1
|
Wuerger LTD, Sprenger H, Krasikova K, Templin M, Stahl A, Herfurth UM, Sieg H, Braeuning A. A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol 2024; 98:2919-2935. [PMID: 38832940 PMCID: PMC11324782 DOI: 10.1007/s00204-024-03796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Okadaic acid (OA), a prevalent marine biotoxin found in shellfish, is known for causing acute gastrointestinal symptoms. Despite its potential to reach the bloodstream and the liver, the hepatic effects of OA are not well understood, highlighting a significant research gap. This study aims to comprehensively elucidate the impact of OA on the liver by examining the transcriptome, proteome, and phosphoproteome alterations in human HepaRG liver cells exposed to non-cytotoxic OA concentrations. We employed an integrative multi-omics approach, encompassing RNA sequencing, shotgun proteomics, phosphoproteomics, and targeted DigiWest analysis. This enabled a detailed exploration of gene and protein expression changes, alongside phosphorylation patterns under OA treatment. The study reveals concentration- and time-dependent deregulation in gene and protein expression, with a significant down-regulation of xenobiotic and lipid metabolism pathways. Up-regulated pathways include actin crosslink formation and a deregulation of apoptotic pathways. Notably, our results revealed that OA, as a potent phosphatase inhibitor, induces alterations in actin filament organization. Phosphoproteomics data highlighted the importance of phosphorylation in enzyme activity regulation, particularly affecting proteins involved in the regulation of the cytoskeleton. OA's inhibition of PP2A further leads to various downstream effects, including alterations in protein translation and energy metabolism. This research expands the understanding of OA's systemic impact, emphasizing its role in modulating the phosphorylation landscape, which influences crucial cellular processes. The results underscore OA's multifaceted effects on the liver, particularly through PP2A inhibition, impacting xenobiotic metabolism, cytoskeletal dynamics, and energy homeostasis. These insights enhance our comprehension of OA's biological significance and potential health risks.
Collapse
Affiliation(s)
- Leonie T D Wuerger
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Heike Sprenger
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ksenia Krasikova
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Uta M Herfurth
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
2
|
Rondini T, Branciari R, Franceschini E, Acito M, Fatigoni C, Roila R, Ranucci D, Villarini M, Galarini R, Moretti M. Olive Mill Wastewater Extract: In Vitro Genotoxicity/Antigenotoxicity Assessment on HepaRG Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1050. [PMID: 39200660 PMCID: PMC11354589 DOI: 10.3390/ijerph21081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024]
Abstract
Olive mill wastewater (OMWW), with its high level of phenolic compounds, simultaneously represents a serious environmental challenge and a great resource with potential nutraceutical activities. To increase the knowledge of OMWW's biological effects, with an aim to developing a food supplement, we performed a chemical characterisation of the extract using the Liquid Chromatography-Quadrupole Time-of-flight spectrometry (LC-QTOF) and an in vitro genotoxicity/antigenotoxicity assessment on HepaRG ™ cells. Chemical analysis revealed that the most abundant phenolic compound was hydroxytyrosol. Biological tests showed that the extract was not cytotoxic at the lowest tested concentrations (from 0.25 to 2.5 mg/mL), unlike the highest concentrations (from 5 to 20 mg/mL). Regarding genotoxic activity, when tested at non-cytotoxic concentrations, the extract did not display any effect. Additionally, the lowest tested OMWW concentrations showed antigenotoxic activity (J-shaped dose-response effect) against a known mutagenic substance, reducing the extent of DNA damage in the co-exposure treatment. The antigenotoxic effect was also obtained in the post-exposure procedure, although only at the extract concentrations of 0.015625 and 0.03125 mg/mL. This behaviour was not confirmed in the pre-exposure protocol. In conclusion, the present study established a maximum non-toxic OMWW extract dose for the HepaRG cell model, smoothing the path for future research.
Collapse
Affiliation(s)
- Tommaso Rondini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - Edoardo Franceschini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy;
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| |
Collapse
|
3
|
Djordjevic Aleksic J, Kolarević S, Jovanović Marić J, Kračun-Kolarević M, Žegura B, Štern A, Sladić D, Novaković I, Vuković-Gačić B. Influence of alkylthio and arylthio derivatives of tert-butylquinone on the induction of DNA damage in a human hepatocellular carcinoma cell line (HepG2). Toxicol In Vitro 2024; 99:105882. [PMID: 38936441 DOI: 10.1016/j.tiv.2024.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The aim of this study was to investigate the effects of tert-butylquinone (TBQ) and its alkylthio and arylthio derivatives on DNA in vitro, using acellular and cellular test systems. Direct interaction with DNA was studied using the plasmid pUC19. Cytotoxic (MTS assay) and genotoxic (comet assay and γH2AX focus assays) effects, and their influence on the cell cycle were studied in the HepG2 cell line. Our results show that TBQ and its derivatives did not directly interact with DNA. The strongest cytotoxic effect on the HepG2 cells was observed for the derivative 2-tert-butyl-5,6-(ethylenedithio)-1,4-benzoquinone (IC50 64.68 and 55.64 μM at 24-h and 48-h treatment, respectively). The tested derivatives did not significantly influence the cell cycle distribution in the exposed cellular populations. However, all derivatives showed a genotoxic activity stronger than that of TBQ in the comet assay, with 2-tert-butyl-5,6-(ethylenedithio)-1,4-benzoquinone producing the strongest effect. The same derivative also induced DNA double-strand breaks in the γH2AX focus assay.
Collapse
Affiliation(s)
| | - Stoimir Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Jovana Jovanović Marić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Dušan Sladić
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | - Irena Novaković
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department for Chemistry, Belgrade, Serbia
| | - Branka Vuković-Gačić
- University of Belgrade, Centre for Genotoxicology and Ecogenotoxicology, Faculty of Biology, Belgrade, Serbia
| |
Collapse
|
4
|
Lehmann A, Geburek I, Hessel-Pras S, Enge AM, Mielke H, Müller-Graf C, Kloft C, Hethey C. PBTK model-based analysis of CYP3A4 induction and the toxicokinetics of the pyrrolizidine alkaloid retrorsine in man. Arch Toxicol 2024; 98:1757-1769. [PMID: 38528153 DOI: 10.1007/s00204-024-03698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Cytochrome P450 (CYP)3A4 induction by drugs and pesticides plays a critical role in the enhancement of pyrrolizidine alkaloid (PA) toxicity as it leads to increased formation of hepatotoxic dehydro-PA metabolites. Addressing the need for a quantitative analysis of this interaction, we developed a physiologically-based toxicokinetic (PBTK) model. Specifically, the model describes the impact of the well-characterized CYP3A4 inducer rifampicin on the kinetics of retrorsine, which is a prototypic PA and contaminant in herbal teas. Based on consumption data, the kinetics after daily intake of retrorsine were simulated with concomitant rifampicin treatment. Strongest impact on retrorsine kinetics (plasma AUC24 and C max reduced to 67% and 74% compared to the rifampicin-free reference) was predicted directly after withdrawal of rifampicin. At this time point, the competitive inhibitory effect of rifampicin stopped, while CYP3A4 induction was still near its maximum. Due to the impacted metabolism kinetics, the cumulative formation of intestinal retrorsine CYP3A4 metabolites increased to 254% (from 10 to 25 nmol), while the cumulative formation of hepatic CYP3A4 metabolites was not affected (57 nmol). Return to baseline PA toxicokinetics was predicted 14 days after stop of a 14-day rifampicin treatment. In conclusion, the PBTK model showed to be a promising tool to assess the dynamic interplay of enzyme induction and toxification pathways.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anne-Margarethe Enge
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
5
|
Almalla A, Elomaa L, Fribiczer N, Landes T, Tang P, Mahfouz Z, Koksch B, Hillebrandt KH, Sauer IM, Heinemann D, Seiffert S, Weinhart M. Chemistry matters: A side-by-side comparison of two chemically distinct methacryloylated dECM bioresins for vat photopolymerization. BIOMATERIALS ADVANCES 2024; 160:213850. [PMID: 38626580 DOI: 10.1016/j.bioadv.2024.213850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Decellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison. Although the chemical modifications did not significantly affect the structural integrity of the dECM proteins, mammalian cells encapsulated in the respective hydrogels performed differently in long-term culture. In either case, photocrosslinking during 3D (bio)printing resulted in transparent, highly swollen, and soft hydrogels with good shape fidelity, excellent biomimetic properties and tunable mechanical properties (~ 0.2-2.5 kPa). Interestingly, at a similar degree of functionalization (DOF ~ 81.5-83.5 %), the dECM-GMA resin showed faster photocrosslinking kinetics in photorheology resulting in lower final stiffness and faster enzymatic biodegradation compared to the dECM-MA gels, yet comparable network homogeneity as assessed via Brillouin imaging. While human hepatic HepaRG cells exhibited comparable cell viability directly after 3D bioprinting within both materials, cell proliferation and spreading were clearly enhanced in the softer dECM-GMA hydrogels at a comparable degree of crosslinking. These differences were attributed to the additional hydrophilicity introduced to dECM via methacryloylation through GMA compared to MA. Due to its excellent printability and cytocompatibility, the functional porcine liver dECM-GMA biomaterial enables the advanced biofabrication of soft 3D tissue analogs using vat photopolymerization-based bioprinting.
Collapse
Affiliation(s)
- Ahed Almalla
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Nora Fribiczer
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Timm Landes
- HOT - Hanover Centre for Optical Technologies, Leibniz Universität Hannover, Nienburger Straße 17, 30167 Hannover, Germany; Institute of Horticultural Productions Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1a, 30167 Hannover, Germany
| | - Peng Tang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Zeinab Mahfouz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Karl Herbert Hillebrandt
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany
| | - Igor Maximilian Sauer
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany
| | - Dag Heinemann
- HOT - Hanover Centre for Optical Technologies, Leibniz Universität Hannover, Nienburger Straße 17, 30167 Hannover, Germany; Institute of Horticultural Productions Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany; Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1a, 30167 Hannover, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025, Germany; Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany.
| |
Collapse
|
6
|
Wupperfeld D, Fricker G, Bois De Fer B, Popovic B. Essential phospholipids impact cytokine secretion and alter lipid-metabolizing enzymes in human hepatocyte cell lines. Pharmacol Rep 2024; 76:572-584. [PMID: 38664334 PMCID: PMC11126482 DOI: 10.1007/s43440-024-00595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Essential phospholipids (EPL) are hepatoprotective. METHODS The effects on interleukin (IL)-6 and -8 secretion and on certain lipid-metabolizing enzymes of non-cytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), polyenylphosphatidylcholine (PPC), and phosphatidylinositol (PtdIns) (both at 0.1 and 1 mg/ml), compared with untreated controls, were assessed in human hepatocyte cell lines (HepG2, HepaRG, and steatotic HepaRG). RESULTS Lipopolysaccharide (LPS)-induced IL-6 secretion was significantly decreased in HepaRG cells by most phospholipids, and significantly increased in steatotic HepaRG cells with at least one concentration of EPL and PtdIns. LPS-induced IL-8 secretion was significantly increased in HepaRG and steatotic HepaRG cells with all phospholipids. All phospholipids significantly decreased amounts of fatty acid synthase in steatotic HepaRG cells and the amounts of acyl-CoA oxidase in HepaRG cells. Amounts of lecithin cholesterol acyltransferase were significantly decreased in HepG2 and HepaRG cells by most phospholipids, and significantly increased with 0.1 mg/ml PPC (HepaRG cells) and 1 mg/ml PtdIns (steatotic HepaRG cells). Glucose-6-phosphate dehydrogenase activity was unaffected by any phospholipid in any cell line. CONCLUSIONS EPL, PPC, and PtdIns impacted the secretion of pro-inflammatory cytokines and affected amounts of several key lipid-metabolizing enzymes in human hepatocyte cell lines. Such changes may help liver function improvement, and provide further insights into the EPL's mechanism of action.
