1
|
Fehrentz T, Amin E, Görldt N, Strasdeit T, Moussavi-Torshizi SE, Leippe P, Trauner D, Meyer C, Frey N, Sasse P, Klöcker N. Optical control of cardiac electrophysiology by the photochromic ligand azobupivacaine 2. Br J Pharmacol 2025; 182:1125-1142. [PMID: 39543799 DOI: 10.1111/bph.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND AND PURPOSE Patients suffering from ischaemic heart disease and heart failure are at high risk of recurrent ventricular arrhythmias (VAs), eventually leading to sudden cardiac death. While high-voltage shocks delivered by an implantable defibrillator may prevent sudden cardiac death, these interventions themselves impair quality of life and raise both morbidity and mortality, which accentuates the need for developing novel defibrillation techniques. EXPERIMENTAL APPROACH Photopharmacology allows for reversible control of biological processes by light. When relying on synthetic and externally applied chromophores, it renders genetic modification of target cells dispensable and may hence be advantageous over optogenetic approaches. Here, the photochromic ligand azobupivacaine 2 (AB2) was probed as a modulator of cardiac electrophysiology in an ex vivo intact mouse heart model. KEY RESULTS By reversibly blocking voltage-gated Na+ and K+ channels, photoswitching of AB2 modulated both the ventricular effective refractory period and the conduction velocity in native heart tissue. Moreover, photoswitching of AB2 was able to convert VA into sinus rhythm. CONCLUSION AND IMPLICATIONS The present study provides the first proof of concept that AB2 enables gradual control of cardiac electrophysiology by light. AB2 may hence open the door to the development of an optical defibrillator based on photopharmacology.
Collapse
Affiliation(s)
- Timm Fehrentz
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicole Görldt
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Strasdeit
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Seyed-Erfan Moussavi-Torshizi
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christian Meyer
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Cardiology, Angiology and Intensive Care, EVK Düsseldorf, Cardiac Neuro- and Electrophysiology Research Consortium (cNEP), Düsseldorf, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Özel HF, Özbek M, Özden MT, Vatansever HS. Cardioprotective effects of H3 receptor activation could be double-sided: insights from isoproterenol-induced cardiac injury. Pflugers Arch 2025; 477:291-301. [PMID: 39480549 DOI: 10.1007/s00424-024-03039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Histamine H3 receptors (H3Rs) are known to modulate neurotransmitter release in the nervous system, but their role in cardiac injury remains unclear. The present study aimed to investigate the cardioprotective role of H3Rs in a mouse model of myocardial injury. Forty BALB/c male mice were divided into four groups: Control (SF), Isoproterenol (ISO), Imetit (IMT), and IMT + ISO. The IMT and IMT + ISO groups were pretreated orally with 10 mg/kg imetit-dihydrobromide(imetit) for 7 days. In the last 2 days, the ISO and IMT + ISO groups received a subcutaneous injection of 85 mg/kg isoproterenol to induce myocardial ischemia. Electrocardiogram (ECG) recordings were obtained, and heart tissues were analyzed histopathologically. The results demonstrated that the administration of imetit resulted in the prolongation of the PR interval in the IMT group. QRS and QT intervals were prolonged in the ISO group. The J-wave area in the ISO group was significantly larger than in the other groups. Histopathological analyses revealed the presence of small vacuoles, inflammatory cell infiltration, and collagen aggregates in cardiomyocytes in the ISO group. No significant cellular changes were observed in the IMT group, in contrast. The IMT + ISO group exhibited fewer ischemic findings than the ISO group. Immunohistochemical analyses revealed positive H3R immunoreactivity in all groups. Imetit pretreatment increased the immunoreactivity of H3Rs in both the IMT and IMT + ISO groups. The findings of this study suggest that H3Rs may be present on the postsynaptic side in cardiac myocytes, in addition to adrenergic presynaptic nerve endings. Furthermore, imetit has been found to significantly reduce the effects of myocardial ischemia by activating H3Rs. The better characterization of the postsynaptic role of H3Rs offers potential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- H Fehmi Özel
- Vocational School of Health Services, Manisa Celal Bayar University, Manisa, Turkey.
| | - Mustafa Özbek
- Department of Physiology, Manisa Celal Bayar University, Manisa, Turkey
| | | | - H Seda Vatansever
- Department of Histology - Embryology, Manisa Celal Bayar University, Manisa, Turkey
- DESAM Research Institute, Near East University, Mersin 10, Turkey
| |
Collapse
|
3
|
Figueroa F, Salinas L, Thai PN, Montgomery CB, Chiamvimonvat N, Cortopassi G, Dedkova EN. Poincaré plot analysis of electrocardiogram uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia. Heart Rhythm 2025:S1547-5271(25)00001-3. [PMID: 39788175 DOI: 10.1016/j.hrthm.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder whereby most patients die of lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in patients with FA are poorly understood. OBJECTIVE This study aimed to examine cardiac electrical signal propagation in a mouse model of FA with severe cardiomyopathy and to evaluate effects of omaveloxolone (OMAV), the first Food and Drug Administration-approved therapy. METHODS Cardiac-specific MCK-Cre frataxin knockout (FXN-cKO) mice were used to mimic FA cardiomyopathy. In vivo surface electrocardiogram (ECG) recordings, Western blotting, quantitative real-time polymerase chain reaction analysis, and histochemistry were performed. RESULTS Characteristics like long QT syndrome, interatrial block, and ST-segment abnormalities in patients with FA were identified in FXN-cKO mice. FXN-cKO mice exhibited sexual dimorphism in electrical signal propagation and cardiac structural integrity. Untreated FA males showed increased ventricular propagation intervals, whereas females exhibited delayed atrial propagation. OMAV showed no significant therapeutic effect on average ECG time intervals but improved chamber-specific waveforms when aggregated frequency distributions were analyzed. The J wave was absent in FXN-cKO male mice but reappeared with OMAV treatment. Poincaré plots revealed disparate idiopathic arrhythmias with multi-clustering events in individual mice with high incidence in FXN-cKO males. OMAV treatment reduced multi-clustering events to a single cluster; however, autonomic nervous system dysfunction still remained. CONCLUSION Our study revealed significant electrical propagation disturbances and sexual dimorphism in FXN-cKO mice with severe cardiomyopathy. Poincaré plots identified irregularities in heart rhythm and autonomic nervous system dysfunction. OMAV improved heart function by stabilizing early repolarization and reducing disparate arrhythmias. This work stresses sex-specific ECG interpretations and alternative mathematical approaches for drug testing in FA models.
Collapse
Affiliation(s)
- Francisco Figueroa
- Department of Molecular Biosciences, University of California, Davis, California
| | - Lili Salinas
- Department of Molecular Biosciences, University of California, Davis, California
| | - Phung N Thai
- Department of Internal Medicine, Cardiovascular Medicine, University of California, Davis, California
| | - Claire B Montgomery
- Department of Molecular Biosciences, University of California, Davis, California
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Cardiovascular Medicine, University of California, Davis, California; Department of Veterans Affairs, Northern California Health Care System, Mather, California
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, California
| | - Elena N Dedkova
- Department of Molecular Biosciences, University of California, Davis, California; Department of Basic Sciences, California Northstate University, Elk Grove, California.
| |
Collapse
|
4
|
Chang J, Zhu Y, Yang Z, Wang Z, Wang M, Chen L. Airborne polystyrene nanoplastics exposure leads to heart failure via ECM-receptor interaction and PI3K/AKT/BCL-2 pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176469. [PMID: 39317253 DOI: 10.1016/j.scitotenv.2024.176469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Environmental contamination has been recognized as a significant threat to human well-being, and recent findings of microplastic presence in human cardiac tissues have raised concerns. However, research on the effects of airborne nanoplastics (NPs) on cardiac physiology remains limited. We utilized a comprehensive body exposure apparatus to simulate the impact of airborne polystyrene NPs pollution, focusing on understanding how airborne NPs affect cardiac morphology and function. Following two weeks of NPs exposure, mice exhibited a 23.89 ± 8.30 % reduction in heart mass, a 20.05 ± 2.97 % decrease in heart rate as detected, and a myocardial electrical conduction block. Echocardiography showed significant changes in cardiac contractility, with increases in cardiac ejection fraction and stroke volume of 13.00 ± 3.00 % and 43.00 ± 17.00 %, respectively. In addition, histologic assessments revealed signs of ventricular hypertrophy, ventricular myocardial hypertrophy, and myocardial necrotic fibrosis. Of particular interest, our mechanistic investigations highlighted the harmful effects of NPs on cardiac structure and function, mediated through extracellular matrix (ECM) receptor interactions and the PI3K/AKT/BCL-2 signaling pathway. The insights gained provide a foundation for understanding the risks posed by airborne NPs to human cardiac health, emphasizing the need for increased vigilance and implementation of mitigation strategies in environmental management.
Collapse
Affiliation(s)
- Jinghao Chang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Yuchen Zhu
- Medical School, Tianjin University, Tianjin 300072, China
| | - Ziye Yang
- Medical School, Tianjin University, Tianjin 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Ziqi Wang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Meixue Wang
- Medical School, Tianjin University, Tianjin 300072, China
| | - Liqun Chen
- Medical School, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Dargam V, Sanchez A, Kolengaden A, Perez Y, Arias R, Valentin Cabrera AM, Chaparro D, Tarafa C, Coba A, Yapaolo N, da Silva Nogueira P, Todd EA, Williams MM, Shehadeh LA, Hutcheson JD. Sex-Specific Changes in Cardiac Function and Electrophysiology During Progression of Adenine-Induced Chronic Kidney Disease in Mice. J Cardiovasc Dev Dis 2024; 11:362. [PMID: 39590205 PMCID: PMC11594452 DOI: 10.3390/jcdd11110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) often co-exist, with notable sex-dependent differences in manifestation and progression despite both sexes sharing similar risk factors. Identifying sex-specific diagnostic markers in CKD-induced CVD could elucidate why the development and progression of these diseases differ by sex. Adult, C57BL/6J male and female mice were fed a high-adenine diet for 12 weeks to induce CKD, while control mice were given a normal diet. Adenine-treated males showed more severe CKD than females. Cardiac physiology was evaluated using electrocardiogram (ECG) and echocardiogram markers. Only adenine-treated male mice showed markers of left ventricular (LV) hypertrophy. Adenine males showed markers of LV systolic and diastolic dysfunction throughout regimen duration, worsening as the disease progressed. Adenine males had prolonged QTc interval compared to adenine females and control males. We identified a new ECG marker, Speak-J duration, which increased with disease progression and appeared earlier in adenine-treated males than in females. We identified sex-dependent differences in cardiac structure, function, and electrophysiology in a CKD-induced CVD mouse model, with adenine-treated males displaying markers of LV hypertrophy, dysfunction, and electrophysiological changes. This study demonstrates the feasibility of using this model to investigate sex-dependent cardiac differences resulting from CKD.
