1
|
Langlois AW, Chenoweth MJ, Twesigomwe D, Scantamburlo G, Whirl-Carrillo M, Sangkuhl K, Klein TE, Nofziger C, Tyndale RF, Gaedigk A. PharmVar GeneFocus: CYP2A6. Clin Pharmacol Ther 2024; 116:948-962. [PMID: 39051767 PMCID: PMC11452280 DOI: 10.1002/cpt.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the human CYP2A gene locus containing the highly polymorphic CYP2A6 gene. CYP2A6 plays a role in the metabolism of nicotine and various drugs. Thus, genetic variation can substantially contribute to the function of this enzyme and associated efficacy and safety. This GeneFocus provides an overview of the clinical significance of CYP2A6, including its genetic variation and function. We also highlight and discuss caveats in the identification and characterization of allelic variation of this complex pharmacogene, a prerequisite for accurate genotype determination and prediction of phenotype status.
Collapse
Affiliation(s)
- Alec W.R. Langlois
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Meghan J. Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Departments of Medicine (BMIR) and Genetics, Stanford University, Stanford, California, USA
| | | | - Rachel F. Tyndale
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, Missouri, USA and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
2
|
D MO, C TZ, R SP. Human orphan cytochromes P450: An update. Curr Drug Metab 2022; 23:CDM-EPUB-128186. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Molina-Ortiz D
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Torres-Zárate C
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| | - Santes-Palacios R
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán, Mexico City, México, 04530
| |
Collapse
|
3
|
Li J, Hussain Z, Zhu J, Lei S, Lu J, Ma X. Role of CYP2A6 in Methimazole Bioactivation and Hepatotoxicity. Chem Res Toxicol 2021; 34:2534-2539. [PMID: 34788025 DOI: 10.1021/acs.chemrestox.1c00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methimazole (MMI) is a widely used antithyroid drug, but it can cause hepatotoxicity by unknown mechanisms. Previous studies showed that the hepatic metabolism of MMI produces N-methylthiourea, leading to liver damage. However, the specific enzyme responsible for the production of the toxic metabolite N-methylthiourea is still unclear. In this study, we screened cytochromes P450 (CYPs) in N-methylthiourea production from MMI. CYP2A6 was identified as the key enzyme in catalyzing MMI metabolism to produce N-methylthiourea. When mice were pretreated with a CYP2A6 inhibitor, formation of N-methylthiourea from MMI was remarkably reduced. Consistently, the CYP2A6 inhibitor prevented MMI-induced hepatotoxicity. These results demonstrated that CYP2A6 is essential in MMI bioactivation and hepatotoxicity.
Collapse
Affiliation(s)
- Jianhua Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zahir Hussain
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Collins JM, Wang D. Co-expression of drug metabolizing cytochrome P450 enzymes and estrogen receptor alpha (ESR1) in human liver: racial differences and the regulatory role of ESR1. Drug Metab Pers Ther 2021; 36:205-214. [PMID: 33823094 DOI: 10.1515/dmpt-2020-0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The function and expression of cytochrome P450 (CYP) drug metabolizing enzymes is highly variable, greatly affecting drug exposure, and therapeutic outcomes. The expression of these enzymes is known to be controlled by many transcription factors (TFs), including ligand-free estrogen receptor alpha (ESR1, in the absence of estrogen). However, the relationship between the expression of ESR1, other TFs, and CYP enzymes in human liver is still unclear. METHODS Using real-time PCR, we quantified the mRNA levels of 12 CYP enzymes and nine TFs in 246 human liver samples from European American (EA, n = 133) and African American (AA, n = 113) donors. RESULTS Our results showed higher expression levels of ESR1 and six CYP enzymes in EA than in AA. Partial least square regression analysis showed that ESR1 is the top-ranking TF associating with the expression of eight CYP enzymes, six of which showed racial difference in expression. Conversely, four CYP enzymes without racial difference in expression did not have ESR1 as a top-ranking TF. These results indicate that ESR1 may contribute to variation in CYP enzyme expression between these two ancestral backgrounds. CONCLUSIONS These results are consistent with our previous study showing ESR1 as a master regulator for the expression of several CYP enzymes. Therefore, factors affecting ESR1 expression may have broad influence on drug metabolism through altered expression of CYP enzymes.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Identification and population genetic analyses of copy number variations in six domestic goat breeds and Bezoar ibexes using next-generation sequencing. BMC Genomics 2020; 21:840. [PMID: 33246410 PMCID: PMC7694352 DOI: 10.1186/s12864-020-07267-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022] Open
Abstract
Background Copy number variations (CNVs) are a major form of genetic variations and are involved in animal domestication and genetic adaptation to local environments. We investigated CNVs in the domestic goat (Capra hircus) using Illumina short-read sequencing data, by comparing our lab data for 38 goats from three Chinese breeds (Chengdu Brown, Jintang Black, and Tibetan Cashmere) to public data for 26 individuals from three other breeds (two Moroccan and one Chinese) and 21samples from Bezoar ibexes. Results We obtained a total of 2394 CNV regions (CNVRs) by merging 208,649 high-confidence CNVs, which spanned ~ 267 Mb of total length and accounted for 10.80% of the goat autosomal genome. Functional analyses showed that 2322 genes overlapping with the CNVRs were significantly enriched in 57 functional GO terms and KEGG pathways, most related to the nervous system, metabolic process, and reproduction system. Clustering patterns of all 85 samples generated separately from duplications and deletions were generally consistent with the results from SNPs, agreeing with the geographical origins of these goats. Based on genome-wide FST at each CNV locus, some genes overlapping with the highly divergent CNVs between domestic and wild goats were mainly enriched for several immunity-related pathways, whereas the genes overlapping with the highly differentiated CNVs between highland and lowland goats were mainly related to vitamin and lipid metabolism. Remarkably, a 507-bp deletion at ~ 14 kb downstream of FGF5 on chromosome 6 showed highly divergent (FST = 0.973) between the highland and lowland goats. Together with an enhancer activity of this sequence shown previously, the function of this duplication in regulating fiber growth deserved to be further investigated in detail. Conclusion We generated a comprehensive map of CNVs in goats. Many genetically differentiated CNVs among various goat populations might be associated with the population characteristics of domestic goat breeds. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07267-6.