Collapse
Affiliation(s)
- Dominik Wupperfeld
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Gert Fricker
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | | | - Branko Popovic
- Sanofi, Frankfurt am Main, K607, 65929, Industriepark Hoechst, Germany.
| |
Collapse
|
7
|
Preiss LC, Georgi K, Lauschke VM, Petersson C. Comparison of Human Long-Term Liver Models for Clearance Prediction of Slowly Metabolized Compounds. Drug Metab Dispos 2024; 52:539-547. [PMID: 38604730 DOI: 10.1124/dmd.123.001638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The accurate prediction of human clearance is an important task during drug development. The proportion of low clearance compounds has increased in drug development pipelines across the industry since such compounds may be dosed in lower amounts and at lower frequency. These type of compounds present new challenges to in vitro systems used for clearance extrapolation. In this study, we compared the accuracy of clearance predictions of suspension culture to four different long-term stable in vitro liver models, including HepaRG sandwich culture, the Hµrel stochastic co-culture, the Hepatopac micropatterned co-culture (MPCC), and a micro-array spheroid culture. Hepatocytes in long-term stable systems remained viable and active over several days of incubation. Although intrinsic clearance values were generally high in suspension culture, clearance of low turnover compounds could frequently not be determined using this method. Metabolic activity and intrinsic clearance values from HepaRG cultures were low and, consequently, many compounds with low turnover did not show significant decline despite long incubation times. Similarly, stochastic co-cultures occasionally failed to show significant turnover for multiple low and medium turnover compounds. Among the different methods, MPCCs and spheroids provided the most consistent measurements. Notably, all culture methods resulted in underprediction of clearance; this could, however, be compensated for by regression correction. Combined, the results indicate that spheroid culture as well as the MPCC system provide adequate in vitro tools for human extrapolation for compounds with low metabolic turnover. SIGNIFICANCE STATEMENT: In this study, we compared suspension cultures, HepaRG sandwich cultures, the Hµrel liver stochastic co-cultures, the Hepatopac micropatterned co-cultures (MPCC), and micro-array spheroid cultures for low clearance determination and prediction. Overall, HepaRG and suspension cultures showed modest value for the low determination and prediction of clearance compounds. The micro-array spheroid culture resulted in the most robust clearance measurements, whereas using the MPCC resulted in the most accurate prediction for low clearance compounds.
Collapse
Affiliation(s)
- Lena C Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Katrin Georgi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| | - Carl Petersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), The Healthcare Business of Merck KGaA, Darmstadt, Germany (L.C.P., K.G., C.P.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tuebingen, Tuebingen, Germany (V.M.L.)
| |
Collapse
|
8
|
Guo X, Xu H, Seo JE. Application of HepaRG cells for genotoxicity assessment: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:214-237. [PMID: 38566478 DOI: 10.1080/26896583.2024.2331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
9
|
Hanaoka K, Ikeno T, Iwaki S, Deguchi S, Takayama K, Mizuguchi H, Tao F, Kojima N, Ohno H, Sasaki E, Komatsu T, Ueno T, Maeda K, Kusuhara H, Urano Y. A general fluorescence off/on strategy for fluorogenic probes: Steric repulsion-induced twisted intramolecular charge transfer (sr-TICT). SCIENCE ADVANCES 2024; 10:eadi8847. [PMID: 38363840 PMCID: PMC10871538 DOI: 10.1126/sciadv.adi8847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
Various control strategies are available for building fluorogenic probes to visualize biological events in terms of a fluorescence change. Here, we performed the time-dependent density functional theory (TD-DFT) computational analysis of the twisted intramolecular charge transfer (TICT) process in rhodamine dyes. On the basis of the results, we designed and synthesized a series of rhodamine dyes and established a fluorescence quenching strategy that we call steric repulsion-induced TICT (sr-TICT), in which the fluorescence quenching process is greatly accelerated by simple intramolecular twisting. As proof of concept of this design strategy, we used it to develop a fluorogenic probe, 2-Me PeER (pentyloxyethylrhodamine), for the N-dealkylation activity of CYP3A4. We applied 2-Me PeER for CYP3A4 activity-based fluorescence-activated cell sorting (FACS), providing access to homogeneous, highly functional human-induced pluripotent stem cell (hiPSC)-derived hepatocytes and intestinal epithelial cells. Our results suggest that sr-TICT represents a general fluorescence control method for fluorogenic probes.
Collapse
Affiliation(s)
- Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minoto-ku, Tokyo 105-8512, Japan
| | - Takayuki Ikeno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shimpei Iwaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Fumiya Tao
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Nobuhiko Kojima
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Hisashi Ohno
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minoto-ku, Tokyo 105-8512, Japan
| | - Eita Sasaki
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minoto-ku, Tokyo 105-8512, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Petitjean K, Verres Y, Bristeau S, Ribault C, Aninat C, Olivier C, Leroyer P, Ropert M, Loréal O, Herault O, Amalric L, Baran N, Fromenty B, Corlu A, Loyer P. Low concentrations of ethylene bisdithiocarbamate pesticides maneb and mancozeb impair manganese and zinc homeostasis to induce oxidative stress and caspase-dependent apoptosis in human hepatocytes. CHEMOSPHERE 2024; 346:140535. [PMID: 37923018 DOI: 10.1016/j.chemosphere.2023.140535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
The worldwide and intensive use of phytosanitary compounds results in environmental and food contamination by chemical residues. Human exposure to multiple pesticide residues is a major health issue. Considering that the liver is not only the main organ for metabolizing pesticides but also a major target of toxicities induced by xenobiotics, we studied the effects of a mixture of 7 pesticides (chlorpyrifos-ethyl, dimethoate, diazinon, iprodione, imazalil, maneb, mancozeb) often detected in food samples. Effects of the mixture was investigated using metabolically competent HepaRG cells and human hepatocytes in primary culture. We report the strong cytotoxicity of the pesticide mixture towards hepatocytes-like HepaRG cells and human hepatocytes upon acute and chronic exposures at low concentrations extrapolated from the Acceptable Daily Intake (ADI) of each compound. Unexpectedly, we demonstrated that the manganese (Mn)-containing dithiocarbamates (DTCs) maneb and mancozeb were solely responsible for the cytotoxicity induced by the mixture. The mechanism of cell death involved the induction of oxidative stress, which led to cell death by intrinsic apoptosis involving caspases 3 and 9. Importantly, this cytotoxic effect was found only in cells metabolizing these pesticides. Herein, we unveil a novel mechanism of toxicity of the Mn-containing DTCs maneb and mancozeb through their metabolization in hepatocytes generating the main metabolite ethylene thiourea (ETU) and the release of Mn leading to intracellular Mn overload and depletion in zinc (Zn). Alteration of the Mn and Zn homeostasis provokes the oxidative stress and the induction of apoptosis, which can be prevented by Zn supplementation. Our data demonstrate the hepatotoxicity of Mn-containing fungicides at very low doses and unveil their adverse effect in disrupting Mn and Zn homeostasis and triggering oxidative stress in human hepatocytes.
Collapse
Affiliation(s)
- Kilian Petitjean
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Yann Verres
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Sébastien Bristeau
- BRGM, Direction Eau, Environnement, Procédés et Analyses (DEPA), 3 Avenue Claude-Guillemin - BP 36009, 45060 Orléans Cedex 2, France
| | - Catherine Ribault
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Caroline Aninat
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Christophe Olivier
- Cancéropole Grand Ouest (CGO), NET "Niches and Epigenetics of Tumors" Network, 44000 Nantes, France; INSERM UMR 1232 CRCINA, 44000 Nantes-Angers, France; Faculty of Pharmaceutical and Biological Sciences, Nantes University, 44000 Nantes, France
| | - Patricia Leroyer
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Martine Ropert
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France; AEM2 Platform, CHU Pontchaillou, 2 Rue Henri le Guilloux, 35033 Rennes, France
| | - Olivier Loréal
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Olivier Herault
- Cancéropole Grand Ouest (CGO), NET "Niches and Epigenetics of Tumors" Network, 44000 Nantes, France; Department of Biological Hematology, Tours University Hospital, 37000 Tours, France; CNRS ERL 7001 LNOx, EA 7501, Tours University, 37000 Tours, France; CNRS GDR3697 Micronit "Microenvironment of Tumor Niches", Tours, France
| | - Laurence Amalric
- BRGM, Direction Eau, Environnement, Procédés et Analyses (DEPA), 3 Avenue Claude-Guillemin - BP 36009, 45060 Orléans Cedex 2, France
| | - Nicole Baran
- BRGM, Direction Eau, Environnement, Procédés et Analyses (DEPA), 3 Avenue Claude-Guillemin - BP 36009, 45060 Orléans Cedex 2, France
| | - Bernard Fromenty
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France
| | - Anne Corlu
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France; Cancéropole Grand Ouest (CGO), NET "Niches and Epigenetics of Tumors" Network, 44000 Nantes, France.
| | - Pascal Loyer
- Inserm, INRAE, Univ Rennes, Institut NUMECAN (Nutrition Métabolismes et Cancer) UMR-A 1341, UMR-S 1317, F-35000 Rennes, France; Cancéropole Grand Ouest (CGO), NET "Niches and Epigenetics of Tumors" Network, 44000 Nantes, France.
| |
Collapse
|
11
|
Joshi P, Kang SY, Acharya P, Sidhpura D, Lee MY. High-throughput assessment of metabolism-mediated neurotoxicity by combining 3D-cultured neural stem cells and liver cell spheroids. Toxicol In Vitro 2023; 93:105688. [PMID: 37660999 DOI: 10.1016/j.tiv.2023.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Despite the fact that biotransformation in the liver plays an important role in the augmented toxicity and detoxification of chemicals, relatively little efforts have been made to incorporate biotransformation into in vitro neurotoxicity testing. Conventional in vitro systems for neurotoxicity tests lack the capability of investigating the qualitative and quantitative differences between parent chemicals and their metabolites in the human body. Therefore, there is a need for an in vitro toxicity screening system that can incorporate hepatic biotransformation of chemicals and predict the susceptibility of their metabolites to induce neurotoxicity. To address this need, we adopted 3D cultures of metabolically competent HepaRG cell line with ReNcell VM and established a high-throughput, metabolism-mediated neurotoxicity testing system. Briefly, spheroids of HepaRG cells were generated in an ultralow attachment (ULA) 384-well plate while 3D-cultured ReNcell VM was established on a 384-pillar plate with sidewalls and slits (384PillarPlate). Metabolically sensitive test compounds were added in the ULA 384-well plate with HepaRG spheroids and coupled with 3D-cultured ReNcell VM on the 384PillarPlate, which allowed us to generate metabolites in situ by HepaRG cells and test them against neural stem cells. We envision that this approach could be potentially adopted in pharmaceutical and chemical industries when high-throughput screening (HTS) is necessary to assess neurotoxicity of compounds and their metabolites.