Collapse
Affiliation(s)
- Valentina Dargam
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Anet Sanchez
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Aashiya Kolengaden
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Yency Perez
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Rebekah Arias
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Ana M. Valentin Cabrera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Daniel Chaparro
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Christopher Tarafa
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Alexandra Coba
- Department of Biological Science, Florida International University, Miami, FL 33199, USA
| | - Nathan Yapaolo
- Department of Biological Science, Florida International University, Miami, FL 33199, USA
| | | | - Emily A. Todd
- Department of Medical Education, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Monique M. Williams
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Lee SH, Cho S, Lee JY, Kim JY, Kim S, Jeong M, Hong JY, Kim GY, Lee SW, Kim E, Kim J, Kim JW, Hwa J, Kim WH. Methionine sulfoxide reductase B2 protects against cardiac complications in diabetes mellitus. Diabetol Metab Syndr 2024; 16:149. [PMID: 38970135 PMCID: PMC11225187 DOI: 10.1186/s13098-024-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Diabetes mellitus (DM) is a progressive, chronic metabolic disorder characterized by high oxidative stress, which can lead to cardiac damage. Methionine sulfoxylation (MetO) of proteins by excessive reactive oxygen species (ROS) can impair the basic functionality of essential cellular proteins, contributing to heart failure. Methionine sulfoxide reductase B2 (MsrB2) can reverse oxidation induced MetO in mitochondrial proteins, so we investigated its role in diabetic cardiomyopathy. We observed that DM-induced heart damage in diabetic mice model is characterized by increased ROS, increased protein MetO with mitochondria structural pathology, and cardiac fibrosis. In addition, MsrB2 was significantly increased in mouse DM cardiomyocytes, supporting the induction of a protective process. Further, MsrB2 directly induces Parkin and LC3 activation (mitophagy markers) in cardiomyocytes. In MsrB2, knockout mice displayed abnormal electrophysiological function, as determined by ECG analysis. Histological analysis confirmed increased cardiac fibrosis and disrupted cardiac tissue in MsrB2 knockout DM mice. We then corroborated our findings in human DM heart samples. Our study demonstrates that increased MsrB2 expression in the heart protects against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
- Division of Endocrine and Kidney Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| | - Suyeon Cho
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jong Youl Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Ji Yeon Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Suji Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Myoungho Jeong
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jung Yeon Hong
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Geun-Young Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Seung Woo Lee
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Eunmi Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jihwa Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jee Woong Kim
- Division of Research Support, Department of Research Planning and Coordination, Korea National Institute of Health, Cheongju, Republic of Korea
| | - John Hwa
- Yale Cardiovascular Research Center, New Haven, USA.
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
7
|
Pluteanu F, Glaser D, Massing F, Schulte JS, Kirchhefer U. Loss of protein phosphatase 2A regulatory subunit PPP2R5A is associated with increased incidence of stress-induced proarrhythmia. Front Cardiovasc Med 2024; 11:1419597. [PMID: 38863902 PMCID: PMC11165201 DOI: 10.3389/fcvm.2024.1419597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Background Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme that controls Ca2+ homeostasis and contractility of the heart via dephosphorylation of regulatory proteins. In some genetically modified mouse models with increased arrhythmogenicity, a reduced expression of the regulatory subunit B56α of PP2A was found as a concomitant effect. Whether there is a general correlation between the abundance of B56α and the promotion of cardiac arrhythmogenesis remains unclear. Methods The aim of this study was therefore to investigate the role of PP2A-B56α in the propensity for arrhythmic activity in the heart. The experimental analysis of this question has been addressed by using a mouse model with deletion of the PP2A-B56α gene, PPP2R5A (KO), in comparison to wild-type animals (WT). Evidence for arrhythmogenicity was investigated in whole animal, isolated heart and cardiomyocytes by ECG, recording of monophasic action potential (MAP) induced by programmed electrical stimulation (PES), measurement of Ca2+ transients under increased pacing frequencies and determination of total K+ channel currents (I K). Results ECG measurements showed a prolongation of QT time in KO vs. WT. KO mice exhibited a higher rate of premature ventricular contractions in the ECG. MAP measurements in Langendorff-perfused KO hearts showed increased episodes of ventricular tachyarrhythmia induced by PES. However, the KO hearts showed values for MAP duration that were similar to those in WT hearts. In contrast, KO showed more myocardial cells with spontaneous arrhythmogenic Ca2+ transient events compared to WT. The whole-cell patch-clamp technique applied to ventricular cardiomyocytes revealed comparable peak potassium channel current densities between KO and WT. Conclusion These findings support the assumption that a decrease or even the loss of PP2A-B56α leads to an increased propensity of triggered arrhythmias. This could be based on the increased spontaneous Ca2+ tansients observed.
Collapse
Affiliation(s)
- Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Dennis Glaser
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Fabian Massing
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Jan S. Schulte
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| |
Collapse
|
8
|
Harold KM, Matsuzaki S, Pranay A, Loveland BL, Batushansky A, Mendez Garcia MF, Eyster C, Stavrakis S, Chiao YA, Kinter M, Humphries KM. Loss of Cardiac PFKFB2 Drives Metabolic, Functional, and Electrophysiological Remodeling in the Heart. J Am Heart Assoc 2024; 13:e033676. [PMID: 38533937 PMCID: PMC11179765 DOI: 10.1161/jaha.123.033676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.
Collapse
Affiliation(s)
- Kylene M. Harold
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Brooke L. Loveland
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Maria F. Mendez Garcia
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Craig Eyster
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Biochemistry and Molecular PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| |
Collapse
|
9
|
Rivera DA, Buglione AE, Ray SE, Schaffer CB. MousePZT: A simple, reliable, low-cost device for vital sign monitoring and respiratory gating in mice under anesthesia. PLoS One 2024; 19:e0299047. [PMID: 38437201 PMCID: PMC10911610 DOI: 10.1371/journal.pone.0299047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Small animal studies in biomedical research often require anesthesia to reduce pain or stress experienced by research animals and to minimize motion artifact during imaging or other measurements. Anesthetized animals must be closely monitored for the safety of the animals and to prevent unintended effects of altered physiology on experimental outcomes. Many currently available monitoring devices are expensive, invasive, or interfere with experimental design. Here, we present MousePZT, a low-cost device based on a simple piezoelectric sensor, with a custom circuit and computer software that allows for measurements of both respiratory rate and heart rate in a non-invasive, minimal contact manner. We find the accuracy of the MousePZT device in measuring respiratory and heart rate matches those of commercial systems. Using the widely-used gas isoflurane and injectable ketamine/xylazine combination, we also demonstrate that changes in respiratory rate are more easily detected and can precede changes in heart rate associated with variations in anesthetic depth. Additional circuitry on the device outputs a respiration-locked trigger signal for respiratory-gating of imaging or other data acquisition and has high sensitivity and specificity for detecting respiratory cycles. We provide detailed instruction documents and all necessary microcontroller and computer software, enabling straightforward construction and utilization of this device.
Collapse
Affiliation(s)
- Daniel A. Rivera
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Anne E. Buglione
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Sadie E. Ray
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
10
|
Blair GA, Wu X, Bain C, Warren M, Hoeker GS, Poelzing S. Mannitol and hyponatremia regulate cardiac ventricular conduction in the context of sodium channel loss of function. Am J Physiol Heart Circ Physiol 2024; 326:H724-H734. [PMID: 38214908 PMCID: PMC11221810 DOI: 10.1152/ajpheart.00211.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Scn5a heterozygous null (Scn5a+/-) mice have historically been used to investigate arrhythmogenic mechanisms of diseases such as Brugada syndrome (BrS) and Lev's disease. Previously, we demonstrated that reducing ephaptic coupling (EpC) in ex vivo hearts exacerbates pharmacological voltage-gated sodium channel (Nav)1.5 loss of function (LOF). Whether this effect is consistent in a genetic Nav1.5 LOF model is yet to be determined. We hypothesized that loss of EpC would result in greater reduction in conduction velocity (CV) for the Scn5a+/- mouse relative to wild type (WT). In vivo ECGs and ex vivo optical maps were recorded from Langendorff-perfused Scn5a+/- and WT mouse hearts. EpC was reduced with perfusion of a hyponatremic solution, the clinically relevant osmotic agent mannitol, or a combination of the two. Neither in vivo QRS duration nor ex vivo CV during normonatremia was significantly different between the two genotypes. In agreement with our hypothesis, we found that hyponatremia severely slowed CV and disrupted conduction for 4/5 Scn5a+/- mice, but 0/6 WT mice. In addition, treatment with mannitol slowed CV to a greater extent in Scn5a+/- relative to WT hearts. Unexpectedly, treatment with mannitol during hyponatremia did not further slow CV in either genotype, but resolved the disrupted conduction observed in Scn5a+/- hearts. Similar results in guinea pig hearts suggest the effects of mannitol and hyponatremia are not species specific. In conclusion, loss of EpC through either hyponatremia or mannitol alone results in slowed or disrupted conduction in a genetic model of Nav1.5 LOF. However, the combination of these interventions attenuates conduction slowing.NEW & NOTEWORTHY Cardiac sodium channel loss of function (LOF) diseases such as Brugada syndrome (BrS) are often concealed. We optically mapped mouse hearts with reduced sodium channel expression (Scn5a+/-) to evaluate whether reduced ephaptic coupling (EpC) can unmask conduction deficits. Data suggest that conduction deficits in the Scn5a+/- mouse may be unmasked by treatment with hyponatremia and perinexal widening via mannitol. These data support further investigation of hyponatremia and mannitol as novel diagnostics for sodium channel loss of function diseases.
Collapse
Affiliation(s)
- Grace A Blair
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Xiaobo Wu
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Chandra Bain
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Mark Warren
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Gregory S Hoeker
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Steven Poelzing
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| |
Collapse
|
11
|
Macías Á, Nevado RM, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, Dorado B, Benedicto I, Andrés V. Coronary and carotid artery dysfunction and K V7 overexpression in a mouse model of Hutchinson-Gilford progeria syndrome. GeroScience 2024; 46:867-884. [PMID: 37233881 PMCID: PMC10828489 DOI: 10.1007/s11357-023-00808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disease caused by expression of progerin, a lamin A variant that is also expressed at low levels in non-HGPS individuals. Although HGPS patients die predominantly from myocardial infarction and stroke, the mechanisms that provoke pathological alterations in the coronary and cerebral arteries in HGPS remain ill defined. Here, we assessed vascular function in the coronary arteries (CorAs) and carotid arteries (CarAs) of progerin-expressing LmnaG609G/G609G mice (G609G), both in resting conditions and after hypoxic stimulus. Wire myography, pharmacological screening, and gene expression studies demonstrated vascular atony and stenosis, as well as other functional alterations in progeroid CorAs and CarAs and aorta. These defects were associated with loss of vascular smooth muscle cells and overexpression of the KV7 family of voltage-dependent potassium channels. Compared with wild-type controls, G609G mice showed reduced median survival upon chronic isoproterenol exposure, a baseline state of chronic cardiac hypoxia characterized by overexpression of hypoxia-inducible factor 1α and 3α genes, and increased cardiac vascularization. Our results shed light on the mechanisms underlying progerin-induced coronary and carotid artery disease and identify KV7 channels as a candidate target for the treatment of HGPS.
