of the desaturation rate. The half-life of SmO2 desaturation indicates the end of the fatigue-free state.
Collapse
Affiliation(s)
| | - Christian Manunzio
- University Hospital Bonn, Children’s Hospital, Department of Paediatric Cardiology, Sports Clinic, Bonn, Germany
| | - Andri Feldmann
- University of Bern, Institute of Sport Science, Bern, Switzerland
| | | |
Collapse
|
20
|
Gasser B, Niederseer D, Frey WO, Catuogno S, Flück M. ACE-I/D Allele Modulates Improvements of Cardiorespiratory Function and Muscle Performance with Interval-Type Exercise. Genes (Basel) 2023; 14:1100. [PMID: 37239460 PMCID: PMC10218657 DOI: 10.3390/genes14051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Background: The prominent insertion/deletion polymorphism in the gene for the major modulator of tissue perfusion, angiotensin-converting enzyme (ACE-I/D) is associated with variability in adjustments in cardiac and skeletal muscle performance with standard forms of endurance and strength type training. Here, we tested whether the ACE-I/D genotype would be associated with variability in the effects of interval-type training on peak and aerobic performance of peripheral muscle and cardio-vasculature and post-exercise recovery. Methods: Nine healthy subjects (39.0 ± 14.7 years of age; 64.6 ± 16.1 kg, 173.6 ± 9.9) completed eight weeks of interval training on a soft robotic device based on repeated sets of a pedaling exercise at a matched intensity relative to their peak aerobic power output. Prior to and post-training, peak anaerobic and aerobic power output was assessed, mechanical work and metabolic stress (oxygen saturation and hemoglobin concentrations of Musculus vastus lateralis (VAS) and Musculus gastrocnemius (GAS), blood lactate and factors setting cardiac output such as heart rate, systolic and diastolic blood pressure were monitored during ramp-incremental exercise and interval exercise with the calculation of areas under the curve (AUC), which were put in relation to the produced muscle work. Genotyping was performed based on I- and D-allele-specific polymerase chain reactions on genomic DNA from mucosal swaps. The significance of interaction effects between training and ACE I-allele on absolute and work-related values was assessed with repeated measures ANOVA. Results: Subjects delivered 87% more muscle work/power, 106% more cardiac output, and muscles experienced ~72% more of a deficit in oxygen saturation and a ~35% higher passage of total hemoglobin during single interval exercise after the eight weeks of training. Interval training affected aspects of skeletal muscle metabolism and performance, whose variability was associated with the ACE I-allele. This concerned the economically favorable alterations in the work-related AUC for the deficit of SmO2 in the VAS and GAS muscles during the ramp exercise for the I-allele carriers and opposing deteriorations in non-carriers. Conversely, oxygen saturation in the VAS and GAS at rest and during interval exercise was selectively improved after training for the non-carriers of the I-allele when the AUC of tHb per work during interval exercise deteriorated in the carriers. Training also improved aerobic peak power output by 4% in the carriers but not the non-carriers (p = 0.772) of the ACE I-allele while reducing negative peak power (-27.0%) to a lesser extent in the ACE I-allele carriers than the non-carriers. Variability in cardiac parameters (i.e., the AUC of heart rate and glucose during ramp exercise, was similar to the time to recovery of maximal tHb in both muscles after cessation of ramp exercise, only associated with the ACE I-allele but not training per se. Diastolic blood pressure and cardiac output during recovery from exhaustive ramp exercise demonstrated a trend for training-associated differences in association with the ACE I-allele. Discussion: The exercise-type dependent manifestation of antidromic adjustments in leg muscle perfusion and associated local aerobic metabolism between carriers and non-carriers of the ACE I-allele with the interval-training highlight that non-carriers of the I-allele do not present an essential handicap to improve perfusion-related aerobic muscle metabolism but that the manifestation of responsiveness depends on the produced work. Conclusions: The deployed interval-type of exercise produced ACE I-allele-related differences in the alterations of negative anaerobic performance and perfusion-related aerobic muscle metabolism, which manifestation is exercise specific. The training-invariant ACE I-allele-associated differences in heart rate and blood glucose concentration emphasize that the repeated impact of the interval stimulus, despite a near doubling of the initial metabolic load, was insufficient to overturn ACE-related genetic influences on cardiovascular function.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport, Universität Basel, CH-4052 Basel, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, CH-8008 Zurich, Switzerland;
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, CH-8008 Zurich, Switzerland; (W.O.F.); (S.C.)
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, CH-8008 Zurich, Switzerland; (W.O.F.); (S.C.)
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Balgrist Campus, CH-8008 Zurich, Switzerland
- Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
21
|
Aviram R, Kima I, Parmet Y, Bassan H, Willigenburg T, Riemer R, Bar-Haim S. Haemodynamics and oxygenation in the lower-limb muscles of young ambulatory adults with cerebral palsy. Dev Med Child Neurol 2023. [PMID: 36646638 DOI: 10.1111/dmcn.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 01/18/2023]
Abstract
AIM To evaluate muscle haemodynamics and oxygen metabolism in adults with cerebral palsy (CP) at rest and during exercise. METHOD This cross-sectional study included 12 adults with spastic CP (four females, eight males; mean age [SD] 29 years 6 months [7 years 10.8 months]) and 13 typically developing individuals (seven females, six males; mean age [SD] 26 years 6 months [1 year 1.9 months]). Near-infrared spectroscopy was used to assess changes in muscle blood flow (mBF), muscle oxygen consumption (mVO2 ), and muscle oxygen saturation in the vastus lateralis and rectus femoris muscles during three conditions: rest, low load at 20% maximum voluntary contraction (MVC), and high load at 80% MVC. RESULTS MBF was lower in participants with CP than in typically developing participants at rest (p < 0.001) and at 20% MVC (p = 0.007) in both muscles. Increased load caused a reduction in mBF in typically developing participants and an increase in CP. MVO2 in typically developing participants increased from rest to 20% MVC and was reduced at 80% MVC compared with 20% MVC. In participants with CP, there was no change with load in the rectus femoris muscle; however, there was an increase in the vastus lateralis muscle from rest to 20% MVC, and 80% MVC had a similar value. Muscle saturation was higher in participants with CP across all conditions (vastus lateralis, p < 0.001; rectus femoris, p = 0.0518). INTERPRETATION Oxidative metabolism in CP is not limited by oxygen delivery (mBF), because high muscle saturation suggests oxygen availability. Adults with CP demonstrate muscular responses to exercise that are inconsistent with typical high-workload activation, probably because of inefficient fibre recruitment and secondary anomalies.
Collapse
Affiliation(s)
- Ronit Aviram
- Faculty of Health Sciences, Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Inbar Kima
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Yisrael Parmet
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Haim Bassan
- Child Neurology & Development Center, Shamir Medical Center (Assaf Harofe), Be'er Ya'akov, Israel
| | | | - Raziel Riemer
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Simona Bar-Haim
- Faculty of Health Sciences, Department of Physical Therapy, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
22
|
Flockhart M, Nilsson LC, Ekblom B, Larsen FJ. A Simple Model for Diagnosis of Maladaptations to Exercise Training. SPORTS MEDICINE - OPEN 2022; 8:136. [PMCID: PMC9636365 DOI: 10.1186/s40798-022-00523-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Background
The concept of overreaching and super compensation is widely in use by athletes and coaches seeking to maximize performance and adaptations to exercise training. The physiological aspects of acute fatigue, overreaching and non-functional overreaching are, however, not well understood, and well-defined negative physiological outcomes are missing. Instead, the concept relies heavily on performance outcomes for differentiating between the states. Recent advancements in the field of integrated exercise physiology have associated maladaptations in muscular oxidative function to high loads of exercise training.
Method
Eleven female and male subjects that exercised regularly but did not engage in high-intensity interval training (HIIT) were recruited to a 4-week long training intervention where the responses to different training loads were studied. Highly monitored HIIT sessions were performed on a cycle ergometer in a progressive fashion with the intent to accomplish a training overload. Throughout the intervention, physiological and psychological responses to HIIT were assessed, and the results were used to construct a diagnostic model that could indicate maladaptations during excessive training loads.
Results
We here use mitochondrial function as an early marker of excessive training loads and show the dynamic responses of several physiological and psychological measurements during different training loads. During HIIT, a loss of mitochondrial function was associated with reduced glycolytic, glucoregulatory and heart rate responses and increased ratings of perceived exertion in relation to several physiological measurements. The profile of mood states was highly affected after excessive training loads, whereas performance staled rather than decreased. By implementing five of the most affected and relevant measured parameters in a diagnostic model, we could successfully, and in all the subjects, identify the training loads that lead to maladaptations.
Conclusions
As mitochondrial parameters cannot be assessed without donating a muscle biopsy, this test can be used by coaches and exercise physiologists to monitor adaptation to exercise training for improving performance and optimizing the health benefits of exercise.
Clinical trial registry numberNCT04753021. Retrospectively registered 2021-02-12.
