1
|
Chang S, Yang J, Novoseltseva A, Fu X, Li C, Chen SC, Augustinack JC, Magnain C, Fischl B, Mckee AC, Boas DA, Chen IA, Wang H. Multi-Scale Label-free Human Brain Imaging with Integrated Serial Sectioning Polarization Sensitive Optical Coherence Tomography and Two-Photon Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541785. [PMID: 37293092 PMCID: PMC10245911 DOI: 10.1101/2023.05.22.541785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The study of neurodegenerative processes in the human brain requires a comprehensive understanding of cytoarchitectonic, myeloarchitectonic, and vascular structures. Recent computational advances have enabled volumetric reconstruction of the human brain using thousands of stained slices, however, tissue distortions and loss resulting from standard histological processing have hindered deformation-free reconstruction of the human brain. The development of a multi-scale and volumetric human brain imaging technique that can measure intact brain structure would be a major technical advance. Here, we describe the development of integrated serial sectioning Polarization Sensitive Optical Coherence Tomography (PSOCT) and Two Photon Microscopy (2PM) to provide label-free multi-contrast imaging, including scattering, birefringence and autofluorescence of human brain tissue. We demonstrate that high-throughput reconstruction of 4×4×2cm3 sample blocks and simple registration of PSOCT and 2PM images enable comprehensive analysis of myelin content, vascular structure, and cellular information. We show that 2μm in-plane resolution 2PM images provide microscopic validation and enrichment of the cellular information provided by the PSOCT optical property maps on the same sample, revealing the sophisticated capillary networks and lipofuscin filled cell bodies across the cortical layers. Our method is applicable to the study of a variety of pathological processes, including demyelination, cell loss, and microvascular changes in neurodegenerative diseases such as Alzheimer's disease (AD) and Chronic Traumatic Encephalopathy (CTE).
Collapse
Affiliation(s)
- Shuaibin Chang
- Department of Electrical and Computer Engineering, Boston University, 8 St Mary’s St, Boston 02215, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston 02215, USA
| | - Anna Novoseltseva
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston 02215, USA
| | - Xinlei Fu
- The Chinese University of Hong Kong, Department of Mechanical Engineering, Hong Kong Special Administrative Region, China
| | - Chenglin Li
- The Chinese University of Hong Kong, Department of Mechanical Engineering, Hong Kong Special Administrative Region, China
| | - Shih-Chi Chen
- The Chinese University of Hong Kong, Department of Mechanical Engineering, Hong Kong Special Administrative Region, China
| | - Jean C. Augustinack
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston 02129, USA
| | - Caroline Magnain
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston 02129, USA
| | - Bruce Fischl
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston 02129, USA
| | - Ann C. Mckee
- VA Boston Healthcare System, U.S. Department of Veteran Affairs
- Boston University Chobanian and Avedisian School of Medicine, Boston University Alzheimer’s Disease Research Center and CTE Center
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA, USA
| | - David A. Boas
- Department of Electrical and Computer Engineering, Boston University, 8 St Mary’s St, Boston 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston 02215, USA
| | - Ichun Anderson Chen
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston 02215, USA
| | - Hui Wang
- Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for Biomedical Imaging, 13th Street, Boston 02129, USA
| |
Collapse
|
2
|
Leikvoll A, Kara P. High fidelity sensory-evoked responses in neocortex after intravenous injection of genetically encoded calcium sensors. Front Neurosci 2023; 17:1181828. [PMID: 37250396 PMCID: PMC10213453 DOI: 10.3389/fnins.2023.1181828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Two-photon imaging of genetically-encoded calcium indicators (GECIs) has traditionally relied on intracranial injections of adeno-associated virus (AAV) or transgenic animals to achieve expression. Intracranial injections require an invasive surgery and result in a relatively small volume of tissue labeling. Transgenic animals, although they can have brain-wide GECI expression, often express GECIs in only a small subset of neurons, may have abnormal behavioral phenotypes, and are currently limited to older generations of GECIs. Inspired by recent developments in the synthesis of AAVs that readily cross the blood brain barrier, we tested whether an alternative strategy of intravenously injecting AAV-PHP.eB is suitable for two-photon calcium imaging of neurons over many months after injection. We injected C57BL/6 J mice with AAV-PHP.eB-Synapsin-jGCaMP7s via the retro-orbital sinus. After allowing 5 to 34 weeks for expression, we performed conventional and widefield two-photon imaging of layers 2/3, 4 and 5 of the primary visual cortex. We found reproducible trial-by-trial neural responses and tuning properties consistent with known feature selectivity in the visual cortex. Thus, intravenous injection of AAV-PHP.eB does not interfere with the normal processing in neural circuits. In vivo and histological images show no nuclear expression of jGCaMP7s for at least 34 weeks post-injection.
