1
|
Lazaridis DG, Kitsios AP, Koutoulis AS, Malisova O, Karabagias IK. Fruits, Spices and Honey Phenolic Compounds: A Comprehensive Review on Their Origin, Methods of Extraction and Beneficial Health Properties. Antioxidants (Basel) 2024; 13:1335. [PMID: 39594476 PMCID: PMC11591358 DOI: 10.3390/antiox13111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Numerous health benefits have been attributed in the last decades to the regular consumption of fruits, vegetables, herbs and spices, along with honey, in a balanced diet. In this context, the aim of the present review was to provide the literature with the most relevant studies focusing on the determination protocols of these polyphenols and other reducing agents in selected fruits (orange, lemon, grapefruit, prunus, apricot, peach, plum, sweet cherry), spices (oregano, cinnamon, clove, saffron, turmeric) and honey of different botanical origin (nectar or honeydew). In addition, the content and the extraction methods of these compounds, along with their metabolic pathway, have been critically evaluated and discussed. Results showed that all fruits, spices and honey exhibit a considerably high antioxidant activity, which is mainly owed to their phytochemical content. Therefore, a balanced diet consisting of the combination of the foods studied herein may comprise a shield against chronic and other pathophysiological disorders and may be achieved through consecutive educational programs for consumers at an international level.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis K. Karabagias
- Department of Food Science and Technology, School of Agricultural Sciences, University of Patras, G. Seferi 2, 30100 Agrinio, Greece; (D.G.L.); (A.-P.K.); (A.S.K.); (O.M.)
| |
Collapse
|
2
|
Falah K, Zhang P, Nigam AK, Maity K, Chang G, Granados JC, Momper JD, Nigam SK. In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3. Nutrients 2024; 16:2242. [PMID: 39064685 PMCID: PMC11280313 DOI: 10.3390/nu16142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.
Collapse
Affiliation(s)
- Kian Falah
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick Zhang
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anisha K. Nigam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Geoffrey Chang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Poór M, Dombi Á, Fliszár-Nyúl E, Pedroni L, Dellafiora L. Effects of Chrysin and Chrysin-7-sulfate on Ochratoxin A-Albumin Interactions and on the Plasma and Kidney Levels of the Mycotoxin in Rats. ACS OMEGA 2024; 9:17655-17666. [PMID: 38645364 PMCID: PMC11024961 DOI: 10.1021/acsomega.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
The nephrotoxic mycotoxin ochratoxin A (OTA) is a common food contaminant. OTA binds to the Sudlow's Site I region of serum albumin with very high affinity, resulting in its slow elimination. The displacement of OTA from albumin may be beneficial due to the faster excretion of the mycotoxin, while it may also lead to the increased tissue uptake of OTA. Furthermore, it is challenging to displace the mycotoxin from albumin even with high-affinity Site I ligands. In this study, we tested the impacts of Site I and Heme site ligands on OTA-albumin interactions by applying fluorescence spectroscopic, ultracentrifugation, and modeling studies. Chrysin-7-sulfate (C7S) strongly displaced OTA from both human and rat albumins; therefore, the impacts of C7S (single intravenous administration) and the parent flavonoid chrysin (repeated peroral treatment) were examined on the plasma and kidney levels of OTA in rats. Chrysin barely influenced the concentrations of mycotoxin in plasma and kidneys. In the first few hours, C7S significantly decreased the plasma levels of OTA compared to the control animals; while after 24 h, only minor differences were noticed. Our study highlights the superior displacing ability of C7S vs OTA regarding human and rat albumins.
