1
|
Jiang T, Li C, Li Y, Hu W, Guo J, Du X, Meng Q, Zhu X, Song W, Guo J, Su X. Multi-omics and bioinformatics for the investigation of therapeutic mechanism of roucongrong pill against postmenopausal osteoporosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118873. [PMID: 39362330 DOI: 10.1016/j.jep.2024.118873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Roucongrong Pill (RCRP), originating from the historical General Medical Collection of Royal Benevolence, is frequently used to treat postmenopausal osteoporosis (PMOP). Despite its prevalent application, the specific anti-osteoporotic mechanisms of RCRP remain to be elucidated. AIM OF THE STUDY This study aims to elucidate the therapeutic mechanism of RCRP in the context of ovariectomy (OVX)-induced PMOP in rats. By employing an integrative approach, the research combines medicinal chemistry, gut microbiota (GM) profiling, metabolomics, MetOrigin traceability, network pharmacology, molecular docking, and molecular dynamics simulations to deliver a comprehensive analysis. MATERIALS AND METHODS Sprague-Dawley (SD) rats underwent bilateral OVX to establish a PMOP model. The therapeutic efficacy of RCRP was evaluated through bone metrics (BMD, bone strength, BV/TV, Tb.Sp), hematoxylin and eosin (H&E) histological assessment, and bone metabolism markers (OPG, BALP, TRACP-5b, β-CTX, RANKL). Fecal metabolomics and 16S rDNA sequencing were employed to assess the influence of RCRP on GM and metabolite profiles. Furthermore, MetOrigin facilitated the traceability analysis of relevant metabolites. Molecular docking identified potential RCRP compounds with anti-PMOP activity, while their stability and protein interactions were assessed through molecular dynamics simulations. Network pharmacology further confirms the targets of action. RESULTS RCRP alleviated PMOP in rats, enhancing bone strength, cortical and trabecular BMD, BV/TV, and serum OPG levels, while reducing Tb.Sp, serum BALP, TRACP-5b, β-CTX, and RANKL concentrations. A total of twenty-six distinct metabolites were identified, of which ten-tribufos, sulfoacetic acid, betamethasone dipropionate, 9-oxooctadeca-10,12,15-trienoic acid, menatetrenone, piperlongumine, maltopentaose, enol-phenylpyruvate, catechol, pentaacetate, and (+)-2-methylpropanoic acid-exhibited correlations with six GM species: Turicibacter, Roseburia, Colidextribacter, Helicobacter, Odoribacter, and Lachnoclostridium, as determined by Spearman's correlation analysis. Notably, MetOrigin revealed the microbial metabolism of taurine and hypotaurine, along with host-specific steroid hormone synthesis. Computational docking studies demonstrated robust interactions between five RCRP-derived steroids (hydroxyecdysone, corticosterone, trilostane, 5α-androstan-3,6,17-trione, and cortisol) and key enzymes (estradiol 17α-dehydrogenase and UDP-glucuronosyltransferase), suggesting a potential enhancement of therapeutic efficacy against PMOP. Furthermore, molecular dynamics simulations indicated stable interactions between hydroxyecdysone and two proteins, with binding free energies of -67.427 kJ/mol and -156.948 kJ/mol, respectively. Through network pharmacology and molecular docking approaches, potential targets of these metabolites were identified, including estrogen receptors ESR1 and ESR2, dual specificity phosphatase 6 (DUSP6), sex hormone-binding globulin (SHBG), prostaglandin E receptor 4 (PTGER4), cannabinoid receptor 2 (CNR2), cathepsin K (CTSK), and androgen receptor (AR). CONCLUSIONS RCRP effectively mitigates OVX-induced bone loss in PMOP rats by modulating GM and associated metabolites, along with their potential targets and key metabolic pathways, including taurine and hypotaurine metabolism, as well as steroid hormone biosynthesis. These findings offer new insights into the therapeutic mechanisms by which RCRP may alleviate PMOP.
Collapse
Affiliation(s)
- Tao Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Chenhao Li
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yufen Li
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Wanli Hu
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Jiurui Guo
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xingchen Du
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Qianting Meng
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiaojuan Zhu
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Junpeng Guo
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Bone C, Squires EJ. Hepatic Gene Expression and Metabolite Profiles of Androstenone and Skatole Relative to Plasma Estrone Sulfate Levels in Boars. Biomolecules 2024; 14:850. [PMID: 39062564 PMCID: PMC11274532 DOI: 10.3390/biom14070850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Testicular steroids can alter the activity and expression of enzymes within the liver and may influence the metabolism of skatole and androstenone, which are responsible for boar taint. Plasma levels of estrone sulfate (E1S) are indicative of the steroidogenic capacity of the boar and are variable between animals of similar live weights at slaughter. This study aimed to characterize the relationship between steroidogenic capacity and the metabolism of boar taint compounds by relating plasma E1S levels at slaughter weight to the expression levels of genes regulating the metabolism of androstenone and skatole, along with their respective metabolite profiles. RT-qPCR was used to evaluate gene expression in the liver. Hepatocytes were also isolated and treated with androstenone or skatole, with metabolite levels in the incubation media quantified by high-performance liquid chromatography. Plasma E1S levels ranged from 2.2-108.5 ng/mL and were positively correlated with overall skatole metabolism (p = 0.038), the production of metabolites 3-methyloxindole (p = 0.026) and 3-hydroxy-3-methyloxindole (p = 0.036), and expression levels of key genes involved in skatole metabolism, specifically CYP2C33 (p = 0.0042), CYP2C49 (p = 0.022), and CYB5R1 (p = 0.017). There was no association between androstenone metabolism and plasma E1S concentrations; however, there was evidence of possible co-regulation amongst genes involved in the metabolism of androstenone, skatole, and estrogens. These findings indicate that steroidogenic capacity is related to the rate of skatole, but not androstenone metabolism, in slaughter-weight boars.
Collapse
Affiliation(s)
| | - E. James Squires
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada;
| |
Collapse
|
3
|
Wu C, Luo M, Xie D, Zhong S, Xu J, Lu D. Kinetic Characterization of Estradiol Glucuronidation by Liver Microsomes and Expressed UGT Enzymes: The Effects of Organic Solvents. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00888-2. [PMID: 38472634 DOI: 10.1007/s13318-024-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND OBJECTIVE In vitro glucuronidation of 17β-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Meixue Luo
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Dihao Xie
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Simin Zhong
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Jiahao Xu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Pan D, Su M, Xu D, Wang Y, Gao H, Smith JD, Sun J, Wang X, Yan Q, Song G, Lu Y, Feng W, Wang S, Sun G. Exploring the Interplay Between Vitamin B 12-related Biomarkers, DNA Methylation, and Gene-Nutrition Interaction in Esophageal Precancerous Lesions. Arch Med Res 2023; 54:102889. [PMID: 37738887 DOI: 10.1016/j.arcmed.2023.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/29/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Vitamin B12 depletion has been suggested to be associated with esophageal precancerous lesions (EPL). However, the potential mechanisms remain unclear. AIMS This study aims to evaluate the role of vitamin B12 and its regulated epigenetic modification in EPL and provide preliminary information on the identification of potential molecular biomarkers for the early prediction of EPL. METHODS We collected information and samples from the Early Diagnosis and Early Treatment Project of Esophageal Cancer database from 200 EPL cases and 200 matched controls. Vitamin B12, one-carbon metabolism biomarkers, genetic polymorphism of TCN2 C776G, and DNA methylation were compared. Preliminarily identified candidate promoters of differentially methylated CpG positions were further verified by targeted bisulfite sequencing. RESULTS EPL cases had significantly lower serum levels of vitamin B12 and transcobalamin II, and higher serum levels of homocysteine and 5-methyltetrahydrofolate than controls. The TCN2 C776G polymorphism was found to be associated with susceptibility to EPL and may interact with vitamin B12 nutritional status to influence the risk of EPL in male subjects. In addition, global hypomethylation related to vitamin B12 depletion was observed in EPL cases, along with region-specific hypermethylation of UGT2B15 and FGFR2 promoters. CONCLUSIONS This study suggests that vitamin B12 depletion may be associated with aberrant DNA methylation and increased risk of EPL through the one-carbon metabolism pathway, presents that the TCN2 C776G polymorphism may interact with vitamin B12 nutritional status to affect EPL risk in males, and also identifies specific locations in the UGT2B15 and FGFR2 promoters with potential as promising molecular biomarkers.
Collapse
Affiliation(s)
- Da Pan
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Ming Su
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Han Gao
- Department of Biomedical Engineering, University Medical Center Groningen/University of Groningen, The Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Jihan Sun
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Xin Wang
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Qingyang Yan
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Guang Song
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Wuqiong Feng
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China; School of Medicine, Xizang Minzu University, Xianyang, PR China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China.
| |
Collapse
|
5
|
Schmidhauser M, Hankele AK, Ulbrich SE. Reconsidering "low-dose"-Impacts of oral estrogen exposure during preimplantation embryo development. Mol Reprod Dev 2023; 90:445-458. [PMID: 36864780 DOI: 10.1002/mrd.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Perturbations of estrogen signaling during developmental stages of high plasticity may lead to adverse effects later in life. Endocrine-disrupting chemicals (EDC) are compounds that interfere with the endocrine system by particularly mimicking the action of endogenous estrogens as functional agonists or antagonists. EDCs compose synthetic and naturally occurring compounds discharged into the environment, which may be taken up via skin contact, inhalation, orally due to contaminated food or water, or via the placenta during in utero development. Although estrogens are efficiently metabolized by the liver, the role of circulating glucuro- and/or sulpho-conjugated estrogen metabolites in the body has not been fully addressed to date. Particularly, the role of intracellular cleavage to free functional estrogens could explain the hitherto unknown mode of action of adverse effects of EDC at very low concentrations currently considered safe. We summarize and discuss findings on estrogenic EDC with a focus on early embryonic development to highlight the need for reconsidering low dose effects of EDC.
Collapse
Affiliation(s)
- Meret Schmidhauser
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | | | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
6
|
Du Z, Liu ZZ. Inhibition of aflatoxins on UDP-glucuronosyltransferases (UGTs). Toxicol In Vitro 2023; 90:105612. [PMID: 37164184 DOI: 10.1016/j.tiv.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Aflatoxins have been recognized as the most harmful mycotoxins leading to various toxic effects. The present study aims to determine the inhibition behavior of aflatoxins on the activity of the important phase II metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), based on in vitro incubation system of recombinant human UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU). 100 μM AFB1 and AFG1 exhibited extensive inhibition towards UGT isoforms especially UGT1A7 and UGT1A8, with the inhibition ratios to be 71.38%, 72.95% and 72.79% for AFB1 to UGT1A7, AFB1 to UGT1A8 and AFG1 to UGT1A8, respectively. Molecular docking results showed that hydrogen bonds and hydrophobic contacts of the particular structure consisting of double furan ring with double bond contributed to the interaction of aflatoxins and UGTs. Kinetics analysis, including inhibition types and kinetics parameters (Ki), and in vitro-in vivo extrapolation (IVIVE) indicated that there might be a medium possibility of inhibition on UGTs by aflatoxins in vivo. In conclusion, the present study indicated that aflatoxins could possibly disturb endogenous metabolism by inhibiting the activity of UGTs so as to exhibit toxic effects.