Collapse
Affiliation(s)
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Leikvoll A, Kara P. High fidelity sensory-evoked responses in neocortex after intravenous injection of genetically encoded calcium sensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531938. [PMID: 36945523 PMCID: PMC10028972 DOI: 10.1101/2023.03.09.531938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Two-photon imaging of genetically-encoded calcium indicators (GECIs) has traditionally relied on intracranial injections of adeno-associated virus (AAV) or transgenic animals to achieve expression. Intracranial injections require an invasive surgery and result in a relatively small volume of tissue labeling. Transgenic animals, although they can have brain-wide GECI expression, often express GECIs in only a small subset of neurons, may have abnormal behavioral phenotypes, and are currently limited to older generations of GECIs. Inspired by recent developments in the synthesis of AAVs that readily cross the blood brain barrier, we tested whether an alternative strategy of intravenously injecting AAV-PhP.eB is suitable for two-photon calcium imaging of neurons over many months after injection. We injected young (postnatal day 23 to 31) C57BL/6J mice with AAV-PhP.eB-Synapsin-jGCaMP7s via the retro-orbital sinus. After allowing 5 to 34 weeks for expression, we performed conventional and widefield two-photon imaging of layers 2/3, 4 and 5 of the primary visual cortex. We found reproducible trial-by-trial neural responses and tuning properties consistent with known feature selectivity in the visual cortex. Thus, intravenous injection of AAV-PhP.eB does not interfere with the normal processing in neural circuits. In vivo and histological images show no nuclear expression of jGCaMP7s for at least 34 weeks post-injection.
Collapse
Affiliation(s)
- Austin Leikvoll
- Department of Neuroscience, University of Minnesota, Minneapolis MN
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis MN
| |
Collapse
|
4
|
Liang YW, Lai ML, Chiu FM, Tseng HY, Lo YC, Li SJ, Chang CW, Chen PC, Chen YY. Experimental Verification for Numerical Simulation of Thalamic Stimulation-Evoked Calcium-Sensitive Fluorescence and Electrophysiology with Self-Assembled Multifunctional Optrode. BIOSENSORS 2023; 13:265. [PMID: 36832031 PMCID: PMC9953878 DOI: 10.3390/bios13020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca2+ change and DBS-evoked neural electrophysiology remains unknown. Therefore, in this study, a self-assembled optrode was demonstrated as a DBS stimulator and an optical biosensor capable of concurrently recording Ca2+ fluorescence and electrophysiological signals. Before the in vivo experiment, the volume of tissue activated (VTA) was estimated, and the simulated Ca2+ signals were presented using Monte Carlo (MC) simulation to approach the realistic in vivo environment. When VTA and the simulated Ca2+ signals were combined, the distribution of simulated Ca2+ fluorescence signals matched the VTA region. In addition, the in vivo experiment revealed a correlation between the local field potential (LFP) and the Ca2+ fluorescence signal in the evoked region, revealing the relationship between electrophysiology and the performance of neural Ca2+ concentration behavior. Concurrent with the VTA volume, simulated Ca2+ intensity, and the in vivo experiment, these data suggested that the behavior of neural electrophysiology was consistent with the phenomenon of Ca2+ influx to neurons.