Collapse
|
23
|
Tiller NB, Kinninger A, Abbasi A, Casaburi R, Rossiter HB, Budoff MJ, Adami A. Physical Activity, Muscle Oxidative Capacity, and Coronary Artery Calcium in Smokers with and without COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:2811-2820. [PMID: 36353139 PMCID: PMC9639376 DOI: 10.2147/copd.s385000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Severe chronic obstructive pulmonary disease (COPD) is partly characterized by diminished skeletal muscle oxidative capacity and concurrent dyslipidemia. It is unknown whether such metabolic derangements increase the risk of cardiovascular disease. This study explored associations among physical activity (PA), muscle oxidative capacity, and coronary artery calcium (CAC) in COPDGene participants. Methods Data from current and former smokers with COPD (n = 75) and normal spirometry (n = 70) were retrospectively analyzed. Physical activity was measured for seven days using triaxial accelerometry (steps/day and vector magnitude units [VMU]) along with the aggregate of self-reported PA amount and PA difficulty using the PROactive D-PPAC instrument. Muscle oxidative capacity (k) was assessed via near-infrared spectroscopy, and CAC was assessed via chest computerized tomography. Results Relative to controls, COPD patients exhibited higher CAC (median [IQR], 31 [0–431] vs 264 [40–799] HU; p = 0.003), lower k (mean ± SD = 1.66 ± 0.48 vs 1.25 ± 0.37 min−1; p < 0.001), and lower D-PPAC total score (65.2 ± 9.9 vs 58.8 ± 13.2; p = 0.003). Multivariate analysis—adjusting for age, sex, race, diabetes, disease severity, hyperlipidemia, smoking status, and hypertension—revealed a significant negative association between CAC and D-PPAC total score (β, −0.05; p = 0.013), driven primarily by D-PPAC difficulty score (β, −0.03; p = 0.026). A 1 unit increase in D-PPAC total score was associated with a 5% lower CAC (p = 0.013). There was no association between CAC and either k, steps/day, VMU, or D-PPAC amount. Conclusion Patients with COPD and concomitantly elevated CAC exhibit greater perceptions of difficulty when performing daily activities. This may have implications for exercise adherence and risk of overall physical decline.
Collapse
Affiliation(s)
- Nicholas B Tiller
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - April Kinninger
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Asghar Abbasi
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Richard Casaburi
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Harry B Rossiter
- Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Correspondence: Harry B Rossiter, Institute of Respiratory Medicine and Exercise Physiology, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, CDCRC Building, Torrance, CA, 90502, USA, Tel +1 310-222-8200, Email
| | - Matthew J Budoff
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alessandra Adami
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
24
|
Age-Related Changes in Skeletal Muscle Oxygen Utilization. J Funct Morphol Kinesiol 2022; 7:jfmk7040087. [PMID: 36278748 PMCID: PMC9590092 DOI: 10.3390/jfmk7040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cardiovascular and skeletal muscle systems are intrinsically interconnected, sharing the goal of delivering oxygen to metabolically active tissue. Deficiencies within those systems that affect oxygen delivery to working tissues are a hallmark of advancing age. Oxygen delivery and utilization are reflected as muscle oxygen saturation (SmO2) and are assessed using near-infrared resonance spectroscopy (NIRS). SmO2 has been observed to be reduced by ~38% at rest, ~24% during submaximal exercise, and ~59% during maximal exercise with aging (>65 y). Furthermore, aging prolongs restoration of SmO2 back to baseline by >50% after intense exercise. Regulatory factors that contribute to reduced SmO2 with age include blood flow, capillarization, endothelial cells, nitric oxide, and mitochondrial function. These mechanisms are governed by reactive oxygen species (ROS) at the cellular level. However, mishandling of ROS with age ultimately leads to alterations in structure and function of the regulatory factors tasked with maintaining SmO2. The purpose of this review is to provide an update on the current state of the literature regarding age-related effects in SmO2. Furthermore, we attempt to bridge the gap between SmO2 and associated underlying mechanisms affected by aging.
Collapse
|
25
|
Pilotto AM, Adami A, Mazzolari R, Brocca L, Crea E, Zuccarelli L, Pellegrino MA, Bottinelli R, Grassi B, Rossiter HB, Porcelli S. Near-infrared spectroscopy estimation of combined skeletal muscle oxidative capacity and O 2 diffusion capacity in humans. J Physiol 2022; 600:4153-4168. [PMID: 35930524 PMCID: PMC9481735 DOI: 10.1113/jp283267] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/05/2023] Open
Abstract
The final steps of the O2 cascade during exercise depend on the product of the microvascular-to-intramyocyteP O 2 ${P}_{{{\rm{O}}}_{\rm{2}}}$ difference and muscle O2 diffusing capacity (D m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ ). Non-invasive methods to determineD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ in humans are currently unavailable. Muscle oxygen uptake (mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) recovery rate constant (k), measured by near-infrared spectroscopy (NIRS) using intermittent arterial occlusions, is associated with muscle oxidative capacity in vivo. We reasoned that k would be limited byD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ when muscle oxygenation is low (kLOW ), and hypothesized that: (i) k in well oxygenated muscle (kHIGH ) is associated with maximal O2 flux in fibre bundles; and (ii) ∆k (kHIGH - kLOW ) is associated with capillary density (CD). Vastus lateralis k was measured in 12 participants using NIRS after moderate exercise. The timing and duration of arterial occlusions were manipulated to maintain tissue saturation index within a 10% range either below (LOW) or above (HIGH) half-maximal desaturation, assessed during sustained arterial occlusion. Maximal O2 flux in phosphorylating state was 37.7 ± 10.6 pmol s-1 mg-1 (∼5.8 ml min-1 100 g-1 ). CD ranged 348 to 586 mm-2 . kHIGH was greater than kLOW (3.15 ± 0.45 vs. 1.56 ± 0.79 min-1 , P < 0.001). Maximal O2 flux was correlated with kHIGH (r = 0.80, P = 0.002) but not kLOW (r = -0.10, P = 0.755). Δk ranged -0.26 to -2.55 min-1 , and correlated with CD (r = -0.68, P = 0.015). mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ k reflects muscle oxidative capacity only in well oxygenated muscle. ∆k, the difference in k between well and poorly oxygenated muscle, was associated with CD, a mediator ofD m O 2 $D{{\rm{m}}}_{{{\rm{O}}}_2}$ . Assessment of muscle k and ∆k using NIRS provides a non-invasive window on muscle oxidative and O2 diffusing capacity. KEY POINTS: We determined post-exercise recovery kinetics of quadriceps muscle oxygen uptake (mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ ) measured by near-infrared spectroscopy (NIRS) in humans under conditions of both non-limiting (HIGH) and limiting (LOW) O2 availability, for comparison with biopsy variables. The mV ̇ O 2 ${\dot{V}}_{{{\rm{O}}}_{\rm{2}}}$ recovery rate constant in HIGH O2 availability was hypothesized to reflect muscle oxidative capacity (kHIGH ) and the difference in k between HIGH and LOW O2 availability (∆k) was hypothesized to reflect muscle O2 diffusing capacity. kHIGH was correlated with phosphorylating oxidative capacity of permeabilized muscle fibre bundles (r = 0.80). ∆k was negatively correlated with capillary density (r = -0.68) of biopsy samples. NIRS provides non-invasive means of assessing both muscle oxidative and oxygen diffusing capacity in vivo.
Collapse
Affiliation(s)
- Andrea M. Pilotto
- Department of MedicineUniversity of UdineUdineItaly
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | - Alessandra Adami
- Department of KinesiologyUniversity of Rhode IslandKingstonRIUSA
| | - Raffaele Mazzolari
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Department of Physical Education and SportUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Lorenza Brocca
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | - Emanuela Crea
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
| | | | - Maria A. Pellegrino
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Interdipartimental Centre for Biology and Sport MedicineUniversity of PaviaPaviaItaly
| | - Roberto Bottinelli
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Interdipartimental Centre for Biology and Sport MedicineUniversity of PaviaPaviaItaly
| | - Bruno Grassi
- Department of MedicineUniversity of UdineUdineItaly
| | - Harry B. Rossiter
- Division of Respiratory and Critical Care Physiology and MedicineThe Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical CenterTorranceCAUSA
| | - Simone Porcelli
- Department of Molecular MedicineInstitute of PhysiologyUniversity of PaviaPaviaItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| |
Collapse
|
26
|
Gasser B, Frei A, Niederseer D, Catuogno S, Frey WO, Flück M. Variability in the Aerobic Fitness-Related Dependence on Respiratory Processes During Muscle Work Is Associated With the ACE-I/D Genotype. Front Sports Act Living 2022; 4:814974. [PMID: 35663500 PMCID: PMC9161700 DOI: 10.3389/fspor.2022.814974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Background The efficiency of aerobic energy provision to working skeletal muscle is affected by aerobic fitness and a prominent insertion/deletion polymorphism in the angiotensin-converting enzyme (ACE-I/D) gene for the major modulator of tissue perfusion. We assessed whether variability in the fitness state is dependent on the contribution of multiple aspects of oxygen transport to the development of muscle power, and the respective control coefficients, are associated with the ACE-I/D genotype. Methods Twenty-five women and 19 men completed a ramp test of cycling exercise to exhaustion during which serial steps of oxygen transport [oxygen uptake (L O2 min−1) (VO2), minute ventilation in (L min−1) (VE), cardiac output in equivalents of L min−1 (Q), arterial oxygen saturation (SpO2), muscle oxygen saturation (SmO2), and total hemoglobin concentration (g dL−1) (THb) in Musculus vastus lateralis and Musculus gastrocnemius, respiration exchange ratio (RER)], blood lactate and glucose concentration, were continuously monitored. The contribution/reliance of power output (PO) on the parameters of oxygen transport was estimated based on the slopes in Pearson's moment correlations (|r| > 0.65, p < 0.05) vs. power values over the work phase of the ramp test, and for respective fractional changes per time (defining control coefficients) over the rest, work, and recovery phase of the ramp test. Associations of variability in slopes and control coefficients with the genotype and aerobic fitness were evaluated with ANOVA. Results All parameters characterizing aspects of the pathway of oxygen, except THb, presented strong linear relationships [(|r| > 0.70) to PO]. Metabolic efficiency was 30% higher in the aerobically fit subjects [peak oxygen uptake (mL O2 min−1) (VO2peak) ≥ 50 ml min−1 kg−1], and energy expenditure at rest was associated with the fitness state × ACE-I/D genotype, being highest in the fit non-carriers of the ACE D-allele. For VO2, VE, and RER the power-related slopes of linear relationships during work demonstrated an association with aerobic fitness, being 30–40% steeper in the aerobically fit than unfit subjects. For VE the power-related slope also demonstrated an association with the ACE-I/D genotype. For increasing deficit in muscle oxygen saturation (DSmO2) in Musculus vastus lateralis (DSmO2 Vas), the power-related slope was associated with the interaction between aerobic fitness × ACE-I/D genotype. Conclusion Local and systemic aspects of aerobic energy provision stand under influence of the fitness state and ACE-I/D genotype. This especially concerns the association with the index of the muscle's mitochondrial respiration (SmO2) which compares to the genetic influences of endurance training.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport, Universität Basel, Basel, Switzerland
- *Correspondence: Benedikt Gasser
| | - Annika Frei
- Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland
- Swiss Federal Institute of Sport, Macolin, Switzerland
- Martin Flück
| |
Collapse
|
27
|
Lai RE, Holman ME, Chen Q, Rivers J, Lesnefsky EJ, Gorgey AS. Assessment of mitochondrial respiratory capacity using minimally invasive and noninvasive techniques in persons with spinal cord injury. PLoS One 2022; 17:e0265141. [PMID: 35275956 PMCID: PMC8916668 DOI: 10.1371/journal.pone.0265141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose Muscle biopsies are the gold standard to assess mitochondrial respiration; however, biopsies are not always a feasible approach in persons with spinal cord injury (SCI). Peripheral blood mononuclear cells (PBMCs) and near-infrared spectroscopy (NIRS) may alternatively be predictive of mitochondrial respiration. The purpose of the study was to evaluate whether mitochondrial respiration of PBMCs and NIRS are predictive of respiration of permeabilized muscle fibers after SCI. Methods Twenty-two individuals with chronic complete and incomplete motor SCI between 18–65 years old were recruited to participate in the current trial. Using high-resolution respirometry, mitochondrial respiratory capacity was measured for PBMCs and muscle fibers of the vastus lateralis oxidizing complex I, II, and IV substrates. NIRS was used to assess mitochondrial capacity of the vastus lateralis with serial cuff occlusions and electrical stimulation. Results Positive relationships were observed between PBMC and permeabilized muscle fibers for mitochondrial complex IV (r = 0.86, P < 0.0001). Bland-Altman displayed agreement for complex IV (MD = 0.18, LOA = -0.86 to 1.21), between PBMCs and permeabilized muscles fibers. No significant relationships were observed between NIRS mitochondrial capacity and respiration in permeabilized muscle fibers. Conclusions This is the first study to explore and support the agreement of less invasive clinical techniques for assessing mitochondrial respiratory capacity in individuals with SCI. The findings will assist in the application of PBMCs as a viable alternative for assessing mitochondrial health in persons with SCI in future clinical studies.