Collapse
Affiliation(s)
- Zuo Du
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China.
| | - Zhen-Zhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
7
|
Chen J, Cai B, Tian C, Jiang D, Shi H, Huang Y, Zhu C, Li G, Deng S. RNA Sequencing (RNA-Seq) Analysis Reveals Liver Lipid Metabolism Divergent Adaptive Response to Low- and High-Salinity Stress in Spotted Scat ( Scatophagus argus). Animals (Basel) 2023; 13:ani13091503. [PMID: 37174540 PMCID: PMC10177406 DOI: 10.3390/ani13091503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Spotted scat (Scatophagus argus) can tolerate a wide range of salinity fluctuations. It is a good model for studying environmental salinity adaptation. Lipid metabolism plays an important role in salinity adaptation in fish. To elucidate the mechanism of lipid metabolism in the osmoregulation, the liver transcriptome was analyzed after 22 d culture with a salinity of 5 ppt (Low-salinity group: LS), 25 ppt (Control group: Ctrl), and 35 ppt (High-salinity group: HS) water by using RNA sequencing (RNA-seq) in spotted scat. RNA-seq analysis showed that 1276 and 2768 differentially expressed genes (DEGs) were identified in the LS vs. Ctrl and HS vs. Ctrl, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the pathways of steroid hormone biosynthesis, steroid biosynthesis, glycerophospholipid metabolism, glycerolipid metabolism, and lipid metabolism were significantly enriched in the LS vs. Ctrl. The genes of steroid biosynthesis (sqle, dhcr7, and cyp51a1), steroid hormone biosynthesis (ugt2a1, ugt2a2, ugt2b20, and ugt2b31), and glycerophospholipid metabolism (cept1, pla2g4a, and ptdss2) were significantly down-regulated in the LS vs. Ctrl. The pathways related to lipid metabolisms, such as fatty acid metabolism, fatty acid biosynthesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine signaling pathway, fatty acid degradation, and unsaturated fatty acid biosynthesis, were significantly enriched in the HS vs. Ctrl. The genes of unsaturated fatty acid biosynthesis (scd1, hacd3, fads2, pecr, and elovl1) and adipocytokine signaling pathway (g6pc1, socs1, socs3, adipor2, pck1, and pparα) were significantly up-regulated in the HS vs. Ctrl. These results suggest that the difference in liver lipid metabolism is important to adapt to low- and high-salinity stress in spotted scat, which clarifies the molecular regulatory mechanisms of salinity adaptation in euryhaline fish.
Collapse
Affiliation(s)
- Jieqing Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bosheng Cai
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Hongjuan Shi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Chunhua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| |
Collapse
|
8
|
Abaffy T, Lu HY, Matsunami H. Sex steroid hormone synthesis, metabolism, and the effects on the mammalian olfactory system. Cell Tissue Res 2023; 391:19-42. [PMID: 36401093 PMCID: PMC9676892 DOI: 10.1007/s00441-022-03707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Sex steroid hormones influence olfactory-mediated social behaviors, and it is generally hypothesized that these effects result from circulating hormones and/or neurosteroids synthesized in the brain. However, it is unclear whether sex steroid hormones are synthesized in the olfactory epithelium or the olfactory bulb, and if they can modulate the activity of the olfactory sensory neurons. Here, we review important discoveries related to the metabolism of sex steroids in the mouse olfactory epithelium and olfactory bulb, along with potential areas of future research. We summarize current knowledge regarding the expression, neuroanatomical distribution, and biological activity of the steroidogenic enzymes, sex steroid receptors, and proteins that are important to the metabolism of these hormones and reflect on their potential to influence early olfactory processing. We also review evidence related to the effects of sex steroid hormones on the development and activity of olfactory sensory neurons. By better understanding how these hormones are metabolized and how they act both at the periphery and olfactory bulb level, we can better appreciate the complexity of the olfactory system and discover potential similarities and differences in early olfactory processing between sexes.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hsiu-Yi Lu
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| | - Hiroaki Matsunami
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
9
|
Zhu L, Lv H, Xiao L, Hou Y, Li W, Ge G, Ai C. Diverse effects of α-/β-estradiol on catalytic activities of human UDP-glucuronosyltransferases (UGT). J Steroid Biochem Mol Biol 2023; 225:106196. [PMID: 36181991 DOI: 10.1016/j.jsbmb.2022.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
β-estradiol (β-E2) and α-estradiol (α-E2) act as an endo- and an exon-estrogen in humans, respectively. There is a structural variation in C17-OH configuration of the two estrogens. UDP-glucuronosyltransferases (UGT) are responsible for termination of activities of a variety of endogenous hormones, clinical drugs, and environmental toxicants. The current study was conducted to investigate the effects of the two estrogens towards catalytic activities of UGTs. It was found that β-E2 could decrease activities of UGT1A9, - 2B4 and - 2B7, with Ki values of a few micro-molars. β-E2 could additionally accelerate the activity of UGT2B17 via promoting enzyme-substrate binding and increasing the turn over number. Comparatively, α-E2 displayed much stronger inhibitory potentials towards UGT2B7 and - 2B4, but showed little influence to UGT1A9 and - 2B17. The Ki values for inhibition of UGT2B7 in glucuronidation of different substrates by α-E2 were in a nanomolar range that is only about 1/100-1/50 of β-E2. UGT2B7 structural model was fatherly constructed to explore the mechanism underlying dramatically different inhibition selectivity of the two estrogens. Compared to β-E2, α-E2 formed more hydrophobic and hydrogen-bonded interactions with the residues in the active pocket. It is concluded that the configuration of E2-17-OH determines the inhibitory potentials towards UGTs. The results are useful in better understanding ligand selectivity of UGTs, as well as in further development of α-E2 in health protection.
Collapse
Affiliation(s)
- Liangliang Zhu
- School of Life Science and Research Center of Aquatic Organism Conservation & Water Ecosystem Restoration, Anqing Normal University, Anqing 246133, China
| | - Hui Lv
- School of Life Science and Research Center of Aquatic Organism Conservation & Water Ecosystem Restoration, Anqing Normal University, Anqing 246133, China
| | - Ling Xiao
- School of Resources and Environment and Key Laboratory of Aqueous Environment Protection & Pollution Control of Yangtze River, Anqing Normal University, Anqing 246133, China
| | - Yanyao Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Wenjuan Li
- School of Life Science and Research Center of Aquatic Organism Conservation & Water Ecosystem Restoration, Anqing Normal University, Anqing 246133, China
| | - Guangbo Ge
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunzhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
10
|
Zhang Y, Weh KM, Howard CL, Riethoven JJ, Clarke JL, Lagisetty KH, Lin J, Reddy RM, Chang AC, Beer DG, Kresty LA. Characterizing isoform switching events in esophageal adenocarcinoma. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:749-768. [PMID: 36090744 PMCID: PMC9437810 DOI: 10.1016/j.omtn.2022.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022]
Abstract
Isoform switching events with predicted functional consequences are common in many cancers, but characterization of switching events in esophageal adenocarcinoma (EAC) is lacking. Next-generation sequencing was used to detect levels of RNA transcripts and identify specific isoforms in treatment-naïve esophageal tissues ranging from premalignant Barrett’s esophagus (BE), BE with low- or high-grade dysplasia (BE.LGD, BE.HGD), and EAC. Samples were stratified by histopathology and TP53 mutation status, identifying significant isoform switching events with predicted functional consequences. Comparing BE.LGD with BE.HGD, a histopathology linked to cancer progression, isoform switching events were identified in 75 genes including KRAS, RNF128, and WRAP53. Stratification based on TP53 status increased the number of significant isoform switches to 135, suggesting switching events affect cellular functions based on TP53 mutation and tissue histopathology. Analysis of isoforms agnostic, exclusive, and shared with mutant TP53 revealed unique signatures including demethylation, lipid and retinoic acid metabolism, and glucuronidation, respectively. Nearly half of isoform switching events were identified without significant gene-level expression changes. Importantly, two TP53-interacting isoforms, RNF128 and WRAP53, were significantly linked to patient survival. Thus, analysis of isoform switching events may provide new insight for the identification of prognostic markers and inform new potential therapeutic targets for EAC.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M. Weh
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Connor L. Howard
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jennifer L. Clarke
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kiran H. Lagisetty
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jules Lin
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rishindra M. Reddy
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew C. Chang
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - David G. Beer
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura A. Kresty
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding author Laura A. Kresty, PhD, Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Zhao W, Meng H. Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population. Bioengineered 2022; 13:7709-7745. [PMID: 35290166 PMCID: PMC9278974 DOI: 10.1080/21655979.2022.2036916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a chronic brain disease, epilepsy affects ~50 million people worldwide. The traditional antiepileptic drugs (AEDs) are widely applied but showing various problems. Although the new AEDs have partially solved the problems of traditional AEDs, the current clinical application of traditional AEDs are not completely replaced by new drugs, particularly due to the large individual differences in drug plasma concentrations and narrow therapeutic windows among patients. Therefore, it is still clinically important to continue to treat patients using traditional AEDs with individualized therapeutic plans. To date, our understanding of the molecular and genetic mechanisms regulating plasma concentrations of AEDs has advanced rapidly, expanding the knowledge on the effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of AEDs. It is increasingly imperative to summarize and conceptualize the clinical significance of recent studies on individualized therapeutic regimens. In this review, we extensively summarize the critical effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of several commonly used AEDs as well as the clinical significance of testing genotypes related to drug metabolism on individualized drug dosage. Our review provides solid experimental evidence and clinical guidance for the therapeutic applications of these AEDs.
Collapse
Affiliation(s)
- Weixuan Zhao
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
12
|
Lv H, Wang J, Wang M, Shen L, Xiao L, Chen T, Sun T, Li W, Zhu L, Zhang X. Potent inhibition of tributyltin (TBT) and triphenyltin (TPT) against multiple UDP-glucuronosyltransferases (UGT): A new potential mechanism underlying endocrine disrupting actions. Food Chem Toxicol 2021; 149:112039. [DOI: 10.1016/j.fct.2021.112039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 02/03/2023]
|
13
|
The Variations of Metabolic Detoxification Enzymes Lead to Recurrent Miscarriage and Their Diagnosis Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:259-280. [PMID: 33523438 DOI: 10.1007/978-981-33-4187-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Spontaneous abortion has been a common obstetrical and gynecological disease, which occurs in 10-15% of all pregnancies. Recurrent miscarriage (RM) refers to the occurrence of three or more times abortions with the same partner. It is generally believed that environmental pollution associated with economic development may cause infertility and RM. When xenobiotics from the environment enter the body, they must be cleared from the body by various metabolic enzymes in the body. The absence or variation of these enzymes may be the genetic basis of RM caused by environmental pollution. The variation of metabolic detoxification enzyme can directly affect the removal of harmful substances from internal and external sources. Therefore, the determination of metabolic enzyme activity may become an important factor in the diagnosis of RM etiology and seeking methods to improve the detoxification ability has a great significance for the treatment of RM.