Collapse
Affiliation(s)
- Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Feng-Mao Chiu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Grødem S, Nymoen I, Vatne GH, Rogge FS, Björnsdóttir V, Lensjø KK, Fyhn M. An updated suite of viral vectors for in vivo calcium imaging using intracerebral and retro-orbital injections in male mice. Nat Commun 2023; 14:608. [PMID: 36739289 PMCID: PMC9899252 DOI: 10.1038/s41467-023-36324-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 01/26/2023] [Indexed: 02/06/2023] Open
Abstract
Genetically encoded Ca2+ indicators (GECIs) are widely used to measure neural activity. Here, we explore the use of systemically administered PHP.eB AAVs for brain-wide expression of GECIs and compare the expression properties to intracerebrally injected AAVs in male mice. We show that systemic administration is a promising strategy for imaging neural activity. Next, we establish the use of EE-RR- (soma) and RPL10a (Ribo) soma-targeting peptides with the latest jGCaMP and show that EE-RR-tagged jGCaMP8 gives rise to strong expression but limited soma-targeting. In contrast, Ribo-tagged jGCaMP8 lacks neuropil signal, but the expression rate is reduced. To combat this, we modified the linker region of the Ribo-tag (RiboL1-). RiboL1-jGCaMP8 expresses faster than Ribo-jGCaMP8 but remains too dim for reliable use with systemic virus administration. However, intracerebral injections of the RiboL1-tagged jGCaMP8 constructs provide strong Ca2+ signals devoid of neuropil contamination, with remarkable labeling density.
Collapse
Affiliation(s)
- Sverre Grødem
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Ingeborg Nymoen
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Guro Helén Vatne
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Frederik Sebastian Rogge
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Valgerður Björnsdóttir
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Kristian Kinden Lensjø
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway.
| | - Marianne Fyhn
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Yamada S, Wang Y, Monai H. Transcranial cortex-wide Ca 2+ imaging for the functional mapping of cortical dynamics. Front Neurosci 2023; 17:1119793. [PMID: 36875638 PMCID: PMC9975744 DOI: 10.3389/fnins.2023.1119793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Visualization and tracking of the information flow in the broader brain area are essential because nerve cells make a vast network in the brain. Fluorescence Ca2+ imaging is a simultaneous visualization of brain cell activities in a wide area. Instead of classical chemical indicators, developing various types of transgenic animals that express Ca2+-sensitive fluorescent proteins enables us to observe brain activities in living animals at a larger scale for a long time. Multiple kinds of literature have reported that transcranial imaging of such transgenic animals is practical for monitoring the wide-field information flow across the broad brain regions, although it has a lower spatial resolution. Notably, this technique is helpful for the initial evaluation of cortical function in disease models. This review will introduce fully intact transcranial macroscopic imaging and cortex-wide Ca2+ imaging as practical applications.
Collapse
Affiliation(s)
- Serika Yamada
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Yan Wang
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Hiromu Monai
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan.,Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
8
|
Shah D, Gsell W, Wahis J, Luckett ES, Jamoulle T, Vermaercke B, Preman P, Moechars D, Hendrickx V, Jaspers T, Craessaerts K, Horré K, Wolfs L, Fiers M, Holt M, Thal DR, Callaerts-Vegh Z, D'Hooge R, Vandenberghe R, Himmelreich U, Bonin V, De Strooper B. Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer's disease. Cell Rep 2022; 40:111280. [PMID: 36001964 PMCID: PMC9433881 DOI: 10.1016/j.celrep.2022.111280] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunctions of network activity and functional connectivity (FC) represent early events in Alzheimer’s disease (AD), but the underlying mechanisms remain unclear. Astrocytes regulate local neuronal activity in the healthy brain, but their involvement in early network hyperactivity in AD is unknown. We show increased FC in the human cingulate cortex several years before amyloid deposition. We find the same early cingulate FC disruption and neuronal hyperactivity in AppNL-F mice. Crucially, these network disruptions are accompanied by decreased astrocyte calcium signaling. Recovery of astrocytic calcium activity normalizes neuronal hyperactivity and FC, as well as seizure susceptibility and day/night behavioral disruptions. In conclusion, we show that astrocytes mediate initial features of AD and drive clinically relevant phenotypes. The cingulate cortex of humans and mice shows early functional deficits in AD Astrocyte calcium signaling is decreased before the presence of amyloid plaques Recovery of astrocyte calcium signals mitigates neuronal hyperactivity Recovery of astrocytes normalizes cingulate connectivity and behavior disruptions
Collapse
Affiliation(s)
- Disha Shah
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium.