Collapse
|
6
|
Centner AM, Bhide PG, Salazar G. Nicotine in Senescence and Atherosclerosis. Cells 2020; 9:E1035. [PMID: 32331221 PMCID: PMC7226537 DOI: 10.3390/cells9041035] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cigarette smoke is a known exacerbator of age-related pathologies, such as cardiovascular disease (CVD), atherosclerosis, and cellular aging (senescence). However, the role of nicotine and its major metabolite cotinine is yet to be elucidated. Considering the growing amount of nicotine-containing aerosol use in recent years, the role of nicotine is a relevant public health concern. A number of recent studies and health education sites have focused on nicotine aerosol-induced adverse lung function, and neglected cardiovascular (CV) impairments and diseases. A critical review of the present scientific literature leads to the hypothesis that nicotine mediates the effects of cigarette smoke in the CV system by increasing MAPK signaling, inflammation, and oxidative stress through NADPH oxidase 1 (Nox1), to induce vascular smooth muscle cell (VSMC) senescence. The accumulation of senescent VSMCs in the lesion cap is detrimental as it increases the pathogenesis of atherosclerosis by promoting an unstable plaque phenotype. Therefore, nicotine, and most likely its metabolite cotinine, adversely influence atherosclerosis.
Collapse
Affiliation(s)
- Ann Marie Centner
- Department of Nutrition, Food and Exercise Sciences, College of Human Scinces, 120 Convocation Way, Florida State University, Tallahassee, FL 32306, USA;
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, FSU College of Medicine, 1115, West Call Street, Tallahassee, FL 32306, USA;
| | - Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, College of Human Scinces, 120 Convocation Way, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Wang D, Lu R, Rempala G, Sadee W. Ligand-Free Estrogen Receptor α (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver. Mol Pharmacol 2019; 96:430-440. [PMID: 31399483 PMCID: PMC6724575 DOI: 10.1124/mol.119.116897] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450 3A4 isoform (CYP3A4) transcription is controlled by hepatic transcription factors (TFs), but how TFs dynamically interact remains uncertain. We hypothesize that several TFs form a regulatory network with nonlinear, dynamic, and hierarchical interactions. To resolve complex interactions, we have applied a computational approach for estimating Sobol's sensitivity indices (SSI) under generalized linear models to existing liver RNA expression microarray data (GSE9588) and RNA-seq data from genotype-tissue expression (GTEx), generating robust importance ranking of TF effects and interactions. The SSI-based analysis identified TFs and interacting TF pairs, triplets, and quadruplets involved in CYP3A4 expression. In addition to known CYP3A4 TFs, estrogen receptor α (ESR1) emerges as key TF with the strongest main effect and as the most frequently included TF interacting partner. Model predictions were validated using small interfering RNA (siRNA)/short hairpin RNA (shRNA) gene knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional activation of ESR1 in biliary epithelial Huh7 cells and human hepatocytes in the absence of estrogen. Moreover, ESR1 and known CYP3A4 TFs mutually regulate each other. Detectable in both male and female hepatocytes without added estrogen, the results demonstrate a role for unliganded ESR1 in CYP3A4 expression consistent with unliganded ESR1 signaling reported in other cell types. Added estrogen further enhances ESR1 effects. We propose a hierarchical regulatory network for CYP3A4 expression directed by ESR1 through self-regulation, cross regulation, and TF-TF interactions. We also demonstrate that ESR1 regulates the expression of other P450 enzymes, suggesting broad influence of ESR1 on xenobiotics metabolism in human liver. Further studies are required to understand the mechanisms underlying role of ESR1 in P450 regulation. SIGNIFICANCE STATEMENT: This study focuses on identifying key transcription factors and regulatory networks for CYP3A4, the main drug metabolizing enzymes in liver. We applied a new computational approach (Sobol's sensitivity analysis) to existing hepatic gene expression data to determine the role of transcription factors in regulating CYP3A4 expression, and used molecular genetics methods (siRNA/shRNA gene knockdown and CRISPR-mediated transcriptional activation) to test these interactions in life cells. This approach reveals a robust network of TFs, including their putative interactions and the relative impact of each interaction. We find that ESR1 serves as a key transcription factor function in regulating CYP3A4, and it appears to be acting at least in part in a ligand-free fashion.
Collapse
Affiliation(s)
- Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Grzegorz Rempala
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| | - Wolfgang Sadee
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Clinical Sciences, Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, Texas (R.L.); and Mathematical Bioscience Institute, (G.R.) and Center for Pharmacogenomics, Department of Cancer Biology and Genetics, College of Medicine (W.S.), Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Hammad HM, Imraish A, Azab B, Best AM, Khader YS, Zihlif M. Associations of CYP2A6 Gene Polymorphism with Smoking Status Among Jordanians: Gender-Related Differences. Curr Drug Metab 2019; 20:765-770. [PMID: 31453782 DOI: 10.2174/1389200220666190827161112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cytochrome P450 2A6 enzyme (CYP2A6), an essential hepatic enzyme involved in the metabolism of drugs, is responsible for a major metabolic pathway of nicotine. Variation in the activity of polymorphic CYP2A6 alleles has been implicated in inter-individual differences in nicotine metabolism. AIMS The objective of the current study was to assess the association between the smoking status and the cytochrome P450 2A6 enzyme (CYP2A6) genotype in Jordanians. METHODS In the current study, 218 (117 Male and 101 female) healthy unrelated Jordanian volunteers were recruited. CYP2A6*1B, CYP2A6*4 and CYP2A6*9 were determined and correlated with subject smoking status. RESULTS *1A/*1A was the most common genetic polymorphism in the overall study population, with no significant frequency differences between smokers and non-smokers. When the population was divided according to gender, only male smokers showed a significant correlation between genotype and smoking status. Considering the CYP2A6*9 genotype, the results showed differences in distribution between smokers and non-smokers, but only women showed a significant association between CYP2A6*9 allele genotype and smoking status. CONCLUSION The results of this study show that there is a significant association between CYP2A6*9 genotype and smoking status. They also show that CYP2A6 genotype is significantly influenced by gender.