Collapse
Affiliation(s)
- Pranav Joshi
- Bioprinting Laboratories Inc., 12200 Ford Road, Dallas, TX 75234, United States of America
| | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, United States of America
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, United States of America
| | - Darshita Sidhpura
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, United States of America
| | - Moo-Yeal Lee
- Bioprinting Laboratories Inc., 12200 Ford Road, Dallas, TX 75234, United States of America; Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, United States of America.
| |
Collapse
|
12
|
Peslalz P, Grieshober M, Kraus F, Bleisch A, Izzo F, Lichtenstein D, Hammer H, Vorbach A, Momoi K, Zanger UM, Brötz-Oesterhelt H, Braeuning A, Plietker B, Stenger S. Unnatural Endotype B PPAPs as Novel Compounds with Activity against Mycobacterium tuberculosis. J Med Chem 2023; 66:15073-15083. [PMID: 37822271 DOI: 10.1021/acs.jmedchem.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Pre-SARS-CoV-2, tuberculosis was the leading cause of death by a single pathogen. Repetitive exposure of Mycobacterium tuberculosis(Mtb) supported the development of multidrug- and extensively drug-resistant strains, demanding novel drugs. Hyperforin, a natural type A polyprenylated polycyclic acylphloroglucinol from St. John's wort, exhibits antidepressant and antibacterial effects also against Mtb. Yet, Hyperforin's instability limits the utility in clinical practice. Here, we present photo- and bench-stable type B PPAPs with enhanced antimycobacterial efficacy. PPAP22 emerged as a lead compound, further improved as the sodium salt PPAP53, drastically enhancing solubility. PPAP53 inhibits the growth of virulent extracellular and intracellular Mtb without harming primary human macrophages. Importantly, PPAP53 is active against drug-resistant strains of Mtb. Furthermore, we analyzed the in vitro properties of PPAP53 in terms of CYP induction and the PXR interaction. Taken together, we introduce type PPAPs as a new class of antimycobacterial compounds, with remarkable antibacterial activity and favorable biophysical properties.
Collapse
Affiliation(s)
- Philipp Peslalz
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
| | - Mark Grieshober
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Frank Kraus
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Anton Bleisch
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
| | - Flavia Izzo
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Dajana Lichtenstein
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Helen Hammer
- SIGNATOPE GmbH, Markwiesenstr. 55, Reutlingen 72770, Germany
| | - Andreas Vorbach
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen 72076, Germany
| | - Kyoko Momoi
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Auerbachstr. 112, University of Tübingen, 70376 Stuttgart, Tübingen 72076, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Auerbachstr. 112, University of Tübingen, 70376 Stuttgart, Tübingen 72076, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Tübingen 72076, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen 72076, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Bernd Plietker
- Chair of Organic Chemistry, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Bergstr. 66, Dresden01069 ,Germany
- Institut für Organische Chemie, Universität Stuttgart,Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| |
Collapse
|
13
|
Collins JM, Wang D. A Comprehensive Evaluation of the Effects of RNA-Editing Proteins ADAR and ADARB1 on the Expression of the Drug-Metabolizing Enzymes in HepaRG Cells. Drug Metab Dispos 2023; 51:1508-1514. [PMID: 37532539 PMCID: PMC10586505 DOI: 10.1124/dmd.123.001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Two RNA-editing proteins, the adenosine deaminase acting on RNA, ADAR, and ADARB1, broadly regulate gene expression in editing-dependent and editing-independent manners. Previous studies showed that the expression of the drug-metabolizing cytochrome P450s (P450s) and UDP glucuronosyltransferases (UGTs) changes upon knockdown (KD) of ADAR or ADARB1 in different hepatic cell lines. To systematically survey the effects of these two ADARs on the expression of P450s and UGTs, we used small interfering RNA in HepaRG cells and tested the association between the expression of the P450s and ADARs in a liver sample cohort (n = 246). KD of ADAR increased the expression of the CYP3As and CYP2C9 and reduced the expression of the others, whereas KD of ADARB1 reduced the expression of nearly all genes tested. ADAR KD also suppressed the induction of most P450s, whereas ADARB1 KD had mixed effects depending on the inducer/gene combination. P450 expression was positively associated with both ADARs in liver samples, consistent with the KD results. However, after adjusting for the expression of transcription factors (TFs) known to regulate P450 expression, the associations disappeared, indicating that the effects of ADAR or ADARB1 primarily occur through TFs. Moreover, we found that the expression of normally spliced CYP3A5 transcripts is increased in both KDs, indicating a direct effect of the ADARs on promoting the usage of the cryptic splice site generated by CYP3A5*3. Taken together, our results revealed the nonoverlapping regulatory effects of ADAR and ADARB1 and supported their broad roles in controlling the expression of drug-metabolizing enzymes in the liver. SIGNIFICANCE STATEMENT: Here, this study systematically surveyed the roles of ADAR and ADARB1 in both basal and induced expression of drug-metabolizing enzymes and assessed their coexpression in liver samples. This study's results support that ADAR and ADARB1 regulate the expression of the drug-metabolizing enzymes in the liver, suggesting that factors affecting ADAR expression also have the potential to impact drug metabolism.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| |
Collapse
|
14
|
Gorrochategui E, Le Vee M, Selmi H, Gérard A, Chaker J, Krais AM, Lindh C, Fardel O, Chevrier C, Le Cann P, Miller GW, Barouki R, Jégou B, Gicquel T, Kristensen DM, David A. High-resolution mass spectrometry identifies delayed biomarkers for improved precision in acetaminophen/paracetamol human biomonitoring. ENVIRONMENT INTERNATIONAL 2023; 181:108299. [PMID: 37951015 DOI: 10.1016/j.envint.2023.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Paracetamol/acetaminophen (N-acetyl-p-aminophenol, APAP) is a top selling analgesic used in more than 600 prescription and non-prescription pharmaceuticals. To study efficiently some of the potential undesirable effects associated with increasing APAP consumption (e.g., developmental disorders, drug-induced liver injury), there is a need to improve current APAP biomonitoring methods that are limited by APAP short half-life. Here, we demonstrate using high-resolution mass spectrometry (HRMS) in several human studies that APAP thiomethyl metabolite conjugates (S-methyl-3-thioacetaminophen sulfate and S-methyl-3-thioacetaminophen sulphoxide sulfate) are stable biomarkers with delayed excretion rates compared to conventional APAP metabolites, that could provide a more reliable history of APAP ingestion in epidemiological studies. We also show that these biomarkers could serve as relevant clinical markers to diagnose APAP acute intoxication in overdosed patients, when free APAP have nearly disappeared from blood. Using in vitro liver models (HepaRG cells and primary human hepatocytes), we then confirm that these thiomethyl metabolites are directly linked to the toxic N-acetyl-p-benzoquinone imine (NAPQI) elimination, and produced via an overlooked pathway called the thiomethyl shunt pathway. Further studies will be needed to determine whether the production of the reactive hepatotoxic NAPQI metabolites is currently underestimated in human. Nevertheless, these biomarkers could already serve to improve APAP human biomonitoring, and investigate, for instance, inter-individual variability in NAPQI production to study underlying causes involved in APAP-induced hepatotoxicity. Overall, our findings demonstrate the potential of exposomics-based HRMS approach to advance towards a better precision for human biomonitoring.
Collapse
Affiliation(s)
- Eva Gorrochategui
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Marc Le Vee
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Habiba Selmi
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Anne Gérard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jade Chaker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Pierre Le Cann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robert Barouki
- Unité UMR-S 1124 Inserm-Université Paris Descartes "Toxicologie Pharmacologie et Signalisation Cellulaire", Paris, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), CHU Rennes, Univ Rennes, INSERM, INRAE, UMR_A 1341, UMR_S 1317, 35000 Rennes, France
| | - David M Kristensen
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; Department of Science and Environment, Roskilde University, Roskilde, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.
| |
Collapse
|
15
|
Wuerger LT, Birkholz G, Oberemm A, Sieg H, Braeuning A. Proteomic analysis of hepatic effects of okadaic acid in HepaRG human liver cells. EXCLI JOURNAL 2023; 22:1135-1145. [PMID: 38054204 PMCID: PMC10694344 DOI: 10.17179/excli2023-6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
The marine biotoxin okadaic acid (OA) is produced by dinoflagellates and enters the human food chain by accumulating in the fatty tissue of filter-feeding shellfish. Consumption of highly contaminated shellfish can lead to diarrheic shellfish poisoning. However, apart from the acute effects in the intestine, OA can also provoke toxic effects in the liver, as it is able to pass the intestinal barrier into the blood stream. However, molecular details of OA-induced hepatotoxicity are still insufficiently characterized, and especially at the proteomic level data are scarce. In this study, we used human HepaRG liver cells and exposed them to non-cytotoxic OA concentrations for 24 hours. Global changes in protein expression were analyzed using 2-dimensional gel electrophoresis in combination with mass-spectrometric protein identification. The results constitute the first proteomic analysis of OA effects in human liver cells and indicate, amongst others, that OA affects the energy homeostasis, induces oxidative stress, and induces cytoskeletal changes.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Greta Birkholz
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
16
|
Karaca M, Fritsche K, Lichtenstein D, Vural Ö, Kreuzer K, Alarcan J, Braeuning A, Marx-Stoelting P, Tralau T. Adverse outcome pathway-based analysis of liver steatosis in vitro using human liver cell lines. STAR Protoc 2023; 4:102500. [PMID: 37616165 PMCID: PMC10463250 DOI: 10.1016/j.xpro.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Here, we present an in vitro test battery to analyze chemicals for their potential to induce liver triglyceride accumulation, a hallmark of liver steatosis. We describe steps for using HepG2 and HepaRG human hepatoma cells in conjunction with a combination of several in vitro assays covering the different molecular initiating events and key events of the respective adverse outcome pathway. This protocol is suitable for assessing single substance effects as well as mixtures allowing their classification as steatotic or non-steatotic. For complete details on the use and execution of this protocol, please refer to Luckert et al. (2018),1 Lichtenstein et al. (2020),2 and Knebel et al. (2019).3.
Collapse
Affiliation(s)
- Mawien Karaca
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Kristin Fritsche
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Özlem Vural
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Katrin Kreuzer
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jimmy Alarcan
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Technical University of Berlin, Institute for Chemistry, Straße des 17. Juni 115, 10623 Berlin, Germany.
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
17
|
Wagener F, Naumann N, Göldner V, Görgens C, Guddat S, Karst U, Thevis M. Comparison of in vitro approaches for predicting the metabolism of the selective androgen receptor modulator RAD140. Anal Bioanal Chem 2023; 415:5657-5669. [PMID: 37421437 PMCID: PMC10473985 DOI: 10.1007/s00216-023-04835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
The identification of metabolites allows for the expansion of possible targets for anti-doping analysis. Especially for novel substances such as selective androgen receptor modulators (SARMs), information on metabolic fate is scarce. Novel approaches such as the organ on a chip technology may provide a metabolic profile that resembles human in vivo samples more closely than approaches that rely on human liver fractions only. In this study, the SARM RAD140 was metabolized by means of subcellular human liver fractions, human liver spheroids in an organ on a chip platform, and electrochemical (EC) conversion. The resulting metabolites were analyzed with LC-HRMS/MS and compared to a human doping control urine sample that yielded an adverse analytical finding for RAD140. A total of 16 metabolites were detected in urine, while 14, 13, and 7 metabolites were detected in samples obtained from the organ on a chip experiment, the subcellular liver fraction, and EC experiments, respectively. All tested techniques resulted in the detection of RAD140 metabolites. In the organ on a chip samples, the highest number of metabolites were detected. The subcellular liver fractions and organ on a chip techniques are deemed complementary to predict metabolites of RAD140, as both techniques produce distinct metabolites that are also found in an anonymized human in vivo urine sample.