Collapse
Affiliation(s)
- Álvaro Macías
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rosa M Nevado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina González-Gómez
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Gonzalo
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Jesús Andrés-Manzano
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Dorado
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Benedicto
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040, Madrid, Spain
| | - Vicente Andrés
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Jensen CH, Johnsen RH, Eskildsen T, Baun C, Ellman DG, Fang S, Bak ST, Hvidsten S, Larsen LA, Rosager AM, Riber LP, Schneider M, De Mey J, Thomassen M, Burton M, Uchida S, Laborda J, Andersen DC. Pericardial delta like non-canonical NOTCH ligand 1 (Dlk1) augments fibrosis in the heart through epithelial to mesenchymal transition. Clin Transl Med 2024; 14:e1565. [PMID: 38328889 PMCID: PMC10851088 DOI: 10.1002/ctm2.1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Heart failure due to myocardial infarction (MI) involves fibrosis driven by epicardium-derived cells (EPDCs) and cardiac fibroblasts, but strategies to inhibit and provide cardio-protection remains poor. The imprinted gene, non-canonical NOTCH ligand 1 (Dlk1), has previously been shown to mediate fibrosis in the skin, lung and liver, but very little is known on its effect in the heart. METHODS Herein, human pericardial fluid/plasma and tissue biopsies were assessed for DLK1, whereas the spatiotemporal expression of Dlk1 was determined in mouse hearts. The Dlk1 heart phenotype in normal and MI hearts was assessed in transgenic mice either lacking or overexpressing Dlk1. Finally, in/ex vivo cell studies provided knowledge on the molecular mechanism. RESULTS Dlk1 was demonstrated in non-myocytes of the developing human myocardium but exhibited a restricted pericardial expression in adulthood. Soluble DLK1 was twofold higher in pericardial fluid (median 45.7 [34.7 (IQR)) μg/L] from cardiovascular patients (n = 127) than in plasma (median 26.1 μg/L [11.1 (IQR)]. The spatial and temporal expression pattern of Dlk1 was recapitulated in mouse and rat hearts. Similar to humans lacking Dlk1, adult Dlk1-/- mice exhibited a relatively mild developmental, although consistent cardiac phenotype with some abnormalities in heart size, shape, thorax orientation and non-myocyte number, but were functionally normal. However, after MI, scar size was substantially reduced in Dlk1-/- hearts as compared with Dlk1+/+ littermates. In line, high levels of Dlk1 in transgenic mice Dlk1fl/fl xWT1GFPCre and Dlk1fl/fl xαMHCCre/+Tam increased scar size following MI. Further mechanistic and cellular insight demonstrated that pericardial Dlk1 mediates cardiac fibrosis through epithelial to mesenchymal transition (EMT) of the EPDC lineage by maintaining Integrin β8 (Itgb8), a major activator of transforming growth factor β and EMT. CONCLUSIONS Our results suggest that pericardial Dlk1 embraces a, so far, unnoticed role in the heart augmenting cardiac fibrosis through EMT. Monitoring DLK1 levels as well as targeting pericardial DLK1 may thus offer new venues for cardio-protection.
Collapse
Affiliation(s)
- Charlotte Harken Jensen
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Rikke Helin Johnsen
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Tilde Eskildsen
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Christina Baun
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Shu Fang
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
| | - Svend Hvidsten
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
| | - Lars Allan Larsen
- Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Ann Mari Rosager
- Department of Clinical PathologySydvestjysk HospitalEsbjergDenmark
| | - Lars Peter Riber
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Cardiothoracic and Vascular SurgeryOdense University HospitalOdenseDenmark
| | - Mikael Schneider
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Jo De Mey
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Mads Thomassen
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
| | - Mark Burton
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
| | - Shizuka Uchida
- Center for RNA MedicineDepartment of Clinical MedicineAalborg UniversityCopenhagenDenmark
| | - Jorge Laborda
- Department of Inorganic and Organic Chemistry and BiochemistryUniversity of Castilla‐La Mancha Medical SchoolAlbaceteSpain
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
- Clinical Institute, University of Southern DenmarkOdenseDenmark
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| |
Collapse
|
13
|
Boukens BJ, Verkerk AO, Bezzina CR. Knock-in swine model reveals new arrhythmia mechanism in Timothy syndrome. NATURE CARDIOVASCULAR RESEARCH 2024; 3:18-20. [PMID: 39195890 DOI: 10.1038/s44161-023-00408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Bastiaan J Boukens
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Smith A, Auer D, Johnson M, Sanchez E, Ross H, Ward C, Chakravarti A, Kapoor A. Cardiac muscle-restricted partial loss of Nos1ap expression has limited but significant impact on electrocardiographic features. G3 (BETHESDA, MD.) 2023; 13:jkad208. [PMID: 37708408 PMCID: PMC10627271 DOI: 10.1093/g3journal/jkad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Genome-wide association studies have identified sequence polymorphisms in a functional enhancer of the NOS1AP gene as the most common genetic regulator of QT interval and human cardiac NOS1AP gene expression in the general population. Functional studies based on in vitro overexpression in murine cardiomyocytes and ex vivo knockdown in zebrafish embryonic hearts, by us and others, have also demonstrated that NOS1AP expression levels can alter cellular electrophysiology. Here, to explore the role of NOS1AP in cardiac electrophysiology at an organismal level, we generated and characterized constitutive and heart muscle-restricted Nos1ap knockout mice to assess whether NOS1AP disruption alters the QT interval in vivo. Constitutive loss of Nos1ap led to genetic background-dependent variable lethality at or right before birth. Heart muscle-restricted Nos1ap knockout, generated using cardiac-specific alpha-myosin heavy chain promoter-driven tamoxifen-inducible Cre, resulted in tissue-level Nos1ap expression reduced by half. This partial loss of expression had no detectable effect on the QT interval or other electrocardiographic and echocardiographic parameters, except for a small but significant reduction in the QRS interval. Given that challenges associated with defining the end of the T wave on murine electrocardiogram can limit identification of subtle effects on the QT interval and that common noncoding NOS1AP variants are also associated with the QRS interval, our findings support the role of NOS1AP in regulation of the cardiac electrical cycle.
Collapse
Affiliation(s)
- Alexa Smith
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dallas Auer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Morgan Johnson
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ernesto Sanchez
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Holly Ross
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher Ward
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016, USA
| | - Ashish Kapoor
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Ginjupalli VKM, Cupelli M, Reisqs JB, Sleiman Y, El-Sherif N, Gourdon G, Puymirat J, Chahine M, Boutjdir M. Electrophysiological basis of cardiac arrhythmia in a mouse model of myotonic dystrophy type 1. Front Physiol 2023; 14:1257682. [PMID: 37811496 PMCID: PMC10551179 DOI: 10.3389/fphys.2023.1257682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the increased number of CTG repeats in 3' UTR of Dystrophia Myotonia Protein Kinase (DMPK) gene. DM1 patients experience conduction abnormalities as well as atrial and ventricular arrhythmias with increased susceptibility to sudden cardiac death. The ionic basis of these electrical abnormalities is poorly understood. Methods: We evaluated the surface electrocardiogram (ECG) and key ion currents underlying the action potential (AP) in a mouse model of DM1, DMSXL, which express over 1000 CTG repeats. Sodium current (INa), L-type calcium current (ICaL), transient outward potassium current (Ito), and APs were recorded using the patch-clamp technique. Results: Arrhythmic events on the ECG including sinus bradycardia, conduction defects, and premature ventricular and atrial arrhythmias were observed in DMSXL homozygous mice but not in WT mice. PR interval shortening was observed in homozygous mice while ECG parameters such as QRS duration, and QTc did not change. Further, flecainide prolonged PR, QRS, and QTc visually in DMSXL homozygous mice. At the single ventricular myocyte level, we observed a reduced current density for Ito and ICaL with a positive shift in steady state activation of L-type calcium channels carrying ICaL in DMSXL homozygous mice compared with WT mice. INa densities and action potential duration did not change between DMSXL and WT mice. Conclusion: The reduced current densities of Ito, and ICaL and alterations in gating properties in L-type calcium channels may contribute to the ECG abnormalities in the DMSXL mouse model of DM1. These findings open new avenues for novel targeted therapeutics.
Collapse
Affiliation(s)
- Vamsi Krishna Murthy Ginjupalli
- Cardiovascular Research Program, VA New York Harbor Health care System, Brooklyn, NY, United States
- Departments of Medicine, Cell Biology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Michael Cupelli
- Cardiovascular Research Program, VA New York Harbor Health care System, Brooklyn, NY, United States
- Departments of Medicine, Cell Biology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Health care System, Brooklyn, NY, United States
| | - Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Health care System, Brooklyn, NY, United States
| | - Nabil El-Sherif
- Cardiovascular Research Program, VA New York Harbor Health care System, Brooklyn, NY, United States
- Departments of Medicine, Cell Biology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Genevieve Gourdon
- Centre de recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, Paris, France
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Health care System, Brooklyn, NY, United States
- Departments of Medicine, Cell Biology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Medicine, New York University, Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
17
|
Abstract
BACKGROUND Atrial fibrillation (AF) is by far the most common cardiac arrhythmia. In about 3% of individuals, AF develops as a primary disorder without any identifiable trigger (idiopathic or historically termed lone AF). In line with the emerging field of autoantibody-related cardiac arrhythmias, the objective of this study was to explore whether autoantibodies targeting cardiac ion channels can underlie unexplained AF. METHODS Peptide microarray was used to screen patient samples for autoantibodies. We compared patients with unexplained AF (n=37 pre-existent AF; n=14 incident AF on follow-up) to age- and sex-matched controls (n=37). Electrophysiological properties of the identified autoantibody were then tested in vitro with the patch clamp technique and in vivo with an experimental mouse model of immunization. RESULTS A common autoantibody response against Kir3.4 protein was detected in patients with AF and even before the development of clinically apparent AF. Kir3.4 protein forms a heterotetramer that underlies the cardiac acetylcholine-activated inwardly rectifying K+ current, IKACh. Functional studies on human induced pluripotent stem cell-derived atrial cardiomyocytes showed that anti-Kir3.4 IgG purified from patients with AF shortened action potentials and enhanced the constitutive form of IKACh, both key mediators of AF. To establish a causal relationship, we developed a mouse model of Kir3.4 autoimmunity. Electrophysiological study in Kir3.4-immunized mice showed that Kir3.4 autoantibodies significantly reduced atrial effective refractory period and predisposed animals to a 2.8-fold increased susceptibility to AF. CONCLUSIONS To our knowledge, this is the first report of an autoimmune pathogenesis of AF with direct evidence of Kir3.4 autoantibody-mediated AF.
Collapse
Affiliation(s)
- Ange Maguy
- Institute of Physiology, University of Bern, Switzerland (A.M.)