Collapse
Affiliation(s)
- Miklós Poór
- Department
of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary
- Molecular
Medicine Research Group, János Szentágothai Research
Centre, University of Pécs, Ifjúság útja
20, Pécs H-7624, Hungary
- Department
of Pharmacology, Faculty of Pharmacy, University
of Pécs, Rókus u. 2, Pécs H-7624, Hungary
| | - Ágnes Dombi
- Department
of Pharmacology, Faculty of Pharmacy, University
of Pécs, Rókus u. 2, Pécs H-7624, Hungary
| | - Eszter Fliszár-Nyúl
- Department
of Pharmacology, Faculty of Pharmacy, University
of Pécs, Rókus u. 2, Pécs H-7624, Hungary
| | - Lorenzo Pedroni
- Department
of Food and Drug, University of Parma, Via G.P. Usberti 27/A, Parma 43124, Italy
| | - Luca Dellafiora
- Department
of Food and Drug, University of Parma, Via G.P. Usberti 27/A, Parma 43124, Italy
| |
Collapse
|
4
|
Sato T, Yagi A, Yamauchi M, Kumondai M, Sato Y, Kikuchi M, Maekawa M, Yamaguchi H, Abe T, Mano N. The Use of an Antioxidant Enables Accurate Evaluation of the Interaction of Curcumin on Organic Anion-Transporting Polypeptides 4C1 by Preventing Auto-Oxidation. Int J Mol Sci 2024; 25:991. [PMID: 38256064 PMCID: PMC10815578 DOI: 10.3390/ijms25020991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Flavonoids have garnered attention because of their beneficial bioactivities. However, some flavonoids reportedly interact with drugs via transporters and may induce adverse drug reactions. This study investigated the effects of food ingredients on organic anion-transporting polypeptide (OATP) 4C1, which handles uremic toxins and some drugs, to understand the safety profile of food ingredients in renal drug excretion. Twenty-eight food ingredients, including flavonoids, were screened. We used ascorbic acid (AA) to prevent curcumin oxidative degradation in our method. Twelve compounds, including apigenin, daidzein, fisetin, genistein, isorhamnetin, kaempferol, luteolin, morin, quercetin, curcumin, resveratrol, and ellagic acid, altered OATP4C1-mediated transport. Kaempferol and curcumin strongly inhibited OATP4C1, and the Ki values of kaempferol (AA(-)), curcumin (AA(-)), and curcumin (AA(+)) were 25.1, 52.2, and 23.5 µM, respectively. The kinetic analysis revealed that these compounds affected OATP4C1 transport in a competitive manner. Antioxidant supplementation was determined to benefit transporter interaction studies investigating the effects of curcumin because the concentration-dependent curve evidently shifted in the presence of AA. In this study, we elucidated the food-drug interaction via OATP4C1 and indicated the utility of antioxidant usage. Our findings will provide essential information regarding food-drug interactions for both clinical practice and the commercial development of supplements.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Ayaka Yagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Minami Yamauchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata 990-9585, Japan;
- Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan;
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Thapar M, Singh A, Robinson KM, Bonkovsky HL. Obstacles to Early Diagnosis of Acute Hepatic Porphyria: Current Perspectives on Improving Early Diagnosis and Clinical Management. Clin Exp Gastroenterol 2024; 17:1-8. [PMID: 38205357 PMCID: PMC10775798 DOI: 10.2147/ceg.s348507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Porphyrias are, for the most part, inherited disorders of the heme biosynthetic pathway which lead to accumulation of specific intermediates responsible for most of the symptoms and signs of biochemically active disease. Acute hepatic porphyrias usually come to clinical attention primarily in women in their reproductive years who present with episodic, severe, generalized abdominal pain. Such acute attacks may also be associated with tachycardia, systemic arterial hypertension, hyponatremia, recent history of dark reddish to brownish urine, and anxiety, delirium, and sensory or motor neuropathies. Diagnosing AHPs is often challenging, requiring a high index of suspicion and the appropriate testing showing elevated ALA and/or PBG in a random urine specimen. Obstacles to diagnosis include inappropriate testing for porphyrins only, inadequate sample handling, and ordering genetic testing as the initial diagnostic test. While some of these pitfalls in diagnosis are surmountable with current knowledge, others are in need of more research.
Collapse
Affiliation(s)
- Manish Thapar
- Division of Hepatology, Jefferson- Einstein Medical Center, Philadelphia, PA, USA
| | - Akash Singh
- Department of Medicine, Jefferson- Einstein Medical Center Montgomery, East Norriton, PA, USA
| | - Kevin M Robinson
- Department of Medicine Jefferson- Einstein Medical Center, Philadelphia, PA, USA
| | - Herbert L Bonkovsky
- Division of Gastroenterology and Hepatology, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Li Z, Du X, Tian S, Fan S, Zuo X, Li Y, Wang R, Wang B, Huang Y. Pharmacokinetic herb-drug interactions: Altered systemic exposure and tissue distribution of ciprofloxacin, a substrate of multiple transporters, after combined treatment with Polygonum capitatum Buch.-Ham. ex D. Don extracts. Front Pharmacol 2022; 13:1033667. [PMID: 36386188 PMCID: PMC9640990 DOI: 10.3389/fphar.2022.1033667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Combination of Polygonum capitatum Buch.-Ham. ex D. Don extract (PCE) and ciprofloxacin (CIP) was commonly prescribed in the treatment of urinary tract infections. Their pharmacokinetic herb-drug interactions (HDIs) were focused in this study to assess potential impact on the safety and effectiveness. Methods: A randomized, three-period, crossover trial was designed to study the pharmacokinetic HDI between PCE and CIP in healthy humans. Their pharmacokinetic- and tissue distribution-based HDIs were also evaluated in rats. Gallic acid (GA) and protocatechuic acid (PCA) were chosen as PK-markers of PCE in humans and rats. Potential drug interaction mechanisms were revealed by assessing the effects of PCE on the activity and expression of multiple transporters, including OAT1/3, OCT2, MDR1, and BCRP. Results: Concurrent use of PCE substantially reduced circulating CIP (approximately 40%–50%) in humans and rats, while CIP hardly changed circulating GA and PCA. PCE significantly increased the tissue distribution of CIP in the prostate and testis of rats, but decreased in liver and lungs. Meanwhile, CIP significantly increased the tissue distribution of GA or PCA in the prostate and testis of rats, but decreased in kidney and heart. In the transporter-mediated in vitro HDI, GA and PCA presented inhibitory effects on OAT1/3 and inductive effects on MDR1 and BCRP. Conclusion: Multiple transporter-mediated HDI contributes to effects of PCE on the reduced systemic exposure and altered tissue distribution of CIP. More attention should be paid on the potential for PCE-perpetrated interactions.