Collapse
Affiliation(s)
- Felicitas Wagener
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Nana Naumann
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| | - Christian Görgens
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Sven Guddat
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne, Germany.
| |
Collapse
|
18
|
Kaden T, Graf K, Rennert K, Li R, Mosig AS, Raasch M. Evaluation of drug-induced liver toxicity of trovafloxacin and levofloxacin in a human microphysiological liver model. Sci Rep 2023; 13:13338. [PMID: 37587168 PMCID: PMC10432496 DOI: 10.1038/s41598-023-40004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Drug-induced liver injury induced by already approved substances is a major threat to human patients, potentially resulting in drug withdrawal and substantial loss of financial resources in the pharmaceutical industry. Trovafloxacin, a broad-spectrum fluoroquinolone, was found to have unexpected side effects of severe hepatotoxicity, which was not detected by preclinical testing. To address the limitations of current drug testing strategies mainly involving 2D cell cultures and animal testing, a three-dimensional microphysiological model of the human liver containing expandable human liver sinusoidal endothelial cells, monocyte-derived macrophages and differentiated HepaRG cells was utilized to investigate the toxicity of trovafloxacin and compared it to the structurally-related non-toxic drug levofloxacin. In the model, trovafloxacin elicited vascular and hepatocellular toxicity associated with pro-inflammatory cytokine release already at clinically relevant concentrations, whereas levofloxacin did not provoke tissue injury. Similar to in vivo, cytokine secretion was dependent on a multicellular immune response, highlighting the potential of the complex microphysiological liver model for reliably detecting drug-related cytotoxicity in preclinical testing. Moreover, hepatic glutathione depletion and mitochondrial ROS formation were elucidated as intrinsic toxicity mechanisms contributing to trovafloxacin toxicity.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, Jena, Germany
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | | | | - Ruoya Li
- Biopredic International, St Gregoire, France
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
19
|
Lee GS, Purdy MA, Choi Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life (Basel) 2023; 13:1527. [PMID: 37511902 PMCID: PMC10381383 DOI: 10.3390/life13071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.
Collapse
Affiliation(s)
- Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
20
|
Ivanova ON, Krasnov GS, Snezhkina AV, Kudryavtseva AV, Fedorov VS, Zakirova NF, Golikov MV, Kochetkov SN, Bartosch B, Valuev-Elliston VT, Ivanov AV. Transcriptome Analysis of Redox Systems and Polyamine Metabolic Pathway in Hepatoma and Non-Tumor Hepatocyte-like Cells. Biomolecules 2023; 13:714. [PMID: 37189460 PMCID: PMC10136275 DOI: 10.3390/biom13040714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Reactive oxygen species (ROS) play a major role in the regulation of various processes in the cell. The increase in their production is a factor contributing to the development of numerous pathologies, including inflammation, fibrosis, and cancer. Accordingly, the study of ROS production and neutralization, as well as redox-dependent processes and the post-translational modifications of proteins, is warranted. Here, we present a transcriptomic analysis of the gene expression of various redox systems and related metabolic processes, such as polyamine and proline metabolism and the urea cycle in Huh7.5 hepatoma cells and the HepaRG liver progenitor cell line, that are widely used in hepatitis research. In addition, changes in response to the activation of polyamine catabolism that contribute to oxidative stress were studied. In particular, differences in the gene expression of various ROS-producing and ROS-neutralizing proteins, the enzymes of polyamine metabolisms and proline and urea cycles, as well as calcium ion transporters between cell lines, are shown. The data obtained are important for understanding the redox biology of viral hepatitis and elucidating the influence of the laboratory models used.
Collapse
Affiliation(s)
- Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vyacheslav S. Fedorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Michail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- Lyon Cancer Research Center, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, 69008 Lyon, France
| | | | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
21
|
Ekiciler A, Chen WLK, Bo Y, Pugliano A, Donzelli M, Parrott N, Umehara K. Quantitative Cytochrome P450 3A4 Induction Risk Assessment Using Human Hepatocytes Complemented with Pregnane X Receptor-Activating Profiles. Drug Metab Dispos 2023; 51:276-284. [PMID: 36460477 DOI: 10.1124/dmd.122.001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Reliable in vitro to in vivo translation of cytochrome P450 (CYP) 3A4 induction potential is essential to support risk mitigation for compounds during pharmaceutical discovery and development. In this study, a linear correlation of CYP3A4 mRNA induction potential in human hepatocytes with the respective pregnane-X receptor (PXR) activation in a reporter gene assay using DPX2 cells was successfully demonstrated for 13 clinically used drugs. Based on this correlation, using rifampicin as a positive control, the magnitude of CYP3A4 mRNA induction for 71 internal compounds at several concentrations up to 10 µM (n = 90) was predicted within 2-fold error for 64% of cases with only a few false positives (19%). Furthermore, the in vivo area under the curve reduction of probe CYP substrates was reasonably predicted for eight marketed drugs (carbamazepine, dexamethasone, enzalutamide, nevirapine, phenobarbital, phenytoin, rifampicin, and rufinamide) using the static net effect model using both the PXR activation and CYP3A4 mRNA induction data. The liver exit concentrations were used for the model in place of the inlet concentrations to avoid false positive predictions and the concentration achieving twofold induction (F2) was used to compensate for the lack of full induction kinetics due to cytotoxicity and solubility limitations in vitro. These findings can complement the currently available induction risk mitigation strategy and potentially influence the drug interaction modeling work conducted at clinical stages. SIGNIFICANCE STATEMENT: The established correlation of CYP3A4 mRNA in human hepatocytes to PXR activation provides a clear cut-off to identify a compound showing an in vitro induction risk, complementing current regulatory guidance. Also, the demonstrated in vitro-in vivo translation of induction data strongly supports a clinical development program although limitations remain for drug candidates showing complex disposition pathways, such as involvement of auto-inhibition/induction, active transport and high protein binding.
Collapse
Affiliation(s)
- Aynur Ekiciler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.E., A.P., M.D., N.P., K.U.) and Roche Pharmaceutical Research and Early Development, China Innovation Center of Roche, Shanghai, China (W.L.K.C., Y.B.)
| | - Wen Li Kelly Chen
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.E., A.P., M.D., N.P., K.U.) and Roche Pharmaceutical Research and Early Development, China Innovation Center of Roche, Shanghai, China (W.L.K.C., Y.B.)
| | - Yan Bo
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.E., A.P., M.D., N.P., K.U.) and Roche Pharmaceutical Research and Early Development, China Innovation Center of Roche, Shanghai, China (W.L.K.C., Y.B.)
| | - Alessandra Pugliano
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.E., A.P., M.D., N.P., K.U.) and Roche Pharmaceutical Research and Early Development, China Innovation Center of Roche, Shanghai, China (W.L.K.C., Y.B.)
| | - Massimiliano Donzelli
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.E., A.P., M.D., N.P., K.U.) and Roche Pharmaceutical Research and Early Development, China Innovation Center of Roche, Shanghai, China (W.L.K.C., Y.B.)
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.E., A.P., M.D., N.P., K.U.) and Roche Pharmaceutical Research and Early Development, China Innovation Center of Roche, Shanghai, China (W.L.K.C., Y.B.)
| | - Kenichi Umehara
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland (A.E., A.P., M.D., N.P., K.U.) and Roche Pharmaceutical Research and Early Development, China Innovation Center of Roche, Shanghai, China (W.L.K.C., Y.B.)
| |
Collapse
|
22
|
Wuerger LTD, Kudiabor F, Alarcan J, Templin M, Poetz O, Sieg H, Braeuning A. Okadaic Acid Activates JAK/STAT Signaling to Affect Xenobiotic Metabolism in HepaRG Cells. Cells 2023; 12:770. [PMID: 36899906 PMCID: PMC10000888 DOI: 10.3390/cells12050770] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Okadaic acid (OA) is a marine biotoxin that is produced by algae and accumulates in filter-feeding shellfish, through which it enters the human food chain, leading to diarrheic shellfish poisoning (DSP) after ingestion. Furthermore, additional effects of OA have been observed, such as cytotoxicity. Additionally, a strong downregulation of the expression of xenobiotic-metabolizing enzymes in the liver can be observed. The underlying mechanisms of this, however, remain to be examined. In this study, we investigated a possible underlying mechanism of the downregulation of cytochrome P450 (CYP) enzymes and the nuclear receptors pregnane X receptor (PXR) and retinoid-X-receptor alpha (RXRα) by OA through NF-κB and subsequent JAK/STAT activation in human HepaRG hepatocarcinoma cells. Our data suggest an activation of NF-κB signaling and subsequent expression and release of interleukins, which then activate JAK-dependent signaling and thus STAT3. Moreover, using the NF-κB inhibitors JSH-23 and Methysticin and the JAK inhibitors Decernotinib and Tofacitinib, we were also able to demonstrate a connection between OA-induced NF-κB and JAK signaling and the downregulation of CYP enzymes. Overall, we provide clear evidence that the effect of OA on the expression of CYP enzymes in HepaRG cells is regulated through NF-κB and subsequent JAK signaling.
Collapse
Affiliation(s)
- Leonie T. D. Wuerger
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Felicia Kudiabor
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
23
|
Transcriptomic-based evaluation of trichloroethylene glutathione and cysteine conjugates demonstrate phenotype-dependent stress responses in a panel of human in vitro models. Arch Toxicol 2023; 97:523-545. [PMID: 36576512 PMCID: PMC9859926 DOI: 10.1007/s00204-022-03436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Environmental or occupational exposure of humans to trichloroethylene (TCE) has been associated with different extrahepatic toxic effects, including nephrotoxicity and neurotoxicity. Bioactivation of TCE via the glutathione (GSH) conjugation pathway has been proposed as underlying mechanism, although only few mechanistic studies have used cell models of human origin. In this study, six human derived cell models were evaluated as in vitro models representing potential target tissues of TCE-conjugates: RPTEC/TERT1 (kidney), HepaRG (liver), HUVEC/TERT2 (vascular endothelial), LUHMES (neuronal, dopaminergic), human induced pluripotent stem cells (hiPSC) derived peripheral neurons (UKN5) and hiPSC-derived differentiated brain cortical cultures containing all subtypes of neurons and astrocytes (BCC42). A high throughput transcriptomic screening, utilizing mRNA templated oligo-sequencing (TempO-Seq), was used to study transcriptomic effects after exposure to TCE-conjugates. Cells were exposed to a wide range of concentrations of S-(1,2-trans-dichlorovinyl)glutathione (1,2-DCVG), S-(1,2-trans-dichlorovinyl)-L-cysteine (1,2-DCVC), S-(2,2-dichlorovinyl)glutathione (2,2-DCVG), and S-(2,2-dichlorovinyl)-L-cysteine (2,2-DCVC). 1,2-DCVC caused stress responses belonging to the Nrf2 pathway and Unfolded protein response in all the tested models but to different extents. The renal model was the most sensitive model to both 1,2-DCVC and 1,2-DCVG, with an early Nrf2-response at 3 µM and hundreds of differentially expressed genes at higher concentrations. Exposure to 2,2-DCVG and 2,2-DCVC also resulted in the upregulation of Nrf2 pathway genes in RPTEC/TERT1 although at higher concentrations. Of the three neuronal models, both the LUHMES and BCC42 showed significant Nrf2-responses and at higher concentration UPR-responses, supporting recent hypotheses that 1,2-DCVC may be involved in neurotoxic effects of TCE. The cell models with the highest expression of γ-glutamyltransferase (GGT) enzymes, showed cellular responses to both 1,2-DCVG and 1,2-DCVC. Little to no effects were found in the neuronal models from 1,2-DCVG exposure due to their low GGT-expression. This study expands our knowledge on tissue specificity of TCE S-conjugates and emphasizes the value of human cell models together with transcriptomics for such mechanistic studies.