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Canada (J.-C.T., D.B.)
| | - David Busseuil
- Montreal Heart Institute, Université de Montréal, Canada (J.-C.T., D.B.)
| | - Jin Li
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Switzerland (J.L.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland (J.L.)
| |
Collapse
|
18
|
Calvet C, Seebeck P. What to consider for ECG in mice-with special emphasis on telemetry. Mamm Genome 2023; 34:166-179. [PMID: 36749381 PMCID: PMC10290603 DOI: 10.1007/s00335-023-09977-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Genetically or surgically altered mice are commonly used as models of human cardiovascular diseases. Electrocardiography (ECG) is the gold standard to assess cardiac electrophysiology as well as to identify cardiac phenotypes and responses to pharmacological and surgical interventions. A variety of methods are used for mouse ECG acquisition under diverse conditions, making it difficult to compare different results. Non-invasive techniques allow only short-term data acquisition and are prone to stress or anesthesia related changes in cardiac activity. Telemetry offers continuous long-term acquisition of ECG data in conscious freely moving mice in their home cage environment. Additionally, it allows acquiring data 24/7 during different activities, can be combined with different challenges and most telemetry systems collect additional physiological parameters simultaneously. However, telemetry transmitters require surgical implantation, the equipment for data acquisition is relatively expensive and analysis of the vast number of ECG data is challenging and time-consuming. This review highlights the limits of non-invasive methods with respect to telemetry. In particular, primary screening using non-invasive methods can give a first hint; however, subtle cardiac phenotypes might be masked or compensated due to anesthesia and stress during these procedures. In addition, we detail the key differences between the mouse and human ECG. It is crucial to consider these differences when analyzing ECG data in order to properly translate the insights gained from murine models to human conditions.
Collapse
Affiliation(s)
- Charlotte Calvet
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Lindovsky J, Nichtova Z, Dragano NRV, Pajuelo Reguera D, Prochazka J, Fuchs H, Marschall S, Gailus-Durner V, Sedlacek R, Hrabě de Angelis M, Rozman J, Spielmann N. A review of standardized high-throughput cardiovascular phenotyping with a link to metabolism in mice. Mamm Genome 2023; 34:107-122. [PMID: 37326672 PMCID: PMC10290615 DOI: 10.1007/s00335-023-09997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Cardiovascular diseases cause a high mortality rate worldwide and represent a major burden for health care systems. Experimental rodent models play a central role in cardiovascular disease research by effectively simulating human cardiovascular diseases. Using mice, the International Mouse Phenotyping Consortium (IMPC) aims to target each protein-coding gene and phenotype multiple organ systems in single-gene knockout models by a global network of mouse clinics. In this review, we summarize the current advances of the IMPC in cardiac research and describe in detail the diagnostic requirements of high-throughput electrocardiography and transthoracic echocardiography capable of detecting cardiac arrhythmias and cardiomyopathies in mice. Beyond that, we are linking metabolism to the heart and describing phenotypes that emerge in a set of known genes, when knocked out in mice, such as the leptin receptor (Lepr), leptin (Lep), and Bardet-Biedl syndrome 5 (Bbs5). Furthermore, we are presenting not yet associated loss-of-function genes affecting both, metabolism and the cardiovascular system, such as the RING finger protein 10 (Rfn10), F-box protein 38 (Fbxo38), and Dipeptidyl peptidase 8 (Dpp8). These extensive high-throughput data from IMPC mice provide a promising opportunity to explore genetics causing metabolic heart disease with an important translational approach.
Collapse
Affiliation(s)
- Jiri Lindovsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Zuzana Nichtova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Nathalia R. V. Dragano
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - David Pajuelo Reguera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
20
|
Liao Y, Xiang Y, Zheng M, Wang J. DeepMiceTL: a deep transfer learning based prediction of mice cardiac conduction diseases using early electrocardiograms. Brief Bioinform 2023; 24:bbad109. [PMID: 36935112 PMCID: PMC10422927 DOI: 10.1093/bib/bbad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/21/2023] Open
Abstract
Cardiac conduction disease is a major cause of morbidity and mortality worldwide. There is considerable clinical significance and an emerging need of early detection of these diseases for preventive treatment success before more severe arrhythmias occur. However, developing such early screening tools is challenging due to the lack of early electrocardiograms (ECGs) before symptoms occur in patients. Mouse models are widely used in cardiac arrhythmia research. The goal of this paper is to develop deep learning models to predict cardiac conduction diseases in mice using their early ECGs. We hypothesize that mutant mice present subtle abnormalities in their early ECGs before severe arrhythmias present. These subtle patterns can be detected by deep learning though they are hard to be identified by human eyes. We propose a deep transfer learning model, DeepMiceTL, which leverages knowledge from human ECGs to learn mouse ECG patterns. We further apply the Bayesian optimization and $k$-fold cross validation methods to tune the hyperparameters of the DeepMiceTL. Our results show that DeepMiceTL achieves a promising performance (F1-score: 83.8%, accuracy: 84.8%) in predicting the occurrence of cardiac conduction diseases using early mouse ECGs. This study is among the first efforts that use state-of-the-art deep transfer learning to identify ECG patterns during the early course of cardiac conduction disease in mice. Our approach not only could help in cardiac conduction disease research in mice, but also suggest a feasibility for early clinical diagnosis of human cardiac conduction diseases and other types of cardiac arrythmias using deep transfer learning in the future.
Collapse
Affiliation(s)
- Ying Liao
- Department of Industrial, Manufacturing & Systems Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Yisha Xiang
- Department of Industrial Engineering, University of Houston, Houston, Texas, USA
| | - Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
21
|
Characterization of sinoatrial automaticity in Microcebus murinus to study the effect of aging on cardiac activity and the correlation with longevity. Sci Rep 2023; 13:3054. [PMID: 36810863 PMCID: PMC9944915 DOI: 10.1038/s41598-023-29723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Microcebus murinus, or gray mouse lemur (GML), is one of the smallest primates known, with a size in between mice and rats. The small size, genetic proximity to humans and prolonged senescence, make this lemur an emerging model for neurodegenerative diseases. For the same reasons, it could help understand how aging affects cardiac activity. Here, we provide the first characterization of sinoatrial (SAN) pacemaker activity and of the effect of aging on GML heart rate (HR). According to GML size, its heartbeat and intrinsic pacemaker frequencies lie in between those of mice and rats. To sustain this fast automaticity the GML SAN expresses funny and Ca2+ currents (If, ICa,L and ICa,T) at densities similar to that of small rodents. SAN automaticity was also responsive to β-adrenergic and cholinergic pharmacological stimulation, showing a consequent shift in the localization of the origin of pacemaker activity. We found that aging causes decrease of basal HR and atrial remodeling in GML. We also estimated that, over 12 years of a lifetime, GML generates about 3 billion heartbeats, thus, as many as humans and three times more than rodents of equivalent size. In addition, we estimated that the high number of heartbeats per lifetime is a characteristic that distinguishes primates from rodents or other eutherian mammals, independently from body size. Thus, cardiac endurance could contribute to the exceptional longevity of GML and other primates, suggesting that GML's heart sustains a workload comparable to that of humans in a lifetime. In conclusion, despite the fast HR, GML replicates some of the cardiac deficiencies reported in old people, providing a suitable model to study heart rhythm impairment in aging. Moreover, we estimated that, along with humans and other primates, GML presents a remarkable cardiac longevity, enabling longer life span than other mammals of equivalent size.
Collapse
|
22
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
23
|
Carll AP, Arab C, Salatini R, Miles MD, Nystoriak MA, Fulghum KL, Riggs DW, Shirk GA, Theis WS, Talebi N, Bhatnagar A, Conklin DJ. E-cigarettes and their lone constituents induce cardiac arrhythmia and conduction defects in mice. Nat Commun 2022; 13:6088. [PMID: 36284091 PMCID: PMC9596490 DOI: 10.1038/s41467-022-33203-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/24/2022] [Indexed: 01/11/2023] Open
Abstract
E-cigarette use has surged, but the long-term health effects remain unknown. E-cigarette aerosols containing nicotine and acrolein, a combustion and e-cigarette byproduct, may impair cardiac electrophysiology through autonomic imbalance. Here we show in mouse electrocardiograms that acute inhalation of e-cigarette aerosols disturbs cardiac conduction, in part through parasympathetic modulation. We demonstrate that, similar to acrolein or combustible cigarette smoke, aerosols from e-cigarette solvents (vegetable glycerin and propylene glycol) induce bradycardia, bradyarrhythmias, and elevations in heart rate variability during inhalation exposure, with inverse post-exposure effects. These effects are slighter with tobacco- or menthol-flavored aerosols containing nicotine, and in female mice. Yet, menthol-flavored and PG aerosols also increase ventricular arrhythmias and augment early ventricular repolarization (J amplitude), while menthol uniquely alters atrial and atrioventricular conduction. Exposure to e-cigarette aerosols from vegetable glycerin and its byproduct, acrolein, diminish heart rate and early repolarization. The pro-arrhythmic effects of solvent aerosols on ventricular repolarization and heart rate variability depend partly on parasympathetic modulation, whereas ventricular arrhythmias positively associate with early repolarization dependent on the presence of nicotine. Our study indicates that chemical constituents of e-cigarettes could contribute to cardiac risk by provoking pro-arrhythmic changes and stimulating autonomic reflexes.
Collapse
Affiliation(s)
- Alex P Carll
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA.
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA.
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Claudia Arab
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Cardiology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Salatini
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Meredith D Miles
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Matthew A Nystoriak
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kyle L Fulghum
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel W Riggs
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Epidemiology and Population Health, University of Louisville, Louisville, KY, USA
| | - Gregg A Shirk
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Whitney S Theis
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Nima Talebi
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center, Louisville, KY, USA
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, School of Medicine, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
24
|
Mulla W, Murninkas M, Levi O, Etzion Y. Incorrectly corrected? QT interval analysis in rats and mice. Front Physiol 2022; 13:1002203. [PMID: 36304573 PMCID: PMC9595597 DOI: 10.3389/fphys.2022.1002203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
QT interval, a surrogate measure for ventricular action potential duration (APD) in the surface ECG, is widely used to identify cardiac abnormalities and drug safety. In humans, cardiac APD and QT interval are prominently affected by heart rate (HR), leading to widely accepted formulas to correct the QT interval for HR changes (QT corrected - QTc). While QTc is widely used in the clinic, the proper way to correct the QT interval in small mammals such as rats and mice is not clear. Over the years, empiric correction formulas were developed for rats and mice, which are widely used in the literature. Recent experimental findings obtained from pharmacological and direct pacing experiments in unanesthetized rodents show that the rate-adaptation properties are markedly different from those in humans and the use of existing QTc formulae can lead to major errors in data interpretation. In the present review, these experimental findings are summarized and discussed.