Collapse
Affiliation(s)
- Ziqiang Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Du
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang Tian
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xurui Zuo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanfen Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruihua Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baohe Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
7
|
Nayak D, Weadick B, Persaud AK, Raj R, Shakya R, Li J, Campbell MJ, Govindarajan R. EMT alterations in the solute carrier landscape uncover SLC22A10/A15 imposed vulnerabilities in pancreatic cancer. iScience 2022; 25:104193. [PMID: 35479410 PMCID: PMC9036131 DOI: 10.1016/j.isci.2022.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
The involvement of membrane-bound solute carriers (SLCs) in neoplastic transdifferentiation processes is poorly defined. Here, we examined changes in the SLC landscape during epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. We show that two SLCs from the organic anion/cation transporter family, SLC22A10 and SLC22A15, favor EMT via interferon (IFN) α and γ signaling activation of receptor tyrosine kinase-like orphan receptor 1 (ROR1) expression. In addition, SLC22A10 and SLC22A15 allow tumor cell accumulation of glutathione to support EMT via the IFNα/γ-ROR1 axis. Moreover, a pan-SLC22A inhibitor lesinurad reduces EMT-induced metastasis and gemcitabine chemoresistance to prolong survival in mouse models of pancreatic cancer, thus identifying new vulnerabilities for human PDAC.
Collapse
Affiliation(s)
- Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Avinash K. Persaud
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Radhika Raj
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Reena Shakya
- Target Validation Shared Resource, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Junan Li
- The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
| | - Moray J. Campbell
- Molecular Carcinogenesis and Chemoprevention Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH 43210, USA
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Magalhães EP, Silva BP, Aires NL, Ribeiro LR, Ali A, Cavalcanti MM, Nunes JVS, Sampaio TL, de Menezes RRPPB, Martins AMC. (-)-α-Bisabolol as a protective agent against epithelial renal cytotoxicity induced by amphotericin B. Life Sci 2021; 291:120271. [PMID: 34974077 DOI: 10.1016/j.lfs.2021.120271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Amphotericin B (AmB), used for systemic fungal infections, has a limited clinical application because of its high nephrotoxicity. Natural antioxidant and anti-inflammatory substances have been widely studied for protection against drug-induced nephrotoxicity. α-Bisabolol (BIS) has demonstrated a nephroprotective effect on both in vitro and in vivo models. AIMS The aim of this work was to evaluate the effect of BIS against AmB-induced nephrotoxicity in vitro. MATERIAL AND METHODS LLC-MK2 cells were pre- and post-treated with non-toxic BIS concentrations and/or AmB IC50 (13.97 μM). Cell viability was assessed by MTT [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] assay. Flow cytometry analyses were used to assess cell death mechanism, production of reactive oxidative stress (ROS) and mitochondrial transmembrane potential. Kidney Injury Molecule-1 (KIM-1) levels were measured via ELISA. KEY FINDINGS The present work showed that BIS pretreatment (125; 62.5 and 31.25 μM) increased cell viability when compared to the group treated only with AmB IC50. AmB treatment induced both necrosis (7-AAD-labeled cells) and late apoptosis (AnxV-labeled). BIS was able to prevent the occurrence of these events. These effects were associated with a decrease of ROS accumulation, improving transmembrane mitochondrial potential and protecting against tubular cell damage, highlighted by the inhibition of KIM-1 release after BIS treatment. SIGNIFICANCE BIS presented a potential effect on model of renal cytotoxicity induced by AmB, bringing perspectives for the research of new nephroprotective agents.