Collapse
|
24
|
Vlach M, Coppens-Exandier H, Jamin A, Berchel M, Scaviner J, Chesné C, Montier T, Jaffrès PA, Corlu A, Loyer P. Liposome-Mediated Gene Transfer in Differentiated HepaRG™ Cells: Expression of Liver Specific Functions and Application to the Cytochrome P450 2D6 Expression. Cells 2022; 11:cells11233904. [PMID: 36497165 PMCID: PMC9737581 DOI: 10.3390/cells11233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to establish a procedure for gene delivery mediated by cationic liposomes in quiescent differentiated HepaRG™ human hepatoma cells. We first identified several cationic lipids promoting efficient gene transfer with low toxicity in actively dividing HepG2, HuH7, BC2 and progenitor HepaRG™ human hepatoma cells. The lipophosphoramidate Syn1-based nanovector, which allowed the highest transfection efficiencies of progenitor HepaRG™ cells, was next used to transfect differentiated HepaRG™ cells. Lipofection of these cells using Syn1-based liposome was poorly efficient most likely because the differentiated HepaRG™ cells are highly quiescent. Thus, we engineered the differentiated HepaRG™ Mitogenic medium supplement (ADD1001) that triggered robust proliferation of differentiated cells. Importantly, we characterized the phenotypical changes occurring during proliferation of differentiated HepaRG™ cells and demonstrated that mitogenic stimulation induced a partial and transient decrease in the expression levels of some liver specific functions followed by a fast recovery of the full differentiation status upon removal of the mitogens. Taking advantage of the proliferation of HepaRG™ cells, we defined lipofection conditions using Syn1-based liposomes allowing transient expression of the cytochrome P450 2D6, a phase I enzyme poorly expressed in HepaRG cells, which opens new means for drug metabolism studies in HepaRG™ cells.
Collapse
Affiliation(s)
- Manuel Vlach
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Institut AGRO Rennes-Angers, F-35042 Rennes, France
| | - Hugo Coppens-Exandier
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Biopredic International, F-35760 Saint Grégoire, France
| | - Agnès Jamin
- Biopredic International, F-35760 Saint Grégoire, France
| | - Mathieu Berchel
- Univ. Brest, CNRS, CEMCA, UMR 6521, F-29238 Brest, France
- Plateforme BiogenOuest SynNanoVect, F-44035 Nantes, France
| | - Julien Scaviner
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Biopredic International, F-35760 Saint Grégoire, France
| | | | - Tristan Montier
- Plateforme BiogenOuest SynNanoVect, F-44035 Nantes, France
- Univ. Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA, UMR 6521, F-29238 Brest, France
- Plateforme BiogenOuest SynNanoVect, F-44035 Nantes, France
| | - Anne Corlu
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Correspondence: (A.C.); (P.L.); Tel.: +33-(02)-23233873 (P.L.)
| | - Pascal Loyer
- Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35000 Rennes, France
- Plateforme BiogenOuest SynNanoVect, F-44035 Nantes, France
- Correspondence: (A.C.); (P.L.); Tel.: +33-(02)-23233873 (P.L.)
| |
Collapse
|
25
|
Deynichenko KA, Ptitsyn KG, Radko SP, Kurbatov LK, Vakhrushev IV, Buromski IV, Markin SS, Archakov AI, Lisitsa AV, Ponomarenko EA. Splice Variants of mRNA of Cytochrome P450 Genes: Analysis by the Nanopore Sequencing Method in Human Liver Tissue and HepG2 Cell Line. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022. [DOI: 10.1134/s1990750822040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Casas B, Vilén L, Bauer S, Kanebratt KP, Wennberg Huldt C, Magnusson L, Marx U, Andersson TB, Gennemark P, Cedersund G. Integrated experimental-computational analysis of a HepaRG liver-islet microphysiological system for human-centric diabetes research. PLoS Comput Biol 2022; 18:e1010587. [PMID: 36260620 PMCID: PMC9621595 DOI: 10.1371/journal.pcbi.1010587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/31/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Microphysiological systems (MPS) are powerful tools for emulating human physiology and replicating disease progression in vitro. MPS could be better predictors of human outcome than current animal models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain significant challenges. Here, we address these challenges using an integrated experimental-computational approach. This approach allows for in silico representation and predictions of glucose metabolism in a previously reported MPS with two organ compartments (liver and pancreas) connected in a closed loop with circulating medium. We developed a computational model describing glucose metabolism over 15 days of culture in the MPS. The model was calibrated on an experiment-specific basis using data from seven experiments, where HepaRG single-liver or liver-islet cultures were exposed to both normal and hyperglycemic conditions resembling high blood glucose levels in diabetes. The calibrated models reproduced the fast (i.e. hourly) variations in glucose and insulin observed in the MPS experiments, as well as the long-term (i.e. over weeks) decline in both glucose tolerance and insulin secretion. We also investigated the behaviour of the system under hypoglycemia by simulating this condition in silico, and the model could correctly predict the glucose and insulin responses measured in new MPS experiments. Last, we used the computational model to translate the experimental results to humans, showing good agreement with published data of the glucose response to a meal in healthy subjects. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders. Microphysiological systems (MPS) are powerful tools to unravel biological knowledge underlying disease. MPS provide a physiologically relevant, human-based in vitro setting, which can potentially yield better translatability to humans than current animal models and traditional cell cultures. However, mechanistic interpretation and extrapolation of the experimental results to human outcome remain significant challenges. In this study, we confront these challenges using an integrated experimental-computational approach. We present a computational model describing glucose metabolism in a previously reported MPS integrating liver and pancreas. This MPS supports a homeostatic feedback loop between HepaRG/HHSteC spheroids and pancreatic islets, and allows for detailed investigations of mechanisms underlying type 2 diabetes in humans. We show that the computational model captures the complex dynamics of glucose-insulin regulation observed in the system, and can provide mechanistic insight into disease progression features, such as insulin resistance and β-cell dynamics. Furthermore, the computational model can explain key differences in temporal dynamics between MPS and human responses, and thus provides a tool for translating experimental insights into human outcome. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders.
Collapse
Affiliation(s)
- Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Liisa Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Kajsa P. Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Magnusson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Tommy B. Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
27
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
28
|
Wupperfeld D, Fricker G, Bois De Fer B, Frank L, Wehrle A, Popovic B. Essential phospholipids decrease apoptosis and increase membrane transport in human hepatocyte cell lines. Lipids Health Dis 2022; 21:91. [PMID: 36153592 PMCID: PMC9508738 DOI: 10.1186/s12944-022-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Essential phospholipids (EPL) have hepatoprotective effects across many liver diseases/conditions. The impact of EPL on hepatocyte function in vitro was investigated.
Methods
Effects of noncytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), and its constituents, polyenylphosphatidylcholine (PPC) and phosphatidylinositol (PI) (both at 0.1 and 1 mg/ml), on membrane fluidity, apoptosis and extracellular transport versus controls were investigated in human hepatocyte cell lines (HepG2, HepaRG, steatotic HepaRG).
Results
Significantly increased membrane fluidity occurred with all 3 phospholipids (PLs) in HepG2 cultures, and with PI (1 mg/ml) in steatotic HepaRG cells. Significantly decreased tamoxifen-induced apoptosis was observed in HepG2 cells with EPL, PPC and PI. Breast cancer resistance protein (BCRP) activity was significantly increased by EPL and PI in HepG2 cells. Multidrug resistance-associated protein 2 (MRP-2) activity was unaffected by any PL in HepG2 cells, and significantly increased by EPL, PI and PPC (1 mg/ml) in HepaRG cells, and by PI (1 mg/ml) in steatotic HepaRG cells. Bile salt export protein (BSEP) activity in HepG2 cells and steatotic HepaRG cells was significantly increased by EPL (0.25 mg/ml), and PPC (both concentrations), but not by PI. The PLs had no effects on HepaRG cell BSEP activity. P-glycoprotein (P-GP) activity was significantly increased by all compounds in HepG2 cells. PI (1 mg/ml) significantly increased P-GP activity in HepaRG and steatotic HepaRG cells.
Conclusions
EPL, PPC, and PI increased hepatocyte membrane fluidity, decreased apoptosis and increased hepatocellular export, all of which may improve liver function. These in-vitro investigations provide valuable insights into the mechanism of action of EPL.
Collapse
|
29
|
Combined Hepatotoxicity and Toxicity Mechanism of Intermedine and Lycopsamine. Toxins (Basel) 2022; 14:toxins14090633. [PMID: 36136571 PMCID: PMC9501075 DOI: 10.3390/toxins14090633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are common constituents of plants and have serious hepatotoxicity. Intermedine (Im) and lycopsamine (La) are two monoesters of PAs that frequently coexist in the PA-containing plants (e.g., comfrey and tea). The present study aimed to explore the combined hepatotoxicity and toxicity mechanism of the Im and La mixture. In vitro, the combined cytotoxicity of the Im and La mixture on human hepatocytes (HepD) was examined by CCK-8, colony formation, wound healing, and Annexin V/PI staining assays. The combination of Im and La inhibited the ability of HepD cells to proliferate, colonize, and migrate and induced hepatocytes apoptosis in a dose-dependent manner. In addition to significantly causing a burst of intracellular reactive oxygen species (ROS), mitochondrial apoptosis, and endoplasmic reticulum (ER) stress, the Im and La mixture can also cause an increase in intracellular Ca2+, triggering the PERK/eIF2α/ATF4/CHOP apoptosis pathway. This study provided the first direct evidence that the combined PAs induced hepatotoxicity through ER-mediated apoptosis. These results supplemented the basic toxicity data for the combined PAs and provided a new perspective for the risk assessment of combined PA toxicity.
Collapse
|
30
|
di Vito R, Levorato S, Fatigoni C, Acito M, Sancineto L, Traina G, Villarini M, Santi C, Moretti M. In vitro toxicological assessment of PhSeZnCl in human liver cells. Toxicol Res 2022; 39:105-114. [PMID: 36721677 PMCID: PMC9839901 DOI: 10.1007/s43188-022-00148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/03/2023] Open
Abstract
Phenylselenenylzinc chloride (PhSeZnCl) is an air-stable selenolate, easily synthesizable through oxidative insertion of elemental zinc into the Se-halogen bond of the commercially available phenylselenyl chloride. PhSeZnCl was shown to possess a marked GPx-like activity both in NMR and in vitro tests, and to effectively react with cellular thiols, and was supposed for a potential use in the chemotherapy of drug-resistant cancers. However, activity of PhSeZnCl in hepatic cells has never been tested before now. In this in vitro approach, we evaluated the cytotoxic, genotoxic, and apoptotic activities, as well as the effects on cell cycle of PhSeZnCl in two preclinical hepatic models, namely HepG2 and HepaRG cells. Results showed that cell viability of HepG2 and HepaRG cells decreased in a dose-dependent manner, with a more marked effect in HepG2 tumour cells. Moreover, treatment with 50 µg/mL PhSeZnCl caused an increase of primary DNA damage (4 h) and a statistically significant increase of HepG2 cells arrested in G2/M phase. In addition, it altered mitochondrial membrane potential and induced chromosomal DNA fragmentation (24 h). In HepaRG cells, PhSeZnCl was able to determine a cell cycle-independent induction of apoptosis. Particularly, 50 µg/mL induced mitochondrial membrane depolarization after 24 h and apoptosis after 4 h treatment. Futhermore, all PhSeZnCl concentrations tested determined a significant increase of apoptotic cells after 24 h. Apoptosis was also highlighted by the detection of active Caspase-3 by Western Blot analysis after 24 h exposure. In conclusion, this first toxicological assessment provides new insights into the biological activity of PhSeZnCl in preclinical hepatic models that will be useful in future safety assessment investigation of this compound as a potential pharmaceutical. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00148-y.