Collapse
Affiliation(s)
- Wesam Mulla
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Wesam Mulla, ; Yoram Etzion,
| | - Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Or Levi
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Wesam Mulla, ; Yoram Etzion,
| |
Collapse
|
25
|
Favere K, Van Fraeyenhove J, Jacobs G, Bosman M, Eens S, De Sutter J, Miljoen H, Guns PJ, De Keulenaer GW, Segers VFM, Heidbuchel H. Cardiac electrophysiology studies in mice via the transjugular route: a comprehensive practical guide. Am J Physiol Heart Circ Physiol 2022; 323:H763-H773. [PMID: 36018757 DOI: 10.1152/ajpheart.00337.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac arrhythmias are associated with cardiovascular morbidity and mortality. Cardiac electrophysiology studies (EPS) use intracardiac catheter recording and stimulation for profound evaluation of the heart's electrical properties. The main clinical application is investigation and treatment of rhythm disorders. These techniques have been translated to the murine setting to open opportunities for detailed evaluation of the impact of different characteristics (including genetics) and interventions on cardiac electrophysiology and -pathology. Currently, a detailed description of the technique of murine transjugular EPS (which is the standard route of catheter introduction) is lacking. This article provides detailed information on EPS in mice via the transjugular route. This includes catheter placement, stimulation protocols, intracardiac tracing interpretation, artefact reduction and surface ECG recording. In addition, reference values as obtained in C57BL/6N mice are presented for common electrophysiological parameters. This detailed methodological description aims to increase accessibility and standardisation of EPS in mice. Ultimately, also human research and patient care may benefit from translation of the knowledge obtained in preclinical models using this technique.
Collapse
Affiliation(s)
- Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium.,Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Jens Van Fraeyenhove
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Griet Jacobs
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Sander Eens
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium.,Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Johan De Sutter
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hielko Miljoen
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, ZNA Middelheim Hospital, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium.,Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
26
|
George RM, Guo S, Firulli BA, Rubart M, Firulli AB. Neonatal Deletion of Hand1 and Hand2 within Murine Cardiac Conduction System Reveals a Novel Role for HAND2 in Rhythm Homeostasis. J Cardiovasc Dev Dis 2022; 9:214. [PMID: 35877576 PMCID: PMC9324487 DOI: 10.3390/jcdd9070214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiac conduction system, a network of specialized cells, is required for the functioning of the heart. The basic helix loop helix factors Hand1 and Hand2 are required for cardiac morphogenesis and have been implicated in cardiac conduction system development and maintenance. Here we use embryonic and post-natal specific Cre lines to interrogate the role of Hand1 and Hand2 in the function of the murine cardiac conduction system. Results demonstrate that loss of HAND1 in the post-natal conduction system does not result in any change in electrocardiogram parameters or within the ventricular conduction system as determined by optical voltage mapping. Deletion of Hand2 within the post-natal conduction system results in sex-dependent reduction in PR interval duration in these mice, suggesting a novel role for HAND2 in regulating the atrioventricular conduction. Surprisingly, results show that loss of both HAND factors within the post-natal conduction system does not cause any consistent changes in cardiac conduction system function. Deletion of Hand2 in the embryonic left ventricle results in inconsistent prolongation of PR interval and susceptibility to atrial arrhythmias. Thus, these results suggest a novel role for HAND2 in homeostasis of the murine cardiac conduction system and that HAND1 loss potentially rescues the shortened HAND2 PR phenotype.
Collapse
Affiliation(s)
- Rajani M. George
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| | - Shuai Guo
- Division of Cardiology, Department of Medicine, The Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| | - Michael Rubart
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
- Division of Cardiology, Department of Medicine, The Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| |
Collapse
|
27
|
Widatalla N, Funamoto K, Kawataki M, Yoshida C, Funamoto K, Saito M, Kasahara Y, Khandoker A, Kimura Y. Model-based estimation of QT intervals of mouse fetal electrocardiogram. Biomed Eng Online 2022; 21:45. [PMID: 35768841 PMCID: PMC9245267 DOI: 10.1186/s12938-022-01015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Background Abnormal prolongation in the QT interval or long QT syndrome (LQTS) is associated with several cardiac complications such as sudden infant death syndrome (SIDS). LQTS is believed to be linked to genetic mutations which can be understood by using animal models, such as mice models. Nevertheless, the research related to fetal QT interval in mice is still limited because of challenges associated with T wave measurements in fetal electrocardiogram (fECG). Reliable measurement of T waves is essential for estimating their end timings for QT interval assessment. Results A mathematical model was used to estimate QT intervals. Estimated QT intervals were validated with Q-aortic closure (Q-Ac) intervals of Doppler ultrasound (DUS) and comparison between both showed good agreement with a correlation coefficient higher than 0.88 (r > 0.88, P < 0.05). Conclusion Model-based estimation of QT intervals can help in better understanding of QT intervals in fetal mice.
Collapse
Affiliation(s)
- Namareq Widatalla
- School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | | | | | - Chihiro Yoshida
- School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kenichi Funamoto
- School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masatoshi Saito
- School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiyuki Kasahara
- School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | | | - Yoshitaka Kimura
- School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
28
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
29
|
Muñoz M, Eren Cimenci C, Goel K, Comtois-Bona M, Hossain M, McTiernan C, Zuñiga-Bustos M, Ross A, Truong B, Davis DR, Liang W, Rotstein B, Ruel M, Poblete H, Suuronen EJ, Alarcon EI. Nanoengineered Sprayable Therapy for Treating Myocardial Infarction. ACS NANO 2022; 16:3522-3537. [PMID: 35157804 DOI: 10.1021/acsnano.1c08890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the development, as well as the in vitro and in vivo testing, of a sprayable nanotherapeutic that uses surface engineered custom-designed multiarmed peptide grafted nanogold for on-the-spot coating of an infarcted myocardial surface. When applied to mouse hearts, 1 week after infarction, the spray-on treatment resulted in an increase in cardiac function (2.4-fold), muscle contractility, and myocardial electrical conductivity. The applied nanogold remained at the treatment site 28 days postapplication with no off-target organ infiltration. Further, the infarct size in the mice that received treatment was found to be <10% of the total left ventricle area, while the number of blood vessels, prohealing macrophages, and cardiomyocytes increased to levels comparable to that of a healthy animal. Our cumulative data suggest that the therapeutic action of our spray-on nanotherapeutic is highly effective, and in practice, its application is simpler than other regenerative approaches for treating an infarcted heart.
Collapse
Affiliation(s)
- Marcelo Muñoz
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Cagla Eren Cimenci
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Keshav Goel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Maxime Comtois-Bona
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Mahir Hossain
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Christopher McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Matias Zuñiga-Bustos
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 2 Norte 685, 3460000, Talca, Chile
| | - Alex Ross
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Brenda Truong
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
- Cardiac Electrophysiology Lab, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
- Cardiac Electrophysiology Lab, University of Ottawa, Ottawa, Ontario K1Y 4W7, Canada
| | - Benjamin Rotstein
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Molecular Imaging Probes and Radiochemistry Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Marc Ruel
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Horacio Poblete
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, 2 Norte 685, 3460000, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 2 Norte 685, 3460000 Talca, Chile
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
- Molecular Imaging Probes and Radiochemistry Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| |
Collapse
|
30
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Sirish P, Diloretto DA, Thai PN, Chiamvimonvat N. The Critical Roles of Proteostasis and Endoplasmic Reticulum Stress in Atrial Fibrillation. Front Physiol 2022; 12:793171. [PMID: 35058801 PMCID: PMC8764384 DOI: 10.3389/fphys.2021.793171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) remains the most common arrhythmia seen clinically. The incidence of AF is increasing due to the aging population. AF is associated with a significant increase in morbidity and mortality, yet current treatment paradigms have proven largely inadequate. Therefore, there is an urgent need to develop new effective therapeutic strategies for AF. The endoplasmic reticulum (ER) in the heart plays critical roles in the regulation of excitation-contraction coupling and cardiac function. Perturbation in the ER homeostasis due to intrinsic and extrinsic factors, such as inflammation, oxidative stress, and ischemia, leads to ER stress that has been linked to multiple conditions including diabetes mellitus, neurodegeneration, cancer, heart disease, and cardiac arrhythmias. Recent studies have documented the critical roles of ER stress in the pathophysiological basis of AF. Using an animal model of chronic pressure overload, we demonstrate a significant increase in ER stress in atrial tissues. Moreover, we demonstrate that treatment with a small molecule inhibitor to inhibit the soluble epoxide hydrolase enzyme in the arachidonic acid metabolism significantly reduces ER stress as well as atrial electrical and structural remodeling. The current review article will attempt to provide a perspective on our recent understandings and current knowledge gaps on the critical roles of proteostasis and ER stress in AF progression.
Collapse
Affiliation(s)
- Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | - Daphne A Diloretto
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States.,Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Pozo MR, Meredith GW, Entcheva E. Human iPSC-Cardiomyocytes as an Experimental Model to Study Epigenetic Modifiers of Electrophysiology. Cells 2022; 11:200. [PMID: 35053315 PMCID: PMC8774228 DOI: 10.3390/cells11020200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing-HDAC inhibitors (HDACi)-targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.
Collapse
Affiliation(s)
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA; (M.R.P.); (G.W.M.)
| |
Collapse
|
33
|
van Weperen VYH, Vos MA, Ajijola OA. Autonomic modulation of ventricular electrical activity: recent developments and clinical implications. Clin Auton Res 2021; 31:659-676. [PMID: 34591191 PMCID: PMC8629778 DOI: 10.1007/s10286-021-00823-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE This review aimed to provide a complete overview of the current stance and recent developments in antiarrhythmic neuromodulatory interventions, focusing on lifethreatening vetricular arrhythmias. METHODS Both preclinical studies and clinical studies were assessed to highlight the gaps in knowledge that remain to be answered and the necessary steps required to properly translate these strategies to the clinical setting. RESULTS Cardiac autonomic imbalance, characterized by chronic sympathoexcitation and parasympathetic withdrawal, destabilizes cardiac electrophysiology and promotes ventricular arrhythmogenesis. Therefore, neuromodulatory interventions that target the sympatho-vagal imbalance have emerged as promising antiarrhythmic strategies. These strategies are aimed at different parts of the cardiac neuraxis and directly or indirectly restore cardiac autonomic tone. These interventions include pharmacological blockade of sympathetic neurotransmitters and neuropeptides, cardiac sympathetic denervation, thoracic epidural anesthesia, and spinal cord and vagal nerve stimulation. CONCLUSION Neuromodulatory strategies have repeatedly been demonstrated to be highly effective and very promising anti-arrhythmic therapies. Nevertheless, there is still much room to gain in our understanding of neurocardiac physiology, refining the current neuromodulatory strategic options and elucidating the chronic effects of many of these strategic options.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA
| | - Marc A Vos
- Department of Medical Physiology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Center, UCLA Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, University of California, 100 Medical Plaza, Suite 660, Westwood Blvd, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
34
|
Analysis of vulnerability to reentry in acute myocardial ischemia using a realistic human heart model. Comput Biol Med 2021; 141:105038. [PMID: 34836624 DOI: 10.1016/j.compbiomed.2021.105038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022]
Abstract
Electrophysiological alterations of the myocardium caused by acute ischemia constitute a pro-arrhythmic substrate for the generation of potentially lethal arrhythmias. Experimental evidence has shown that the main components of acute ischemia that induce these electrophysiological alterations are hyperkalemia, hypoxia (or anoxia in complete artery occlusion), and acidosis. However, the influence of each ischemic component on the likelihood of reentry is not completely established. Moreover, the role of the His-Purkinje system (HPS) in the initiation and maintenance of arrhythmias is not completely understood. In the present work, we investigate how the three components of ischemia affect the vulnerable window (VW) for reentry using computational simulations. In addition, we analyze the role of the HPS on arrhythmogenesis. A 3D biventricular/torso human model that includes a realistic geometry of the central and border ischemic zones with one of the most electrophysiologically detailed model of ischemia to date, as well as a realistic cardiac conduction system, were used to assess the VW for reentry. Four scenarios of ischemic severity corresponding to different minutes after coronary artery occlusion were simulated. Our results suggest that ischemic severity plays an important role in the generation of reentries. Indeed, this is the first 3D simulation study to show that ventricular arrhythmias could be generated under moderate ischemic conditions, but not in mild and severe ischemia. Moreover, our results show that anoxia is the ischemic component with the most significant effect on the width of the VW. Thus, a change in the level of anoxia from moderate to severe leads to a greater increment in the VW (40 ms), in comparison with the increment of 20 ms and 35 ms produced by the individual change in the level of hyperkalemia and acidosis, respectively. Finally, the HPS was a necessary element for the generation of approximately 17% of reentries obtained. The retrograde conduction from the myocardium to HPS in the ischemic region, conduction blocks in discrete sections of the HPS, and the degree of ischemia affecting Purkinje cells, are suggested as mechanisms that favor the generation of ventricular arrhythmias.