Collapse
Affiliation(s)
- Raymond E. Lai
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Matthew E. Holman
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Qun Chen
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Edward J. Lesnefsky
- Division of Cardiology, Division of Internal Medicine, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, VA, United States of America
| | - Ashraf S. Gorgey
- Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
de Aguiar RA, Turnes T, Borszcz FK, Raimundo JAG, Caputo F. NIRS-derived muscle V̇O 2 kinetics after moderate running exercise in healthy males: reliability and associations with parameters of aerobic fitness. Exp Physiol 2022; 107:476-488. [PMID: 35244956 DOI: 10.1113/ep090105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? In vivo muscle oxidative capacity has been evaluated through the mV̇O2 kinetics following single joint exercise using NIRS system. Here, we demonstrated its utility following running exercise. What is the main finding and its importance? We demonstrated that time constant of mV̇O2 kinetics in gastrocnemius following moderate running exercise presents good to excellent reliability. In addition, it was well correlated with parameters of aerobic fitness, such as maximal speed of the incremental test, ventilatory threshold and pulmonary V̇O2 on-kinetics. Therefore, NIRS-derived muscle oxidative capacity together with other physiological measurements may allow a concomitant local and systemic analysis of the components of the oxidative system. ABSTRACT NIRS-derived muscle oxygen uptake (mV̇O2 ) kinetics following single-joint exercise has been used to assess muscle oxidative capacity. However, little evidence is available on the use of this technique following whole-body exercises. Therefore, this study aimed to assess the reliability of the NIRS-derived mV̇O2 kinetics following running exercise and to investigate the relationship between the time constant of mV̇O2 off-kinetics (τmV̇O2 ) with parameters of aerobic fitness. After an incremental test to determine V̇O2 max, first (VT1 ) and second (VT2 ) ventilatory thresholds, and maximal speed (Smax), thirteen males (age = 21 ± 4 years; V̇O2 max = 55.9 ± 3.4 mlꞏkg-1ꞏmin-1) performed three sets (two in the first day and one on a subsequent day) of two repetitions of 6-min running exercise at 90%VT1 . The pulmonary V̇O2 on-kinetics (pV̇O2 ) and mV̇O2 off-kinetics in gastrocnemius were assessed. τmV̇O2 presented no systematic change and satisfactory reliability (SEM and ICC of 4.21 s and 0.49 for between transitions; and 2.65 s and 0.74 averaging τmV̇O2 within each time-set), with no difference (p > 0.3) between the within- (SEM = 2.92 s) and between-day variability (SEM = 2.78 s and 2.19 s between first vs. third set, and second vs. third set, respectively). τmV̇O2 (28.5 ± 4.17 s) correlated significantly (p < 0.05) with Smax (r = -0.66), VT1 (r = -0.64) and time constant of the pV̇O2 on-kinetics (r = 0.69). These findings indicate that NIRS-derived mV̇O2 kinetics in the gastrocnemius following moderate running exercise is a useful and reliable method to assess muscle oxidative capacity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rafael A de Aguiar
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Tiago Turnes
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil.,Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fernando K Borszcz
- Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - João A G Raimundo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Fabrizio Caputo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| |
Collapse
|
29
|
Gasser B, Franchi MV, Ruoss S, Frei A, Popp WL, Niederseer D, Catuogno S, Frey WO, Flück M. Accelerated Muscle Deoxygenation in Aerobically Fit Subjects During Exhaustive Exercise Is Associated With the ACE Insertion Allele. Front Sports Act Living 2022; 4:814975. [PMID: 35295536 PMCID: PMC8918772 DOI: 10.3389/fspor.2022.814975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Introduction The insertion/deletion (I/D) polymorphism in the gene for the major regulator of vascular tone, angiotensin-converting enzyme-insertion/deletion (ACE-I/D) affects muscle capillarization and mitochondrial biogenesis with endurance training. We tested whether changes of leg muscle oxygen saturation (SmO2) during exhaustive exercise and recovery would depend on the aerobic fitness status and the ACE I/D polymorphism. Methods In total, 34 healthy subjects (age: 31.8 ± 10.2 years, 17 male, 17 female) performed an incremental exercise test to exhaustion. SmO2 in musculus vastus lateralis (VAS) and musculus gastrocnemius (GAS) was recorded with near-IR spectroscopy. Effects of the aerobic fitness status (based on a VO2peak cutoff value of 50 ml O2 min−1 kg−1) and the ACE-I/D genotype (detected by PCR) on kinetic parameters of muscle deoxygenation and reoxygenation were assessed with univariate ANOVA. Results Deoxygenation with exercise was comparable in VAS and GAS (p = 0.321). In both leg muscles, deoxygenation and reoxygenation were 1.5-fold higher in the fit than the unfit volunteers. Differences in muscle deoxygenation, but not VO2peak, were associated with gender-independent (p > 0.58) interaction effects between aerobic fitness × ACE-I/D genotype; being reflected in a 2-fold accelerated deoxygenation of VAS for aerobically fit than unfit ACE-II genotypes and a 2-fold higher deoxygenation of GAS for fit ACE-II genotypes than fit D-allele carriers. Discussion Aerobically fit subjects demonstrated increased rates of leg muscle deoxygenation and reoxygenation. Together with the higher muscle deoxygenation in aerobically fit ACE-II genotypes, this suggests that an ACE-I/D genotype-based personalization of training protocols might serve to best improve aerobic performance.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
- *Correspondence: Benedikt Gasser
| | - Martino V. Franchi
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
| | - Severin Ruoss
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Annika Frei
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
| | - Werner L. Popp
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Martin Flück
| |
Collapse
|
30
|
Azevedo RDA, Forot J, Millet GY, Murias JM. Comparing muscle VO 2 from near-infrared spectroscopy desaturation rate to pulmonary VO 2 during cycling below, at and above the maximal lactate steady state. J Appl Physiol (1985) 2022; 132:641-652. [PMID: 35112926 DOI: 10.1152/japplphysiol.00754.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle oxygen uptake (V̇O2m) evaluated from changes in the near-infrared spectroscopy oxygen desaturation slope during a 5-s arterial blood flow occlusion has been proposed as an estimation of the actual V̇O2m. However, its correspondence with pulmonary oxygen uptake (V̇O2p) during exercise remains unknown. PURPOSE to investigate the V̇O2m and V̇O2p relationship in females and males in response to prolonged constant-load cycling exercise at different intensities. METHODS Eighteen participants (8 females) visited the laboratory on six occasions: 1) ramp incremental test; 2-3) 30-min constant power output (constant-PO) exercise bout to determine the maximal lactate steady state (MLSS); 4-6) constant-PO exercise bouts to task failure at (i) 15% below MLSS (MLSS-15%); (ii) MLSS; (iii) 15% above MLSS (MLSS+15%). V̇O2m was estimated at baseline, at min 5, 10, 20, 30, and at task failure. V̇O2p was continuously recorded during the constant-PO bouts. RESULTS V̇O2pand V̇O2m significantly increased from min 5 to min 30 in MLSS condition (all p < 0.05) and from min 5 to min 10 in MLSS+15% condition (all p < 0.05). V̇O2pand V̇O2m were correlated (r2 adj range of 0.70-0.98, all p < 0.001) amongst exercise intensities in both females and males. Additionally, both variables were also correlated when expressed as percent (r2 adj range of 0.52-0.77, all p < 0.001). CONCLUSION V̇O2p and V̇O2m responses were similar when exercising below, at, and above the MLSS independently of sex. Most importantly, V̇O2p andV̇O2m were correlated regardless the exercise intensity and sex of the participants.