Collapse
Affiliation(s)
- Hana M Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| | - Amer Imraish
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| | - Belal Azab
- Department of Pathology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Al M Best
- Virginia Commonwealth University, Richmond VA, United States
| | - Yousef S Khader
- Department of Community Medicine, Public Health and Family Medicine, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
9
|
Tanner JA, Tyndale RF. Variation in CYP2A6 Activity and Personalized Medicine. J Pers Med 2017; 7:jpm7040018. [PMID: 29194389 PMCID: PMC5748630 DOI: 10.3390/jpm7040018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The cytochrome P450 2A6 (CYP2A6) enzyme metabolizes several clinically relevant substrates, including nicotine-the primary psychoactive component in cigarette smoke. The gene that encodes the CYP2A6 enzyme is highly polymorphic, resulting in extensive interindividual variation in CYP2A6 enzyme activity and the rate of metabolism of nicotine and other CYP2A6 substrates including cotinine, tegafur, letrozole, efavirenz, valproic acid, pilocarpine, artemisinin, artesunate, SM-12502, caffeine, and tyrosol. CYP2A6 expression and activity are also impacted by non-genetic factors, including induction or inhibition by pharmacological, endogenous, and dietary substances, as well as age-related changes, or interactions with other hepatic enzymes, co-enzymes, and co-factors. As variation in CYP2A6 activity is associated with smoking behavior, smoking cessation, tobacco-related lung cancer risk, and with altered metabolism and resulting clinical responses for several therapeutics, CYP2A6 expression and enzyme activity is an important clinical consideration. This review will discuss sources of variation in CYP2A6 enzyme activity, with a focus on the impact of CYP2A6 genetic variation on metabolism of the CYP2A6 substrates.
Collapse
Affiliation(s)
- Julie-Anne Tanner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
10
|
López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI JOURNAL 2017; 16:174-196. [PMID: 28507465 PMCID: PMC5427481 DOI: 10.17179/excli2016-847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Tobacco consumption has become a major public health issue, which has motivated studies to identify and understand the biological processes involved in the smoking behavior for prevention and smoking cessation treatments. CYP2A6 has been identified as the main gene that codifies the enzyme that metabolizes nicotine. Many alleles have been identified after the discovery of CYP2A6, suggesting a wide interethnic variability and a diverse smoking behavior of the allele carrying individuals. The main purpose of this review is to update and highlight the effects of the CYP2A6 gene variability related to tobacco consumption reported from diverse human populations. The review further aims to consider CYP2A6 in future studies as a possible genetic marker for the prevention and treatment of nicotine addiction. Therefore, we analyzed several population studies and their importance at addressing and characterizing a population using specific parameters. Our efforts may contribute to a personalized system for detecting, preventing and treating populations at a higher risk of smoking to avoid diseases related to tobacco consumption.
Collapse
|
11
|
Keith RJ, Al Rifai M, Carruba C, De Jarnett N, McEvoy JW, Bhatnagar A, Blaha MJ, Defilippis AP. Tobacco Use, Insulin Resistance, and Risk of Type 2 Diabetes: Results from the Multi-Ethnic Study of Atherosclerosis. PLoS One 2016; 11:e0157592. [PMID: 27322410 PMCID: PMC4913922 DOI: 10.1371/journal.pone.0157592] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Tobacco use is associated with insulin resistance and incident diabetes. Given the racial/ethnic differences in smoking patterns and incident type 2 diabetes our objective was to evaluate the association between tobacco use and insulin resistance (IR) as well as incident type 2 diabetes mellitus in a contemporary multiethnic cohort. METHODS AND RESULTS We studied 5,931 Multi- Ethnic Study of Atherosclerosis (MESA) participants who at baseline were free of type 2 diabetes (fasting glucose ≥7.0 mmol/l (126 mg/dl) and/or use of insulin or oral hypoglycemic medications) categorized by self-reported tobacco status and reclassified by urinary cotinine (available in 58% of participants) as never, current or former tobacco users. The association between tobacco use, IR (fasting plasma glucose, insulin, and the homeostatic model assessment of insulin resistance (HOMA-IR)) and incident diabetes over 10 years was evaluated using multivariable linear regression and Cox proportional hazards models, respectively. Mean age of the participants was 62 (±10) years, 46% were male, 41% Caucasian, 12% Chinese, 26% African American and 21% Hispanic/Latino. IR biomarkers did not significantly differ between current, former, and never cigarette users (P >0.10) but showed limited unadjusted differences for users of cigar, pipe and smokeless tobacco (All P <0.05). Fully adjusted models showed no association between dose or intensity of tobacco exposure and any index of IR. When stratified into participants that quit smoking vs. those who continued smoking during the 10-year study there was no difference in serum glucose levels or frequency of diabetes. In fully adjusted models, there was no significant difference in diabetes risk between former or current cigarette smokers compared to never smokers [HR (95% CI) 1.02 (0.77,1.37) and 0.81 (0.52,1.26) respectively]. CONCLUSION In a contemporary multi-ethnic cohort, there was no independent association between tobacco use and IR or incident type 2 diabetes. The role smoking plays in causing diabetes may be more complicated than originally thought and warrants more in-depth large contemporary multi-ethnic studies.