Collapse
Affiliation(s)
- Emanuel Paula Magalhães
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Brenna Pinheiro Silva
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Natália Luna Aires
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lyanna Rodrigues Ribeiro
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Arif Ali
- Postgraduate Program in Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - João Victor Serra Nunes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
9
|
Zhang Y, Abe C, Ochiai K, Matsui T. Tissue Distribution of Orally Administered Prenylated Isoflavones, Glyceollins, in Sprague-Dawley Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15165-15174. [PMID: 34875172 DOI: 10.1021/acs.jafc.1c05208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apart from the physiological effects of glyceollins, information regarding their tissue distribution is scarce in the literature. Thus, the aim of this study is to clarify the distribution of glyceollins in rat organs. Glyceollins I and III were orally administered to Sprague-Dawley rats (1.0 mg/kg) with daidzein as control, and their accumulations in organs were investigated by liquid chromatography-time-of-flight/mass spectrometry (LC-TOF/MS). Glyceollins accumulated in intact and conjugated forms in circulatory organs with a Tmax of 0.5 h, in the following order of descending preference: liver, kidney, heart, lung, soleus muscle, and abdominal aorta. The accumulation of hydrophobic glyceollin I was more than 1.5 times higher than that of III. In contrast, daidzein and hydroxy equol were detected only in the liver and kidneys at lower concentrations (1/100 times) than those of glyceollins. In conclusion, prenylated isoflavones, glyceollins, were preferentially distributed in circulatory organs as intact, sulfated, or glucuronidated forms up to 6 h after the intake.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chizumi Abe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Ochiai
- DAIZ Inc., 3-14-3 Minami-kumamoto, Chuo-ku, Kumamoto 860-0812, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Li C, Wang X, Bi Y, Yu H, Wei J, Zhang Y, Han L, Zhang Y. Potent Inhibitors of Organic Anion Transporters 1 and 3 From Natural Compounds and Their Protective Effect on Aristolochic Acid Nephropathy. Toxicol Sci 2021; 175:279-291. [PMID: 32159797 DOI: 10.1093/toxsci/kfaa033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Organic anion transporters 1 and 3 (OAT1 and OAT3) play a critical role in renal drug-drug interactions and are involved in the nephrotoxicity of many anionic xenobiotics. To date, relatively little is known about the interaction of natural compounds with OAT1 and OAT3. Of the 270 natural compounds screened in the present study, 21 compounds inhibited OAT1 and 45 compounds inhibited OAT3. Further concentration-dependent studies identified 7 OAT1 inhibitors and 10 OAT3 inhibitors with IC50 values of <10 μM, and most of them were flavonoids, the most commonly ingested polyphenolic compounds in the diet and herbal products. Computational modeling of OAT1 and OAT3 revealed the important residues for the recognition of inhibitors. The two strong OAT inhibitors, namely wedelolactone and wogonin, were evaluated for their in vivo interactions with the OAT substrate aristolochic acid I (AAI), a natural compound causing aristolochic acid-induced nephropathy (AAN) in many species. The cytotoxicity of AAI increased in two OAT-overexpressing cell lines, with more cytotoxicity in OAT1-overexpressing cells, suggesting a more important role of OAT1 than OAT3 in AAN. Both wedelolactone and wogonin markedly increased serum AAI concentrations in AAI-treated rats and ameliorated kidney injuries in AAI-treated mice. To conclude, the present findings are of significant value in understanding natural compound-drug interactions and provide a natural source for developing treatments for AAN.
Collapse
Affiliation(s)
- Caiyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Xue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Heshui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 300193, P.R. China
| | - Jing Wei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 300193, P.R. China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 300193, P.R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
11
|
Kawasaki T, Kondo M, Hiramatsu R, Nabekura T. (-)-Epigallocatechin-3-gallate Inhibits Human and Rat Renal Organic Anion Transporters. ACS OMEGA 2021; 6:4347-4354. [PMID: 33623845 PMCID: PMC7893792 DOI: 10.1021/acsomega.0c05586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 05/15/2023]
Abstract
Organic anion transporter 1 (OAT1, SLC22A6) and 3 (OAT3, SLC22A8) are multispecific drug transporters highly expressed on the basolateral membranes of the renal proximal tubules. OAT1 and OAT3 mediate the tubular secretion of clinically significant drugs; thus, they influence the pharmacokinetics of drugs and further determine their efficacy and toxicity. OAT1 and OAT3 are also the target of drug-drug interactions. In this study, we examined the effects of the tea catechin (-)-epigallocatechin-3-gallate (EGCG) on human (h) and rat (r) OAT1 and OAT3 using the fluorescent organic anion 6-carboxyfluorescein (6-CF) and hOAT1-, hOAT3-, rOat1-, or rOat3-expressing HEK293 cells and on renal elimination of 6-CF in rats. 6-CF is transported by hOAT1, hOAT3, rOat1, and rOat3. 6-CF is urinary excreted by Oats in rats. EGCG, a dominant catechin in green tea leaf, inhibits human and rat OAT1 and OAT3 and reduces the renal elimination of 6-CF in rats. Our findings are useful for the assessment of food-drug interactions mediated by renal OATs.