Collapse
|
35
|
A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: extrapolation of experimental insights to clinic. Lab Anim Res 2021; 37:25. [PMID: 34496976 PMCID: PMC8424989 DOI: 10.1186/s42826-021-00102-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
Electrocardiogram (ECG) is a non-invasive valuable diagnostic tool that is used in clinics for investigation and monitoring of heart electrical rhythm/conduction, ischemia/injury of heart, electrolyte disturbances and agents/drugs induced cardiac toxicity. Nowadays using animal models to study heart diseases such as electrical and mechanical disturbance is common. In addition, given to ethical consideration and availability, the use of small rodents has been a top priority for cardiovascular researchers. However, extrapolation of experimental findings from the lab to the clinic needs sufficient basic knowledge of similarities and differences between heart action potential and ECG of rodents and humans in normal and disease conditions. This review compares types of human action potentials, the dominant ion currents during action potential phases, alteration in ion channels activities in channelopathies-induced arrhythmias and the ECG appearance of mouse, rat, guinea pig, rabbit and human. Also, it briefly discusses the responsiveness and alterations in ECG following some interventions such as cardiac injury and arrhythmia induction. Overall, it provides a roadmap for researchers in selecting the best animal model/species whose studies results can be translated into clinical practice. In addition, this study will also be useful to biologists, physiologists, pharmacologists, veterinarians and physicians working in the fields of comparative physiology, pharmacology, toxicology and diseases.
Collapse
|
36
|
Warhol A, George SA, Obaid SN, Efimova T, Efimov IR. Differential cardiotoxic electrocardiographic response to doxorubicin treatment in conscious versus anesthetized mice. Physiol Rep 2021; 9:e14987. [PMID: 34337891 PMCID: PMC8327163 DOI: 10.14814/phy2.14987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Doxorubicin (DOX), an anticancer drug used in chemotherapy, causes significant cardiotoxicity. This study aimed to investigate the effects of DOX on mouse cardiac electrophysiology, in conscious versus anesthetized state. METHODS Male and female C57BL/6 mice were injected with saline, 20 or 30 mg/kg DOX. ECGs were recorded 5 days post-injection in conscious and isoflurane anesthetized states. ECGs were analyzed using a custom MATLAB software to determine P, PR, QRS, QTc, and RR intervals as well as heart rate variability (HRV). RESULTS ECGs from the same mouse demonstrated P wave and QTc shortening as well as PR and RR interval prolongation in anesthetized versus conscious saline-treated mice. ECG response to DOX was also modulated by anesthesia. DOX treatment induced significant ECG modulation in female mice alone. While DOX20 treatment caused decrease in P and QRS durations, DOX30 treatment-induced QTc and RR interval prolongation in anesthetized but not in conscious female mice. These data suggest significant sex differences and anesthesia-induced differences in ECG response to DOX. HRV measured in time and frequency domains, a metric of arrhythmia susceptibility, was increased in DOX20-treated mice compared to saline. CONCLUSIONS This study for the first time identifies that the ECG response to DOX is modulated by anesthesia. Furthermore, this response demonstrated stark sex differences. These findings could have significant implications in clinical diagnosis of DOX cardiotoxicity.
Collapse
Affiliation(s)
- Anna Warhol
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Sharon A. George
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Sofian N. Obaid
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Tatiana Efimova
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- The GW Cancer CenterThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Igor R. Efimov
- Department of Biomedical EngineeringThe George Washington UniversityWashingtonDCUSA
- The GW Cancer CenterThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| |
Collapse
|
37
|
Díaz Del Moral S, Barrena S, Hernández-Torres F, Aránega A, Villaescusa JM, Gómez Doblas JJ, Franco D, Jiménez-Navarro M, Muñoz-Chápuli R, Carmona R. Deletion of the Wilms' Tumor Suppressor Gene in the Cardiac Troponin-T Lineage Reveals Novel Functions of WT1 in Heart Development. Front Cell Dev Biol 2021; 9:683861. [PMID: 34368133 PMCID: PMC8339973 DOI: 10.3389/fcell.2021.683861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Expression of Wilms’ tumor suppressor transcription factor (WT1) in the embryonic epicardium is essential for cardiac development, but its myocardial expression is little known. We have found that WT1 is expressed at low levels in 20–25% of the embryonic cardiomyocytes. Conditional ablation of WT1 using a cardiac troponin T driver (Tnnt2Cre) caused abnormal sinus venosus and atrium development, lack of pectinate muscles, thin ventricular myocardium and, in some cases, interventricular septum and cardiac wall defects, ventricular diverticula and aneurisms. Coronary development was normal and there was not embryonic lethality, although survival of adult mutant mice was reduced probably due to perinatal mortality. Adult mutant mice showed electrocardiographic anomalies, including increased RR and QRS intervals, and decreased PR intervals. RNASeq analysis identified differential expression of 137 genes in the E13.5 mutant heart as compared to controls. GO functional enrichment analysis suggested that both calcium ion regulation and modulation of potassium channels are deeply altered in the mutant myocardium. In summary, together with its essential function in the embryonic epicardium, myocardial WT1 expression is also required for normal cardiac development.
Collapse
Affiliation(s)
| | - Silvia Barrena
- Department of Animal Biology, University of Málaga, Málaga, Spain
| | - Francisco Hernández-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain.,Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Amelia Aránega
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain.,Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - José Manuel Villaescusa
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | - Juan José Gómez Doblas
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manuel Jiménez-Navarro
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | | | - Rita Carmona
- Department of Animal Biology, University of Málaga, Málaga, Spain
| |
Collapse
|
38
|
Chelko SP, Keceli G, Carpi A, Doti N, Agrimi J, Asimaki A, Beti CB, Miyamoto M, Amat-Codina N, Bedja D, Wei AC, Murray B, Tichnell C, Kwon C, Calkins H, James CA, O'Rourke B, Halushka MK, Melloni E, Saffitz JE, Judge DP, Ruvo M, Kitsis RN, Andersen P, Di Lisa F, Paolocci N. Exercise triggers CAPN1-mediated AIF truncation, inducing myocyte cell death in arrhythmogenic cardiomyopathy. Sci Transl Med 2021; 13:13/581/eabf0891. [PMID: 33597260 DOI: 10.1126/scitranslmed.abf0891] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Myocyte death occurs in many inherited and acquired cardiomyopathies, including arrhythmogenic cardiomyopathy (ACM), a genetic heart disease plagued by the prevalence of sudden cardiac death. Individuals with ACM and harboring pathogenic desmosomal variants, such as desmoglein-2 (DSG2), often show myocyte necrosis with progression to exercise-associated heart failure. Here, we showed that homozygous Dsg2 mutant mice (Dsg2 mut/mut), a model of ACM, die prematurely during swimming and display myocardial dysfunction and necrosis. We detected calcium (Ca2+) overload in Dsg2 mut/mut hearts, which induced calpain-1 (CAPN1) activation, association of CAPN1 with mitochondria, and CAPN1-induced cleavage of mitochondrial-bound apoptosis-inducing factor (AIF). Cleaved AIF translocated to the myocyte nucleus triggering large-scale DNA fragmentation and cell death, an effect potentiated by mitochondrial-driven AIF oxidation. Posttranslational oxidation of AIF cysteine residues was due, in part, to a depleted mitochondrial thioredoxin-2 redox system. Hearts from exercised Dsg2 mut/mut mice were depleted of calpastatin (CAST), an endogenous CAPN1 inhibitor, and overexpressing CAST in myocytes protected against Ca2+ overload-induced necrosis. When cardiomyocytes differentiated from Dsg2 mut/mut embryonic stem cells (ES-CMs) were challenged with β-adrenergic stimulation, CAPN1 inhibition attenuated CAPN1-induced AIF truncation. In addition, pretreatment of Dsg2 mut/mut ES-CMs with an AIF-mimetic peptide, mirroring the cyclophilin-A (PPIA) binding site of AIF, blocked PPIA-mediated AIF-nuclear translocation, and reduced both apoptosis and necrosis. Thus, preventing CAPN1-induced AIF-truncation or barring binding of AIF to the nuclear chaperone, PPIA, may avert myocyte death and, ultimately, disease progression to heart failure in ACM and likely other forms of cardiomyopathies.
Collapse
Affiliation(s)
- Stephen P Chelko
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA. .,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Angeliki Asimaki
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Carlos Bueno Beti
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London WC1E 6BS, UK
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nuria Amat-Codina
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - An-Chi Wei
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Edon Melloni
- Department of Medicine, University of Genova, Genova 16126, Italy
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 20115, USA
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Medical University of South Carolina, Charleston, SC 29425, USA
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Naples 80134, Italy
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. .,Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| |
Collapse
|
39
|
Hawthorne RN, Blazeski A, Lowenthal J, Kannan S, Teuben R, DiSilvestre D, Morrissette-McAlmon J, Saffitz JE, Boheler KR, James CA, Chelko SP, Tomaselli G, Tung L. Altered Electrical, Biomolecular, and Immunologic Phenotypes in a Novel Patient-Derived Stem Cell Model of Desmoglein-2 Mutant ARVC. J Clin Med 2021; 10:jcm10143061. [PMID: 34300226 PMCID: PMC8306340 DOI: 10.3390/jcm10143061] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive heart condition which causes fibro-fatty myocardial scarring, ventricular arrhythmias, and sudden cardiac death. Most cases of ARVC can be linked to pathogenic mutations in the cardiac desmosome, but the pathophysiology is not well understood, particularly in early phases when arrhythmias can develop prior to structural changes. Here, we created a novel human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of ARVC from a patient with a c.2358delA variant in desmoglein-2 (DSG2). These DSG2-mutant (DSG2Mut) hiPSC-CMs were compared against two wildtype hiPSC-CM lines via immunostaining, RT-qPCR, Western blot, RNA-Seq, cytokine expression and optical mapping. Mutant cells expressed reduced DSG2 mRNA and had altered localization of desmoglein-2 protein alongside thinner, more disorganized myofibrils. No major changes in other desmosomal proteins were noted. There was increased pro-inflammatory cytokine expression that may be linked to canonical and non-canonical NFκB signaling. Action potentials in DSG2Mut CMs were shorter with increased upstroke heterogeneity, while time-to-peak calcium and calcium decay rate were reduced. These were accompanied by changes in ion channel and calcium handling gene expression. Lastly, suppressing DSG2 in control lines via siRNA allowed partial recapitulation of electrical anomalies noted in DSG2Mut cells. In conclusion, the aberrant cytoskeletal organization, cytokine expression, and electrophysiology found DSG2Mut hiPSC-CMs could underlie early mechanisms of disease manifestation in ARVC patients.