Collapse
Affiliation(s)
- Rachel J. Keith
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Division of Cardiology, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- American Heart Association—Tobacco Regulatory and Addiction Center, Louisville, Kentucky, United States of America
| | - Mahmoud Al Rifai
- American Heart Association—Tobacco Regulatory and Addiction Center, Louisville, Kentucky, United States of America
- Ciccarone Center for the Prevention of Heart Disease, John Hopkins Medical, Baltimore, Maryland, United States of America
| | - Christopher Carruba
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Natasha De Jarnett
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- American Heart Association—Tobacco Regulatory and Addiction Center, Louisville, Kentucky, United States of America
| | - John W. McEvoy
- Ciccarone Center for the Prevention of Heart Disease, John Hopkins Medical, Baltimore, Maryland, United States of America
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Division of Cardiology, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- American Heart Association—Tobacco Regulatory and Addiction Center, Louisville, Kentucky, United States of America
| | - Michael J. Blaha
- American Heart Association—Tobacco Regulatory and Addiction Center, Louisville, Kentucky, United States of America
- Ciccarone Center for the Prevention of Heart Disease, John Hopkins Medical, Baltimore, Maryland, United States of America
| | - Andrew P. Defilippis
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Division of Cardiology, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- American Heart Association—Tobacco Regulatory and Addiction Center, Louisville, Kentucky, United States of America
- Ciccarone Center for the Prevention of Heart Disease, John Hopkins Medical, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Hall ME, Wang W, Okhomina V, Agarwal M, Hall JE, Dreisbach AW, Juncos LA, Winniford MD, Payne TJ, Robertson RM, Bhatnagar A, Young BA. Cigarette Smoking and Chronic Kidney Disease in African Americans in the Jackson Heart Study. J Am Heart Assoc 2016; 5:e003280. [PMID: 27225196 PMCID: PMC4937270 DOI: 10.1161/jaha.116.003280] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/23/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Controversy exists regarding the association of cigarette smoking and renal dysfunction, particularly among African Americans, who are disproportionately affected by chronic kidney disease; therefore, we evaluated the relationship between cigarette smoking and rapid renal function (RRF) decline in the Jackson Heart Study. METHODS AND RESULTS Rates of RRF decline were determined among 3648 African American participants enrolled at baseline in the Jackson Heart Study. RRF decline was defined as an absolute decline of estimated glomerular filtration rate of 30% from visit 1 to visit 3. There were 422 current, 659 past, and 2567 never smokers identified at visit 1. After adjustment for age, sex, body mass index, diabetes, hypertension, cholesterol, physical activity, education, alcohol consumption, and prevalent cardiovascular disease, current smokers demonstrated a significantly higher incidence of RRF decline compared with never smokers (incidence rate ratio 1.83, 95% CI 1.31-2.56). Current smokers using 1 to 19 and ≥20 cigarettes daily had an increased incidence of RRF decline (incidence rate ratios of 1.75 [95% CI 1.18-2.59] and 1.97 [95% CI 1.17-3.31], respectively). There was a significant, progressive reduction in estimated glomerular filtration rate from visit 1 to visit 3 in current and past smokers compared with never smokers. Finally, current smokers had a 1.38-fold increase in C-reactive protein compared with never smokers, after controlling for covariates. CONCLUSIONS In a large African American cohort, current cigarette smoking was independently associated with RRF decline in a dose-dependent manner. There was also evidence of increased inflammation (C-reactive protein) in current smokers, suggesting a potential mechanism for these relationships.
Collapse
Affiliation(s)
- Michael E Hall
- Division of Cardiology, University of Mississippi Medical Center, Jackson, MS
| | - Wei Wang
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS
| | - Victoria Okhomina
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS
| | - Mohit Agarwal
- Division of Nephrology, University of Mississippi Medical Center, Jackson, MS
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Albert W Dreisbach
- Division of Nephrology, University of Mississippi Medical Center, Jackson, MS
| | - Luis A Juncos
- Division of Nephrology, University of Mississippi Medical Center, Jackson, MS
| | - Michael D Winniford
- Division of Cardiology, University of Mississippi Medical Center, Jackson, MS
| | - Thomas J Payne
- Department of Otolaryngology and Communicative Disorders, University of Mississippi Medical Center, Jackson, MS
| | - Rose M Robertson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, University of Louisville, KY
| | - Bessie A Young
- Division of Nephrology, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Wassenaar CA, Zhou Q, Tyndale RF. CYP2A6 genotyping methods and strategies using real-time and end point PCR platforms. Pharmacogenomics 2015; 17:147-62. [PMID: 26670214 DOI: 10.2217/pgs.15.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CYP2A6 genotyping is of clinical importance--CYP2A6 gene variants influence nicotine metabolism and are associated with nicotine dependence, cigarettes per day, smoking cessation and the risk for tobacco-associated cancers. CYP2A6 gene variants also influence the metabolism of therapeutic drugs, such as the anticancer agents, tegafur and letrozole. Over the years, CYP2A6 genotyping methods have evolved to incorporate novel gene variants and to circumvent genotyping errors resulting from the high degree of homology between CYP2A6 and neighboring CYP2A genes. Herein, CYP2A6 genotyping strategies are described for commonly genotyped functionally significant alleles including SNPs, small insertions/deletions and more complex structural variants. The methods presented utilize higher throughput SYBR green real-time PCR technology in addition to standard thermocycling.
Collapse
Affiliation(s)
- Catherine A Wassenaar
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8 ON, Canada
| | - Qian Zhou
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8 ON, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health (CAMH), Departments of Pharmacology & Toxicology & Psychiatry, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8 ON, Canada
| |
Collapse
|
14
|
Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: Variability in expression and role in inflammation-related disorders. Pharmacol Ther 2014; 144:134-61. [DOI: 10.1016/j.pharmthera.2014.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
15
|
PharmGKB summary: very important pharmacogene information for cytochrome P-450, family 2, subfamily A, polypeptide 6. Pharmacogenet Genomics 2013; 22:695-708. [PMID: 22547082 DOI: 10.1097/fpc.0b013e3283540217] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138:103-41. [PMID: 23333322 DOI: 10.1016/j.pharmthera.2012.12.007] [Citation(s) in RCA: 2554] [Impact Index Per Article: 232.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023]
Abstract
Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s.