Collapse
Affiliation(s)
- Tatsuya Kawasaki
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Masaki Kondo
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Rioka Hiramatsu
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Tomohiro Nabekura
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| |
Collapse
|
12
|
Neamatallah T, El-Shitany N, Abbas A, Eid BG, Harakeh S, Ali S, Mousa S. Nano Ellagic Acid Counteracts Cisplatin-Induced Upregulation in OAT1 and OAT3: A Possible Nephroprotection Mechanism. Molecules 2020; 25:E3031. [PMID: 32630784 PMCID: PMC7411712 DOI: 10.3390/molecules25133031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is an anticancer drug commonly used for solid tumors. However, it causes nephrotoxicity. OAT1 and OAT3 are organic anion transporters known to contribute to the uptake of cisplatin into renal tubular cells. The present study was designed to examine the protective role of ellagic acid nanoformulation (ellagic acid nano) on cisplatin-induced nephrotoxicity in rats, and the role of OAT1/OAT3 in this effect. Four groups of male Wistar rats were used (n = 6): (1) control, (2) cisplatin (7.5 mg/kg single dose, intraperitoneal), (3) cisplatin + ellagic acid nano (1 mg/kg), and (4) cisplatin + ellagic acid nano (2 mg/kg). Nephrotoxic rats treated with ellagic acid nano exhibited a significant reduction in elevated serum creatinine, urea, and oxidative stress marker, malondialdehyde (MDA). Additionally, ellagic acid nano restored renal glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Ellagic acid nano improved the histopathological changes induced by cisplatin, such as tubular dilatation, necrosis, and degeneration. Interestingly, OAT1 and OAT3 showed significantly lower expression at both mRNA and protein levels following ellagic acid nano treatment relative to the cisplatin-exposed group. These findings reveal a potential inhibitory role of ellagic acid antioxidant on OAT1 and OAT3 expression and thus explains its nephroprotective effect against cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
| | - Nagla El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Aymn Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (S.H.)
- Biotechnology Research Laboratories, Gastroenterology Surgery Center, Mansoura University, Mansoura 35511, Egypt
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (B.G.E.)
| | - Steve Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (S.H.)
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Soad Ali
- Anatomy Department of Cytology and Histology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaker Mousa
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
13
|
Huo X, Meng Q, Wang C, Wu J, Zhu Y, Sun P, Ma X, Sun H, Liu K. Targeting renal OATs to develop renal protective agent from traditional Chinese medicines: Protective effect of Apigenin against Imipenem-induced nephrotoxicity. Phytother Res 2020; 34:2998-3010. [PMID: 32468621 DOI: 10.1002/ptr.6727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/11/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Imipenem (Imp) is a widely used broad-spectrum antibiotic. However, renal adverse effects limit its clinical application. We previously reported that organic anion transporters (OATs) facilitated the renal transport of Imp and contributed its nephrotoxicity. Natural flavonoids exhibited renal protective effect. Here, we aimed to develop potent OAT inhibitors from traditional Chinese medicines (TCMs) and to evaluate its protective effect against Imp-induced nephrotoxicity. Among 50 TCMs, Tribuli Fructus, Platycladi Cacumen, and Lycopi Herba exhibited potent inhibition on OAT1/3. After screening their main components, Apigenin strongly inhibited Imp uptake by OAT1/3-HEK293 cells with IC50 values of 1.98 ± 0.36 μM (OAT1) and 2.29 ± 0.88 μM (OAT3). Moreover, Imp exhibited OAT1/3-dependent cytotoxicity, which was alleviated by Apigenin. Furthermore, Apigenin ameliorated Imp-induced nephrotoxicity in rabbits, and reduced the renal secretion of Imp. Apigenin inhibited intracellular accumulation of Imp and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells (rPTCs). Apigenin, a flavone widely distributed in TCMs, was a potent OAT1/3 inhibitor. Through OAT inhibition, at least in part, Apigenin decreased the renal exposure of Imp and consequently protected against the nephrotoxicity of Imp. Apigenin can be used as a promising agent to reduce the renal adverse reaction of Imp in clinic.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Nigam AK, Li JG, Lall K, Shi D, Bush KT, Bhatnagar V, Abagyan R, Nigam SK. Unique metabolite preferences of the drug transporters OAT1 and OAT3 analyzed by machine learning. J Biol Chem 2020; 295:1829-1842. [PMID: 31896576 DOI: 10.1074/jbc.ra119.010729] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/30/2019] [Indexed: 01/04/2023] Open
Abstract
The multispecific organic anion transporters, OAT1 (SLC22A6) and OAT3 (SLC22A8), the main kidney elimination pathways for many common drugs, are often considered to have largely-redundant roles. However, whereas examination of metabolomics data from Oat-knockout mice (Oat1 and Oat3KO) revealed considerable overlap, over a hundred metabolites were increased in the plasma of one or the other of these knockout mice. Many of these relatively unique metabolites are components of distinct biochemical and signaling pathways, including those involving amino acids, lipids, bile acids, and uremic toxins. Cheminformatics, together with a "logical" statistical and machine learning-based approach, identified a number of molecular features distinguishing these unique endogenous substrates. Compared with OAT1, OAT3 tends to interact with more complex substrates possessing more rings and chiral centers. An independent "brute force" approach, analyzing all possible combinations of molecular features, supported the logical approach. Together, the results suggest the potential molecular basis by which OAT1 and OAT3 modulate distinct metabolic and signaling pathways in vivo As suggested by the Remote Sensing and Signaling Theory, the analysis provides a potential mechanism by which "multispecific" kidney proximal tubule transporters exert distinct physiological effects. Furthermore, a strong metabolite-based machine-learning classifier was able to successfully predict unique OAT1 versus OAT3 drugs; this suggests the feasibility of drug design based on knockout metabolomics of drug transporters. The approach can be applied to other SLC and ATP-binding cassette drug transporters to define their nonredundant physiological roles and for analyzing the potential impact of drug-metabolite interactions.