Collapse
|
14
|
Templeton I, Eichenbaum G, Sane R, Zhou J. Case Study 6: Deconvoluting Hyperbilirubinemia-Differentiating Between Hepatotoxicity and Reversible Inhibition of UGT1A1, MRP2, or OATP1B1 in Drug Development. Methods Mol Biol 2021; 2342:695-707. [PMID: 34272713 DOI: 10.1007/978-1-0716-1554-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
New molecular entities (NMEs) are evaluated using a rigorous set of in vitro and in vivo studies to assess their safety and suitability for testing in humans. Regulatory health authorities require that therapeutic and supratherapeutic doses be administered, by the intended route of administration, to two nonclinical species prior to human testing. The purpose of these studies is to identify potential target organ toxicity and to determine if the effects are reversible. Liver is a potential site for toxicity caused by orally administered NMEs due to high exposure during first pass after oral administration. A range of clinical chemistry analytes are routinely measured in both nonclinical and clinical studies to evaluate and monitor for hepatotoxicity. While bilirubin itself circulates within a wide range of concentrations in many animal species and humans, without causing adverse effects and possibly providing benefits, bilirubin is one of the few readily monitored circulating biomarkers that can provide insight into liver function. Therefore, any changes in plasma or urine bilirubin levels must be carefully evaluated. Changes in bilirubin may occur as a result of adaptive nontoxic changes or severe toxicity. Examples of adaptive nontoxic changes in liver function, which may elevate direct (conjugated) and/or indirect (unconjugated) bilirubin above baseline levels, include reversible inhibition of UGT1A1-mediated bilirubin metabolism and OATP1B1-, OATP1B3-, or MRP2-mediated transport. Alternatively, hepatocellular necrosis, hypoalbuminuria, or cholestasis may also lead to elevation of bilirubin; in some cases, these effects may be irreversible.This chapter aims to demonstrate application of enzyme kinetic principles in understanding the risk of bilirubin elevation through inhibition of multiple processes-involving both enzymes and transporters. In the sections that follow, we first provide a brief summary of bilirubin formation and disposition. Two case examples are then provided to illustrate the enzyme kinetic studies needed for risk assessment and for identifying the mechanisms of bilirubin elevation. Caveats of methods and data interpretation are discussed in these case studies. The data presented in this chapter is unpublished at the time of compilation of this book. It has been incorporated in this chapter to provide a sense of complexities in enzyme kinetics to the reader.
Collapse
Affiliation(s)
| | - Gary Eichenbaum
- Translational Science and Safety, Office of the Chief Medical Officer, Johnson & Johnson, Raritan, NJ, USA
| | - Rucha Sane
- Department of Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Jin Zhou
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
15
|
Zhou J, Argikar UA, Miners JO. Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). Methods Mol Biol 2021; 2342:301-338. [PMID: 34272700 DOI: 10.1007/978-1-0716-1554-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bisubstrate reaction that requires the aglycone and the cofactor, UDP-GlcUA. Accumulating evidence suggests that the bisubstrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modeling of glucuronidation reactions in vitro, UDP-GlcUA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for during experimental design and data interpretation. While the assessment of drug-drug interactions resulting from UGT inhibition has been challenging in the past, the increasing availability of UGT enzyme-selective substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of drug-drug interaction potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often underpredicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation. Physiologically based pharmacokinetic (PBPK) modeling has also shown to be of value for predicting PK of drugs eliminated by glucuronidation.
Collapse
Affiliation(s)
- Jin Zhou
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Upendra A Argikar
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| | - John O Miners
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
16
|
Miners JO, Rowland A, Novak JJ, Lapham K, Goosen TC. Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. Pharmacol Ther 2020; 218:107689. [PMID: 32980440 DOI: 10.1016/j.pharmthera.2020.107689] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Enzymes of the UDP-glucuronosyltransferase (UGT) superfamily contribute to the elimination of drugs from almost all therapeutic classes. Awareness of the importance of glucuronidation as a drug clearance mechanism along with increased knowledge of the enzymology of drug and chemical metabolism has stimulated interest in the development and application of approaches for the characterisation of human drug glucuronidation in vitro, in particular reaction phenotyping (the fractional contribution of the individual UGT enzymes responsible for the glucuronidation of a given drug), assessment of metabolic stability, and UGT enzyme inhibition by drugs and other xenobiotics. In turn, this has permitted the implementation of in vitro - in vivo extrapolation approaches for the prediction of drug metabolic clearance, intestinal availability, and drug-drug interaction liability, all of which are of considerable importance in pre-clinical drug development. Indeed, regulatory agencies (FDA and EMA) require UGT reaction phenotyping for new chemical entities if glucuronidation accounts for ≥25% of total metabolism. In vitro studies are most commonly performed with recombinant UGT enzymes and human liver microsomes (HLM) as the enzyme sources. Despite the widespread use of in vitro approaches for the characterisation of drug and chemical glucuronidation by HLM and recombinant enzymes, evidence-based guidelines relating to experimental approaches are lacking. Here we present evidence-based strategies for the characterisation of drug and chemical glucuronidation in vitro, and for UGT reaction phenotyping. We anticipate that the strategies will inform practice, encourage development of standardised experimental procedures where feasible, and guide ongoing research in the field.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | | | | | | |
Collapse
|
17
|
Nakanishi Y, Uno Y, Yamazaki H. Regional distributions of UDP-glucuronosyltransferase activities toward estradiol and serotonin in the liver and small intestine of cynomolgus macaques. Drug Metab Pharmacokinet 2020; 35:401-404. [PMID: 32651149 DOI: 10.1016/j.dmpk.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/18/2022]
Abstract
The cynomolgus macaque is a nonhuman primate species that is often used in drug metabolism studies during drug development. However, the localization of UDP-glucuronosyltransferases (UGTs), essential drug-metabolizing enzymes, has not been fully investigated in the liver and small intestine of cynomolgus macaques. In this study, UGT activities were analyzed in liver (five lobes) and small intestine (the duodenum and six sections from the proximal jejunum to the distal ileum) using typical probe substrates of human UGTs: 7-hydroxycoumarin, estradiol, serotonin, propofol, and zidovudine. In liver, UGT activities with respect to all substrates were detected, and the activity levels were similar in all liver lobes of the cynomolgus macaques tested. In contrast, in the small intestine, UGT activities toward all substrates were detected, but their levels generally decreased from jejunum to ileum in cynomolgus macaques. The localization of estradiol 3-O-glucuronosyltransferases and serotonin O-glucuronosyltransferases (which are mainly UGT1A enzymes) appear to be different in liver and small intestine. These results collectively suggest that, in cynomolgus macaques, UGT1As are differentially localized in the small intestine but are relatively homogeneously distributed in the liver.
Collapse
Affiliation(s)
- Yasuharu Nakanishi
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, 642-0017, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, 890-8580, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
18
|
Lévesque E, Labriet A, Hovington H, Allain ÉP, Melo-Garcia L, Rouleau M, Brisson H, Turcotte V, Caron P, Villeneuve L, Leclercq M, Droit A, Audet-Walsh E, Simonyan D, Fradet Y, Lacombe L, Guillemette C. Alternative promoters control UGT2B17-dependent androgen catabolism in prostate cancer and its influence on progression. Br J Cancer 2020; 122:1068-1076. [PMID: 32047296 PMCID: PMC7109100 DOI: 10.1038/s41416-020-0749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Perturbation of the major UGT2B17-dependent androgen catabolism pathway has the potential to affect prostate cancer (PCa) progression. The objective was to evaluate UGT2B17 protein expression in primary tumours in relation to hormone levels, disease characteristics and cancer evolution. METHODS We conducted an analysis of a high-density prostate tumour tissue microarray consisting of 239 localised PCa cases treated by radical prostatectomy (RP). Cox proportional hazard ratio analysis was used to evaluate biochemical recurrence (BCR), and a linear regression model evaluated variations in circulating hormone levels measured by mass spectrometry. The transcriptome of UGT2B17 in PCa was established by using RNA-sequencing data. RESULTS UGT2B17 expression in primary tumours was associated with node-positive disease at RP and linked to circulating levels of 3α-diol-17 glucuronide, a major circulating DHT metabolite produced by the UGT2B17 pathway. UGT2B17 was an independent prognostic factor linked to BCR after RP, and its overexpression was associated with development of metastasis. Finally, we demonstrated that distinctive alternative promoters dictate UGT2B17-dependent androgen catabolism in localised and metastatic PCa. CONCLUSIONS The androgen-inactivating gene UGT2B17 is controlled by overlooked regulatory regions in PCa. UGT2B17 expression in primary tumours influences the steroidome, and is associated with relevant clinical outcomes, such as BCR and metastasis.
Collapse
Affiliation(s)
- Eric Lévesque
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada.
| | - Adrien Labriet
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Hélène Hovington
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Éric P Allain
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Luciana Melo-Garcia
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Michèle Rouleau
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Hervé Brisson
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Véronique Turcotte
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Patrick Caron
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Lyne Villeneuve
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| | - Mickaël Leclercq
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Arnaud Droit
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Etienne Audet-Walsh
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - David Simonyan
- Statistical and Clinical Research Platform, CHU de Québec Research Center-Université Laval, Québec, Canada
| | - Yves Fradet
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Louis Lacombe
- Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Université Laval and Faculty of Medicine, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics laboratory, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center-Faculty of Pharmacy, Laval University, Québec, Canada
| |
Collapse
|
19
|
Xiao L, Chi D, Sheng G, Li W, Lin P, Liang S, Zhu L, Dong P. Inhibitory effects of UDP-glucuronosyltransferase (UGT) typical ligands against E. coli beta-glucuronidase (GUS). RSC Adv 2020; 10:22966-22971. [PMID: 35520305 PMCID: PMC9054634 DOI: 10.1039/d0ra02311f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022] Open
Abstract
Selectivity of ligand overlaps between UDP-glucuronosyltransferases (UGTs) and β-glucuronidase (GUS).