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Jérôme Wahis
- Laboratory of Glia Biology, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Emma S Luckett
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Tarik Jamoulle
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Ben Vermaercke
- Neuro-electronics Research Flanders, 3000 Leuven, Belgium
| | - Pranav Preman
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Daan Moechars
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Véronique Hendrickx
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Tom Jaspers
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Katleen Craessaerts
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Katrien Horré
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Leen Wolfs
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Mark Fiers
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Matthew Holt
- Laboratory of Glia Biology, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, LBI, KU Leuven, 3000 Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU-Leuven, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Bonin
- Neuro-electronics Research Flanders, 3000 Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium; UK Dementia Research Institute at University College London, WC1E 6BT London, UK.
| |
Collapse
|
9
|
Chen X, Ravindra Kumar S, Adams CD, Yang D, Wang T, Wolfe DA, Arokiaraj CM, Ngo V, Campos LJ, Griffiths JA, Ichiki T, Mazmanian SK, Osborne PB, Keast JR, Miller CT, Fox AS, Chiu IM, Gradinaru V. Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems. Neuron 2022; 110:2242-2257.e6. [PMID: 35643078 PMCID: PMC9308721 DOI: 10.1016/j.neuron.2022.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
Gene therapy offers great promise in addressing neuropathologies associated with the central and peripheral nervous systems (CNS and PNS). However, genetic access remains difficult, reflecting the critical need for the development of effective and non-invasive gene delivery vectors across species. To that end, we evolved adeno-associated virus serotype 9 (AAV9) capsid in mice and validated two capsids, AAV-MaCPNS1 and AAV-MaCPNS2, across rodent species (mice and rats) and non-human primate (NHP) species (marmosets and rhesus macaques). Intravenous administration of either AAV efficiently transduced the PNS in rodents and both the PNS and CNS in NHPs. Furthermore, we used AAV-MaCPNS1 in mice to systemically deliver the following: (1) the neuronal sensor jGCaMP8s to record calcium signal dynamics in nodose ganglia and (2) the neuronal actuator DREADD to dorsal root ganglia to mediate pain. This conclusively demonstrates the translatability of these two systemic AAVs across four species and their functional utility through proof-of-concept studies in mice.
Collapse
Affiliation(s)
- Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cameron D Adams
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Damien A Wolfe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria Ngo
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA
| | - Lillian J Campos
- Department of Psychology and California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jessica A Griffiths
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Takako Ichiki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peregrine B Osborne
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA
| | - Andrew S Fox
- Department of Psychology and California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Abstract
Characterizing cortex-wide neural activity is essential for understanding large-scale interactions among distributed cortical regions. Here, we describe a protocol using wide-field calcium imaging to monitor the cortex-wide activity in awake, head-fixed mice. This approach provides sufficient signal-to-noise ratio and spatiotemporal resolution to capture large-scale neural activity in behaving mice on a moment-by-moment basis. The use of genetically encoded calcium indicators allows longitudinal imaging over months and can achieve cell-type specificity. We also describe a pipeline to process the imaging data. For complete details on the use and execution of this protocol, please refer to Makino et al. (2017) and Liu et al. (2021).