Collapse
Affiliation(s)
| | - Jonas Forot
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.,Université Grenoble Alpes, Grenoble, France
| | - Guillaume Y Millet
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.,Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France.,Institut Universitaire de France (IUF), Paris, France
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
31
|
Ryan TE, Kim K, Scali ST, Berceli SA, Thome T, Salyers ZR, O'Malley KA, Green TD, Karnekar R, Fisher‐Wellman KH, Yamaguchi DJ, McClung JM. Interventional- and amputation-stage muscle proteomes in the chronically threatened ischemic limb. Clin Transl Med 2022; 12:e658. [PMID: 35073463 PMCID: PMC8785983 DOI: 10.1002/ctm2.658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite improved surgical approaches for chronic limb-threatening ischemia (CLTI), amputation rates remain high and contributing tissue-level factors remain unknown. The purpose of this study was twofold: (1) to identify differences between the healthy adult and CLTI limb muscle proteome, and (2) to identify differences in the limb muscle proteome of CLTI patients prior to surgical intervention or at the time of amputation. METHODS AND RESULTS Gastrocnemius muscle was collected from non-ischemic controls (n = 19) and either pre-interventional surgery (n = 10) or at amputation outcome (n = 29) CLTI patients. All samples were subjected to isobaric tandem-mass-tag-assisted proteomics. The mitochondrion was the primary classification of downregulated proteins (> 70%) in CLTI limb muscles and paralleled robust functional mitochondrial impairment. Upregulated proteins (> 38%) were largely from the extracellular matrix. Across the two independent sites, 39 proteins were downregulated and 12 upregulated uniformly. Pre-interventional CLTI muscles revealed a robust upregulation of mitochondrial proteins but modest functional impairments in fatty acid oxidation as compared with controls. Comparison of pre-intervention and amputation CLTI limb muscles revealed mitochondrial proteome and functional deficits similar to that between amputation and non-ischemic controls. Interestingly, these observed changes occurred despite 62% of the amputation CLTI patients having undergone a prior surgical intervention. CONCLUSIONS The CLTI proteome supports failing mitochondria as a phenotype that is unique to amputation outcomes. The signature of pre-intervention CLTI muscle reveals stable mitochondrial protein abundance that is insufficient to uniformly prevent functional impairments. Taken together, these findings support the need for future longitudinal investigations aimed to determine whether mitochondrial failure is causally involved in amputation outcomes from CLTI.
Collapse
Affiliation(s)
- Terence E. Ryan
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Center for Exercise ScienceUniversity of FloridaGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Kyoungrae Kim
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Trace Thome
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Zachary R. Salyers
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Kerri A. O'Malley
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Thomas D. Green
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Reema Karnekar
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Kelsey H. Fisher‐Wellman
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dean J. Yamaguchi
- Department of Cardiovascular ScienceEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Division of SurgeryEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Joseph M. McClung
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Department of Cardiovascular ScienceEast Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
32
|
Salyers ZR, Mariani V, Balestrieri N, Kumar RA, Vugman NA, Thome T, Villani KR, Berceli SA, Scali ST, Vasilakos G, Ryan TE. S100A8 and S100A9 are elevated in chronically threatened ischemic limb muscle and induce ischemic mitochondrial pathology in mice. JVS Vasc Sci 2022; 3:232-245. [PMID: 35647565 PMCID: PMC9133641 DOI: 10.1016/j.jvssci.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Objective The objective of the present study was to determine whether elevated levels of S100A8 and S100A9 (S100A8/A9) alarmins contribute to ischemic limb pathology. Methods Gastrocnemius muscle was collected from control patients without peripheral arterial disease (PAD; n = 14) and patients with chronic limb threatening limb ischemia (CLTI; n = 14). Mitochondrial function was assessed in permeabilized muscle fibers, and RNA and protein analyses were used to quantify the S100A8/A9 levels. Additionally, a mouse model of hindlimb ischemia with and without exogenous delivery of S100A8/A9 was used. Results Compared with the non-PAD control muscles, CLTI muscles displayed significant increases in the abundance of S100A8 and S100A9 at both mRNA and protein levels (P < .01). The CLTI muscles also displayed significant impairment in mitochondrial oxidative phosphorylation and increased mitochondrial hydrogen peroxide production compared with the non-PAD controls. The S100A8/A9 levels correlated significantly with the degree of muscle mitochondrial dysfunction (P < .05 for all). C57BL6J mice treated with recombinant S100A8/A9 displayed impaired perfusion recovery and muscle mitochondrial impairment compared with the placebo-treated mice after hindlimb ischemia surgery. These mitochondrial deficits observed after S100A8/A9 treatment were confirmed in the muscle cell culture system under normoxic conditions. Conclusions The S100A8/A9 levels were increased in CLTI limb muscle specimens compared with the non-PAD control muscle specimens, and the level of accumulation was associated with muscle mitochondrial impairment. Elevated S100A8/A9 levels in mice subjected to hindlimb ischemia impaired perfusion recovery and mitochondrial function. Together, these findings suggest that the inflammatory mediators S100A8/A9 might be directly involved in ischemic limb pathology. Despite improvements in the surgical management of chronic limb threatening limb ischemia (CLTI), the rates of major adverse limb events have remained high. Skeletal muscle has emerged as a strong predictor of outcomes in peripheral arterial disease (PAD)/CLTI; however, a complete understanding of muscle pathology in CLTI is lacking. This study identified elevated S100A8 and S100A9 alarmin proteins as a characteristic of CLTI muscle specimens and that the S100A8/A9 levels are associated with the degree of mitochondrial impairment in patient limb muscle specimens. Using a mouse model of PAD, treatment with S100A8/A9 exacerbated ischemic limb pathology, including impaired limb perfusion recovery and muscle mitochondrial impairment. Taken together, these findings connect the inflammatory milieu in the CLTI limb to exacerbated limb muscle outcomes via mitochondrial alterations.
Collapse
Affiliation(s)
- Zachary R. Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Vinicius Mariani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Nicholas Balestrieri
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Ravi A. Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Nicholas A. Vugman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Scott A. Berceli
- Department of Surgery, University of Florida, Gainesville, FL
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Salvatore T. Scali
- Department of Surgery, University of Florida, Gainesville, FL
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Georgios Vasilakos
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
- Center for Exercise Science, University of Florida, Gainesville, FL
- Myology Institute, University of Florida, Gainesville, FL
- Correspondence: Terence E. Ryan, PhD, Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL 32611
| |
Collapse
|
33
|
Koirala B, Concas A, Sun Y, Gladden LB, Lai N. Blood volume versus deoxygenated NIRS signal: computational analysis of the effects muscle O 2 delivery and blood volume on the NIRS signals. J Appl Physiol (1985) 2021; 131:1418-1431. [PMID: 34528461 PMCID: PMC8906537 DOI: 10.1152/japplphysiol.00105.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) signals quantify the oxygenated (ΔHbMbO2) and deoxygenated (ΔHHbMb) heme group concentrations. ΔHHbMb has been preferred to ΔHbMbO2 in evaluating skeletal muscle oxygen extraction because it is assumed to be less sensitive to blood volume (BV) changes, but uncertainties exist on this assumption. To analyze this assumption, a computational model of oxygen transport and metabolism is used to quantify the effect of O2 delivery and BV changes on the NIRS signals from a canine model of muscle oxidative metabolism (Sun Y, Ferguson BS, Rogatzki MJ, McDonald JR, Gladden LB. Med Sci Sports Exerc 48: 2013-2020, 2016). The computational analysis accounts for microvascular (ΔHbO2, ΔHHb) and extravascular (ΔMbO2, ΔHMb) oxygenated and deoxygenated forms. Simulations predicted muscle oxygen uptake and NIRS signal changes well for blood flows ranging from resting to contracting muscle. Additional NIRS signal simulations were obtained in the absence or presence of BV changes corresponding to a heme groups concentration changes (ΔHbMb = 0-48 µM). Under normal delivery (Q = 1.0 L·kg-1·min-1) in contracting muscle, capillary oxygen saturation (So2) was 62% with capillary ΔHbO2 and ΔHHb of ± 41 µΜ for ΔHbMb = 0. An increase of BV (ΔHbMb = 24 µΜ) caused a ΔHbO2 decrease (16µΜ) almost twice as much as the increase observed for ΔHHb (9 µΜ). When So2 increased to more than 80%, only ΔHbO2 was significantly affected by BV changes. The analysis indicates that microvascular So2 is a key factor in determining the sensitivity of ΔHbMbO2 and deoxygenated ΔHHbMb to BV changes. Contrary to a common assumption, the ΔHHbMb is affected by BV changes in normal contracting muscle and even more in the presence of impaired O2 delivery.NEW & NOTEWORTHY Deoxygenated is preferred to the oxygenated near-infrared spectroscopy signal in evaluating skeletal muscle oxygen extraction because it is assumed to be insensitive to blood volume changes. The quantitative analysis proposed in this study indicates that even in absence of skin blood flow effects, both NIRS signals in presence of either normal or reduced oxygen delivery are affected by blood volume changes. These changes should be considered to properly quantify muscle oxygen extraction by NIRS methods.