Collapse
Affiliation(s)
- Raffaella di Vito
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy ,grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Unit of Physiology), University of Perugia, Via San Costanzo, 06126 Perugia, Italy
| | - Sara Levorato
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy ,grid.483440.f0000 0004 1792 4701Present Address: European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Cristina Fatigoni
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Mattia Acito
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Luca Sancineto
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 06123 Perugia, Italy
| | - Giovanna Traina
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Unit of Physiology), University of Perugia, Via San Costanzo, 06126 Perugia, Italy
| | - Milena Villarini
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Claudio Santi
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 06123 Perugia, Italy
| | - Massimo Moretti
- grid.9027.c0000 0004 1757 3630Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
31
|
Verdura S, Encinar JA, Fernández-Arroyo S, Joven J, Cuyàs E, Bosch-Barrera J, Menendez JA. Silibinin Suppresses the Hyperlipidemic Effects of the ALK-Tyrosine Kinase Inhibitor Lorlatinib in Hepatic Cells. Int J Mol Sci 2022; 23:9986. [PMID: 36077379 PMCID: PMC9456400 DOI: 10.3390/ijms23179986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The third-generation anaplastic lymphoma tyrosine kinase inhibitor (ALK-TKI) lorlatinib has a unique side effect profile that includes hypercholesteremia and hypertriglyceridemia in >80% of lung cancer patients. Here, we tested the hypothesis that lorlatinib might directly promote the accumulation of cholesterol and/or triglycerides in human hepatic cells. We investigated the capacity of the hepatoprotectant silibinin to modify the lipid-modifying activity of lorlatinib. To predict clinically relevant drug−drug interactions if silibinin were used to clinically manage lorlatinib-induced hyperlipidemic effects in hepatic cells, we also explored the capacity of silibinin to interact with and block CYP3A4 activity using in silico computational descriptions and in vitro biochemical assays. A semi-targeted ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-ESI-QTOF-MS/MS)-based lipidomic approach revealed that short-term treatment of hepatic cells with lorlatinib promotes the accumulation of numerous molecular species of cholesteryl esters and triglycerides. Silibinin treatment significantly protected the steady-state lipidome of hepatocytes against the hyperlipidemic actions of lorlatinib. Lipid staining confirmed the ability of lorlatinib to promote neutral lipid overload in hepatocytes upon long-term exposure, which was prevented by co-treatment with silibinin. Computational analyses and cell-free biochemical assays predicted a weak to moderate inhibitory activity of clinically relevant concentrations of silibinin against CYP3A4 when compared with recommended (rosuvastatin) and non-recommended (simvastatin) statins for lorlatinib-associated dyslipidemia. The elevated plasma cholesterol and triglyceride levels in lorlatinib-treated lung cancer patients might involve primary alterations in the hepatic accumulation of lipid intermediates. Silibinin could be clinically explored to reduce the undesirable hyperlipidemic activity of lorlatinib in lung cancer patients.
Collapse
Affiliation(s)
- Sara Verdura
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03207 Elche, Spain
| | - Salvador Fernández-Arroyo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, 43204 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Jorge Joven
- Department of Medicine and Surgery, Universitat Rovira i Virgili, 43204 Reus, Spain
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Elisabet Cuyàs
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology, 17007 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071 Girona, Spain
| | - Javier A. Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| |
Collapse
|
32
|
Zuo Q, Xu W, Wan Y, Feng D, He C, Lin C, Huang D, Chen F, Han L, Sun Q, Chen D, Du H, Huang L. Efficient generation of a CYP3A4-T2A-luciferase knock-in HepaRG subclone and its optimized differentiation. Biomed Pharmacother 2022; 152:113243. [PMID: 35687910 DOI: 10.1016/j.biopha.2022.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
CRISPR/Cas9 has allowed development of better and easier-to-use ADME models than traditional methods by complete knockout or knock-in of genes. However, gene editing in HepaRG cells remains challenging because long-term monoclonal cultivation may alter their differentiation capacity to a large extent. Here, CRISPR/Cas9 was used to generate a CYP3A4-T2A-luciferase knock-in HepaRG subclone by Cas9-mediated homologous recombination and monoclonal cultivation. The knock-in HepaRG-#9 subclone retained a similar differentiation potential to wildtype HepaRG cells (HepaRG-WT). To further improve differentiation and expand the applications of knock-in HepaRG cells, two optimized differentiation procedures were evaluated by comparison with the standard differentiation procedure using the knock-in HepaRG-#9 subclone and HepaRG-WT. The results indicated that addition of forskolin (an adenylate cyclase activator) and SB431542 (a TGF-β pathway inhibitor) to the first optimized differentiation procedure led to better differentiation consequence in terms of not only the initiation time for differentiation and morphological characterization, but also the mRNA levels of hepatocyte-specific genes. These data may contribute to more extensive applications of genetically modified HepaRG cells in ADME studies.
Collapse
Affiliation(s)
- Qingxia Zuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wanqing Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanbin Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongyan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liya Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qi Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dong Chen
- Fangrui Institute of Innovative Drugs, South China University of Technology, Guangzhou 510006, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
33
|
Wuerger LT, Hammer HS, Hofmann U, Kudiabor F, Sieg H, Braeuning A. Okadaic acid influences xenobiotic metabolism in HepaRG cells. EXCLI JOURNAL 2022; 21:1053-1065. [PMID: 36172076 PMCID: PMC9489895 DOI: 10.17179/excli2022-5033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Okadaic acid (OA) is an algae-produced lipophilic marine biotoxin that accumulates in the fatty tissue of filter-feeding shellfish. Ingestion of contaminated shellfish leads to the diarrheic shellfish poisoning syndrome. Furthermore, several other effects of OA like genotoxicity, liver toxicity and tumor-promoting properties have been observed, probably linked to the phosphatase-inhibiting properties of the toxin. It has been shown that at high doses OA can disrupt the physical barrier of the intestinal epithelium. As the intestine and the liver do not only constitute a physical, but also a metabolic barrier against xenobiotic exposure, we here investigated the impact of OA on the expression of cytochrome P450 (CYP) enzymes and transporter proteins in human HepaRG cells liver cells in vitro at non-cytotoxic concentrations. The interplay of OA with known CYP inducers was also studied. Data show that the expression of various xenobiotic-metabolizing CYPs was downregulated after exposure to OA. Moreover, OA was able to counteract the activation of CYPs by their inducers. A number of transporters were also mainly downregulated. Overall, we demonstrate that OA has a significant effect on xenobiotic metabolism barrier in liver cells, highlighting the possibility for interactions of OA exposure with the metabolism of drugs and xenobiotics.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany
| | - Felicia Kudiabor
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany,*To whom correspondence should be addressed: Holger Sieg, German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany, E-mail:
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
34
|
Dubois-Pot-Schneider H, Aninat C, Kattler K, Fekir K, Jarnouen K, Cerec V, Glaise D, Salhab A, Gasparoni G, Takashi K, Ishida S, Walter J, Corlu A. Transcriptional and Epigenetic Consequences of DMSO Treatment on HepaRG Cells. Cells 2022; 11:cells11152298. [PMID: 35892596 PMCID: PMC9331440 DOI: 10.3390/cells11152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation.
Collapse
Affiliation(s)
- Hélène Dubois-Pot-Schneider
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
- Correspondence: ; Tel.: +33-372746115
| | - Caroline Aninat
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathrin Kattler
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Karim Fekir
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathleen Jarnouen
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Virginie Cerec
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Denise Glaise
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Abdulrahman Salhab
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Kubo Takashi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Jörn Walter
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Anne Corlu
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| |
Collapse
|
35
|
Hammour MM, Othman A, Aspera-Werz R, Braun B, Weis-Klemm M, Wagner S, Nadalin S, Histing T, Ruoß M, Nüssler AK. Optimisation of the HepaRG cell line model for drug toxicity studies using two different cultivation conditions: advantages and limitations. Arch Toxicol 2022; 96:2511-2521. [PMID: 35748891 DOI: 10.1007/s00204-022-03329-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The HepaRG cell line represents a successful model for hepatotoxicity studies. These cells are of human origin and are differentiated in vitro into mature and functional hepatocyte-like cells. The objective of this research was to compare two different culture protocols, Sison-Young et al. 2017 (hereinafter referred as Sison) and Gripon et al. 2002 (hereinafter referred as Biopredic) for HepaRG cells in order to optimise this model for drug metabolism and toxicity testing studies. HepaRG cells obtained from the same batch were cultured according to the described protocols. Using both protocols, differentiated HepaRG cells retained their drug metabolic capacity (major phase I/II enzymes) and transporters, as well as their morphological characteristics. Morphologically, HepaRG cells cultured after the Biopredic protocol formed more apical membranes and small ductular-like structures, than those cultivated using the Sison protocol. Also, the efflux activity of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1) as well as the activity of uridine-glucuronosyltransferase (UGT) and glutathione S-transferase (GST) were significantly reduced in HepaRG cultured using the Sison protocol. Applying well-established drug cocktails to measure cytochrome P450 (CYPs) activity, we found that production of the corresponding metabolites was hampered in Sison-cultured HepaRG cells, indicating that the activity of CYP1A2, CYP2C9, CYP3A4, CYP2B6 and CYP2C19 was significantly reduced. Moreover, HepaRG sensitivity to well-known drugs, namely diclofenac, amiodarone, imipramine and paracetamol, revealed some differences between the two culture protocols. Furthermore, the HepaRG cells can be maintained with higher viability and sufficient CYPs activity and expression (i.e. CYP3A4, CYP1A2 and CYP2B6) as well as liver-specific functions, using Biopredic compared with the Sison culture protocol. These maintained liver-specific functions might be dependent on the prolongation of the culture conditions in the case of the Biopredic protocol. In conclusion, based on the metabolic activity of HepaRG cells using the standard protocol from Biopredic, we believe that this protocol is optimal for investigating drug metabolism and pharmacokinetic screening studies.
Collapse
Affiliation(s)
- Mohammad Majd Hammour
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Amnah Othman
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Romina Aspera-Werz
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Michaela Weis-Klemm
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Tina Histing
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
36
|
de Bruijn VMP, Wang Z, Bakker W, Zheng W, Spee B, Bouwmeester H. Hepatic bile acid synthesis and secretion: Comparison of in vitro methods. Toxicol Lett 2022; 365:46-60. [PMID: 35724847 DOI: 10.1016/j.toxlet.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
Reliable hepatic in vitro systems are crucial for the safety assessment of xenobiotics. Certain xenobiotics decrease the hepatic bile efflux, which can ultimately result in cholestasis. Preclinical animal models and the currently available in vitro systems poorly predict a xenobiotic's cholestatic potential. Here, we compared the phenotype and capacity of three liver derived in vitro systems to emulate human functionality to synthesize and secrete bile acids (BAs). To this end, basal BA production of sandwich cultured human hepatocytes (SCHHs), HepaRG cells (HepaRGs) and hepatocyte-like intrahepatic cholangiocyte organoids (ICO-heps) were analysed, and the effect of the known BSEP (Bile Salt Export Pump)-inhibitors bosentan and lopinavir on BA disposition in SCHHs and HepaRGs was quantified. RT-qPCR of selected target genes involved in maturation status, synthesis, transport and conjugation of BAs was performed to mechanistically underpin the observed differences in BA homeostasis. ICO-heps produced a (very) low amount of BAs. SCHHs are a powerful tool in cholestasis-testing due to their high basal BA production and high transporter expression compared to the other models tested. HepaRGs were responsive to both selected BSEP-inhibitors and produced a BA profile that is most similar to the human in vivo situation, making them a suitable and practical candidate for cholestasis-testing.