Collapse
Affiliation(s)
- Ling Xiao
- School of Resources and Environment
- Key Laboratory of Aqueous Environment Protection and Pollution Control of Yangtze River
- Anqing Normal University
- Anqing 246133
- China
| | - Dehui Chi
- Department of Food Science and Technology
- School of Life Science and Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration
- Anqing Normal University
- Anqing 246133
- China
| | - Guiju Sheng
- Department of Food Science and Technology
- School of Life Science and Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration
- Anqing Normal University
- Anqing 246133
- China
| | - Wenjuan Li
- Department of Food Science and Technology
- School of Life Science and Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration
- Anqing Normal University
- Anqing 246133
- China
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry
- Markey Cancer Center, and Dept. of Toxicology & Cancer Biology
- University of Kentucky
- Lexington
- USA
| | - Sicheng Liang
- School of Pharmacy
- The Affiliated Hospital of Southwest Medical University
- Luzhou 646000
- China
| | - Liangliang Zhu
- Department of Food Science and Technology
- School of Life Science and Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration
- Anqing Normal University
- Anqing 246133
- China
| | - Peipei Dong
- College of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| |
Collapse
|
20
|
Uno Y, Uehara S, Inoue T, Kawamura S, Murayama N, Nishikawa M, Ikushiro S, Sasaki E, Yamazaki H. Molecular characterization of functional UDP-glucuronosyltransferases 1A and 2B in common marmosets. Biochem Pharmacol 2019; 172:113748. [PMID: 31830470 DOI: 10.1016/j.bcp.2019.113748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are essential drug-conjugation enzymes that metabolize a variety of endobiotic and xenobiotic substrates. The molecular characteristics of UGTs have been extensively investigated in humans, but remain to be investigated in common marmosets, a nonhuman primate species widely used in drug metabolism studies. In this study, 11 UGT cDNAs (UGT1A1, 1A3, 1A4, 1A6, 1A7, and 1A9; and UGT2B49, 2B50, 2B51, 2B52, and 2B53) were isolated and characterized in marmosets. Marmoset UGT1As had high sequence identities (89-93%) with human UGT1As, but the sequence identities of marmoset UGT2Bs were lower (82-86%). Marmoset UGTs were found to be phylogenetically close to human UGTs. Just as human UGT1As do, marmoset UGT1A genes shared exons 2-5 and contained a variable exon 1 unique to each gene; in contrast, marmoset UGT2B genes contained six unique exons. Moreover, marmoset and human UGT1A and UGT2B gene clusters were located in corresponding regions in their respective genomes. Among the five tissue types tested, marmoset UGT mRNAs were most abundantly expressed in liver, jejunum, and/or kidney, i.e., in tissues important for drug metabolism, just as human UGTs are. Among the 11 marmoset UGT mRNAs investigated, marmoset UGT1A9, 1A4, and 1A6 mRNAs were the most abundantly expressed in liver, small intestine, and kidney, respectively. Marmoset liver microsomes and recombinant UGT1A proteins catalyzed the glucuronidation of the same substrates that human UGT1As catalyze, including estradiol, trifluoperazine, 4-methylumbelliferone, serotonin, 4-nitrophenol, and propofol. Trifluoperazine was glucuronidated by marmoset liver microsomes, but not by any of the UGT1A isoforms examined under the present conditions. These results collectively suggest that functional marmoset UGTs have generally similar molecular characteristics to human UGTs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan; Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama 642 0017, Japan.
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Takashi Inoue
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kawasaki-ku, Japan
| | - Shu Kawamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939 0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939 0398, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kawasaki-ku, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
21
|
Mach S, Jegorov A, Kuzma M, Zápal J, Šimek Z, Čejka J, Eigner V. Epoxidation is the preferred pathway of first-stage metabolism of abiraterone acetate in brown bullhead (Ameiurus nebulosus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34896-34904. [PMID: 31656995 DOI: 10.1007/s11356-019-06568-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Twenty juvenile individuals of brown bullhead (Ameiurus nebulosus), average weight 77 g, were fed by abiraterone acetate prodrug dissolved in olive oil via gastric probe. Dose applied was 3 mg/10 g fish weight. After feeding, they were let out into aquarium and kept there for 3 days. Aquarium water containing excreted metabolites was extracted, and sample was purified and finally analyzed by means of HPLC/MS. Expected both primary (products of hydroxylation) and secondary (products of glucuronidation and sulfatation) metabolites of abiraterone acetate were identified. The NMR measurement of one of the prevailing metabolites presumed to be one of possible hydroxy-abiraterones discovered that it is not hydroxy-abiraterone but abiraterone 16,17-epoxide. Closer analysis of MS2 and MS3 spectra revealed that one of presumed hydroxy-abiraterone acetates and also some secondary metabolites are probably 16,17-epoxides.
Collapse
Affiliation(s)
- Samuel Mach
- Teva Czech Industries, s.r.o., Ostravská 29, 747 70, Opava, Komárov, Czech Republic.
- Masaryk University Brno, RECETOX, Kamenice 126/3, 625 00, Brno, Czech Republic.
| | - Alexandr Jegorov
- Teva Czech Industries, s.r.o., Ostravská 29, 747 70, Opava, Komárov, Czech Republic
| | - Marek Kuzma
- Academy of Sciences of the Czech Republic, Inst. of Microbiology, Videňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Zápal
- Academy of Sciences of the Czech Republic, Inst. of Microbiology, Videňská 1083, 142 20, Prague 4, Czech Republic
| | - Zdeněk Šimek
- Masaryk University Brno, RECETOX, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Jan Čejka
- Prague Institute of Chemical Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Václav Eigner
- Prague Institute of Chemical Technology, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
22
|
Ito K, Sjöstedt N, Brouwer KLR. Mechanistic Modeling of the Hepatic Disposition of Estradiol-17 β-Glucuronide in Sandwich-Cultured Human Hepatocytes. Drug Metab Dispos 2019; 48:116-122. [PMID: 31744810 DOI: 10.1124/dmd.119.088898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022] Open
Abstract
Estradiol-17β-glucuronide (E217G) is an estrogen metabolite that has cholestatic properties. In humans, circulating E217G is transported into hepatocytes by organic anion transporting polypeptides (OATPs) and is excreted into bile by multidrug-resistance associated protein 2 (MRP2). E217G is also a substrate of the basolateral efflux transporters MRP3 and MRP4, which translocate E217G from hepatocytes to blood. However, the contribution of basolateral efflux to hepatocyte disposition of E217G has not been evaluated previously. To address this question, E217G disposition was studied in sandwich-cultured human hepatocytes and mechanistic modeling was applied to calculate clearance values (mean ± S.D.) for uptake, intrinsic biliary excretion (CLint,bile) and intrinsic basolateral efflux (CLint,BL). The biliary excretion index of E217G was 45% ± 6%. The CLint,BL of E217G [0.18 ± 0.03 (ml/min)/g liver) was 1.6-fold higher than CLint,bile [0.11 ± 0.06 (ml/min)/g liver]. Simulations were performed to study the effects of increased CLint,BL and a concomitant decrease in CLint,bile on hepatic E217G exposure. Results demonstrated that increased CLint,BL can effectively reduce hepatocellular and biliary exposure to this potent cholestatic agent. Simulations also revealed that basolateral efflux can compensate for impaired biliary excretion and, vice versa, to avoid accumulation of E217G in hepatocytes. However, when both clearance processes are impaired by 90%, hepatocyte E217G exposure increases up to 10-fold. These data highlight the contribution of basolateral efflux transport, in addition to MRP2-mediated biliary excretion, to E217G disposition in human hepatocytes. This elimination route could be important, especially in cases where basolateral efflux is induced, such as cholestasis. SIGNIFICANCE STATEMENT: The disposition of the cholestatic estrogen metabolite estradiol-17β-glucuronide (E217G) was characterized in sandwich-cultured human hepatocytes. The intrinsic basolateral efflux clearance was estimated to be 1.6-fold higher than the intrinsic biliary excretion clearance, emphasizing the contribution of basolateral elimination in addition to biliary excretion. Simulations highlight how hepatocytes can effectively cope with increased E217G through the regulation of both basolateral and biliary transporters.
Collapse
Affiliation(s)
- Katsuaki Ito
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| |
Collapse
|
23
|
Grant DJ, Manichaikul A, Alberg AJ, Bandera EV, Barnholtz‐Sloan J, Bondy M, Cote ML, Funkhouser E, Moorman PG, Peres LC, Peters ES, Schwartz AG, Terry PD, Wang X, Keku TO, Hoyo C, Berchuck A, Sandler DP, Taylor JA, O’Brien KM, Velez Edwards DR, Edwards TL, Beeghly‐Fadiel A, Wentzensen N, Pearce CL, Wu AH, Whittemore AS, McGuire V, Sieh W, Rothstein JH, Modugno F, Ness R, Moysich K, Rossing MA, Doherty JA, Sellers TA, Permuth‐Way JB, Monteiro AN, Levine DA, Setiawan VW, Haiman CA, LeMarchand L, Wilkens LR, Karlan BY, Menon U, Ramus S, Gayther S, Gentry‐Maharaj A, Terry KL, Cramer DW, Goode EL, Larson MC, Kaufmann SH, Cannioto R, Odunsi K, Etter JL, Huang R, Bernardini MQ, Tone AA, May T, Goodman MT, Thompson PJ, Carney ME, Tworoger SS, Poole EM, Lambrechts D, Vergote I, Vanderstichele A, Van Nieuwenhuysen E, Anton‐Culver H, Ziogas A, Brenton JD, Bjorge L, Salvensen HB, Kiemeney LA, Massuger LFAG, Pejovic T, Bruegl A, Moffitt M, Cook L, Le ND, Brooks‐Wilson A, Kelemen LE, Pharoah PD, Song H, Campbell I, Eccles D, DeFazio A, Kennedy CJ, Schildkraut JM. Evaluation of vitamin D biosynthesis and pathway target genes reveals UGT2A1/2 and EGFR polymorphisms associated with epithelial ovarian cancer in African American Women. Cancer Med 2019; 8:2503-2513. [PMID: 31001917 PMCID: PMC6536963 DOI: 10.1002/cam4.1996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/03/2018] [Accepted: 01/08/2019] [Indexed: 02/02/2023] Open
Abstract
An association between genetic variants in the vitamin D receptor (VDR) gene and epithelial ovarian cancer (EOC) was previously reported in women of African ancestry (AA). We sought to examine associations between genetic variants in VDR and additional genes from vitamin D biosynthesis and pathway targets (EGFR, UGT1A, UGT2A1/2, UGT2B, CYP3A4/5, CYP2R1, CYP27B1, CYP24A1, CYP11A1, and GC). Genotyping was performed using the custom-designed 533,631 SNP Illumina OncoArray with imputation to the 1,000 Genomes Phase 3 v5 reference set in 755 EOC cases, including 537 high-grade serous (HGSOC), and 1,235 controls. All subjects are of African ancestry (AA). Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (CI). We further evaluated statistical significance of selected SNPs using the Bayesian False Discovery Probability (BFDP). A significant association with EOC was identified in the UGT2A1/2 region for the SNP rs10017134 (per allele OR = 1.4, 95% CI = 1.2-1.7, P = 1.2 × 10-6 , BFDP = 0.02); and an association with HGSOC was identified in the EGFR region for the SNP rs114972508 (per allele OR = 2.3, 95% CI = 1.6-3.4, P = 1.6 × 10-5 , BFDP = 0.29) and in the UGT2A1/2 region again for rs1017134 (per allele OR = 1.4, 95% CI = 1.2-1.7, P = 2.3 × 10-5 , BFDP = 0.23). Genetic variants in the EGFR and UGT2A1/2 may increase susceptibility of EOC in AA women. Future studies to validate these findings are warranted. Alterations in EGFR and UGT2A1/2 could perturb enzyme efficacy, proliferation in ovaries, impact and mark susceptibility to EOC.