Collapse
|
17
|
Djordjevic N, Carrillo JA, van den Broek MP, Kishikawa J, Roh HK, Bertilsson L, Aklillu E. Comparisons of CYP2A6 Genotype and Enzyme Activity between Swedes and Koreans. Drug Metab Pharmacokinet 2013; 28:93-7. [DOI: 10.2133/dmpk.dmpk-12-rg-029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Martis S, Mei H, Vijzelaar R, Edelmann L, Desnick RJ, Scott SA. Multi-ethnic cytochrome-P450 copy number profiling: novel pharmacogenetic alleles and mechanism of copy number variation formation. THE PHARMACOGENOMICS JOURNAL 2012; 13:558-66. [PMID: 23164804 PMCID: PMC3580117 DOI: 10.1038/tpj.2012.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 01/11/2023]
Abstract
To determine the role of CYP450 copy number variation (CNV) beyond CYP2D6, 11 CYP450 genes were interrogated by MLPA and qPCR in 542 African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals. The CYP2A6, CYP2B6 and CYP2E1 combined deletion/duplication allele frequencies ranged from 2% to 10% in these populations. High-resolution microarray-based comparative genomic hybridization (aCGH) localized CYP2A6, CYP2B6 and CYP2E1 breakpoints to directly-oriented low-copy repeats. Sequencing localized the CYP2B6 breakpoint to a 529 bp intron 4 region with high homology to CYP2B7P1, resulting in the CYP2B6*29 partial deletion allele and the reciprocal, and novel, CYP2B6/2B7P1 duplicated fusion allele (CYP2B6*30). Together, these data identified novel CYP450 CNV alleles (CYP2B6*30 and CYP2E1*1Cx2) and indicate that common CYP450 CNV formation is likely mediated by non-allelic homologous recombination resulting in both full gene and gene-fusion copy number imbalances. Detection of these CNVs should be considered when interrogating these genes for pharmacogenetic drug selection and dosing.
Collapse
Affiliation(s)
- S Martis
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
19
|
Binnington MJ, Zhu AZX, Renner CC, Lanier AP, Hatsukami DK, Benowitz NL, Tyndale RF. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people. Pharmacogenet Genomics 2012; 22:429-40. [PMID: 22569203 PMCID: PMC3349071 DOI: 10.1097/fpc.0b013e3283527c1c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Alaska Native (AN) people have a high prevalence of tobacco use and associated morbidity and mortality when compared with the general USA population. Variations in the CYP2A6 and CYP2B6 genes, encoding enzymes responsible for nicotine metabolic inactivation and procarcinogen activation, have not been characterized in AN and may contribute toward the increased risk. METHODS AN people (n=400) residing in the Bristol Bay region of South Western Alaska were recruited for a cross-sectional study on tobacco use. They were genotyped for CYP2A6*1X2A, *1X2B, *1B, *2, *4, *7, *8, *9, *10, *12, *17, *35 and CYP2B6*4, *6, *9 and provided plasma and urine samples for the measurement of nicotine and metabolites. RESULTS CYP2A6 and CYP2B6 variant frequencies among the AN Yupik people (n=361) were significantly different from those in other ethnicities. Nicotine metabolism [as measured by the plasma and urinary ratio of metabolites trans-3'-hydroxycotinine to cotinine (3HC/COT)] was significantly associated with CYP2A6 (P<0.001), but not CYP2B6 genotype (P=0.95) when controlling for known covariates. It was noteworthy that the plasma 3HC/COT ratios were high in the entire Yupik people, and among the Yupik CYP2A6 wild-type participants, they were substantially higher than those in previously characterized racial/ethnic groups (P<0.001 vs. Caucasians and African Americans). CONCLUSION Yupik AN people have a unique CYP2A6 genetic profile that associated strongly with in-vivo nicotine metabolism. More rapid CYP2A6-mediated nicotine and nitrosamine metabolism in the Yupik people may modulate the risk of tobacco-related diseases.
Collapse
Affiliation(s)
- Matthew J Binnington
- Departments of Psychiatry, Pharmacology and Toxicology, Centre for Addiction & Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Bloom AJ, Harari O, Martinez M, Madden PAF, Martin NG, Montgomery GW, Rice JP, Murphy SE, Bierut LJ, Goate A. Use of a predictive model derived from in vivo endophenotype measurements to demonstrate associations with a complex locus, CYP2A6. Hum Mol Genet 2012; 21:3050-62. [PMID: 22451501 DOI: 10.1093/hmg/dds114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study demonstrates a novel approach to test associations between highly heterogeneous genetic loci and complex phenotypes. Previous investigations of the relationship between Cytochrome P450 2A6 (CYP2A6) genotype and smoking phenotypes made comparisons by dividing subjects into broad categories based on assumptions that simplify the range of function of different CYP2A6 alleles, their numerous possible diplotype combinations and non-additive allele effects. A predictive model that translates CYP2A6 diplotype into a single continuous variable was previously derived from an in vivo metabolism experiment in 189 European Americans. Here, we apply this model to assess associations between genotype, inferred nicotine metabolism and smoking behaviors in larger samples without direct nicotine metabolism measurements. CYP2A6 genotype is not associated with nicotine dependence, as defined by the Fagerström Test of Nicotine Dependence, demonstrating that cigarettes smoked per day (CPD) and nicotine dependence have distinct genetic correlates. The predicted metric is significantly associated with CPD among African Americans and European American dependent smokers. Individual slow metabolizing genotypes are associated with lower CPD, but the predicted metric is the best predictor of CPD. Furthermore, optimizing the predictive model by including additional CYP2A6 alleles improves the fit of the model in an independent data set and provides a novel method of predicting the functional impact of alleles without direct metabolism measurements. Lastly, comprehensive genotyping and in vivo metabolism data are used to demonstrate that genome-wide significant associations between CPD and single nucleotide polymorphisms are the result of synthetic associations.
Collapse
Affiliation(s)
- A Joseph Bloom
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63119, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Croom E. Metabolism of xenobiotics of human environments. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 112:31-88. [PMID: 22974737 DOI: 10.1016/b978-0-12-415813-9.00003-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Xenobiotics have been defined as chemicals to which an organism is exposed that are extrinsic to the normal metabolism of that organism. Without metabolism, many xenobiotics would reach toxic concentrations. Most metabolic activity inside the cell requires energy, cofactors, and enzymes in order to occur. Xenobiotic-metabolizing enzymes can be divided into phase I, phase II, and transporter enzymes. Lipophilic xenobiotics are often first metabolized by phase I enzymes, which function to make xenobiotics more polar and provide sites for conjugation reactions. Phase II enzymes are conjugating enzymes and can directly interact with xenobiotics but more commonly interact with metabolites produced by phase I enzymes. Through both passive and active transport, these more polar metabolites are eliminated. Most xenobiotics are cleared through multiple enzymes and pathways. The relationship between chemical concentrations, enzyme affinity and quantity, and cofactor availability often determine which metabolic reactions dominate in a given individual.