Collapse
Affiliation(s)
- Robert N. Hawthorne
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adriana Blazeski
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Justin Lowenthal
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Suraj Kannan
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Roald Teuben
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Deborah DiSilvestre
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
| | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Cynthia A. James
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
| | - Stephen P. Chelko
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| | - Gordon Tomaselli
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (D.D.); (C.A.J.)
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (R.N.H.); (A.B.); (J.L.); (S.K.); (R.T.); (J.M.-M.); (K.R.B.)
- Correspondence: (S.P.C.); (G.T.); (L.T.); Tel.: +1-850-644-2215 (S.P.C.); +1-718-430-2801 (G.T.); +1-410-955-9603 (L.T.)
| |
Collapse
|
40
|
Schroder EA, Wayland JL, Samuels KM, Shah SF, Burgess DE, Seward T, Elayi CS, Esser KA, Delisle BP. Cardiomyocyte Deletion of Bmal1 Exacerbates QT- and RR-Interval Prolongation in Scn5a +/ΔKPQ Mice. Front Physiol 2021; 12:681011. [PMID: 34248669 PMCID: PMC8265216 DOI: 10.3389/fphys.2021.681011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms are generated by cell autonomous circadian clocks that perform a ubiquitous cellular time-keeping function and cell type-specific functions important for normal physiology. Studies show inducing the deletion of the core circadian clock transcription factor Bmal1 in adult mouse cardiomyocytes disrupts cardiac circadian clock function, cardiac ion channel expression, slows heart rate, and prolongs the QT-interval at slow heart rates. This study determined how inducing the deletion of Bmal1 in adult cardiomyocytes impacted the in vivo electrophysiological phenotype of a knock-in mouse model for the arrhythmogenic long QT syndrome (Scn5a +/ΔKPQ ). Electrocardiographic telemetry showed inducing the deletion of Bmal1 in the cardiomyocytes of mice with or without the ΔKPQ-Scn5a mutation increased the QT-interval at RR-intervals that were ≥130 ms. Inducing the deletion of Bmal1 in the cardiomyocytes of mice with or without the ΔKPQ-Scn5a mutation also increased the day/night rhythm-adjusted mean in the RR-interval, but it did not change the period, phase or amplitude. Compared to mice without the ΔKPQ-Scn5a mutation, mice with the ΔKPQ-Scn5a mutation had reduced heart rate variability (HRV) during the peak of the day/night rhythm in the RR-interval. Inducing the deletion of Bmal1 in cardiomyocytes did not affect HRV in mice without the ΔKPQ-Scn5a mutation, but it did increase HRV in mice with the ΔKPQ-Scn5a mutation. The data demonstrate that deleting Bmal1 in cardiomyocytes exacerbates QT- and RR-interval prolongation in mice with the ΔKPQ-Scn5a mutation.
Collapse
Affiliation(s)
- Elizabeth A. Schroder
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Internal Medicine and Pulmonary, University of Kentucky, Lexington, KY, United States
| | - Jennifer L. Wayland
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Kaitlyn M. Samuels
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Syed F. Shah
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Tanya Seward
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
41
|
Rivaud MR, Blok M, Jongbloed MRM, Boukens BJ. How Cardiac Embryology Translates into Clinical Arrhythmias. J Cardiovasc Dev Dis 2021; 8:jcdd8060070. [PMID: 34199178 PMCID: PMC8231901 DOI: 10.3390/jcdd8060070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
The electrophysiological signatures of the myocardium in cardiac structures, such as the atrioventricular node, pulmonary veins or the right ventricular outflow tract, are established during development by the spatial and temporal expression of transcription factors that guide expression of specific ion channels. Genome-wide association studies have shown that small variations in genetic regions are key to the expression of these transcription factors and thereby modulate the electrical function of the heart. Moreover, mutations in these factors are found in arrhythmogenic pathologies such as congenital atrioventricular block, as well as in specific forms of atrial fibrillation and ventricular tachycardia. In this review, we discuss the developmental origin of distinct electrophysiological structures in the heart and their involvement in cardiac arrhythmias.
Collapse
Affiliation(s)
- Mathilde R. Rivaud
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
| | - Michiel Blok
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
| | - Monique R. M. Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (M.B.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Bastiaan J. Boukens
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-566-4659
| |
Collapse
|
42
|
Lubberding AF, Zhang J, Lundh M, Nielsen TS, Søndergaard MS, Villadsen M, Skovhøj EZ, Boer GA, Hansen JB, Thomsen MB, Treebak JT, Holst JJ, Kanters JK, Mandrup-Poulsen T, Jespersen T, Emanuelli B, Torekov SS. Age-dependent transition from islet insulin hypersecretion to hyposecretion in mice with the long QT-syndrome loss-of-function mutation Kcnq1-A340V. Sci Rep 2021; 11:12253. [PMID: 34112814 PMCID: PMC8192901 DOI: 10.1038/s41598-021-90452-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
Loss-of-function (LoF) mutations in KCNQ1, encoding the voltage-gated K+ channel Kv7.1, lead to long QT syndrome 1 (LQT1). LQT1 patients also present with post-prandial hyperinsulinemia and hypoglycaemia. In contrast, KCNQ1 polymorphisms are associated with diabetes, and LQTS patients have a higher prevalence of diabetes. We developed a mouse model with a LoF Kcnq1 mutation using CRISPR-Cas9 and hypothesized that this mouse model would display QT prolongation, increased glucose-stimulated insulin secretion and allow for interrogation of Kv7.1 function in islets. Mice were characterized by electrocardiography and oral glucose tolerance tests. Ex vivo, islet glucose-induced insulin release was measured, and beta-cell area quantified by immunohistochemistry. Homozygous mice had QT prolongation. Ex vivo, glucose-stimulated insulin release was increased in islets from homozygous mice at 12–14 weeks, while beta-cell area was reduced. Non-fasting blood glucose levels were decreased at this age. In follow-up studies 8–10 weeks later, beta-cell area was similar in all groups, while glucose-stimulated insulin secretion was now reduced in islets from hetero- and homozygous mice. Non-fasting blood glucose levels had normalized. These data suggest that Kv7.1 dysfunction is involved in a transition from hyper- to hyposecretion of insulin, potentially explaining the association with both hypoglycemia and hyperglycemia in LQT1 patients.
Collapse
Affiliation(s)
- Anniek F Lubberding
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jinyi Zhang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Svava Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathilde S Søndergaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Maria Villadsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Emil Z Skovhøj
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Geke A Boer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob B Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen K Kanters
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Low human dystrophin levels prevent cardiac electrophysiological and structural remodelling in a Duchenne mouse model. Sci Rep 2021; 11:9779. [PMID: 33963238 PMCID: PMC8105358 DOI: 10.1038/s41598-021-89208-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder caused by loss of dystrophin. This lack also affects cardiac structure and function, and cardiovascular complications are a major cause of death in DMD. Newly developed therapies partially restore dystrophin expression. It is unclear whether this will be sufficient to prevent or ameliorate cardiac involvement in DMD. We here establish the cardiac electrophysiological and structural phenotype in young (2-3 months) and aged (6-13 months) dystrophin-deficient mdx mice expressing 100% human dystrophin (hDMD), 0% human dystrophin (hDMDdel52-null) or low levels (~ 5%) of human dystrophin (hDMDdel52-low). Compared to hDMD, young and aged hDMDdel52-null mice displayed conduction slowing and repolarisation abnormalities, while only aged hDMDdel52-null mice displayed increased myocardial fibrosis. Moreover, ventricular cardiomyocytes from young hDMDdel52-null animals displayed decreased sodium current and action potential (AP) upstroke velocity, and prolonged AP duration at 20% and 50% of repolarisation. Hence, cardiac electrical remodelling in hDMDdel52-null mice preceded development of structural alterations. In contrast to hDMDdel52-null, hDMDdel52-low mice showed similar electrophysiological and structural characteristics as hDMD, indicating prevention of the cardiac DMD phenotype by low levels of human dystrophin. Our findings are potentially relevant for the development of therapeutic strategies aimed at restoring dystrophin expression in DMD.
Collapse
|
44
|
Delisle BP, Stumpf JL, Wayland JL, Johnson SR, Ono M, Hall D, Burgess DE, Schroder EA. Circadian clocks regulate cardiac arrhythmia susceptibility, repolarization, and ion channels. Curr Opin Pharmacol 2021; 57:13-20. [PMID: 33181392 PMCID: PMC8240636 DOI: 10.1016/j.coph.2020.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Abstract
Daily changes in the incidence of sudden cardiac death (SCD) reveal an interaction between environmental rhythms and internal circadian rhythms. Circadian rhythms are physiological rhythms that alter physiology to anticipate daily changes in the environment. They reflect coordinated activity of cellular circadian clocks that exist throughout the body. This review provides an overview of the state of the field by summarizing the results of several different transgenic mouse models that disrupt the function of circadian clocks throughout the body, in cardiomyocytes, or in adult cardiomyocytes. These studies identify important roles for circadian clocks in regulating heart rate, ventricular repolarization, arrhythmogenesis, and the functional expression of cardiac ion channels. They highlight a new dimension in the regulation of cardiac excitability and represent initial forays into understanding the complexities of how time impacts the functional regulation of ion channels, cardiac excitability, and time of day changes in the incidence of SCD.