Collapse
Affiliation(s)
- Delores J. Grant
- Department of Biological and Biomedical Sciences, Cancer Research ProgramJLC‐Biomedical/Biotechnology Research Institute, North Carolina Central UniversityDurhamNorth Carolina
| | - Ani Manichaikul
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginia
| | - Anthony J. Alberg
- Department of Epidemiology and Biostatistics, Arnold School of Public HealthUniversity of South CarolinaColumbiaSouth Carolina
| | - Elisa V. Bandera
- Department of Population ScienceRutgers Cancer Institute of New JerseyNew BrunswickNew Jersey
| | - Jill Barnholtz‐Sloan
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhio
| | - Melissa Bondy
- Cancer Prevention and Population Sciences ProgramBaylor College of MedicineHoustonTexas
| | - Michele L. Cote
- Department of Oncology and the Karmanos Cancer Institute Population Studies and Disparities Research ProgramWayne State University School of MedicineDetroitMichigan
| | - Ellen Funkhouser
- Division of Preventive MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Patricia G. Moorman
- Department of Community and Family MedicineDuke University Medical CenterDurhamNorth Carolina
| | - Lauren C. Peres
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginia
| | - Edward S. Peters
- Epidemiology ProgramLouisiana State University Health Sciences Center School of Public HealthNew OrleansLouisisana
| | - Ann G. Schwartz
- Department of Oncology and the Karmanos Cancer Institute Population Studies and Disparities Research ProgramWayne State University School of MedicineDetroitMichigan
| | - Paul D. Terry
- Department of MedicineUniversity of Tennessee Medical Center – KnoxvilleKnoxvilleTennessee
| | - Xin‐Qun Wang
- Department of Public Health SciencesUniversity of VirginiaCharlottesvilleVirginia
| | - Temitope O. Keku
- Departments of Medicine and Nutrition, Division of Gastroenterology and HepatologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Cathrine Hoyo
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth Carolina
| | - Andrew Berchuck
- Department of Obstetrics and GynecologyDuke University Medical CenterDurhamNorth Carolina
| | - Dale P. Sandler
- Epidemiology Branch, Division of Intramural ResearchNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth Carolina
| | - Jack A. Taylor
- Epidemiology Branch, Division of Intramural ResearchNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth Carolina
| | - Katie M. O’Brien
- Epidemiology Branch, Division of Intramural ResearchNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth Carolina
| | - Digna R. Velez Edwards
- Vanderbilt Epidemiology Center, Center for Human Genetics Research, Department of Obstetrics and GynecologyVanderbilt University Medical CenterNashvilleTennessee
| | - Todd L. Edwards
- Division of Epidemiology, Center for Human Genetics Research, Department of MedicineVanderbilt University Medical CenterNashvilleTennessee
| | - Alicia Beeghly‐Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology CenterInstitute for Medicine and Public Health, Vanderbilt University Medical CenterNashvilleTennessee
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMaryland
| | - Celeste Leigh Pearce
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMichigan
- Department of Preventive Medicine, Keck School of MedicineUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCalifornia
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of MedicineUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCalifornia
| | - Alice S. Whittemore
- Department of Health Research and PolicyStanford University School of MedicineStanfordCalifornia
- Department of Biomedical Data ScienceStanford University School of MedicineStanfordCalifornia
| | - Valerie McGuire
- Department of Health Research and PolicyStanford University School of MedicineStanfordCalifornia
| | - Weiva Sieh
- Department of Population Health Science and PolicyIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Joseph H. Rothstein
- Department of Population Health Science and PolicyIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of EpidemiologyUniversity of Pittsburgh Graduate School of Public HealthPittsburghPennsylvania
- Ovarian Cancer Center of Excellence, Womens Cancer Research ProgramMagee‐Womens Research Institute and University of Pittsburgh Cancer InstitutePittsburghPennsylvania
| | - Roberta Ness
- The University of Texas School of Public HealthHoustonTexas
| | - Kirsten Moysich
- Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloNew York
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleWashington
- Department of EpidemiologyUniversity of WashingtonSeattleWashington
| | - Jennifer A. Doherty
- Department of Population Health SciencesHuntsman Cancer Institute, University of UtahSalt Lake City, Utah
| | | | | | | | - Douglas A. Levine
- Gynecology Service, Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Gynecologic Oncology, Laura and Isaac Pearlmutter Cancer CenterNew York University Langone Medical CenterNew YorkNew York
| | | | - Christopher A. Haiman
- University of Southern California Norris Comprehensive Cancer CenterLos AngelesCalifornia
| | | | - Lynne R. Wilkens
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHawaii
| | - Beth Y. Karlan
- Women's Cancer ProgramSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
| | - Usha Menon
- MRC CTU at UCL, Institute of Clinical Trials and MethodologyUniversity College LondonLondonUK
| | - Susan Ramus
- School of Women's and Children's HealthUniversity of New South WalesNew South WalesAustralia
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
| | - Simon Gayther
- Center for Cancer Prevention and Translational GenomicsSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCalifornia
| | | | - Kathryn L. Terry
- Obstetrics and Gynecology Epidemiology CenterBrigham and Women's HospitalBostonMassachusetts
- Harvard T. H. Chan School of Public HealthBostonMassauchusetts
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology CenterBrigham and Women's HospitalBostonMassachusetts
- Harvard T. H. Chan School of Public HealthBostonMassauchusetts
| | - Ellen L. Goode
- Department of Health Science Research, Division of EpidemiologyMayo ClinicRochesterMinnesota
| | - Melissa C. Larson
- Department of Health Science Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Scott H. Kaufmann
- Departments of Medicine and PharmacologyMayo ClinicRochesterMinnesota
| | - Rikki Cannioto
- Cancer Pathology & Prevention, Division of Cancer Prevention and Population SciencesRoswell Park Cancer InstituteBuffaloNew York
| | - Kunle Odunsi
- Department of Gynecological OncologyRoswell Park Cancer InstituteBuffaloNew York
| | - John L. Etter
- Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloNew York
| | - Ruea‐Yea Huang
- Center For ImmunotherapyRoswell Park Cancer InstituteBuffaloNew York
| | - Marcus Q. Bernardini
- Division of Gynecologic OncologyPrincess Margaret Hospital, University Health NetworkTorontoOntarioCanada
| | - Alicia A. Tone
- Division of Gynecologic OncologyPrincess Margaret Hospital, University Health NetworkTorontoOntarioCanada
| | - Taymaa May
- Division of Gynecologic OncologyPrincess Margaret Hospital, University Health NetworkTorontoOntarioCanada
| | - Marc T. Goodman
- Cancer Prevention and ControlSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
- Department of Biomedical SciencesCommunity and Population Health Research Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
| | - Pamela J. Thompson
- Cancer Prevention and ControlSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
| | - Michael E. Carney
- Department of Obstetrics and GynecologyJohn A. Burns School of Medicine, University of HawaiiHonoluluHawaii
| | - Shelley S. Tworoger
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | | | - Diether Lambrechts
- Vesalius Research Center, VIBLeuvenBelgium
- Laboratory for Translational Genetics, Department of OncologyUniversity of LeuvenBelgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer InstituteUniversity Hospitals LeuvenLeuvenBelgium
| | - Adriaan Vanderstichele
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer InstituteUniversity Hospitals LeuvenLeuvenBelgium
| | - Els Van Nieuwenhuysen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer InstituteUniversity Hospitals LeuvenLeuvenBelgium
| | - Hoda Anton‐Culver
- Department of Epidemiology, Director of Genetic Epidemiology Research Institute, Center for Cancer Genetics Research & Prevention, School of MedicineUniversity of California IrvineIrvineCalifornia
| | - Argyrios Ziogas
- Department of EpidemiologyUniversity of California IrvineIrvineCalifornia
| | - James D. Brenton
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Line Bjorge
- Department of Gynecology and ObstetricsHaukeland University HospitalBergenNorway
- Centre for Cancer Biomarkers, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Helga B. Salvensen
- Department of Gynecology and ObstetricsHaukeland University HospitalBergenNorway
- Centre for Cancer Biomarkers, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Lambertus A. Kiemeney
- Radboud University Medical CenterRadboud Institute for Health SciencesNijmegenNetherlands
| | - Leon F. A. G. Massuger
- Department of Gynaecology, Radboud University Medical CenterRadboud Institute for Molecular Life sciencesNijmegenThe Netherlands
| | - Tanja Pejovic
- Department of Obstetrics & GynecologyOregon Health & Science UniversityPortlandOregon
- Knight Cancer Institute, Oregon Health & Science UniversityPortlandOregon
| | - Amanda Bruegl
- Department of Obstetrics & GynecologyOregon Health & Science UniversityPortlandOregon
- Knight Cancer Institute, Oregon Health & Science UniversityPortlandOregon
| | - Melissa Moffitt
- Department of Obstetrics & GynecologyOregon Health & Science UniversityPortlandOregon
- Knight Cancer Institute, Oregon Health & Science UniversityPortlandOregon
| | - Linda Cook
- Division of Epidemiology and Biostatistics, Department of Internal MedicineUniversity of New MexicoAlbuquerqueNew Mexico
| | - Nhu D. Le
- Cancer Control Research, British Columbia Cancer AgencyVancouverBritish ColumbiaCanada
| | - Angela Brooks‐Wilson
- Canada's Michael Smith Genome Sciences CentreBritish Columbia Cancer AgencyVancouverBritish ColumbiaCanada
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Linda E. Kelemen
- Hollings Cancer Center and Department of Public Health SciencesMedical University of South CarolinaCharlestonSouth Carolina
| | - Paul D.P. Pharoah
- Strangeways Research laboratory, Department of Oncology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Honglin Song
- Strangeways Research Laboratory, Department of OncologyUniversity of CambridgeCambridgeUK
| | - Ian Campbell
- Cancer Genetics Laboratory, Research DivisionPeter MacCallum Cancer CentreVictoriaAustralia
- Department of PathologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Diana Eccles
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Anna DeFazio
- Centre for Cancer ResearchThe Westmead Institute for Medical Research, The University of SydneySydneyNew South WalesAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNew South WalesAustralia
| | - Catherine J. Kennedy
- Centre for Cancer ResearchThe Westmead Institute for Medical Research, The University of SydneySydneyNew South WalesAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNew South WalesAustralia
| | | |
Collapse
|
24
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
25
|
Lv X, Xia Y, Finel M, Wu J, Ge G, Yang L. Recent progress and challenges in screening and characterization of UGT1A1 inhibitors. Acta Pharm Sin B 2019; 9:258-278. [PMID: 30972276 PMCID: PMC6437557 DOI: 10.1016/j.apsb.2018.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) is an important conjugative enzyme in mammals that is responsible for the conjugation and detoxification of both endogenous and xenobiotic compounds. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in metabolic disorders of endobiotic metabolism. Therefore, both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recommended assaying the inhibitory potential of drugs under development on the human UGT1A1 prior to approval. This review focuses on the significance, progress and challenges in discovery and characterization of UGT1A1 inhibitors. Recent advances in the development of UGT1A1 probes and their application for screening UGT1A1 inhibitors are summarized and discussed in this review for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been prepared and analyzed. Challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide guidance for rational use of drugs/herbs in order to avoid the occurrence of adverse effects via UGT1A1 inhibition, as well as presenting methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating investigations on UGT1A1-ligand interactions.