Collapse
|
22
|
Genetic polymorphisms affecting drug metabolism: recent advances and clinical aspects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:137-67. [PMID: 22776641 DOI: 10.1016/b978-0-12-398339-8.00004-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Though current knowledge of pharmacogenetic factors relevant to drug metabolism is fairly comprehensive and this should facilitate translation to the clinic, there are a number of gaps in knowledge. Recent studies using both conventional and novel approaches have added to our knowledge of pharmacogenetics of drug metabolism. Genome-wide association studies have provided new insights into the major contribution of cytochromes P450 to response to therapeutic agents such as coumarin anticoagulants and clopidogrel as well as to caffeine and nicotine. Recent advances in understanding of factors affecting gene expression, both regulation by transcription factors and by microRNA and epigenetic factors, have added to understanding of variation in expression of genes such as CYP3A4 and CYP2E1. The implementation of testing for pharmacogenetic polymorphisms in prescription of selected anticancer drugs and cardiovascular agents is considered in detail, with current controversies and barriers to implementation of pharmacogenetic testing assessed. Though genotyping for thiopurine methyltransferase is now common prior to prescription of thiopurines, genotyping for other pharmacogenetic polymorphisms prior to drug prescription remains uncommon. However, it seems likely that it will become more widespread as both increased evidence that certain pharmacogenetic tests are valuable and cost-effective and more accessible genotyping methods become available.
Collapse
|
23
|
Almal SH, Padh H. Implications of gene copy-number variation in health and diseases. J Hum Genet 2011; 57:6-13. [DOI: 10.1038/jhg.2011.108] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Mickens L, Ameringer K, Brightman M, Leventhal AM. Epidemiology, determinants, and consequences of cigarette smoking in African American women: an integrative review. Addict Behav 2010; 35:383-91. [PMID: 20061090 DOI: 10.1016/j.addbeh.2009.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
Tobacco smoking is a national public health problem that has been associated with numerous adverse health effects, including increased disease and cancer rates. Previous review articles on smoking in specific demographic populations have focused on smoking in women and on smoking in African Americans, but have not considered the dual roles of ethnicity and gender in smoking behavior. African American women (AAW) are an important subgroup to study because they are distinct from non-AAW and their male African American counterparts on biopsychosocial factors that are relevant to smoking behavior. The purpose of the present review paper is to integrate and summarize the current literature on the epidemiology, determinants, and consequences of cigarette smoking among AAW, by contrasting them to relevant comparison groups (non-AAW and African American men). Evidence suggests that AAW are generally more likely to be light smokers and initiate smoking later. The prevalence rates of AAW smokers have decreased over the past 25years, yet AAW are disproportionately affected by several smoking-related illnesses when compared to their ethnic and gender comparison groups. AAW smokers are distinct from relevant comparison groups in metabolic sensitivity to nicotine, aspects of smoking topography, and several psychosocial factors that influence smoking. Although a small literature on smoking in AAW is emerging, further empirical research of AAW smokers could inform the development of tailored interventions for AAW.
Collapse
|
25
|
In vivo evaluation of CYP2A6 and xanthine oxidase enzyme activities in the Serbian population. Eur J Clin Pharmacol 2010; 66:571-8. [PMID: 20155256 DOI: 10.1007/s00228-010-0785-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE The main aim of the study was to investigate the distribution of cytochrome P450 2A6 (CYP2A6) and xanthine oxidase (XO) enzyme activities in the Serbian population. Secondly, we tested the influence of genetics (CYP2A6 polymorphism), sex, and cigarette smoking on both enzymes. METHODS One hundred forty healthy Serbian volunteers were genotyped for common CYP2A6 alleles. In 100 of them, CYP2A6 and XO activities were determined by the urinary 17U/17X and 1U/(1U + 1X) ratios, respectively, after oral administration of 100 mg caffeine as a probe. RESULTS A 21-fold variation in the 17U/17X ratio was observed (range: 0.49-10.28, mean = 1.65, 95% CI: 1.49-1.83). The urinary 1U/(1U + 1X) ratios displayed four-fold variation, ranging from 0.17 to 0.71 (mean = 0.43, 95% CI: 0.41-0.45). CYP2A6 alleles *1A, *1B1, *9, *4 and *1B1x2 were found with frequencies of 0.579, 0.307, 0.082, 0.029, and 0.004 respectively. CYP2A6*5 was not detected. CYP2A6 genotype influenced interindividual variability in CYP2A6 enzyme activity (P = 0.04). Cigarette smoking inhibited CYP2A6 enzyme activity (P = 0.02), but had no effect on activity of XO (P = 0.16).There was no significant difference between men and women in terms of CYP2A6 or XO activity. CONCLUSIONS Serbs displayed interindividual variations in CYP2A6 activity. CYP2A6 genotype and cigarette smoking, but not sex, influenced CYP2A6 enzyme activity. Unimodal distribution of XO enzyme activity in Serbs implies the absence of subjects with low enzyme activity in this population. XO activity is not influenced by sex or cigarette smoking.
Collapse
|
26
|
Racial and Ethnic Diversity in Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
28
|
Faik I, de Carvalho EG, Kun JF. Parasite-host interaction in malaria: genetic clues and copy number variation. Genome Med 2009; 1:82. [PMID: 19725943 PMCID: PMC2768989 DOI: 10.1186/gm82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In humans, infections contribute highly to mortality and morbidity rates worldwide. Malaria tropica is one of the major infectious diseases globally and is caused by the protozoan parasite Plasmodium falciparum. Plasmodia have accompanied human beings since the emergence of humankind. Due to its pathogenicity, malaria is a powerful selective force on the human genome. Genetic epidemiology approaches such as family and twin studies, candidate gene studies, and disease-association studies have identified a number of genes that mediate relative protection against the severest forms of the disease. New molecular approaches, including genome-wide association studies, have recently been performed to expand our knowledge on the functional effect of human variation in malaria. For the future, a systematic determination of gene-dosage effects and expression profiles of protective genes might unveil the functional impact of structural alterations in these genes on either side of the host-parasite interaction.