Collapse
Affiliation(s)
| | - Zhenguo Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Wouter Bakker
- Division of Toxicology, Wageningen University & Research, the Netherlands
| | - Weijia Zheng
- Division of Toxicology, Wageningen University & Research, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University & Research, the Netherlands
| |
Collapse
|
37
|
Meirinho S, Rodrigues M, Fortuna A, Falcão A, Alves G. Study of the metabolic stability profiles of perampanel, rufinamide and stiripentol and prediction of drug interactions using HepaRG cells as an in vitro human model. Toxicol In Vitro 2022; 82:105389. [PMID: 35597399 DOI: 10.1016/j.tiv.2022.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
New-generation antiepileptic drugs as perampanel, rufinamide and stiripentol emerged as alternatives in chronic epilepsy polytherapy. Hence, their metabolic stability and potential involvement in relevant drug-drug interactions (DDI) are of great clinical interest, being HepaRG cells herein used as an in vitro human model. To characterize their metabolic stability profiles, HepaRG cells were incubated with perampanel (1 μM), rufinamide (100 μM) or stiripentol (5 μM) for 12-h. HepaRG cells, pretreated with known CYP450 isoenzymes inducers (rifampicin, phenytoin, phenobarbital, omeprazole and carbamazepine), were also incubated with perampanel, rufinamide or stiripentol to assess possible DDI mediated by CYP induction. Results suggest a considerable decrease in perampanel and stiripentol concentrations over 12-h; contrary, rufinamide concentrations did not variated. Cells pretreatment with all inducers significantly decreased stiripentol concentrations (between 20.3% and 31.9%), suggesting a considerable potential for DDI. Rufinamide concentrations only decreased when preincubated with rifampicin and with the highest tested concentrations of the remaining inducers. Perampanel levels decreased with rifampicin, carbamazepine and phenobarbital, supporting the involvement of CYP3A4-mediated metabolism. Besides relevant information concerning the metabolic stability profile and potential DDIs of the new antiepileptics here studied, it was also reinforced the HepaRG cells suitability as a reliable in vitro model to foresee in vivo metabolism in humans.
Collapse
Affiliation(s)
- Sara Meirinho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Márcio Rodrigues
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI-IPG - Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, 6300-559 Guarda, Portugal
| | - Ana Fortuna
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências e da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências e da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
38
|
Liao FC, Wang YK, Cheng MY, Tu TY. A Preliminary Investigation of Embedding In Vitro HepaRG Spheroids into Recombinant Human Collagen Type I for the Promotion of Liver Differentiation. Polymers (Basel) 2022; 14:polym14091923. [PMID: 35567092 PMCID: PMC9103061 DOI: 10.3390/polym14091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background: In vitro three-dimensional (3D) hepatic spheroid culture has shown great promise in toxicity testing because it better mimics the cell–cell and cell–matrix interactions found in in vivo conditions than that of the traditional two-dimensional (2D) culture. Despite embedding HepaRG spheroids with collagen type I (collagen I) extracellular matrix (ECM) revealed a much better differentiation capability, almost all the collagen utilized in in vitro hepatocytes cultures is animal-derived collagen that may limit its use in human toxicity testing. Method: Here, a preliminary investigation of HepaRG cells cultured in different dimensionalities and with the addition of ECM was performed. Comparisons of conventional 2D culture with 3D spheroid culture were performed based on their functional or structural differences over 7 days. Rat tail collagen (rtCollagen) I and recombinant human collagen (rhCollagen) I were investigated for their ability in promoting HepaRG spheroid differentiation. Results: An immunofluorescence analysis of the hepatocyte-specific functional protein albumin suggested that HepaRG spheroids demonstrated better hepatic function than spheroids from 2D culture, and the function of HepaRG spheroids improved in a time-dependent manner. The fluorescence intensities per unit area of spheroids formed by 1000 cells on days 7 and 10 were 25.41 and 45.38, respectively, whereas almost undetectable fluorescence was obtained with 2D cells. In addition, the embedding of HepaRG spheroids into rtCollagen and rhCollagen I showed that HepaRG differentiation can be accelerated relative to the differentiation of spheroids grown in suspension, demonstrating the great promise of HepaRG spheroids. Conclusions: The culture conditions established in this study provide a potentially novel alternative for promoting the differentiation of HepaRG spheroids into mature hepatocytes through a collagen-embedded in vitro liver spheroid model. This culture method is envisioned to provide insights for future drug toxicology.
Collapse
Affiliation(s)
- Fang-Chun Liao
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Ming-Yang Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (F.-C.L.); (M.-Y.C.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence:
| |
Collapse
|
39
|
Automated Analysis of Acetaminophen Toxicity on 3D HepaRG Cell Culture in Microbioreactor. Bioengineering (Basel) 2022; 9:bioengineering9050196. [PMID: 35621474 PMCID: PMC9137798 DOI: 10.3390/bioengineering9050196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Real-time monitoring of bioanalytes in organotypic cell cultivation devices is a major research challenge in establishing stand-alone diagnostic systems. Presently, no general technical facility is available that offers a plug-in system for bioanalytics in diversely available organotypic culture models. Therefore, each analytical device has to be tuned according to the microfluidic and interface environment of the 3D in vitro system. Herein, we report the design and function of a 3D automated culture and analysis device (3D-ACAD) which actively perfuses a custom-made 3D microbioreactor, samples the culture medium and simultaneously performs capillary-based flow ELISA. A microstructured MatriGrid® has been explored as a 3D scaffold for culturing HepaRG cells, with albumin investigated as a bioanalytical marker using flow ELISA. We investigated the effect of acetaminophen (APAP) on the albumin secretion of HepaRG cells over 96 h and compared this with the albumin secretion of 2D monolayer HepaRG cultures. Automated on-line monitoring of albumin secretion in the 3D in vitro mode revealed that the application of hepatotoxic drug-like APAP results in decreased albumin secretion. Furthermore, a higher sensitivity of the HepaRG cell culture in the automated 3D-ACAD system to APAP was observed compared to HepaRG cells cultivated as a monolayer. The results support the use of the 3D-ACAD model as a stand-alone device, working in real time and capable of analyzing the condition of the cell culture by measuring a functional analyte. Information obtained from our system is compared with conventional cell culture and plate ELISA, the results of which are presented herein.
Collapse
|
40
|
Towards better prediction of xenobiotic genotoxicity: CometChip technology coupled with a 3D model of HepaRG human liver cells. Arch Toxicol 2022; 96:2087-2095. [PMID: 35419617 DOI: 10.1007/s00204-022-03292-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
Abstract
Toxicology is facing a major change in the way toxicity testing is conducted by moving away from animal experimentation towards animal-free methods. To improve the in vitro genotoxicity assessment of chemical and physical compounds, there is an urgent need to accelerate the development of 3D cell models in high-throughput DNA damage detection platforms. Among the alternative methods, hepatic cell lines are a relevant in vitro model for studying the functions of the liver. 3D HepaRG spheroids show improved hepatocyte differentiation, longevity, and functionality compared with 2D HepaRG cultures and are therefore a relevant model for predicting in vivo responses. Recently, the comet assay was developed on 3D HepaRG cells. However, this approach is still low throughput and does not meet the challenge of evaluating the toxicity and risk to humans of tens of thousands of compounds. In this study, we evaluated the performance of the high-throughput in vitro CometChip assay on 2D and 3D HepaRG cells. HepaRG cells were exposed for 48 h to several compounds (methyl methanesulfonate, etoposide, benzo[a]pyrene, cyclophosphamide, 7,12-dimethylbenz[a]anthracene, 2-acetylaminofluorene, and acrylamide) known to have different genotoxic modes of action. The resulting dose responses were quantified using benchmark dose modelling. DNA damage was observed for all compounds except 2-AAF in 2D HepaRG cells and etoposide in 3D HepaRG cells. Results indicate that the platform is capable of reliably identifying genotoxicants in 3D HepaRG cells, and provide further insights regarding specific responses of 2D and 3D models.
Collapse
|
41
|
Deynichenko KA, Ptitsyn KG, Radko SP, Kurbatov LK, Vakhrushev IV, Buromski IV, Markin SS, Archakov AI, Lisitsa AV, Ponomarenko EA. [Splice variants of mRNA of cytochrome P450 genes: analysis by the nanopore sequencing method in human liver tissue and HepG2 cell line]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:117-125. [PMID: 35485485 DOI: 10.18097/pbmc20226802117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The analysis of cytochrome P450 transcripts was carried out by the nanopore sequencing in liver tissue samples of three donors and HepG2 line cells. It has been demonstrated that direct mRNA sequencing with a MinION nanopore sequencer (Oxford Nanopore Technologies) allows one to obtained quantitative profiles for transcripts (and their splice variants) of cytochrome P450 superfamily genes encoding isoforms involved in metabolism of the large (~80%) part of drugs. The splice variant profiles substantially differ for donors. The cytochrome P450 gene expression at the transcript level is significantly weaker in cells of the HepG2 line compared with that in the normal liver tissue. This limits the capability of the direct mRNA nanopore sequencing for studying alternative splicing of cytochrome P450 transcripts in HepG2 cells. Both quantitative and qualitative profiles of the cytochrome P450 gene expression at the transcript level are notably differ in human liver tissue and HepG2 cells.
Collapse
Affiliation(s)
| | - K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - I V Buromski
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - S S Markin
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
42
|
Huang Y, Chen Y, Lu S, Zhao C. Recent advance of <i>in vitro</i> models in natural phytochemicals absorption and metabolism. EFOOD 2022. [DOI: 10.53365/efood.k/146945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Natural phytochemicals absorption and metabolic process are mainly in the human gut. Simulating the absorption and metabolism of natural phytochemicals in vitro to predict the rate and degree of absorption of natural phytochemicals provides convenience for many researchers. However, in this process, many physiological factors <i>in vitro</i> are affected, such as stomach and intestinal juice composition, pH, intestinal transmission rate and so on. In recent years, the research methods have gradually improved to make these models more suitable for the natural phytochemicals absorption process, <i>in vitro</i> simulation models have become an essential means to study natural phytochemicals absorption. Therefore, this paper introduces the advantages and disadvantages of commonly used <i>in vitro</i> simulation models of natural phytochemicals absorption and metabolism, as well as briefly introduces the working principle of each model. To provide a theoretical basis for simulating natural phytochemicals absorption <i>in vitro</i> and development and utilization of natural phytochemicals.