Collapse
|
26
|
Cai Y, Yang H, Li W, Liu G, Lee PW, Tang Y. Computational Prediction of Site of Metabolism for UGT-Catalyzed Reactions. J Chem Inf Model 2018; 59:1085-1095. [DOI: 10.1021/acs.jcim.8b00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingchun Cai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Philip W. Lee
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Lv X, Zhang JB, Hou J, Dou TY, Ge GB, Hu WZ, Yang L. Chemical Probes for Human UDP-Glucuronosyltransferases: A Comprehensive Review. Biotechnol J 2018; 14:e1800002. [PMID: 30192065 DOI: 10.1002/biot.201800002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/19/2018] [Indexed: 01/11/2023]
Abstract
UGTs play crucial roles in the metabolism and detoxification of both endogenous and xenobiotic compounds. The key roles of UGTs in human health have garnered great interest in the design and development of specific probes for human UGTs. However, in contrast to other human enzymes, the probe substrates for human UGTs are rarely reported, owing to the highly overlapping substrate specificities of UGTs and the lack of the integrated crystal structures of UGTs. Over the past decades, many efforts are made to develop specific probe substrates for UGTs and use them in both basic research and drug discovery. This review focuses on recent progress in the development of probe substrates for UGTs and their biomedical applications. A long list of chemical probes for UGTs, including non-fluorescent and fluorescent probes along with their structural information and kinetic parameters, are prepared and analyzed. Additionally, challenges and future directions in this field are highlighted in the final section. All information and knowledge presented in this review provide practical tools/methods for measuring UGT activities in complex biological samples, which will be very helpful for rapid screening and characterization of UGT modulators, and for exploring the relevance of UGT enzymes to human diseases.
Collapse
Affiliation(s)
- Xia Lv
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | - Jie Hou
- Dalian Medical University, Dalian, 116044, China
| | - Tong-Yi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Zhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
28
|
Lapham K, Lin J, Novak J, Orozco C, Niosi M, Di L, Goosen TC, Ryu S, Riccardi K, Eng H, Cameron KO, Kalgutkar AS. 6-Chloro-5-[4-(1-Hydroxycyclobutyl)Phenyl]-1H-Indole-3-Carboxylic Acid is a Highly Selective Substrate for Glucuronidation by UGT1A1, Relative toβ-Estradiol. Drug Metab Dispos 2018; 46:1836-1846. [DOI: 10.1124/dmd.118.083709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
|
29
|
Uno Y, Takahira R, Murayama N, Ishii Y, Ikenaka Y, Ishizuka M, Yamazaki H, Ikushiro S. Molecular and functional characterization of UDP-glucuronosyltransferase 1A in cynomolgus macaques. Biochem Pharmacol 2018; 155:172-181. [DOI: 10.1016/j.bcp.2018.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
|
30
|
Design and optimization of the cocktail assay for rapid assessment of the activity of UGT enzymes in human and rat liver microsomes. Toxicol Lett 2018; 295:379-389. [PMID: 30036684 DOI: 10.1016/j.toxlet.2018.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022]
Abstract
Along with the prevalence of drug combination therapies, an increasing number of cases about drug-drug interactions (DDI) have been reported, which has drawn a lot of attention due to the potential toxicity and/or therapeutic failure. Pharmacokinetic interactions based on drug metabolic enzymes should be responsible for a great many of DDI. UDP-glucuronosyltransferases (UGT) as the main phase II metabolic enzymes are involved in the metabolism of many endogenous and exogenous substrates. Herein, we designed and optimized a validated cocktail method for the simultaneous evaluation of drug-mediated inhibition of the main five UGT isoforms using respective specific probe substrates (estradiol for UGT1A1, chenodeoxycholic acid for UGT1A3, serotonin for UGT1A6, propofol for UGT1A9/PROG and zidovudine for UGT2B7/AZTG) in human and rat liver microsomes by liquid chromatography-tandem mass spectrometry (LCMS/MS). Moreover, we investigated the risk of interactions among UGT probe substrates, and validated the cocktail method by known positive inhibitors of UGT isoforms. To minimize the substrates interaction, we developed two cocktail subgroups which were further optimized via exploring the experimental conditions. In particular, the cocktail inhibition assay for rapid assessment of in vitro rat UGTs was firstly reported and the values of Km in the liver microsomes from humans and rats were close to each other in the specific UGT subtype. In conclusion, this study has successfully established the cocktail approach to explore UGT activity, especially for UGT inhibition in a fast and efficient way.
Collapse
|
31
|
Kondo T, Ikenaka Y, Nakayama SMM, Kawai YK, Mizukawa H, Mitani Y, Nomiyama K, Tanabe S, Ishizuka M. Uridine Diphosphate-Glucuronosyltransferase (UGT) 2B Subfamily Interspecies Differences in Carnivores. Toxicol Sci 2018; 158:90-100. [PMID: 28453659 DOI: 10.1093/toxsci/kfx072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are among the most important xenobiotic metabolizing enzymes that conjugate a wide range of chemicals. Previous studies showed that Felidae and Pinnipedia species have very low UGT activities toward some phenolic compounds because of the UGT1A6 pseudogene and small numbers of UGT1A isozymes. In addition to the UGT1As, UGT2Bs isozymes also conjugate various endogenous (eg, estrogens, androgens, and bile acids) and exogenous compounds (opioids, non-steroidal anti-inflammatory drugs, and environmental pollutants). However UGT2B activity and genetic background are unknown in carnivore species. Therefore, this study was performed to elucidate the species differences of UGT2Bs. Using typical substrates for UGT2Bs, UGT activity was measured in vitro. In addition, UGT2B genetic features are analyzed in silico. Results of UGT activity measurement indicate marked species differences between dogs and other carnivores (cats, Northern fur seals, Steller sea lions, Harbor seals, and Caspian seals). Dogs have very high Vmax/Km toward estradiol (17-glucuronide), estrone, lorazepam, oxazepam, and temazepam. Conversely, cats and pinniped species (especially Caspian seals and Harbor seals) have very low activities toward these substrates. The results of genetic synteny analysis indicate that Felidae and pinniped species have very small numbers of UGT2B isozymes (one or none) compared with dogs, rodents, and humans. Furthermore, Felidae species have the same nonsense mutation in UGT2B, which suggests that Felidae UGT2B31-like is also a pseudogene in addition to UGT1A6. These findings of lower activity of UGT2B suggest that Felidae and some pinniped species have very low UGT activity toward a wide range of chemicals. These results are important for Felidae and Pinnipedia species that are frequently exposed to drugs and environmental pollutants.
Collapse
Affiliation(s)
- Takamitsu Kondo
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yusuke K Kawai
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoko Mitani
- Field Science Center for Northern Biosphere, Hokkaido University, N11, W10, Kita-ku, Sapporo 060-0811, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
32
|
Juvonen RO, Rauhamäki S, Kortet S, Niinivehmas S, Troberg J, Petsalo A, Huuskonen J, Raunio H, Finel M, Pentikäinen OT. Molecular Docking-Based Design and Development of a Highly Selective Probe Substrate for UDP-glucuronosyltransferase 1A10. Mol Pharm 2018; 15:923-933. [PMID: 29421866 PMCID: PMC6150735 DOI: 10.1021/acs.molpharmaceut.7b00871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function. To this end, homology models were constructed and used to design new substrates, and subsequently, six novel C3-substituted (4-fluorophenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 4-(dimethylamino)phenyl, 4-methylphenyl, or triazole) 7-hydroxycoumarin derivatives were synthesized from inexpensive starting materials. All tested compounds could be glucuronidated to nonfluorescent glucuronides by UGT1A10, four of them highly selectively by this enzyme. A new UGT1A10 mutant, 1A10-H210M, was prepared on the basis of the newly constructed model. Glucuronidation kinetics of the new compounds, in both wild-type and mutant UGT1A10 enzymes, revealed variable effects of the mutation. All six new C3-substituted 7-hydroxycoumarins were glucuronidated faster by human intestine than by liver microsomes, supporting the results obtained with recombinant UGTs. The most selective 4-(dimethylamino)phenyl and triazole C3-substituted 7-hydroxycoumarins could be very useful substrates in studying the function and expression of the human UGT1A10.
Collapse
Affiliation(s)
- Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , Box 1627, FI-70211 Kuopio , Finland
| | | | | | | | - Johanna Troberg
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , P.O. Box 56, FI-00014 Helsinki , Finland
| | - Aleksanteri Petsalo
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , Box 1627, FI-70211 Kuopio , Finland
| | | | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , Box 1627, FI-70211 Kuopio , Finland
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy , University of Helsinki , P.O. Box 56, FI-00014 Helsinki , Finland
| | - Olli T Pentikäinen
- Institute of Biomedicine, Faculty of Medicine , University of Turku , FI-20014 Turku , Finland
| |
Collapse
|
33
|
He BX, Qiao B, Lam AKY, Zhao XL, Zhang WZ, Liu H. Association between UDP-glucuronosyltransferase 2B7 tagSNPs and breast cancer risk in Chinese females. Clin Exp Pharmacol Physiol 2018; 45:437-443. [PMID: 29272031 DOI: 10.1111/1440-1681.12908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/18/2017] [Accepted: 12/06/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Bao-Xia He
- Department of Pharmacy; Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou China
| | - Bin Qiao
- Department of Stomatology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology; School of Medicine; Menzies Health Institute Queensland; Griffith University; Gold Coast QLD Australia
| | - Xiu-Li Zhao
- Department of Pharmacy; Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou China
| | - Wen-Zhou Zhang
- Department of Pharmacy; Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou China
| | - Hui Liu
- Department of Breast Surgery; Affiliated Cancer Hospital of Zhengzhou University; Zhengzhou China
| |
Collapse
|
34
|
Asai Y, Sakakibara Y, Kondo M, Nadai M, Katoh M. Species and Tissue Differences in β-Estradiol 17-Glucuronidation. Biol Pharm Bull 2017; 40:1754-1758. [PMID: 28966247 DOI: 10.1248/bpb.b17-00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferase (UGT) is expressed in the liver and extrahepatic tissues. One of the major metabolic pathways of β-estradiol (E2) is glucuronidation at the 17-hydroxy position by UGTs. This study was performed to determine E2 17-glucuronidation kinetics in human and rodent liver, small intestine, and kidney microsomes and to clarify the species and tissue differences. In the human liver and small intestine, Eadie-Hofstee plots exhibited biphasic kinetics, suggesting that E2 17-glucuronide (E17G) formation was catalyzed by more than two UGT isoforms in both tissues. The Km values for E17G formation by the high-affinity enzymes in the human liver and small intestine were 1.79 and 1.12 µM, respectively, and corresponding values for the low-affinity enzymes were 3.72 and 11.36 µM, respectively. Meanwhile, E17G formation in the human kidney was fitted to the Hill equation (S50=1.73 µM, n=1.63), implying that the UGT isoform catalyzing E17G formation in the kidney differed from that in the liver and small intestine. The maximum clearance for E17G formation in the human kidney was higher than the intrinsic clearance in the liver. E17G formation in the rat liver and kidney exhibited biphasic kinetics, whereas that in the small intestine was fitted to the Hill equation. In mice, all 3 tissues exhibited biphasic kinetics. In conclusion, we reported species and tissue differences in E2 17-glucuronidation, which occurred not only in the human liver but also in the extrahepatic tissues particularly the kidney.