Collapse
Affiliation(s)
- Anisha K Nigam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0693
| | - Julia G Li
- Department of Biology, University of California San Diego, La Jolla, California 92093-0693
| | - Kaustubh Lall
- Department of Computer Engineering, University of California San Diego, La Jolla, California 92093-0693
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0693
| | - Kevin T Bush
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0693
| | - Vibha Bhatnagar
- Department of Family and Preventative Medicine, University of California San Diego, La Jolla, California 92093-0693
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0693.
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093-0693; Department of Medicine, University of California San Diego, La Jolla, California 92093-0693.
| |
Collapse
|
15
|
Dondapati SK, Lübberding H, Zemella A, Thoring L, Wüstenhagen DA, Kubick S. Functional Reconstitution of Membrane Proteins Derived From Eukaryotic Cell-Free Systems. Front Pharmacol 2019; 10:917. [PMID: 31543813 PMCID: PMC6728924 DOI: 10.3389/fphar.2019.00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) based on eukaryotic Sf21 lysate is gaining interest among researchers due to its ability to handle the synthesis of complex human membrane proteins (MPs). Additionally Sf21 cell-free systems contain endogenous microsomal vesicles originally derived from the endoplasmic reticulum (ER). After CFPS, MPs will be translocated into the microsomal vesicles membranes present in the lysates. Thus microsomal membranes offer a natural environment for de novo synthesized MPs. Despite the advantage of synthesizing complex MPs with post translational modifications directly into the microsomal membranes without any additional solubilization supplements, batch based Sf21 cell-free synthesis suffers from low yields. The bottleneck for MPs in particular after the synthesis and incorporation into the microsomal membranes is to analyze their functionality. Apart from low yields of the synthesized MPs with batch based cell-free synthesis, the challenges arise in the form of cytoskeleton elements and peripheral endogenous proteins surrounding the microsomes which may impede the functional analysis of the synthesized proteins. So careful sample processing after the synthesis is particularly important for developing the appropriate functional assays. Here we demonstrate how MPs (native and batch synthesized) from ER derived microsomes can be processed for functional analysis by electrophysiology and radioactive uptake assay methods. Treatment of the microsomal membranes either with a sucrose washing step in the case of human serotonin transporter (hSERT) and sarco/endoplasmic reticulum Ca2+/ATPase (SERCA) pump or with mild detergents followed by the preparation of proteoliposomes in the case of the human voltage dependent anionic channel (hVDAC1) helps to analyze the functional properties of MPs.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Henning Lübberding
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
| |
Collapse
|
16
|
Unusual Flavones from Primula macrocalyx as Inhibitors of OAT1 and OAT3 and as Antifungal Agents against Candida rugosa. Sci Rep 2019; 9:9230. [PMID: 31239507 PMCID: PMC6592895 DOI: 10.1038/s41598-019-45728-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/13/2019] [Indexed: 11/08/2022] Open
Abstract
A bioactivity guided program exploring the interaction of phytochemicals in the entire plant Primula macrocalyx with the organic anion transporters (OAT1 and OAT3) and microorganisms led to the elucidation of ten known flavones (1–4, 6–10, 12) and two previously undescribed flavones (5, 11). The structures of the compounds were determined by extensive analysis of spectroscopic data, as well as by comparison with data from previous reports. Two known flavones (9, 12) are reported for the first time from the family Primulaceae. All compounds were evaluated for inhibition of OAT1 and OAT3. Six flavones (2, 3, 6–8, 12) showed potent inhibitory activity on OAT1, while seven flavones (2, 3, 6–9, 12) showed marked inhibitory activity on OAT3, with IC50 ≤ 10.0 µM. Antimicrobial activities of crude fractions against sixteen microorganisms were tested to give a target yeast strain Candida rugosa for further evaluation of MICs on the isolates. Three flavones (7, 8, 12) showed marked antifungal activity with MIC < 2.0 µM. To our knowledge, this study is the first to evaluate these flavones as inhibitors of the OAT1 and OAT3, and as antifungal agents.
Collapse
|
17
|
Qiao Y, Liu X, Li X, Wang X, Li C, Khutsishvili M, Alizade V, Atha D, Zhang Y, Borris RP. Biflavonoids from Juniperus oblonga inhibit organic anion transporter 3. Biochem Biophys Res Commun 2019; 509:931-936. [PMID: 30648554 DOI: 10.1016/j.bbrc.2019.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023]
Abstract
Organic anion transporters (OATs in humans, Oats in rodents) play an important role in the distribution and excretion of numerous endogenous metabolic products and exogenous organic anions, including a host of widely prescribed drugs. Their ligand recognition is also important for drug therapy and development. In this study, the n-butanol and dichloromethane soluble fractions of Juniperus oblonga were found to inhibit OAT3 in vitro and three biflavonoids were found to be responsible for this activity. One of these compounds, amentoflavone exhibited stronger inhibition than probenecid, a known strong inhibitor of OAT3. Biological characterization of amentoflavone in vivo also showed inhibition of Oat3. Preliminary observations of structure-activity relationships suggest that the biflavonoids are more potent inhibitors of this transporter than their corresponding monomer, and that methylation of even a single hydroxyl group results in a substantial decrease in activity. This greater potency of the biflavonoids may indicate the need for a more in-depth investigation of the distribution of biflavonoids in plants used as foodstuffs and herbal medicines, due to their potential for causing interactions with OAT3 substrate drugs.