Collapse
|
43
|
Stanley LA, Wolf CR. Through a glass, darkly? HepaRG and HepG2 cells as models of human phase I drug metabolism. Drug Metab Rev 2022; 54:46-62. [PMID: 35188018 DOI: 10.1080/03602532.2022.2039688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pharmacokinetic and safety assessment of drug candidates is becoming increasingly dependent upon in vitro models of hepatic metabolism and toxicity. Predominant among these is the HepG2 cell line, although HepaRG is becoming increasingly popular because of its perceived closer resemblance to human hepatocytes. We review the functionality of these cell lines in terms of Phase I protein expression, basal cytochrome P450-dependent activity, and utility in P450 induction studies. Our analysis indicates that HepG2 cells are severely compromised: proteomic studies show that they express few key proteins in common with hepatocytes and they lack drug-metabolizing capacity. Differentiated HepaRGs are more hepatocyte-like than HepG2s, but they also have limitations, and it is difficult to assess their utility because of the enormous variability in data reported, possibly arising from the complex differentiation protocols required to obtain hepatocyte-like cells. This is exacerbated by the use of DMSO in the induction protocol, together with proprietary supplements whose composition is a commercial secret. We conclude that, while currently available data on the utility of HepaRG generates a confusing picture, this line does have potential utility in drug metabolism studies. However, to allow studies to be compared directly a standardized, reproducible differentiation protocol is essential and the cell line's functionality in terms of known mechanisms of P450 regulation must be demonstrated. We, therefore, support the development of regulatory guidelines for the use of HepaRGs in induction studies as a first step in generating a database of consistent, reliable data.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, Linlithgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - C Roland Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
44
|
HiPSC-Derived Hepatocyte-like Cells Can Be Used as a Model for Transcriptomics-Based Study of Chemical Toxicity. TOXICS 2021; 10:toxics10010001. [PMID: 35051043 PMCID: PMC8780865 DOI: 10.3390/toxics10010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 01/13/2023]
Abstract
Traditional toxicity risk assessment approaches have until recently focussed mainly on histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic understanding of pathways involved in the development of toxicity, by using transcriptomics and other big data-driven methods such as high-content screening. Here, we used a recently described optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac, and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic toxicity studies.
Collapse
|
45
|
Heintze T, Wilhelm D, Schmidlin T, Hofmann U, Zanger UM, Schwab M, Klein K. Effects of Diminished NADPH:cytochrome P450 Reductase in Human Hepatocytes on Lipid and Bile Acid Homeostasis. Front Pharmacol 2021; 12:769703. [PMID: 34867397 PMCID: PMC8634102 DOI: 10.3389/fphar.2021.769703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
NADPH:cytochrome P450 oxidoreductase (POR) is the obligate electron donor for microsomal cytochrome P450 (CYP) enzymes involved in the biosynthesis of endogenous substances like bile acids and other steroids as well as in the oxidative metabolism of xenobiotics. P450 oxidoreductase also supports other redox enzymes in fatty acid and cholesterol pathways. Recently, we have established CRISPR/Cas9-mediated POR knockdown in a human hepatic cell model, HepaRG, and demonstrated the differential effects of limited POR expression on CYP activity. The aim of the present work was to systematically investigate the impact of POR knockdown with a focus on the expression of ADME (absorption, distribution, metabolism, and excretion) genes and related regulators. Functional consequences have been assessed using quantitative mass spectrometry for targeted metabolomics covering bile acids, and cholesterol and its precursors, and for untargeted proteomics. In addition to the previously described alteration of RNA expression of CYP genes, we showed significant downregulation of transcriptional regulators of drug metabolism and transport, including NR1I3 (CAR), NR1I2 (PXR), NR1H4 (FXR), and NR1H3 (LXRα) in cells with POR gene disruption. Furthermore, POR knockdown resulted in deregulated bile acid and cholesterol biosynthesis demonstrated by low levels of cholic acid derivates and increased concentrations of chenodeoxycholic acid derivates, respectively. Systemic effects of POR knockdown on global protein expression were indicated by downregulation of several metabolic pathways including lipid metabolism and biological oxidation reactions. The deduced protein network map corroborates CYP enzymes as direct interaction partners, whereas changes in lipid metabolism and homeostasis are the result of indirect effects. In summary, our results emphasize a widespread role of POR in various metabolic pathways and provide the first human data on the effects of diminished POR expression on drug and endogenous metabolism in a genomeedited HepaRG cell model.
Collapse
Affiliation(s)
- Tamara Heintze
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Denise Wilhelm
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Thierry Schmidlin
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ute Hofmann
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Ulrich M Zanger
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Matthias Schwab
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, Tübingen, Germany.,Cluster of Excellence IFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Kathrin Klein
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
46
|
de Hoyos-Vega JM, Hong HJ, Stybayeva G, Revzin A. Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioeng 2021; 5:041504. [PMID: 34703968 PMCID: PMC8519630 DOI: 10.1063/5.0058798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes are parenchymal cells of the liver responsible for drug detoxification, urea and bile production, serum protein synthesis, and glucose homeostasis. Hepatocytes are widely used for drug toxicity studies in bioartificial liver devices and for cell-based liver therapies. Because hepatocytes are highly differentiated cells residing in a complex microenvironment in vivo, they tend to lose hepatic phenotype and function in vitro. This paper first reviews traditional culture approaches used to rescue hepatic function in vitro and then discusses the benefits of emerging microfluidic-based culture approaches. We conclude by reviewing integration of hepatocyte cultures with bioanalytical or sensing approaches.
Collapse
Affiliation(s)
- Jose M. de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
47
|
Rose S, Cuvellier M, Ezan F, Carteret J, Bruyère A, Legagneux V, Nesslany F, Baffet G, Langouët S. DMSO-free highly differentiated HepaRG spheroids for chronic toxicity, liver functions and genotoxicity studies. Arch Toxicol 2021; 96:243-258. [PMID: 34762139 DOI: 10.1007/s00204-021-03178-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
The liver is essential in the elimination of environmental and food contaminants. Given the interspecies differences between rodents and humans, the development of relevant in vitro human models is crucial to investigate liver functions and toxicity in cells that better reflect pathophysiological processes. Classically, the differentiation of the hepatic HepaRG cell line requires high concentration of dimethyl sulfoxide (DMSO), which restricts its usefulness for drug-metabolism studies. Herein, we describe undifferentiated HepaRG cells embedded in a collagen matrix in DMSO-free conditions that rapidly organize into polarized hollow spheroids of differentiated hepatocyte-like cells (Hepoid-HepaRG). Our conditions allow concomitant proliferation with high levels of liver-specific functions and xenobiotic metabolism enzymes expression and activities after a few days of culture and for at least 4 weeks. By studying the toxicity of well-known injury-inducing drugs by treating cells with 1- to 100-fold of their plasmatic concentrations, we showed appropriate responses and demonstrate the sensitivity to drugs known to induce various degrees of liver injury. Our results also demonstrated that the model is well suited to estimate cholestasis and steatosis effects of drugs following chronic treatment. Additionally, DNA alterations caused by four genotoxic compounds (Aflatoxin B1 (AFB1), Benzo[a]Pyrene (B[a]P), Cyclophosphamide (CPA) and Methyl methanesulfonate (MMS)) were quantified in a dose-dependent manner by the comet and micronucleus assays. Their genotoxic effects were significantly increased after either an acute 24 h treatment (AFB1: 1.5-6 μM, CPA: 2.5-10 μM, B[a]P: 12.5-50 μM, MMS: 90-450 μM) or after a 14-day treatment at much lower concentrations (AFB1: 0.05-0.2 μM, CPA: 0.125-0.5 μM, B[a]P: 0.125-0.5 μM) representative to human exposure. Altogether, the DMSO-free 3D culture of Hepoid-HepaRG provides highly differentiated and proliferating cells relevant for various toxicological in vitro assays, especially for drug-preclinical studies and environmental chemicals risk assessment.
Collapse
Affiliation(s)
- Sophie Rose
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Marie Cuvellier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Frédéric Ezan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Vincent Legagneux
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Fabrice Nesslany
- Genotoxicology Department, Institut Pasteur de Lille, 1, Rue du Professeur Calmette, 59000, Lille, France
| | - Georges Baffet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France.
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
48
|
The utility of endogenous glycochenodeoxycholate-3-sulfate and 4β-hydroxycholesterol to evaluate the hepatic disposition of atorvastatin in rats. Asian J Pharm Sci 2021; 16:519-529. [PMID: 34703500 PMCID: PMC8520055 DOI: 10.1016/j.ajps.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/06/2021] [Accepted: 03/07/2021] [Indexed: 11/22/2022] Open
Abstract
The liver is an important organ for drugs disposition, and thus how to accurately evaluate hepatic clearance is essential for proper drug dosing. However, there are many limitations in drug dosage adjustment based on liver function and pharmacogenomic testing. In this study, we evaluated the ability of endogenous glycochenodeoxycholate-3-sulfate (GCDCA-S) and 4β-hydroxycholesterol (4β-HC) plasma levels to evaluate organic anion-transporting polypeptide (Oatps)-mediated hepatic uptake and Cyp3a-meidated metabolism of atorvastatin (ATV) in rats. The concentration of ATV and its metabolites, 2-OH ATV and 4-OH ATV, was markedly increased after a single injection of rifampicin (RIF), an inhibitor of Oatps. Concurrently, plasma GCDCA-S levels were also elevated. After a single injection of the Cyp3a inhibitor ketoconazole (KTZ), plasma ATV concentrations were significantly increased and 2-OH ATV concentrations were decreased, consistent with the metabolism of ATV by Cyp3a. However, plasma 4β-HC was not affected by KTZ treatment despite it being a Cyp3a metabolite of cholesterol. After repeated oral administration of RIF, plasma concentrations of ATV, 2-OH ATV and 4-OH ATV were markedly increased and the hepatic uptake ratio of ATV and GCDCA-S was decreased. KTZ did not affect plasma concentrations of ATV, 2-OH ATV and 4-OH ATV, but significantly decreased the metabolic ratio of total and 4-OH ATV. However, the plasma level and hepatic metabolism of 4β-HC were not changed by KTZ. The inhibition of hepatic uptake of GCDCA-S by RIF was fully reversed after a 7-d washout of RIF. Plasma concentration and hepatic uptake ratio of GCDCA-S were correlated with the plasma level and hepatic uptake of ATV in rats with ANIT-induced liver injury, respectively. These results demonstrate that plasma GCDCA-S is a sensitive probe for the assessment of Oatps-mediated hepatic uptake of ATV. However, Cyp3a-mediated metabolism of ATV was not predicted by plasma 4β-HC levels in rats.
Collapse
|
49
|
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below. In addition, approaches which can be used to visualize the uncertainty arising from the use of enzyme kinetic data within the context of predicting human pharmacokinetics are discussed.
Collapse
|
50
|
Polidoro MA, Ferrari E, Marzorati S, Lleo A, Rasponi M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int 2021; 41:1744-1761. [PMID: 33966344 DOI: 10.1111/liv.14942] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
The liver is one of the most studied organs of the human body owing to its central role in xenobiotic and drug metabolism. In recent decades, extensive research has aimed at developing in vitro liver models able to mimic liver functions to study pathophysiological clues in high-throughput and reproducible environments. Two-dimensional (2D) models have been widely used in screening potential toxic compounds but have failed to accurately reproduce the three-dimensionality (3D) of the liver milieu. To overcome these limitations, improved 3D culture techniques have been developed to recapitulate the hepatic native microenvironment. These models focus on reproducing the liver architecture, representing both parenchymal and nonparenchymal cells, as well as cell interactions. More recently, Liver-on-Chip (LoC) models have been developed with the aim of providing physiological fluid flow and thus achieving essential hepatic functions. Given their unprecedented ability to recapitulate critical features of the liver cellular environments, LoC have been extensively adopted in pathophysiological modelling and currently represent a promising tool for tissue engineering and drug screening applications. In this review, we discuss the evolution of experimental liver models, from the ancient 2D hepatocyte models, widely used for liver toxicity screening, to 3D and LoC culture strategies adopted for mirroring a more physiological microenvironment for the study of liver diseases.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Erika Ferrari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|