Collapse
Affiliation(s)
- Chi Ren
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Xiao D, Forys BJ, Vanni MP, Murphy TH. MesoNet allows automated scaling and segmentation of mouse mesoscale cortical maps using machine learning. Nat Commun 2021; 12:5992. [PMID: 34645817 PMCID: PMC8514445 DOI: 10.1038/s41467-021-26255-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/23/2021] [Indexed: 01/17/2023] Open
Abstract
Understanding the basis of brain function requires knowledge of cortical operations over wide spatial scales and the quantitative analysis of brain activity in well-defined brain regions. Matching an anatomical atlas to brain functional data requires substantial labor and expertise. Here, we developed an automated machine learning-based registration and segmentation approach for quantitative analysis of mouse mesoscale cortical images. A deep learning model identifies nine cortical landmarks using only a single raw fluorescent image. Another fully convolutional network was adapted to delimit brain boundaries. This anatomical alignment approach was extended by adding three functional alignment approaches that use sensory maps or spatial-temporal activity motifs. We present this methodology as MesoNet, a robust and user-friendly analysis pipeline using pre-trained models to segment brain regions as defined in the Allen Mouse Brain Atlas. This Python-based toolbox can also be combined with existing methods to facilitate high-throughput data analysis.
Collapse
Affiliation(s)
- Dongsheng Xiao
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
| | - Brandon J Forys
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthieu P Vanni
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
- Université de Montréal, École d'Optométrie, 3744 Jean Brillant H3T 1P1, Montréal, Québec, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada.
| |
Collapse
|
12
|
Redolfi N, García-Casas P, Fornetto C, Sonda S, Pizzo P, Pendin D. Lighting Up Ca 2+ Dynamics in Animal Models. Cells 2021; 10:2133. [PMID: 34440902 PMCID: PMC8392631 DOI: 10.3390/cells10082133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca2+) signaling coordinates are crucial processes in brain physiology. Particularly, fundamental aspects of neuronal function such as synaptic transmission and neuronal plasticity are regulated by Ca2+, and neuronal survival itself relies on Ca2+-dependent cascades. Indeed, impaired Ca2+ homeostasis has been reported in aging as well as in the onset and progression of neurodegeneration. Understanding the physiology of brain function and the key processes leading to its derangement is a core challenge for neuroscience. In this context, Ca2+ imaging represents a powerful tool, effectively fostered by the continuous amelioration of Ca2+ sensors in parallel with the improvement of imaging instrumentation. In this review, we explore the potentiality of the most used animal models employed for Ca2+ imaging, highlighting their application in brain research to explore the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paloma García-Casas
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Chiara Fornetto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Sonia Sonda
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (N.R.); (P.G.-C.); (C.F.); (S.S.); (P.P.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|
13
|
Doostdar N, Airey J, Radulescu CI, Melgosa-Ecenarro L, Zabouri N, Pavlidi P, Kopanitsa M, Saito T, Saido T, Barnes SJ. Multi-scale network imaging in a mouse model of amyloidosis. Cell Calcium 2021; 95:102365. [PMID: 33610083 DOI: 10.1016/j.ceca.2021.102365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
The adult neocortex is not hard-wired but instead retains the capacity to reorganise across multiple spatial scales long into adulthood. Plastic reorganisation occurs at the level of mesoscopic sensory maps, functional neuronal assemblies and synaptic ensembles and is thought to be a critical feature of neuronal network function. Here, we describe a series of approaches that use calcium imaging to measure network reorganisation across multiple spatial scales in vivo. At the mesoscopic level, we demonstrate that sensory activity can be measured in animals undergoing longitudinal behavioural assessment involving automated touchscreen tasks. At the cellular level, we show that network dynamics can be longitudinally measured at both stable and transient functional assemblies. At the level of single synapses, we show that functional subcellular calcium imaging approaches can be used to measure synaptic ensembles of dendritic spines in vivo. Finally, we demonstrate that all three levels of imaging can be spatially related to local pathology in a preclinical rodent model of amyloidosis. We propose that multi-scale in vivo calcium imaging can be used to measure parallel plasticity processes operating across multiple spatial scales in both the healthy brain and preclinical models of disease.
Collapse
Affiliation(s)
- Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Joseph Airey
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Nawal Zabouri
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Pavlina Pavlidi
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Maksym Kopanitsa
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Centre for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom.
| |
Collapse
|