Collapse
Affiliation(s)
- Imad Faik
- Institute for Tropical Medicine, University Tübingen, Wilhelmstr, 27, 72074 Tübingen, Germany
| | | | | |
Collapse
|
29
|
Ho MK, Mwenifumbo JC, Koudsi NA, Okuyemi KS, Ahluwalia JS, Benowitz NL, Tyndale RF. Association of nicotine metabolite ratio and CYP2A6 genotype with smoking cessation treatment in African-American light smokers. Clin Pharmacol Ther 2009; 85:635-43. [PMID: 19279561 PMCID: PMC3698861 DOI: 10.1038/clpt.2009.19] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 2A6 (CYP2A6) is the main nicotine (NIC)-metabolizing enzyme in humans. We investigated the relationships between CYP2A6 genotype, baseline plasma trans- 3'-hydroxycotinine/cotinine (3HC/COT) (a phenotypic marker of CYP2A6 activity), and smoking behavior in African-American light smokers. Cigarette consumption, age of initiation, and dependence scores did not differ among 3HC/COT quartiles or CYP2A6 genotype groups. Slow metabolizers (SMs; both genetic and phenotypic) had significantly higher plasma NIC levels, suggesting that cigarette consumption was not reduced to adjust for slower rates of NIC metabolism. Individuals in the slowest 3HC/COT quartile had higher quitting rates with both placebo and NIC gum treatments (odds ratio 1.85, 95% confidence interval (CI) 1.08-3.16, P = 0.03). Similarly, the slowest CYP2A6 genotype group had higher quitting rates, although this trend did not reach significance (odds ratio 1.61, 95% CI 0.95-2.72, P = 0.08). The determination of the 3HC/COT ratio, and possibly CYP2A6 genotype, may be useful in the future for personalizing the choice of smoking cessation treatment in African-American light smokers.
Collapse
Affiliation(s)
- Man Ki Ho
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON
| | - Jill C. Mwenifumbo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON
| | - Nael Al Koudsi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON
| | | | | | - Neal L. Benowitz
- Division of Clinical Pharmacology and Experimental Therapeutics, Departments of Medicine and Biopharmaceutical Sciences, University of California, San Francisco, CA
| | - Rachel F. Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON
- Centre for Addiction & Mental Health, Toronto, ON
| |
Collapse
|
30
|
Abstract
The molecular genetics of nicotine metabolism involves multiple polymorphic catalytic enzymes. Variation in metabolic pathways results in nicotine disposition kinetics that differ between individuals and ethnic groups. Twin studies indicate that a large part of this variance is genetic in origin, although environmental influences also contribute. The primary aim of this chapter is to review the current knowledge regarding the genetic variability in the enzymes that metabolize nicotine in humans. The focus is on describing the genetic polymorphisms that exist in cytochromes P450 (CYPs), aldehyde oxidase 1 (AOX1), UDP-glucuronosyltransferases (UGTs), and flavin-containing monooxygenase 3 (FMO3). Genetic studies have demonstrated that polymorphisms in CYP2A6, the primary enzyme responsible for nicotine breakdown, make a sizable contribution to the wide range of nicotine metabolic capacity observed in humans. Thus, special attention will be given to CYP2A6, because slower nicotine metabolism requires less frequent self-administration, and accordingly influences smoking behaviors. In addition, the molecular genetics of nicotine metabolism in nonhuman primates, mice, and rats will be reviewed briefly.
Collapse
Affiliation(s)
- Jill C Mwenifumbo
- Centre for Addiction & Mental Health and Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
31
|
In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genomics 2009; 19:300-9. [DOI: 10.1097/fpc.0b013e328328d577] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Rossini A, de Almeida Simão T, Albano RM, Pinto LFR. CYP2A6 polymorphisms and risk for tobacco-related cancers. Pharmacogenomics 2008; 9:1737-52. [PMID: 19018727 DOI: 10.2217/14622416.9.11.1737] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tobacco consumption is the main identifiable risk to cancer, contributing to the majority of tumors in upper aerodigestive tissues. The psychoactive compound responsible for tobacco addiction, nicotine and the potent carcinogens present at high concentrations either in cigarette mainstream smoke or in smokeless tobacco products, 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK) and N-nitrosonornicotine (NNN) can be metabolized by CYP2A6. CYP2A6 is expressed in many aerodigestive tissues with high interindividual variability. The CYP2A6 gene is highly polymorphic and CYP2A6 alleles coding for enzymes with altered expression or metabolic capacity produce alterations in nicotine metabolism in vivo and seem to influence smoking behavior. These polymorphisms may change the rate of NNK and NNN activation and, therefore, may influence cancer risk associated with tobacco consumption. However, to date only a few and inconclusive studies have addressed the risk that a given CYP2A6 polymorphism presents for the development of tobacco-related tumors. Most, but not all, show a reduced risk associated with alleles that result in decreased enzyme activity. The overlapping substrate specificity and tissue expression between CYP2A6 and the highly similar CYP2A13 may add to the conflicting results observed. The intricate regulation of CYP2A6 and the variation of structurally different chemical compounds capable of inhibiting CYP2A enzymes also add to the complexity. Finally, the interaction between polymorphisms of genes that code for CYP2A6, CYP2A13 and other potent carcinogen-metabolizing CYP enzymes may help to determine individuals that are at higher risk of developing tumors associated with tobacco consumption.