Collapse
Affiliation(s)
- Yuki Asai
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University
| | | | - Miyabi Kondo
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University
| | - Masayuki Nadai
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University
| | - Miki Katoh
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University
| |
Collapse
|
35
|
Troberg J, Järvinen E, Ge GB, Yang L, Finel M. UGT1A10 Is a High Activity and Important Extrahepatic Enzyme: Why Has Its Role in Intestinal Glucuronidation Been Frequently Underestimated? Mol Pharm 2016; 14:2875-2883. [DOI: 10.1021/acs.molpharmaceut.6b00852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johanna Troberg
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Erkka Järvinen
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Guang-Bo Ge
- Laboratory
of Pharmaceutical Resource Discovery, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ling Yang
- Laboratory
of Pharmaceutical Resource Discovery, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Moshe Finel
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
36
|
Dluzen DF, Sutliff AK, Chen G, Watson CJW, Ishmael FT, Lazarus P. Regulation of UGT2B Expression and Activity by miR-216b-5p in Liver Cancer Cell Lines. J Pharmacol Exp Ther 2016; 359:182-93. [PMID: 27474751 DOI: 10.1124/jpet.116.235044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023] Open
Abstract
The UDP-glucuronosyltransferase (UGT) 2B enzymes are important in the detoxification of a variety of endogenous and exogenous compounds, including many hormones, drugs, and carcinogens. Identifying novel mechanisms governing their expression is important in understanding patient-specific response to drugs and cancer risk factors. In silico prediction algorithm programs were used to screen for microRNAs (miRNAs) as potential regulators of UGT2B enzymes, with miR-216b-5p identified as a potential candidate. Luciferase data suggested the presence of a functional miR-216b-5p binding motif within the 3' untranslated regions of UGTs 2B7, 2B4, and 2B10. Overexpression of miR-216b-5p mimics significantly repressed UGT2B7 (P < 0.001) and UGT2B10 (P = 0.0018) mRNA levels in HuH-7 cells and UGT2B4 (P < 0.001) and UGT2B10 (P = 0.018) mRNA in Hep3B cells. UGT2B7 protein levels were repressed in both HuH-7 and Hep3B cells in the presence of increasing miR-216b-5p concentrations, corresponding with significant (P < 0.001 and P = 0.011, respectively) decreases in glucuronidation activity against the UGT2B7-specific substrate epirubicin. Inhibition of endogenous miR-216b-5p levels significantly increased UGT2B7 mRNA levels in HuH-7 (P = 0.021) and Hep3B (P = 0.0068) cells, and increased epirubicin glucuronidation by 85% (P = 0.057) and 50% (P = 0.012) for HuH-7 and Hep3B cells, respectively. UGT2B4 activity against codeine and UGT2B10 activity against nicotine were significantly decreased in both HuH-7 and Hep3B cells (P < 0.001 and P = 0.0048, and P = 0.017 and P = 0.043, respectively) after overexpression of miR-216b-5p mimic. This is the first evidence that miRNAs regulate UGT 2B7, 2B4, and 2B10 expression, and that miR-216b-5p regulation of UGT2B proteins may be important in regulating the metabolism of UGT2B substrates.
Collapse
Affiliation(s)
- Douglas F Dluzen
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Aimee K Sutliff
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Gang Chen
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Christy J W Watson
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Faoud T Ishmael
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Philip Lazarus
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| |
Collapse
|
37
|
Bohnert T, Patel A, Templeton I, Chen Y, Lu C, Lai G, Leung L, Tse S, Einolf HJ, Wang YH, Sinz M, Stearns R, Walsky R, Geng W, Sudsakorn S, Moore D, He L, Wahlstrom J, Keirns J, Narayanan R, Lang D, Yang X. Evaluation of a New Molecular Entity as a Victim of Metabolic Drug-Drug Interactions-an Industry Perspective. ACTA ACUST UNITED AC 2016; 44:1399-423. [PMID: 27052879 DOI: 10.1124/dmd.115.069096] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.
Collapse
Affiliation(s)
- Tonika Bohnert
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Aarti Patel
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ian Templeton
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Yuan Chen
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Chuang Lu
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - George Lai
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Louis Leung
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Susanna Tse
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Heidi J Einolf
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ying-Hong Wang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Michael Sinz
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ralph Stearns
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Robert Walsky
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Wanping Geng
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Sirimas Sudsakorn
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - David Moore
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ling He
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Jan Wahlstrom
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Jim Keirns
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Rangaraj Narayanan
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Dieter Lang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Xiaoqing Yang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | | |
Collapse
|
38
|
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev 2016; 48:47-69. [DOI: 10.3109/03602532.2015.1131292] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Kallionpää RA, Järvinen E, Finel M. Glucuronidation of estrone and 16α-hydroxyestrone by human UGT enzymes: The key roles of UGT1A10 and UGT2B7. J Steroid Biochem Mol Biol 2015. [PMID: 26220143 DOI: 10.1016/j.jsbmb.2015.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The glucuronidation of estrone and 16α-hydroxyestrone by recombinant human UDP-glucuronosyltransferase enzymes (UGTs) of subfamilies 1A, 2A and 2B was studied. Microsomes from human liver and small intestine were also tested for the glucuronidation of these two estrogens. The results revealed that UGT1A10 is by far the most active enzyme in estrone glucuronidation. UGT1A10 also exhibited high rate of 16α-hydroxyestrone conjugation at the 3-OH, whereas UGT2B7 catalyzed its glucuronidation at high rates at the 16-OH. Human liver microsomes exhibited high rates of 16α-hydroxyestrone-16-glucuronide formation, but very low formation rates of either 16α-hydroxyestrone-3-glucuronide or estrone glucuronide. On the other hand, human intestine microsomes catalyzed the formation of all these 3 different glucuronides at high rates. Kinetic analyses revealed very low Km value for 16α-hydroxyestrone glucuronidation by UGT2B7, below 4 μM, suggesting higher affinity than commonly found among UGTs and their substrates. In further studies with UGT1A10, mutant F93G exhibited increased glucuronidation rates of 16α-hydroxyestrone, but not estrone, whereas mutations in F90 did not reveal any activity with either estrogen. Taken together, the results of this study significantly expand our understanding on the metabolism of estrogens and their interactions with the human UGTs.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Erkka Järvinen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
40
|
Abstract
Postpartum depression occurs in 14.5% of women in the first 3 months after birth. This study was an 8-week acute phase randomized trial with 3 cells (transdermal estradiol [E2], sertraline [SERT], and placebo [PL]) for the treatment of postpartum major depressive disorder. However, the study was stopped after batch analysis revealed that the E2 serum concentrations were lower than prestudy projections. This paper explores our experiences that will inform future investigations of therapeutic E2 use. Explanations for the low E2 concentrations were as follows: (1) study patch nonadhesion, which did not explain the low concentrations across the entire sample. (2) Ineffective transdermal patch preparations, although 2 different patch preparations were used and no significant main effect of patch type on E2 concentrations was found. (3) Obesity, at study entry, E2-treated women had body mass index of 32.9 (7.4) (mean [SD]). No pharmacokinetic data comparing E2 concentrations from transdermal patches in obese women versus normal weight controls are available. (4) Induction of cytochrome P450 (CYP450) 3A4 and other E2 elimination pathways in pregnancy. CYP4503A4 is induced in pregnancy and is a pathway for the metabolism of E2. Conversion to estrone and phase II metabolism via glucuronidation and sulfation, which also increase in pregnancy, are routes of E2 elimination. The time required for these pathways to normalize after delivery has not been elucidated. The observation that transdermal E2 doses greater than 100 μg/d did not increase serum concentrations was unexpected. Another hypothesis consistent with this observation is suppression of endogenous E2 secretion with increasing exogenous E2 dosing.
Collapse
|
41
|
Tripathi SP, Prajapati R, Verma N, Sangamwar AT. Predicting substrate selectivity between UGT1A9 and UGT1A10 using molecular modelling and molecular dynamics approach. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1044451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Zhu L, Xiao L, Xia Y, Zhou K, Wang H, Huang M, Ge G, Wu Y, Wu G, Yang L. Diethylstilbestrol can effectively accelerate estradiol-17-O-glucuronidation, while potently inhibiting estradiol-3-O-glucuronidation. Toxicol Appl Pharmacol 2015; 283:109-16. [PMID: 25596428 DOI: 10.1016/j.taap.2015.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 01/17/2023]
Abstract
This in vitro study investigates the effects of diethylstilbestrol (DES), a widely used toxic synthetic estrogen, on estradiol-3- and 17-O- (E2-3/17-O) glucuronidation, via culturing human liver microsomes (HLMs) or recombinant UDP-glucuronosyltransferases (UGTs) with DES and E2. DES can potently inhibit E2-3-O-glucuronidation in HLM, a probe reaction for UGT1A1. Kinetic assays indicate that the inhibition follows a competitive inhibition mechanism, with the Ki value of 2.1±0.3μM, which is less than the possible in vivo level. In contrast to the inhibition on E2-3-O-glucuronidation, the acceleration is observed on E2-17-O-glucuronidation in HLM, in which cholestatic E2-17-O-glucuronide is generated. In the presence of DES (0-6.25μM), Km values for E2-17-O-glucuronidation are located in the range of 7.2-7.4μM, while Vmax values range from 0.38 to 1.54nmol/min/mg. The mechanism behind the activation in HLM is further demonstrated by the fact that DES can efficiently elevate the activity of UGT1A4 in catalyzing E2-17-O-glucuronidation. The presence of DES (2μM) can elevate Vmax from 0.016 to 0.81nmol/min/mg, while lifting Km in a much lesser extent from 4.4 to 11μM. Activation of E2-17-O-glucuronidation is well described by a two binding site model, with KA, α, and β values of 0.077±0.18μM, 3.3±1.1 and 104±56, respectively. However, diverse effects of DES towards E2-3/17-O-glucuronidation are not observed in liver microsomes from several common experimental animals. In summary, this study issues new potential toxic mechanisms for DES: potently inhibiting the activity of UGT1A1 and powerfully accelerating the formation of cholestatic E2-17-O-glucuronide by UGT1A4.