Collapse
Affiliation(s)
- B. Koirala
- Department of Electrical and Computer Engineering,
Old Dominion University, Norfolk, Virginia
- Biomedical Engineering Institute, Old
Dominion University, Norfolk, Virginia
| | - A. Concas
- Center for Advanced Studies, Research and
Development in Sardinia (CRS4), Cagliari,
Italy
| | - Yi Sun
- Key Laboratory of Adolescent Health Assessment and
Exercise Intervention of Ministry of Education, East China Normal
University, Shanghai, China
- School of Physical Education & Health Care,
East China Normal University, Shanghai,
China
| | - L. B. Gladden
- School of Kinesiology, Auburn
University, Auburn, Alabama
| | - N. Lai
- Department of Mechanical, Chemical and Materials
Engineering, University of Cagliari, Cagliari,
Italy
- Department of Electrical and Computer Engineering,
Old Dominion University, Norfolk, Virginia
- Biomedical Engineering Institute, Old
Dominion University, Norfolk, Virginia
| |
Collapse
|
34
|
Szucs B, Petrekanits M, Fekete M, Varga JT. The use of near-infrared spectroscopy for the evaluation of a 4-week rehabilitation program in patients with COPD. Physiol Int 2021; 108:427-439. [PMID: 34662293 DOI: 10.1556/2060.2021.00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/28/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) technology can evaluate muscle metabolism and oxygenation. NIRS-based oximeters can measure skeletal muscle oxygen delivery and utilization during static and dynamic work non-invasively. Our goal was to assess the value and usability of NIRS technology in chronic obstructive pulmonary disease (COPD) rehabilitation program. METHODS Forty patients with COPD participated in a 4-week inpatient rehabilitation program that included breathing exercises and personalized cycle/treadmill training adjusted to the functional capacity, physical activity and comorbidities of the patients. A NIRS muscle oxygen monitor was used to measure tissue oxygenation and hemoglobin levels. Total hemoglobin index, average muscle oxygenation, minimal and maximal muscle oxygenation were recorded before and after the rehabilitation program. RESULTS Rehabilitation resulted improvement in 6 min walking distance (6MWD:335.3 ± 110. vs. 398.3 ± 126.2 m; P < 0.01), maximal inspiratory pressure (MIP: 57.7 ± 22.7 vs. 63.6 ± 18.0 cmH2O; P < 0.01), chest wall expansion (CWE: 2.84 ± 1.26 vs, 4.00 ± 1.76 cm; P < 0.01), breath hold time (BHT: 25.8 ± 10.6 vs. 29.2 ± 11.6 s; P < 0.01) and grip strength (GS: 24.9 ± 11.9 vs. 27.0 ± 11.4 kg; P < 0.01). Quality of life improvement was monitored by COPD Assessment Test (CAT: 17.00 ± 8.49 vs. 11.89 ± 7.3, P < 0.05). Total hemoglobin index (tHb: 12.8 ± 1.3% vs. 12.8 ± 1.4), average muscle oxygenation (SmO2: 67.5 ± 14.4% vs. 65.2 ± 20.4%) showed a tendency for improvement. Maximal muscle oxygenation decreased (SmO2 max: 98.0 ± 20.5% vs. 90.1 ± 14.3%; P < 0.01). Minimal muscle oxygenation increased (SmO2 min: 42.6 ± 12.6% vs. 54.8 ± 14.3%; P < 0.01). CONCLUSIONS NIRS results showed that muscle oxygenation and microcirculation can be described as a high-risk factor in COPD patients. The 4-week rehabilitation improves functional parameters, quality of life and tissue oxygenation levels in COPD patients.
Collapse
Affiliation(s)
- Botond Szucs
- 1 PharmaFlight Research and Training Center, Debrecen, Hungary
| | - Mate Petrekanits
- 2 Institute of Exercise Physiology and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Monika Fekete
- 3 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Janos T Varga
- 4 Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
35
|
Dayanidhi S. Skeletal Muscle Mitochondrial Physiology in Children With Cerebral Palsy: Considerations for Healthy Aging. Front Neurol 2021; 12:735009. [PMID: 34589051 PMCID: PMC8473886 DOI: 10.3389/fneur.2021.735009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle contractile proteins require a constant supply of energy to produce force needed for movement. Energy (ATP) is primarily produced by mitochondrial organelles, located within and around muscle fibers, by oxidative phosphorylation that couples electron flux through the electron transport chain to create a proton gradient across the inner mitochondrial membrane that is in turn used by the ATP synthase. Mitochondrial networks increase in size by biogenesis to increase mitochondrial abundance and activity in response to endurance exercise, while their function and content reduce with constant inactivity, such as during muscle atrophy. During healthy aging, there is an overall decline in mitochondrial activity and abundance, increase in mitochondrial DNA mutations, potential increase in oxidative stress, and reduction in overall muscular capacity. Many of these alterations can be attenuated by consistent endurance exercise. Children with cerebral palsy (CP) have significantly increased energetics of movement, reduced endurance capacity, and increased perceived effort. Recent work in leg muscles in ambulatory children with CP show a marked reduction in mitochondrial function. Arm muscles show that mitochondrial protein content and mitochondria DNA copy number are lower, suggesting a reduction in mitochondrial abundance, along with a reduction in markers for mitochondrial biogenesis. Gene expression networks are reduced for glycolytic and mitochondrial pathways and share similarities with gene networks with aging and chronic inactivity. Given the importance of mitochondria for energy production and changes with aging, future work needs to assess changes in mitochondria across the lifespan in people with CP and the effect of exercise on promoting metabolic health.
Collapse
Affiliation(s)
- Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation and Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
36
|
Zuccarelli L, Baldassarre G, Magnesa B, Degano C, Comelli M, Gasparini M, Manferdelli G, Marzorati M, Mavelli I, Pilotto A, Porcelli S, Rasica L, Šimunič B, Pišot R, Narici M, Grassi B. Peripheral impairments of oxidative metabolism after a 10-day bed rest are upstream of mitochondrial respiration. J Physiol 2021; 599:4813-4829. [PMID: 34505290 PMCID: PMC9293208 DOI: 10.1113/jp281800] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract In order to identify peripheral biomarkers of impaired oxidative metabolism during exercise following a 10‐day bed rest, 10 males performed an incremental exercise (to determine peak pulmonary V̇O2 (V̇O2p)) and moderate‐intensity exercises, before (PRE) and after (POST) bed rest. Blood flow response was evaluated in the common femoral artery by Eco‐Doppler during 1 min of passive leg movements (PLM). The intramuscular matching between O2 delivery and O2 utilization was evaluated by near‐infrared spectroscopy (NIRS). Mitochondrial respiration was evaluated ex vivo by high‐resolution respirometry in isolated muscle fibres, and in vivo by NIRS by the evaluation of skeletal muscle V̇O2 (V̇O2m) recovery kinetics. Resting V̇O2m was estimated by NIRS. Peak V̇O2p was lower in POST vs. PRE. The area under the blood flow vs. time curve during PLM was smaller (P = 0.03) in POST (274 ± 233 mL) vs. PRE (427 ± 291). An increased (P = 0.03) overshoot of muscle deoxygenation during a metabolic transition was identified in POST. Skeletal muscle citrate synthase activity was not different (P = 0.11) in POST (131 ± 16 nmol min–1 mg–1) vs. PRE (138 ± 19). Maximal ADP‐stimulated mitochondrial respiration (66 ± 18 pmol s–1 mg–1 (POST) vs. 72 ± 14 (PRE), P = 0.41) was not affected by bed rest. Apparent Km for ADP sensitivity of mitochondrial respiration was reduced in POST vs. PRE (P = 0.04). The V̇O2m recovery time constant was not different (P = 0.79) in POST (22 ± 6 s) vs. PRE (22 ± 6). Resting V̇O2m was reduced by 25% in POST vs. PRE (P = 0.006). Microvascular‐endothelial function was impaired following a 10‐day bed rest, whereas mitochondrial mass and function (both in vivo and ex vivo) were unaffected or slightly enhanced. Key points Ten days of horizontal bed rest impaired in vivo oxidative function during exercise. Microvascular impairments were identified by different methods. Mitochondrial mass and mitochondrial function (evaluated both in vivo and ex vivo) were unchanged or even improved (i.e. enhanced mitochondrial sensitivity to submaximal [ADP]). Resting muscle oxygen uptake was significantly lower following bed rest, suggesting that muscle catabolic processes induced by bed rest/inactivity are less energy‐consuming than anabolic ones.