Collapse
Affiliation(s)
- Yilin Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Xue Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Xue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Caiyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Manana Khutsishvili
- National Herbarium of Georgia, Ilia State University, Tbilisi, 100995, Georgia
| | - Valida Alizade
- Institute of Botany, Azerbaijan National Academy of Sciences, Baku, AZ, 1102, Azerbaijan
| | - Daniel Atha
- New York Botanical Garden, Bronx, 10041, NY, USA
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Robert P Borris
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China.
| |
Collapse
|
18
|
Kerimi A, Williamson G. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Antioxid Redox Signal 2018; 29:1633-1659. [PMID: 28826224 PMCID: PMC6207159 DOI: 10.1089/ars.2017.7086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Flavonoids can interact with multiple molecular targets to elicit their cellular effects, leading to changes in signal transduction, gene expression, and/or metabolism, which can, subsequently, affect the entire cell and organism. Immortalized cell lines, derived from tumors, are routinely employed as a surrogate for mechanistic studies, with the results extrapolated to tissues in vivo. Recent Advances: We review the activities of selected flavonoids on cultured tumor cells derived from various tissues in comparison to corresponding primary cells or tissues in vivo, mainly using quercetin and flavanols (epicatechin and (-)-epigallocatechin gallate) as exemplars. Several studies have indicated that flavonoids could retard cancer progression in vivo in animal models as well as in tumor cell models. CRITICAL ISSUES Extrapolation from in vitro and animal models to humans is not straightforward given both the extensive conjugation and complex microbiota-dependent metabolism of flavonoids after consumption, as well as the heterogeneous metabolism of different tumors. FUTURE DIRECTIONS Comparison of data from studies on primary cells or in vivo are essential not only to validate results obtained from cultured cell models, but also to highlight whether any differences may be further exploited in the clinical setting for chemoprevention. Tumor cell models can provide a useful mechanistic tool to study the effects of flavonoids, provided that the limitations of each model are understood and taken into account in interpretation of the data.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| |
Collapse
|
19
|
Lee HS, Shin HJ, Cho M, Lee SH, Oh DS. Inhibitory effects of Kampo medicines, Keishibukuryogan and Shakuyakukanzoto, on the substrate uptake activities of solute carrier organic anion transporters. J Pharmacol Sci 2018; 138:279-283. [PMID: 30424926 DOI: 10.1016/j.jphs.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to assess the effects of Keishibukuryogan (K-06) and Shakuyakukanzoto (TJ-68), commercial herbal medicines, on the substrate uptake activities of renal organic anion transporters. We performed transporter uptake and cell viability assays in Xenopus oocytes and HEK293 human kidney embryonic cells treated with K-06 or TJ-68. K-06 and TJ-68 markedly inhibited the substrate uptake activities of URAT1, OAT1, and OAT3, while they did not exhibit non-cytotoxic effects. Our findings demonstrated that K-06 and TJ-68 inhibited the substrate uptake activities of renal transporters, suggesting their mechanism of action as nephroprotective agents.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Ho Jung Shin
- Department of Pharmacology and PharmacoGenomics Research Center, College of Medicine, Inje University, Busan 47392, Republic of Korea; SPMED Co., Ltd., Busan 46508, Republic of Korea
| | - Munju Cho
- Department of Pharmacology and PharmacoGenomics Research Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Seung Hoon Lee
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Dal-Seok Oh
- The K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
20
|
Oyagbemi AA, Omobowale TO, Ola-Davies OE, Asenuga ER, Ajibade TO, Adejumobi OA, Afolabi JM, Ogunpolu BS, Falayi OO, Saba AB, Adedapo AA, Yakubu MA. Luteolin-mediated Kim-1/NF-kB/Nrf2 signaling pathways protects sodium fluoride-induced hypertension and cardiovascular complications. Biofactors 2018; 44:518-531. [PMID: 30474894 DOI: 10.1002/biof.1449] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The use of sodium fluoride (NaF) as a major ingredient for tooth paste, mouth wash, and mouth rinse has become inevitable in our day-to-day life. However, flavonoids such as Luteolin might be of great value in the prevention of toxicity associated with accidental or inevitable ingestion of NaF. In the study, 40 male Wistar albino rats were randomly divided into four groups with 10 rats in a group. Group A was the control group and received normal saline, Group B was exposed to NaF at 300 ppm (300 mg/L) in drinking water daily for a week, Groups C and D were exposed to 300 ppm (300 mg/L) of NaF and coadministered with Luteolin orally daily at a dosage of 100 mg/kg and 200 mg/kg for the same time point. Our results indicated that NaF caused significant increases in systolic blood pressure, diastolic blood pressure, mean arterial pressure, malondialdehyde, protein carbonyl, myeloperoxidase, advanced oxidative protein products, together with significant reductions in glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and nitric oxide (NO) bioavailability. The electrocardiogram results showed that NaF alone caused significant prolongation of QT and QTc intervals. Immunohistochemistry revealed that NaF caused increase expressions of Kidney injury marker 1 (Kim-1), nuclear factor kappa bet (NF-κB), nuclear factor erythroid 2-related factors 2 (Nrf2), and cardiac troponin I (CTnI). Together, Luteolin coadministration with NaF improved NO bioavailability, reduced high blood pressure, markers of oxidative stress, reversed prolongation of QT and QTc intervals, and lowered the expressions of Kim-1, NF-κB, and CTnI. © 2018 BioFactors, 44(6):518-531, 2018.