Collapse
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - John L Stumpf
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Jennifer L Wayland
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Sidney R Johnson
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Makoto Ono
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Dalton Hall
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Don E Burgess
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States; Department of Science and Health, Asbury University, One Macklem Drive, Wilmore, KY 40390, United States
| | - Elizabeth A Schroder
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States; Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 S. Limestone Street, L543, Lexington, KY 40536-0284, United States.
| |
Collapse
|
45
|
Soluble Epoxide Hydrolase in Aged Female Mice and Human Explanted Hearts Following Ischemic Injury. Int J Mol Sci 2021; 22:ijms22041691. [PMID: 33567578 PMCID: PMC7915306 DOI: 10.3390/ijms22041691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) accounts for a significant proportion of death and morbidity in aged individuals. The risk for MI in females increases as they enter the peri-menopausal period, generally occurring in middle-age. Cytochrome (CYP) 450 metabolizes N-3 and N-6 polyunsaturated fatty acids (PUFA) into numerous lipid mediators, oxylipids, which are further metabolised by soluble epoxide hydrolase (sEH), reducing their activity. The objective of this study was to characterize oxylipid metabolism in the left ventricle (LV) following ischemic injury in females. Human LV specimens were procured from female patients with ischemic cardiomyopathy (ICM) or non-failing controls (NFC). Female C57BL6 (WT) and sEH null mice averaging 13–16 months old underwent permanent occlusion of the left anterior descending coronary artery (LAD) to induce myocardial infarction. WT (wild type) mice received vehicle or sEH inhibitor, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (tAUCB), in their drinking water ad libitum for 28 days. Cardiac function was assessed using echocardiography and electrocardiogram. Protein expression was determined using immunoblotting, mitochondrial activity by spectrophotometry, and cardiac fibre respiration was measured using a Clark-type electrode. A full metabolite profile was determined by LC–MS/MS. sEH was significantly elevated in ischemic LV specimens from patients, associated with fundamental changes in oxylipid metabolite formation and significant decreases in mitochondrial enzymatic function. In mice, pre-treatment with tAUCB or genetic deletion of sEH significantly improved survival, preserved cardiac function, and maintained mitochondrial quality following MI in female mice. These data indicate that sEH may be a relevant pharmacologic target for women with MI. Although future studies are needed to determine the mechanisms, in this pilot study we suggest targeting sEH may be an effective strategy for reducing ischemic injury and mortality in middle-aged females.
Collapse
|
46
|
Nieto-Marín P, Tinaquero D, Utrilla RG, Cebrián J, González-Guerra A, Crespo-García T, Cámara-Checa A, Rubio-Alarcón M, Dago M, Alfayate S, Filgueiras D, Peinado R, López-Sendón JL, Jalife J, Tamargo J, Bernal JA, Caballero R, Delpón E. Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome. Cardiovasc Res 2021; 118:1046-1060. [PMID: 33576403 DOI: 10.1093/cvr/cvab045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS The transcription factor Tbx5 controls cardiogenesis and drives Scn5a expression in mice. We have identified two variants in TBX5 encoding p.D111Y and p.F206L Tbx5, respectively, in two unrelated patients with structurally normal hearts diagnosed with Long QT (LQTS) and Brugada (BrS) Syndrome. Here we characterized the consequences of each variant to unravel the underlying disease mechanisms. METHODS AND RESULTS We combined clinical analysis with in vivo and in vitro electrophysiological and molecular techniques in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), HL-1 cells, and cardiomyocytes from mice trans-expressing human wildtype (WT) or mutant proteins. Tbx5 increased transcription of SCN5A encoding cardiac Nav1.5 channels, while repressing CAMK2D and SPTBN4 genes encoding Ca-calmodulin kinase IIδ (CaMKIIδ) and βIV-spectrin, respectively. These effects significantly increased Na current (INa) in hiPSC-CMs and in cardiomyocytes from mice trans-expressing Tbx5. Consequently, action potential (AP) amplitudes increased and QRS interval narrowed in the mouse electrocardiogram. p.F206L Tbx5 bound to the SCN5A promoter failed to transactivate it, thus precluding the pro-transcriptional effect of WT Tbx5. Therefore, p.F206L markedly decreased INa in hiPSC-CM, HL-1 cells, and mouse cardiomyocytes. The INa decrease in p.F206L trans-expressing mice translated into QRS widening and increased flecainide sensitivity. p.D111Y Tbx5 increased SCN5A expression but failed to repress CAMK2D and SPTBN4. The increased CaMKIIδ and βIV-spectrin significantly augmented the late component of INa (INaL) which, in turn, significantly prolonged AP duration in both hiPSC-CMs and mouse cardiomyocytes. Ranolazine, a selective INaL inhibitor, eliminated the QT and QTc intervals prolongation seen in p.D111Y trans-expressing mice. CONCLUSIONS In addition to peak INa, Tbx5 critically regulates INaL and the duration of repolarization in human cardiomyocytes. Our original results suggest that TBX5 variants associate with and modulate the intensity of the electrical phenotype in LQTS and BrS patients.
Collapse
Affiliation(s)
- Paloma Nieto-Marín
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Tinaquero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | | - Teresa Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Silvia Alfayate
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Filgueiras
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Rafael Peinado
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Luis López-Sendón
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Jalife
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain.,Departments of Internal Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Juan Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Juan Antonio Bernal
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | |
Collapse
|
47
|
Perry MD, Ng CA, Mangala MM, Ng TYM, Hines AD, Liang W, Xu MJO, Hill AP, Vandenberg JI. Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization. Cardiovasc Res 2021; 116:1434-1445. [PMID: 31628797 DOI: 10.1093/cvr/cvz247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Current treatment for congenital long QT syndrome Type 2 (cLQTS2), an electrical disorder that increases the risk of life-threatening cardiac arrhythmias, is aimed at reducing the incidence of arrhythmia triggers (beta-blockers) or terminating the arrhythmia after onset (implantable cardioverter-defibrillator). An alternative strategy is to target the underlying disease mechanism, which is reduced rapid delayed rectifier current (IKr) passed by Kv11.1 channels. Small molecule activators of Kv11.1 have been identified but the extent to which these can restore normal cardiac signalling in cLQTS2 backgrounds remains unclear. Here, we examined the ability of ICA-105574, an activator of Kv11.1 that impairs transition to the inactivated state, to restore function to heterozygous Kv11.1 channels containing either inactivation enhanced (T618S, N633S) or expression deficient (A422T) mutations. METHODS AND RESULTS ICA-105574 effectively restored Kv11.1 current from heterozygous inactivation enhanced or expression defective mutant channels in heterologous expression systems. In a human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of cLQTS2 containing the expression defective Kv11.1 mutant A422T, cardiac repolarization, estimated from the duration of calcium transients in isolated cells and the rate corrected field potential duration (FPDc) in culture monolayers of cells, was significantly prolonged. The Kv11.1 activator ICA-105574 was able to reverse the prolonged repolarization in a concentration-dependent manner. However, at higher doses, ICA-105574 produced a shortening of the FPDc compared to controls. In vitro and in silico analysis suggests that this overcorrection occurs as a result of a temporal redistribution of the peak IKr to much earlier in the plateau phase of the action potential, which results in early repolarization. CONCLUSION Kv11.1 activators, which target the primary disease mechanism, provide a possible treatment option for cLQTS2, with the caveat that there may be a risk of overcorrection that could itself be pro-arrhythmic.
Collapse
Affiliation(s)
- Matthew D Perry
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Melissa M Mangala
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
| | - Timothy Y M Ng
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Adam D Hines
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,Queensland Brain Institute, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Whitney Liang
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia
| | - Michelle J O Xu
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Joyce W, Scholman KT, Jensen B, Wang T, Boukens BJ. α 1-adrenergic stimulation increases ventricular action potential duration in the intact mouse heart. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of α1-adrenergic receptors (α-ARs) in the regulation of myocardial function is less well-understood than that of β-ARs. Previous reports in the mouse heart have described that α1-adrenergic stimulation shortens action potential duration in isolated cells or tissues, in contrast to prolongation of the action potential reported in most other mammalian hearts. It has since become appreciated, however, that the mouse heart exhibits marked variation in inotropic response to α1-adrenergic stimulation between ventricles and even individual cardiomyocytes. We investigated the effects of α1-adrenergic stimulation on action potential duration at 80% of repolarization in the right and left ventricles of Langendorff-perfused mouse hearts using optical mapping. In hearts under β-adrenergic blockade (propranolol), phenylephrine or noradrenaline perfusion both increased action potential duration in both ventricles. The increased action potential duration was partially reversed by subsequent perfusion with the α-adrenergic antagonist phentolamine (1 μmol L−1). These data show that α1-receptor stimulation may lead to a prolonging of action potential in the mouse heart and thereby refine our understanding of how action potential duration adjusts during sympathetic stimulation.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology—Zoophysiology, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Koen T. Scholman
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 11005 AZ Amsterdam, the Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 11005 AZ Amsterdam, the Netherlands
| | - Tobias Wang
- Department of Biology—Zoophysiology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bastiaan J. Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 11005 AZ Amsterdam, the Netherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1100 DD Amsterdam, the Netherlands
| |
Collapse
|
49
|
Reilly M, Bruno CD, Prudencio TM, Ciccarelli N, Guerrelli D, Nair R, Ramadan M, Luban NLC, Posnack NG. Potential Consequences of the Red Blood Cell Storage Lesion on Cardiac Electrophysiology. J Am Heart Assoc 2020; 9:e017748. [PMID: 33086931 PMCID: PMC7763412 DOI: 10.1161/jaha.120.017748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Background The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity. Methods and Results Donor RBCs were processed using standard blood-banking techniques. The supernatant was collected from RBC units, 7 to 50 days after donor collection, for evaluation using Langendorff-heart preparations (rat) or human induced pluripotent stem cell-derived cardiomyocytes. Cardiac parameters remained stable following exposure to "fresh" supernatant from red blood cell units (day 7: 5.8±0.2 mM K+), but older blood products (day 40: 9.3±0.3 mM K+) caused bradycardia (baseline: 279±5 versus day 40: 216±18 beats per minute), delayed sinus node recovery (baseline: 243±8 versus day 40: 354±23 ms), and increased the effective refractory period of the atrioventricular node (baseline: 77±2 versus day 40: 93±7 ms) and ventricle (baseline: 50±3 versus day 40: 98±10 ms) in perfused hearts. Beating rate was also slowed in human induced pluripotent stem cell-derived cardiomyocytes after exposure to older supernatant from red blood cell units (-75±9%, day 40 versus control). Similar effects on automaticity and electrical conduction were observed with hyperkalemia (10-12 mM K+). Conclusions This is the first study to demonstrate that "older" blood products directly impact cardiac electrophysiology, using experimental models. These effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including, but not limited to hyperkalemia. Patients receiving large volume and/or rapid transfusions may be sensitive to these effects.
Collapse
Affiliation(s)
- Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Chantal D. Bruno
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Division of Critical Care MedicineChildren’s National HospitalWashingtonDC
| | - Tomas M. Prudencio
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Nina Ciccarelli
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Raj Nair
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
| | - Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
| | - Naomi L. C. Luban
- Division of Hematology and Laboratory MedicineChildren’s National HospitalWashingtonDC
- Department of PediatricsGeorge Washington UniversitySchool of MedicineWashingtonDC
- Department of PathologyGeorge Washington UniversitySchool of MedicineWashingtonDC
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National HospitalWashingtonDC
- Children’s National Heart InstituteChildren’s National HospitalWashingtonDC
- Department of PediatricsGeorge Washington UniversitySchool of MedicineWashingtonDC
- Department of Pharmacology & PhysiologyGeorge Washington UniversitySchool of MedicineWashingtonDC
| |
Collapse
|
50
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|