Collapse
Affiliation(s)
| | | | | | | | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Giorgio Manferdelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Mauro Marzorati
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Andrea Pilotto
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Simone Porcelli
- Institute of Biomedical Technologies, National Research Council, Milan, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Letizia Rasica
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Boštjan Šimunič
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Rado Pišot
- Institute of Kinesiology Research, Science and Research Centre, Koper, Slovenia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
37
|
Acin-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life (Basel) 2021; 11:949. [PMID: 34575097 PMCID: PMC8467772 DOI: 10.3390/life11090949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial bioenergetic function is a central component of cellular metabolism in health and disease. Mitochondrial oxidative phosphorylation is critical for maintaining energetic homeostasis, and impairment of mitochondrial function underlies the development and progression of metabolic diseases and aging. However, measurement of mitochondrial bioenergetic function can be challenging in human samples due to limitations in the size of the collected sample. Furthermore, the collection of samples from human cohorts is often spread over multiple days and locations, which makes immediate sample processing and bioenergetics analysis challenging. Therefore, sample selection and choice of tests should be carefully considered. Basic research, clinical trials, and mitochondrial disease diagnosis rely primarily on skeletal muscle samples. However, obtaining skeletal muscle biopsies requires an appropriate clinical setting and specialized personnel, making skeletal muscle a less suitable tissue for certain research studies. Circulating white blood cells and platelets offer a promising primary tissue alternative to biopsies for the study of mitochondrial bioenergetics. Recent advances in frozen respirometry protocols combined with the utilization of minimally invasive and non-invasive samples may provide promise for future mitochondrial research studies in humans. Here we review the human samples commonly used for the measurement of mitochondrial bioenergetics with a focus on the advantages and limitations of each sample.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Cristiane Benincá
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Paredes-Ruiz MJ, Jódar-Reverte M, Ferrer-López V, González-Moro IM. MUSCLE OXYGENATION OF THE QUADRICEPS AND GASTROCNEMIUS DURING MAXIMAL AEROBIC EFFORT. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127022020_0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: Near infrared spectroscopy (NIRS) is a non-invasive technique that is used in the assessment of tissue oxygenation and the monitoring of physical activity. Objective: To determine the influence of sexual, anthropometric and ergospirometric factors on muscle oxygenation of the quadriceps and gastrocnemius, obtained by NIRS during a stress test. Methods: Twenty healthy subjects participated in this study (10 women). Two Humon Hex® devices were placed on the dominant side of the quadriceps and gastrocnemius muscles to measure muscle oxygen saturation (SmO2). The stress test was performed on a treadmill with electrocardiographic control and measurement of oxygen consumption. SmO2 was obtained at rest and after maximum effort during the stress test. In addition, the height, weight, skinfold and waist contour were measured. Bioimpedance was used to obtain the percentages of fat mass and muscle mass, which were used to calculate the relative fat mass (RFM). Results: The SmO2 of both muscles at rest is higher in males than in females. At maximum effort, the SmO2 of the quadriceps is similar in both groups. The SmO2 of both muscles is positively related to height, body mass, percentage of mass muscle and waist contour, and negatively with percentage of mass fat, RFM and skinfold thickness. The negative correlation between fat percentage and oxygen saturation is more evident in females. It was observed that the variables that quantify maximum effort are not related to the SmO2 values, except for the correlation between HR max and SmO2 of the gastrocnemius muscle in males. Conclusion: The SmO2 of recreational athletes is influenced by the location of the device and the fat mass of the subjects. The biggest differences between the sexes are in the gastrocnemius muscle. Level of Evidence II; Diagnostic Studies - Investigating a Diagnostic Test .
Collapse
|
39
|
de Oliveira GV, Volino-Souza M, Leitão R, Pinheiro V, Conte-Júnior CA, Alvares TS. Suitability of the muscle O 2 resaturation parameters most used for assessing reactive hyperemia: a near-infrared spectroscopy study. J Vasc Bras 2021; 20:e20200143. [PMID: 34104131 PMCID: PMC8153062 DOI: 10.1590/1677-5449.200143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background There is a spectrum of possibilities for analyzing muscle O2 resaturation parameters for measurement of reactive hyperemia in microvasculature. However, there is no consensus with respect to the responsiveness of these O2 resaturation parameters for assessing reactive hyperemia. Objectives This study investigates the responsiveness of the most utilized muscle O2 resaturation parameters to assess reactive hyperemia in the microvasculature of a clinical group known to exhibit impairments of tissue O2 saturation (StO2). Methods Twenty-three healthy young adults, twenty-nine healthy older adults, and thirty-five older adults at risk of cardiovascular disease (CVD) were recruited. Near-infrared spectroscopy (NIRS) was used to assess StO2 after a 5-min arterial occlusion challenge and the following parameters were analyzed: StO2slope_10s, StO2slope_30s, and StO2slope_until_baseline (upslope of StO2 over 10s and 30s and until StO2 reaches the baseline value); time to StO2baseline and time to StO2max (time taken for StO2 to reach baseline and peak values, respectively); ∆StO2reperfusion (the difference between minimum and maximum StO2 values); total area under the curve (StO2AUCt); and AUC above the baseline value (StO2AUC_above_base). Results Only StO2slope_10s was significantly slower in older adults at risk for CVD compared to healthy young individuals (p < 0.001) and to healthy older adults (p < 0.001). Conversely, time to StO2max was significantly longer in healthy young individuals than in older adult at CVD risk. Conclusions Our findings suggest that StO2slope_10s may be a measure of reactive hyperemia, which provides clinical insight into microvascular function assessment.
Collapse
Affiliation(s)
| | | | - Renata Leitão
- Universidade Federal do Rio de Janeiro - UFRJ, Macaé, RJ, Brasil
| | - Vivian Pinheiro
- Universidade Federal do Rio de Janeiro - UFRJ, Macaé, RJ, Brasil
| | | | | |
Collapse
|
40
|
Lagerwaard B, Janssen JJE, Cuijpers I, Keijer J, de Boer VCJ, Nieuwenhuizen AG. Muscle mitochondrial capacity in high- and low-fitness females using near-infrared spectroscopy. Physiol Rep 2021; 9:e14838. [PMID: 33991439 PMCID: PMC8123566 DOI: 10.14814/phy2.14838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
The recovery of muscle oxygen consumption (m V ˙ O2 ) after exercise measured using near-infrared spectroscopy (NIRS) provides a measure of skeletal muscle mitochondrial capacity. Nevertheless, due to sex differences in factors that can influence scattering and thus penetration depth of the NIRS signal in the tissue, e.g., subcutaneous adipose tissue thickness and intramuscular myoglobin and hemoglobin, it is unknown whether results in males can be extrapolated to a female population. Therefore, the aim of this study was to measure skeletal muscle mitochondrial capacity in females at different levels of aerobic fitness to test whether NIRS can measure relevant differences in mitochondrial capacity. Mitochondrial capacity was analyzed in the gastrocnemius muscle and the wrist flexors of 32 young female adults, equally divided in relatively high ( V ˙ O2 peak ≥ 47 ml/kg/min) and relatively low aerobic fitness group ( V ˙ O2 peak ≤ 37 ml/kg/min). m V ˙ O2 recovery was significantly faster in the high- compared to the low-fitness group in the gastrocnemius, but not in the wrist flexors (p = 0.009 and p = 0.0528, respectively). Furthermore, V ˙ O2 peak was significantly correlated to m V ˙ O2 recovery in both gastrocnemius (R2 = 0.27, p = 0.0051) and wrist flexors (R2 = 0.13, p = 0.0393). In conclusion, NIRS measurements can be used to assess differences in mitochondrial capacity within a female population and is correlated to V ˙ O2 peak. This further supports NIRS assessment of muscle mitochondrial capacity providing additional evidence for NIRS as a promising approach to monitor mitochondrial capacity, also in an exclusively female population.
Collapse
Affiliation(s)
- Bart Lagerwaard
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - Joëlle J E Janssen
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Iris Cuijpers
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
41
|
Hanna R, Gosalia J, Demalis A, Hobson Z, McCully KK, Irving BA, Mookerjee S, Vairo GL, Proctor DN. Bilateral NIRS measurements of muscle mitochondrial capacity: Feasibility and repeatability. Physiol Rep 2021; 9:e14826. [PMID: 33945230 PMCID: PMC8095363 DOI: 10.14814/phy2.14826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
Background Non‐invasive determination of mitochondrial capacity via near infrared spectroscopy (NIRS) typically involves voluntary exercise of a single muscle group followed by as many as 26 brief ischemic cuff occlusions to determine a single recovery rate constant (k). Purpose To determine the within‐ and between‐visit repeatability of a shortened bilateral NIRS protocol, and to establish the feasibility of hamstring k measurements. Methods Sixteen young (eight women, eight men; 22 ± 3 years) active adults underwent a bilateral electrical stimulation protocol in which multiple (n = 4) measurements of k for the vastus lateralis (VL) and medial hamstring (MH) muscles were determined on two visits. Repeatability (CV% and intraclass correlations, ICC) and equivalency across visits were assessed for both muscles. Results Mean k values in the VL were consistent with published values and within‐visit ICCs were moderately high for both muscles in both sexes. In men, average k values on visit 2 were within 1% (VL muscle) and 5% (MH muscle) of the values on visit 1 (all p > 0.78). In women, average k values were 10%–15% lower on visit 2 (p = 0.01 and p = 0.15 for MH and VL) with the largest between‐visit differences in a subset of participants with the most days between visits. Conclusions This bilateral NIRS protocol is time efficient and provides valid estimates of k in both sexes and muscle groups with acceptable within‐visit repeatability. Lower than expected between‐visit repeatability in some participants reinforces the need for further investigation of this newly developed protocol to identify and control for experimental and behavioral sources of variation.
Collapse
|
42
|
Smith CD, Lin CT, McMillin SL, Weyrauch LA, Schmidt CA, Smith CA, Kurland IJ, Witczak CA, Neufer PD. Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance. Am J Physiol Endocrinol Metab 2021; 320:E938-E950. [PMID: 33813880 PMCID: PMC8238127 DOI: 10.1152/ajpendo.00010.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Elevated mitochondrial hydrogen peroxide (H2O2) emission and an oxidative shift in cytosolic redox environment have been linked to high-fat-diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle β-oxidation flux were studied. In mice overexpressing peroxisome proliferator-activated receptor-α in muscle (MCK-PPARα), lipid-supported mitochondrial respiration, membrane potential (ΔΨm), and H2O2 production rate (JH2O2) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1-deficient, fatty-liver dystrophic mice, another model characterized by increased β-oxidation flux and glucose intolerance. Crossing MCAT (mitochondria-targeted catalase) with MCK-PPARα mice normalized JH2O2 production, redox environment, and glucose tolerance, but surprisingly, both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high-fat diet, MCK-PPARα mice were characterized by much lower whole body, fat, and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high-fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in an attempt to restore bioenergetic homeostasis.NEW & NOTEWORTHY Prior work has suggested that mitochondrial dysfunction is an underlying cause of insulin resistance in muscle because it limits fatty acid oxidation and therefore leads to the accumulation of cytotoxic lipid intermediates. The implication has been that therapeutic strategies to accelerate β-oxidation will be protective. The current study provides evidence that genetically increasing flux through β-oxidation in muscle imposes reductive stress that is not beneficial but rather detrimental to metabolic regulation.