Collapse
Affiliation(s)
- Liangliang Zhu
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Ling Xiao
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Yangliu Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kun Zhou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Huili Wang
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Minyi Huang
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Guangbo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yan Wu
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Ganlin Wu
- The Centre for Drug and Food Safety Evaluation, School of Life Science, Anqing Normal University, Anqing 246011, China
| | - Ling Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
43
|
Gramec Skledar D, Troberg J, Lavdas J, Peterlin Mašič L, Finel M. Differences in the glucuronidation of bisphenols F and S between two homologous human UGT enzymes, 1A9 and 1A10. Xenobiotica 2014; 45:511-9. [PMID: 25547628 DOI: 10.3109/00498254.2014.999140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Bisphenol S (BPS) and bisphenol F (BPF) are bisphenol A (BPA) analogues commonly used in the manufacturing of industrial and consumer products. 2. Bisphenols are often detoxified through conjugation with glucuronic acid or sulfate. In this work, we have examined the glucuronidation of BPS and BPF by recombinant human UDP-glucuronosyltransferase (UGT) enzymes. In addition, we have reexamined BPA glucuronidation, using extra-hepatic UGTs that were not tested previously. 3. The results revealed that UGT1A9, primarily a hepatic enzyme, is mainly responsible for BPS glucuronidation, whereas UGT1A10, an intestine enzyme that is highly homologous to UGT1A9 at the protein level, is by far the most active UGT in BPF glucuronidation. In contrast to the latter two UGTs that display significant specificity in the glucuronidation of BPS and BPF, UGT2A1 that is mainly expressed in the airways, exhibited high activity toward all the tested bisphenols, BPS, BPF and BPA. UGT1A10 exhibited somewhat higher BPA glucuronidation activity than UGT1A9, but it was lower than UGT2A1 and UGT2B15. 4. The new findings demonstrate interesting differences in the glucuronidation patterns of bisphenols and provide new insights into the role of extra-hepatic tissues in their detoxification.
Collapse
|
44
|
Joo J, Lee B, Lee T, Liu KH. Screening of six UGT enzyme activities in human liver microsomes using liquid chromatography/triple quadrupole mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2405-2414. [PMID: 25303469 DOI: 10.1002/rcm.7030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/24/2014] [Accepted: 08/25/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE Uridine 5'-diphosphoglucuronosyltransferase (UGT) enzymes are essential for the clearance of many drugs; however, altered UGT activity is a potential cause of adverse drug-drug interactions (DDI). The early detection of potential DDI is an important aspect of drug discovery that has led to the development of new screening methods for drug interactions. We developed a screening method for the simultaneous evaluation of six human liver UGT enzyme activites using in vitro cocktail incubation and tandem mass spectrometry. METHODS The two in vitro cocktail doses were developed to minimize drug interactions among substrates. The method is based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Electrospray ionization (ESI) in both positive and negative modes was used to quantify the metabolites and the diagnostic loss of the glucuronosyl moiety to form the aglycone product was estimated using the selected reaction monitoring (SRM) mode. RESULTS The method was validated by comparing inhibition data obtained from the incubation of each individual probe substrate alone with data from the cocktail method. The intra- and inter-day accuracy and precision data for the six UGT metabolites ranged from 92.2 to 100.3% and less than 15.2%, respectively. The IC(50) values showed no significant differences between individual and cocktail incubations. CONCLUSIONS As a screening technique for inhibitory interactions of these six human liver UGT enzymes, this method will be useful for advancing mechanistic understanding of drug interactions.
Collapse
Affiliation(s)
- Jeongmin Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701, Korea
| | | | | | | |
Collapse
|
45
|
Hattori Y, Takeda T, Fujii M, Taura J, Ishii Y, Yamada H. Dioxin-induced fetal growth retardation: the role of a preceding attenuation in the circulating level of glucocorticoid. Endocrine 2014; 47:572-80. [PMID: 24723259 DOI: 10.1007/s12020-014-0257-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
Abstract
Exposure of pregnant rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at a low dose causes developmental disorders such as growth retardation and sexual immaturity in their pups. Our previous studies have demonstrated that TCDD attenuates the expression of pituitary luteinizing hormone in fetuses, resulting in the impairment of sexual behavior after they reach maturity. In this study, we focused on growth disturbance and investigated whether TCDD affects the expression of growth hormone (GH), another pituitary hormone which is essential for normal development in perinatal pups. The result showed that maternal exposure to TCDD (1 µg/kg) at gestational day (GD) 15 reduced the fetal expression of GH from the onset at GD18. In accordance with this, TCDD attenuated the pup weight during the perinatal period. We then examined the effect of TCDD on the serum concentration of corticosterone, which plays a key role in the proliferation of GH-producing cells, and found that TCDD reduces the circulating level of corticosterone in the mothers at GD18 and the male fetuses at GD19. The reduction in fetuses seems to be due to increased inactivation rather than reduced synthesis, because TCDD induces the fetal expression of hepatic enzymes participating in the metabolism of glucocorticoids without changing the expression of steroidogenic proteins in the pituitary-adrenal axis. Supplying corticosterone to TCDD-exposed mothers restored or tended to restore a TCDD-induced reduction in pup weight as well as the levels of pituitary GH mRNA and serum GH. These results suggest that TCDD lowers GH expression and growth retardation owing, at least partially, to a reduction in the circulating level of glucocorticoid in pregnant mothers and their fetuses.
Collapse
Affiliation(s)
- Yukiko Hattori
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
47
|
Manevski N, Swart P, Balavenkatraman KK, Bertschi B, Camenisch G, Kretz O, Schiller H, Walles M, Ling B, Wettstein R, Schaefer DJ, Itin P, Ashton-Chess J, Pognan F, Wolf A, Litherland K. Phase II metabolism in human skin: skin explants show full coverage for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Drug Metab Dispos 2014; 43:126-39. [PMID: 25339109 DOI: 10.1124/dmd.114.060350] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although skin is the largest organ of the human body, cutaneous drug metabolism is often overlooked, and existing experimental models are insufficiently validated. This proof-of-concept study investigated phase II biotransformation of 11 test substrates in fresh full-thickness human skin explants, a model containing all skin cell types. Results show that skin explants have significant capacity for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Novel skin metabolites were identified, including acyl glucuronides of indomethacin and diclofenac, glucuronides of 17β-estradiol, N-acetylprocainamide, and methoxy derivatives of 4-nitrocatechol and 2,3-dihydroxynaphthalene. Measured activities for 10 μM substrate incubations spanned a 1000-fold: from the highest 4.758 pmol·mg skin(-1)·h(-1) for p-toluidine N-acetylation to the lowest 0.006 pmol·mg skin(-1)·h(-1) for 17β-estradiol 17-glucuronidation. Interindividual variability was 1.4- to 13.0-fold, the highest being 4-methylumbelliferone and diclofenac glucuronidation. Reaction rates were generally linear up to 4 hours, although 24-hour incubations enabled detection of metabolites in trace amounts. All reactions were unaffected by the inclusion of cosubstrates, and freezing of the fresh skin led to loss of glucuronidation activity. The predicted whole-skin intrinsic metabolic clearances were significantly lower compared with corresponding whole-liver intrinsic clearances, suggesting a relatively limited contribution of the skin to the body's total systemic phase II enzyme-mediated metabolic clearance. Nevertheless, the fresh full-thickness skin explants represent a suitable model to study cutaneous phase II metabolism not only in drug elimination but also in toxicity, as formation of acyl glucuronides and sulfate conjugates could play a role in skin adverse reactions.
Collapse
Affiliation(s)
- Nenad Manevski
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Piet Swart
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Kamal Kumar Balavenkatraman
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Barbara Bertschi
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Gian Camenisch
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Olivier Kretz
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Hilmar Schiller
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Markus Walles
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Barbara Ling
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Reto Wettstein
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Peter Itin
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Joanna Ashton-Chess
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Francois Pognan
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Armin Wolf
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| | - Karine Litherland
- Drug Metabolism and Pharmacokinetics (N.M., P.S., G.C., O.K., H.S., M.W., K.L.), Pre-clinical Safety (K.K.B., B.B., F.P., A.W.), and Clinical Sciences and Innovation Translational Medicine (J.A.-C.), Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland; and Department of Plastic, Reconstructive, Aesthetic and Hand Surgery (B.L., R.W., D.J.S.), and Department of Dermatology (P.I.), University Hospital Basel, Basel, Switzerland
| |
Collapse
|
48
|
Troberg J, Järvinen E, Muniz M, Sneitz N, Mosorin J, Hagström M, Finel M. Dog UDP-Glucuronosyltransferase Enzymes of Subfamily 1A: Cloning, Expression, and Activity. Drug Metab Dispos 2014; 43:107-18. [DOI: 10.1124/dmd.114.059303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
49
|
Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos 2014; 43:163-81. [PMID: 25297949 DOI: 10.1124/dmd.114.058750] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the process of drug discovery, the pharmaceutical industry is faced with numerous challenges. One challenge is the successful prediction of the major routes of human clearance of new medications. For compounds cleared by metabolism, accurate predictions help provide an early risk assessment of their potential to exhibit significant interpatient differences in pharmacokinetics via routes of metabolism catalyzed by functionally polymorphic enzymes and/or clinically significant metabolic drug-drug interactions. This review details the most recent and emerging in vitro strategies used by drug metabolism and pharmacokinetic scientists to better determine rates and routes of metabolic clearance and how to translate these parameters to estimate the amount these routes contribute to overall clearance, commonly referred to as fraction metabolized. The enzymes covered in this review include cytochrome P450s together with other enzymatic pathways whose involvement in metabolic clearance has become increasingly important as efforts to mitigate cytochrome P450 clearance are successful. Advances in the prediction of the fraction metabolized include newly developed methods to differentiate CYP3A4 from the polymorphic enzyme CYP3A5, scaling tools for UDP-glucuronosyltranferase, and estimation of fraction metabolized for substrates of aldehyde oxidase.
Collapse
Affiliation(s)
- Michael A Zientek
- Worldwide Research and Development, Pharmacokinetics, Pharmacodynamics, and Metabolism, Pfizer Inc., San Diego, California (M.A.Z.); and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland (K.Y.)
| | - Kuresh Youdim
- Worldwide Research and Development, Pharmacokinetics, Pharmacodynamics, and Metabolism, Pfizer Inc., San Diego, California (M.A.Z.); and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland (K.Y.)
| |
Collapse
|
50
|
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bi-substrate reaction that requires the aglycone and a cofactor, UDPGA. Accumulating evidence suggests that the bi-substrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modelling of glucuronidation reactions in vitro, UDPGA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for in experimental design and data interpretation. Assessing drug-drug interactions (DDIs) involving UGT inhibition remains challenging. However, the increasing availability of UGT enzyme-specific substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of DDI potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often under-predicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation (IVIVE).
Collapse
|