Collapse
Affiliation(s)
- Ana Rossini
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Bioquímica Brazil, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
33
|
Mwenifumbo JC, Al Koudsi N, Ho MK, Zhou Q, Hoffmann EB, Sellers EM, Tyndale RF. Novel and established CYP2A6 alleles impair in vivo nicotine metabolism in a population of Black African descent. Hum Mutat 2008; 29:679-88. [PMID: 18360915 DOI: 10.1002/humu.20698] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cytochrome P450 2A6 (CYP2A6) is a human enzyme best known for metabolizing tobacco-related compounds, such as nicotine, cotinine (COT), and nitrosamine procarcinogens. CYP2A6 genetic variants have been associated with smoking status, cigarette consumption, and tobacco-related cancers. Our objective was to functionally characterize four nonsynonymous CYP2A6 sequence variants with respect to their haplotype, allele frequency, and association with in vivo CYP2A6 activity. In vivo, nicotine was administered orally to 281 volunteers of Black African descent. Blood samples were collected for kinetic phenotyping and CYP2A6 genotyping. In vitro, nicotine C-oxidation catalytic efficiencies of heterologously expressed variant enzymes were assessed. The four uncharacterized sequence variants were found in seven novel alleles CYP2A6(*)24A&B ; (*)25, (*)26, (*)27, and *28A&B, most were associated with impaired in vivo CYP2A6 activity. Nicotine metabolism groupings, based on the in vivo data of variant alleles, were created. Mean trans-3'-hydroxycotinine/cotinine (3HC/COT) differed (P<0.001) between normal (100%), intermediate (64%), and slow (40%) groups. Systemic exposure to nicotine following oral administration also differed (P<0.001) between normal (100%), intermediate (139%), and slow (162%) metabolism groups. In addition, alleles of individuals with unusual phenotype-genotype relationships were sequenced, resulting in the discovery of five novel uncharacterized alleles and at least one novel duplication allele. A total of 7% of this population of Black African descent had at least one of the eight novel characterized alleles and 29% had at least one previously established allele. These findings are important for increasing the accuracy of association studies between CYP2A6 genotype and behavioral, disease, or pharmacological phenotypes.
Collapse
Affiliation(s)
- Jill C Mwenifumbo
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Lee AS, Gutiérrez-Arcelus M, Perry GH, Vallender EJ, Johnson WE, Miller GM, Korbel JO, Lee C. Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies. Hum Mol Genet 2008; 17:1127-36. [PMID: 18180252 DOI: 10.1093/hmg/ddn002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Copy number variants (CNVs) are heritable gains and losses of genomic DNA in normal individuals. While copy number variation is widely studied in humans, our knowledge of CNVs in other mammalian species is more limited. We have designed a custom array-based comparative genomic hybridization (aCGH) platform with 385 000 oligonucleotide probes based on the reference genome sequence of the rhesus macaque (Macaca mulatta), the most widely studied non-human primate in biomedical research. We used this platform to identify 123 CNVs among 10 unrelated macaque individuals, with 24% of the CNVs observed in multiple individuals. We found that segmental duplications were significantly enriched at macaque CNV loci. We also observed significant overlap between rhesus macaque and human CNVs, suggesting that certain genomic regions are prone to recurrent CNV formation and instability, even across a total of approximately 50 million years of primate evolution ( approximately 25 million years in each lineage). Furthermore, for eight of the CNVs that were observed in both humans and macaques, previous human studies have reported a relationship between copy number and gene expression or disease susceptibility. Therefore, the rhesus macaque offers an intriguing, non-human primate outbred model organism with which hypotheses concerning the specific functions of phenotypically relevant human CNVs can be tested.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Pathology, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116:496-526. [PMID: 18001838 DOI: 10.1016/j.pharmthera.2007.09.004] [Citation(s) in RCA: 771] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 01/11/2023]
Abstract
The polymorphic nature of the cytochrome P450 (CYP) genes affects individual drug response and adverse reactions to a great extent. This variation includes copy number variants (CNV), missense mutations, insertions and deletions, and mutations affecting gene expression and activity of mainly CYP2A6, CYP2B6, CYP2C9, CYP2C19 and CYP2D6, which have been extensively studied and well characterized. CYP1A2 and CYP3A4 expression varies significantly, and the cause has been suggested to be mainly of genetic origin but the exact molecular basis remains unknown. We present a review of the major polymorphic CYP alleles and conclude that this variability is of greatest importance for treatment with several antidepressants, antipsychotics, antiulcer drugs, anti-HIV drugs, anticoagulants, antidiabetics and the anticancer drug tamoxifen. We also present tables illustrating the relative importance of specific common CYP alleles for the extent of enzyme functionality. The field of pharmacoepigenetics has just opened, and we present recent examples wherein gene methylation influences the expression of CYP. In addition microRNA (miRNA) regulation of P450 has been described. Furthermore, this review updates the field with respect to regulatory initiatives and experience of predictive pharmacogenetic investigations in the clinics. It is concluded that the pharmacogenetic knowledge regarding CYP polymorphism now developed to a stage where it can be implemented in drug development and in clinical routine for specific drug treatments, thereby improving the drug response and reducing costs for drug treatment.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| | | | | | | |
Collapse
|
36
|
Mwenifumbo JC, Tyndale RF. Genetic variability in CYP2A6 and the pharmacokinetics of nicotine. Pharmacogenomics 2007; 8:1385-402. [DOI: 10.2217/14622416.8.10.1385] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotine is the psychoactive substance responsible for tobacco dependence. It is also a therapeutic used to aid smoking cessation. Cytochrome P450 (CYP)2A6 is the human hepatic enzyme that mediates most of nicotine’s metabolic inactivation to cotinine. Genetic variation in the CYP2A6 gene can increase or decrease enzyme activity through altering the protein’s expression level or its structure and function. This article reviews CYP2A6 genetic variation and its impact on in vivo nicotine kinetics, including a description of the individual variants, different phenotyping approaches for assessing in vivo CYP2A6 activity and other sources of variation in nicotine metabolism such as gender. In addition, the effect of CYP2A6 polymorphisms on smoking behavior and tobacco-related lung cancer risk are briefly described. Furthering knowledge in this area will improve interpretation of studies examining smoking behavior, as well as those using nicotine as a therapeutic agent.
Collapse
Affiliation(s)
- Jill C Mwenifumbo
- University of Toronto, Rm 4326 Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Rachel F Tyndale
- University of Toronto, Rm 4326 Medical Sciences Building, 1 King’s College Circle, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|