Collapse
Affiliation(s)
- Cody D Smith
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Shawna L McMillin
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Luke A Weyrauch
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Cheryl A Smith
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Carol A Witczak
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
43
|
Wakasugi T, Morishita S, Kaida K, Ikegame K, Uchiyama Y, Domen K. Muscle oxygen extraction and lung function are related to exercise tolerance after allogeneic hematopoietic stem cell transplantation. Support Care Cancer 2021; 29:6039-6048. [PMID: 33786668 DOI: 10.1007/s00520-021-06178-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to investigate the relationship between exercise intolerance, muscle oxidative metabolism, and cardiopulmonary function following allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a sterile isolation room setting. METHODS This was a prospective observational cohort study conducted in a single center. Fourteen patients with hematopoietic malignancies who had undergone allo-HSCT were included in this study from June 2015 to April 2020. Patients received donor HSCT after high dose-chemotherapy and total-body irradiation. Physical activity was limited during treatments. Outcome measures included body anthropometric measurements, exercise tolerance tests using the ramp protocol, pulmonary function tests, and near-infrared spectroscopy (NIRS) measurements. Data of pre- and posttransplant measurements were compared using the paired t test or nonparametric Wilcoxon U test. Associations were assessed using the Pearson or nonparametric Spearman correlations. RESULTS NIRS showed reduced muscle consumption and extraction of oxygen in the posttransplant period compared to the pretransplant period (ΔStO2 min pre: -18.6% vs. post: -13.0%, P = 0.04; ΔHHb max pre: 4.21μmol/l vs. post: 3.31μmol/l: P = 0.048). Exercise tolerance had reduced following allo-HSCT (Peak workload pre: 70.3 W vs. post: 58.0 W: P = 0.014). Furthermore, exercise intolerance was associated with pulmonary function, muscle oxygen consumption, and muscle oxygen extraction (all P <0.05). CONCLUSION This analysis revealed that exercise intolerance following allo-HSCT was associated with pulmonary dysfunction and muscle oxidative dysfunction. These findings could help identify the physical function associated with impaired tissue oxygen transport leading to exercise intolerance following allo-HSCT.
Collapse
Affiliation(s)
- Tatsushi Wakasugi
- Department of Rehabilitation, Hyogo College of Medicine College Hospital, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shinichiro Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuki Uchiyama
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
44
|
Terwilliger ZS, Ryan TE, Goldberg EJ, Schmidt CA, Yamaguchi DJ, Karnekar R, Brophy P, Green TD, Zeczycki TN, Mac Gabhann F, Annex BH, McClung JM. Racial differences in the limb skeletal muscle transcriptional programs of patients with critical limb ischemia. Vasc Med 2021; 26:247-258. [PMID: 33685287 DOI: 10.1177/1358863x20983918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease (PAD) and is characterized by high rates of morbidity and mortality. As with most severe cardiovascular disease manifestations, Black individuals disproportionately present with CLI. Accordingly, there remains a clear need to better understand the reasons for this discrepancy and to facilitate personalized therapeutic options specific for this population. Gastrocnemius muscle was obtained from White and Black healthy adult volunteers and patients with CLI for whole transcriptome shotgun sequencing (WTSS) and enrichment analysis was performed to identify alterations in specific Reactome pathways. When compared to their race-matched healthy controls, both White and Black patients with CLI demonstrated similar reductions in nuclear and mitochondrial encoded genes and mitochondrial oxygen consumption across multiple substrates, indicating a common bioenergetic paradigm associated with amputation outcomes regardless of race. Direct comparisons between tissues of White and Black patients with CLI revealed hemostasis, extracellular matrix organization, platelet regulation, and vascular wall interactions to be uniquely altered in limb muscles of Black individuals. Among traditional vascular growth factor signaling targets, WTSS revealed only Tie1 to be significantly altered from White levels in Black limb muscle tissues. Quantitative reverse transcription polymerase chain reaction validation of select identified targets verified WTSS directional changes and supports reductions in MMP9 and increases in NUDT4P1 and GRIK2 as unique to limb muscles of Black patients with CLI. This represents a critical first step in better understanding the transcriptional program similarities and differences between Black and White patients in the setting of amputations related to CLI and provides a promising start for therapeutic development in this population.
Collapse
Affiliation(s)
- Zoe S Terwilliger
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Emma J Goldberg
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Cameron A Schmidt
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Dean J Yamaguchi
- Department of Cardiovascular Sciences, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Division of Surgery, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Reema Karnekar
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Patricia Brophy
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Thomas D Green
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Tonya N Zeczycki
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Biochemistry, East Carolina University, Brody Medical Center, Greenville, NC, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian H Annex
- Department of Medicine, Medical College of Georgia, Augusta, GA, USA.,Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | - Joseph M McClung
- Diabetes and Obesity Institute, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Physiology, East Carolina University, Brody Medical Center, Greenville, NC, USA.,Department of Cardiovascular Sciences, East Carolina University, Brody Medical Center, Greenville, NC, USA
| |
Collapse
|
45
|
Adami A, Corvino RB, Calmelat RA, Porszasz J, Casaburi R, Rossiter HB. Muscle Oxidative Capacity Is Reduced in Both Upper and Lower Limbs in COPD. Med Sci Sports Exerc 2021; 52:2061-2068. [PMID: 32282451 PMCID: PMC7497478 DOI: 10.1249/mss.0000000000002364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Skeletal muscle atrophy, weakness, mitochondrial loss, and dysfunction are characteristics of chronic obstructive pulmonary disease (COPD). It remains unclear whether muscle dysfunction occurs in both upper and lower limbs, because findings are inconsistent in the few studies where upper and lower limb muscle performance properties were compared within an individual. This study determined whether muscle oxidative capacity is low in upper and lower limbs of COPD patients compared with controls. METHODS Oxidative capacity of the forearm and medial gastrocnemius was measured using near-infrared spectroscopy to determine the muscle O2 consumption recovery rate constant (k, min) in 20 COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2/3/4, n = 7/7/6) and 20 smokers with normal spirometry (CON). Muscle k is linearly proportional to oxidative capacity. Steps per day and vector magnitude units per minute (VMU·min) were assessed using triaxial accelerometry. Differences between group and limb were assessed by two-way ANOVA. RESULTS There was a significant main effect of group (F = 11.2, ηp = 0.13, P = 0.001): k was lower in both upper and lower limb muscles in COPD (1.01 ± 0.17 and 1.05 ± 0.24 min) compared with CON (1.29 ± 0.49 and 1.54 ± 0.60 min). There was no effect on k of limb (F = 1.8, ηp = 0.02, P = 0.18) or group-limb interaction (P = 0.35). (VMU·min) was significantly lower in COPD (-38%; P = 0.042). Steps per day did not differ between COPD (4738 ± 3194) and CON (6372 ± 2107; P = 0.286), although the difference exceeded a clinically important threshold (>600-1100 steps per day). CONCLUSIONS Compared with CON, muscle oxidative capacity was lower in COPD in both upper (-20%) and lower (-30%) limbs. These data suggest that mitochondrial loss in COPD is not isolated to locomotor muscles.
Collapse
Affiliation(s)
| | | | - Robert A Calmelat
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Janos Porszasz
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | | |
Collapse
|
46
|
Unique Metabolomic Profile of Skeletal Muscle in Chronic Limb Threatening Ischemia. J Clin Med 2021; 10:jcm10030548. [PMID: 33540726 PMCID: PMC7867254 DOI: 10.3390/jcm10030548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic limb threatening ischemia (CLTI) is the most severe manifestation of peripheral atherosclerosis. Patients with CLTI have poor muscle quality and function and are at high risk for limb amputation and death. The objective of this study was to interrogate the metabolome of limb muscle from CLTI patients. To accomplish this, a prospective cohort of CLTI patients undergoing either a surgical intervention (CLTI Pre-surgery) or limb amputation (CLTI Amputation), as well as non-peripheral arterial disease (non-PAD) controls were enrolled. Gastrocnemius muscle biopsy specimens were obtained and processed for nuclear magnetic resonance (NMR)-based metabolomics analyses using solution state NMR on extracted aqueous and organic phases and 1H high-resolution magic angle spinning (HR-MAS) on intact muscle specimens. CLTI Amputation specimens displayed classical features of ischemic/hypoxic metabolism including accumulation of succinate, fumarate, lactate, alanine, and a significant decrease in the pyruvate/lactate ratio. CLTI Amputation muscle also featured aberrant amino acid metabolism marked by elevated branched chain amino acids. Finally, both Pre-surgery and Amputation CLTI muscles exhibited pronounced accumulation of lipids, suggesting the presence of myosteatosis, including cholesterol, triglycerides, and saturated fatty acids. Taken together, these metabolite differences add to a growing body of literature that have characterized profound metabolic disturbance’s in the failing ischemic limb of CLTI patients.
Collapse
|
47
|
Broskey NT, Pories WJ, Jones TE, Tanner CJ, Zheng D, Cortright RN, Yang ZW, Khang N, Yang J, Houmard JA, Lynis Dohm G. The association between lactate and muscle aerobic substrate oxidation: Is lactate an early marker for metabolic disease in healthy subjects? Physiol Rep 2021; 9:e14729. [PMID: 33527749 PMCID: PMC7851428 DOI: 10.14814/phy2.14729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 11/24/2022] Open
Abstract
Fasting plasma lactate concentrations are elevated in individuals with metabolic disease. The aim of this study was to determine if the variance in fasting lactate concentrations were associated with factors linked with cardiometabolic health even in a young, lean cohort. Young (age 22 ± 0.5; N = 30) lean (BMI (22.4 ± 0.4 kg/m2) women were assessed for waist‐to‐hip ratio, aerobic capacity (VO2peak), skeletal muscle oxidative capacity (near infrared spectroscopy; fat oxidation from muscle biopsies), and fasting glucose and insulin (HOMA‐IR). Subjects had a mean fasting lactate of 0.9 ± 0.1 mmol/L. The rate of deoxygenation of hemoglobin/myoglobin (R2 = .23, p = .03) in resting muscle and skeletal muscle homogenate fatty acid oxidation (R2 = .72, p = .004) were inversely associated with fasting lactate. Likewise, cardiorespiratory fitness (time to exhaustion during the VO2peak test) was inversely associated with lactate (R2 = .20, p = .05). Lactate concentration was inversely correlated with HDL:LDL (R2 = .57, p = .02) and positively correlated with the waist to hip ratio (R2 = .52, p = .02). Plasma lactate was associated with various indices of cardiometabolic health. Thus, early determination of fasting lactate concentration could become a common biomarker used for identifying individuals at early risk for metabolic diseases.
Collapse
Affiliation(s)
- Nicholas T Broskey
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.,Department of Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Department of Diabetes, Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Walter J Pories
- Department of Diabetes, Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Department of Surgery, East Carolina University, Greenville, North Carolina, USA
| | - Terry E Jones
- Department of Diabetes, Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Department of Physical Therapy, East Carolina University, Greenville, North Carolina, USA
| | - Charles J Tanner
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.,Department of Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Department of Diabetes, Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.,Department of Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Department of Diabetes, Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Ronald N Cortright
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.,Department of Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Department of Diabetes, Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Zhen W Yang
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.,Department of Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Nkaujyi Khang
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.,Department of Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Josh Yang
- Department of Physiology, East Carolina University, Greenville, North Carolina, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.,Department of Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Department of Diabetes, Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - G Lynis Dohm
- Department of Diabetes, Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Department of Physiology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
48
|
LI RONGSONG, ADAMI ALESSANDRA, CHANG CHIHCHIANG, TSENG CHIHONG, HSIAI TZUNGK, ROSSITER HARRYB. Serum Acylglycerols Inversely Associate with Muscle Oxidative Capacity in Severe COPD. Med Sci Sports Exerc 2021; 53:10-18. [PMID: 32694368 PMCID: PMC7737871 DOI: 10.1249/mss.0000000000002441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is associated with altered metabolism and body composition that accompany poor outcomes. We aimed to determine whether metabolic derangements in COPD are associated with skeletal muscle deconditioning and/or physical inactivity, independent of pulmonary obstruction. METHODS We characterized serum metabolites associated with muscle oxidative capacity or physical activity in 44 COPD patients (forced expiratory volume in 1 s [FEV1] = 61% ± 4% predicted) and 63 current and former smokers with normal spirometry (CON) (FEV1 = 93% ± 2% predicted). Medial gastrocnemius oxidative capacity was assessed at rest from the recovery rate constant (k) of muscle oxygen consumption using near-infrared spectroscopy. Step counts and physical activity (average vector magnitude units [VMU] per minute) were measured over 5-7 d using triaxial accelerometry. Untargeted prime and lipid metabolites were measured using liquid chromatography and mass spectrometry. RESULTS Muscle k (1.12 ± 0.05 vs 1.68 ± 0.06 min, P < 0.0001, d = 1.58) and VMU per minute (170 ± 26 vs 450 ± 50 VMU per minute, P = 0.004, d = 1.04) were lower in severe COPD (FEV1 < 50% predicted, n = 14-16) compared with CON (n = 56-60). A total of 129 prime metabolites and 470 lipids with known identity were quantified. Using sex as a covariate, lipidomics revealed 24 differentially expressed lipids (19 sphingomyelins) in COPD, consequent to a diminished sex difference of sphingomyelins in COPD (false discovery rate [FDR] < 0.05, n = 44). Total, and some individual, fatty acid concentrations were greater in severe COPD than CON (FDR < 0.05, n = 16, d = 0.56-1.02). After adjusting for FEV1% predicted, we observed that grouped diacylglycerides (ρ = -0.745, FDR = 0.03) and triacylglycerides (ρ = -0.811, FDR = 0.01) were negatively associated with muscle oxidative capacity, but not physical activity, in severe COPD (n = 14). CONCLUSION Strong negative associations relate impaired mitochondrial function to the accumulation of serum aclyglycerides in severe COPD.
Collapse
Affiliation(s)
- RONGSONG LI
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, CHINA
| | - ALESSANDRA ADAMI
- Department of Kinesiology, University of Rhode Island, Kingston, RI
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical Center, Torrance, CA
| | - CHIH-CHIANG CHANG
- Department of Medicine, West Los Angeles VA Healthcare System, University of California, Los Angeles, CA
| | - CHI-HONG TSENG
- Department of Medicine, West Los Angeles VA Healthcare System, University of California, Los Angeles, CA
| | - TZUNG K. HSIAI
- Department of Medicine, West Los Angeles VA Healthcare System, University of California, Los Angeles, CA
| | - HARRY B. ROSSITER
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical Center, Torrance, CA
- Faculty of Biological Sciences, University of Leeds, Leeds, UNITED KINGDOM
| |
Collapse
|
49
|
Ramick MG, Kirkman DL, Stock JM, Muth BJ, Farquhar WB, Chirinos JA, Doulias PT, Ischiropoulos H, Edwards DG. The effect of dietary nitrate on exercise capacity in chronic kidney disease: a randomized controlled pilot study. Nitric Oxide 2021; 106:17-23. [PMID: 33080411 PMCID: PMC10026360 DOI: 10.1016/j.niox.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic Kidney Disease (CKD) patients exhibit a reduced exercise capacity that impacts quality of life. Dietary nitrate supplementation has been shown to have favorable effects on exercise capacity in disease populations by reducing the oxygen cost of exercise. This study investigated whether dietary nitrates would acutely improve exercise capacity in CKD patients. METHODS AND RESULTS In this randomized, double-blinded crossover study, 12 Stage 3-4 CKD patients (Mean ± SEM: Age, 60 ± 5yrs; eGFR, 50.3 ± 4.6 ml/min/1.73 m2) received an acute dose of 12.6 mmol of dietary nitrate in the form of concentrated beetroot juice (BRJ) and a nitrate depleted placebo (PLA). Skeletal muscle mitochondrial oxidative function was assessed using near-infrared spectroscopy. Cardiopulmonary exercise testing was performed on a cycle ergometer, with intensity increased by 25 W every 3 min until volitional fatigue. Plasma nitric oxide (NO) metabolites (NOm; nitrate, nitrite, low molecular weight S-nitrosothiols, and metal bound NO) were determined by gas-phase chemiluminescence. Plasma NOm values were significantly increased following BRJ (BRJ vs. PLA: 1074.4 ± 120.4 μM vs. 28.4 ± 6.6 μM, p < 0.001). Total work performed (44.4 ± 10.6 vs 39.6 ± 9.9 kJ, p = 0.03) and total exercise time (674 ± 85 vs 627 ± 86s, p = 0.04) were significantly greater following BRJ. Oxygen consumption at the ventilatory threshold was also improved by BRJ (0.90 ± 0.08 vs. 0.74 ± 0.06 L/min, p = 0.04). These changes occurred in the absence of improved skeletal muscle mitochondrial oxidative capacity (p = 0.52) and VO2peak (p = 0.35). CONCLUSIONS Our findings demonstrate that inorganic nitrate can acutely improve exercise capacity in CKD patients. The effects of chronic nitrate supplementation on CKD related exercise intolerance should be investigated in future studies.
Collapse
Affiliation(s)
- Meghan G Ramick
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; Department of Kinesiology, West Chester University, West Chester, PA, USA
| | - Danielle L Kirkman
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Bryce J Muth
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; School of Health Sciences, Stockton University, Stockton, NJ, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Julio A Chirinos
- Division of Cardiovascular Medicine. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paschalis-Thomas Doulias
- Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
50
|
Gasser B, Fitze D, Franchi M, Frei A, Niederseer D, Schmied CM, Catuogno S, Frey W, Flück M. The Cardiovascular Response to Interval Exercise Is Modified by the Contraction Type and Training in Proportion to Metabolic Stress of Recruited Muscle Groups. SENSORS 2020; 21:s21010173. [PMID: 33383837 PMCID: PMC7795051 DOI: 10.3390/s21010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/20/2023]
Abstract
Background: Conventional forms of endurance training based on shortening contractions improve aerobic capacity but elicit a detriment of muscle strength. We hypothesized that eccentric interval training, loading muscle during the lengthening phase of contraction, overcome this interference and potentially adverse cardiovascular reactions, enhancing both muscle metabolism and strength, in association with the stress experienced during exercise. Methods: Twelve healthy participants completed an eight-week program of work-matched progressive interval-type pedaling exercise on a soft robot under predominately concentric or eccentric load. Results: Eccentric interval training specifically enhanced the peak power of positive anaerobic contractions (+28%), mitigated the strain on muscle’s aerobic metabolism, and lowered hemodynamic stress during interval exercise, concomitant with a lowered contribution of positive work to the target output. Concentric training alone lowered blood glucose concentration during interval exercise and mitigated heart rate and blood lactate concentration during ramp exercise. Training-induced adjustments for lactate and positive peak power were independently correlated (p < 0.05, |r| > 0.7) with indices of metabolic and mechanical muscle stress during exercise. Discussion: Task-specific improvements in strength and muscle’s metabolic capacity were induced with eccentric interval exercise lowering cardiovascular risk factors, except for blood glucose concentration, possibly through altered neuromuscular coordination.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Sport, Bewegung und Gesundheit—Abteilung Rehabilitative und Regenerative Sportmedizin—Universität Basel—Birsstrasse, 320B CH, 4052 Basel, Switzerland;
| | - Daniel Fitze
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Martino Franchi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy;
| | - Annika Frei
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - David Niederseer
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (D.N.); (C.M.S.)
| | - Christian M. Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (D.N.); (C.M.S.)
| | - Silvio Catuogno
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Walter Frey
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
- Correspondence:
| |
Collapse
|