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin City, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Bernard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering and Technology, NSB303, Sr. Scientist & Head, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
21
|
Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP, Zhang J, Bravo Lamas L, Martínez Flórez S, Agudo Toyos P, Quiles JL, Giampieri F, Battino M. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018; 23:E2322. [PMID: 30208664 PMCID: PMC6225430 DOI: 10.3390/molecules23092322] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Honey is a natural substance appreciated for its therapeutic abilities since ancient times. Its content in flavonoids and phenolic acids plays a key role on human health, thanks to the high antioxidant and anti-inflammatory properties that they exert. Honey possesses antimicrobial capacity and anticancer activity against different types of tumors, acting on different molecular pathways that are involved on cellular proliferation. In addition, an antidiabetic activity has also been highlighted, with the reduction of glucose, fructosamine, and glycosylated hemoglobin serum concentration. Honey exerts also a protective effect in the cardiovascular system, where it mainly prevents the oxidation of low-density lipoproteins, in the nervous system, in the respiratory system against asthma and bacterial infections, and in the gastrointestinal system. A beneficial effect of honey can also be demonstrated in athletes. The purpose of this review is to summarize and update the current information regarding the role of honey in health and diseases.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Tamara Yuliett Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Patricia Reboredo-Rodriguez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Departamento de Química Analítica y Alimentaria, Grupo de Nutrición y Bromatología, Universidade de Vigo, 32004 Ourense, Spain.
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Leire Bravo Lamas
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - Susana Martínez Flórez
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - Pablo Agudo Toyos
- Center for Nutrition & Health, Universidad Europea del Atlántico (UEA), 39011 Santander, Spain; (L.B.L.).
| | - José Luis Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Centre, University of Granada, Armilla, 18100 Granada, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
22
|
Misaka S, Abe O, Sato H, Ono T, Shikama Y, Onoue S, Yabe H, Kimura J. Lack of pharmacokinetic interaction between fluvastatin and green tea in healthy volunteers. Eur J Clin Pharmacol 2018; 74:601-609. [DOI: 10.1007/s00228-018-2420-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/15/2018] [Indexed: 01/30/2023]
|
23
|
Navrátilová L, Ramos Mandíková J, Pávek P, Mladěnka P, Trejtnar F. Honey flavonoids inhibit hOATP2B1 and hOATP1A2 transporters and hOATP-mediated rosuvastatin cell uptake in vitro. Xenobiotica 2017; 48:745-755. [PMID: 28745105 DOI: 10.1080/00498254.2017.1358469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Some flavonoids contained in the common diet have been shown to interact with important membrane uptake transporters, including organic anion transporting polypeptides (OATPs). OATP2B1 and OATP1A2 expressed in the apical membrane of human enterocytes may significantly contribute to the intestinal absorption of drugs, e.g. statins. This study is aimed at an evaluation of the inhibitory potency of selected food honey flavonoids (namely galangin, myricetin, pinocembrin, pinobanksin, chrysin and fisetin) toward hOATP2B1 and hOATP1A2 as well as at examining their effect on the cellular uptake of the known OATP substrate rosuvastatin. 2. Cell lines overexpressing the hOATP2B1 or hOATP1A2 transporter were employed as in vitro model to determine the inhibitory potency of the flavonoids toward the OATPs. 3. Chrysin, galangin and pinocembrin were found to inhibit both hOATP2B1 and hOATP1A2 in lower or comparable concentrations as the known flavonoid OATP inhibitor quercetin. Galangin, chrysin and pinocembrin effectively inhibited rosuvastatin uptake by hOATP2B1 with IC50 ∼1-10 μM. The inhibition of the hOATP1A2-mediated transport of rosuvastatin by these flavonoids was weaker. 4. The found data indicate that several of the tested natural compounds could potentially affect drug cellular uptake by hOATP2B1 and/or hOATP1A2 at relative low concentrations, a finding which suggests their potential for food-drug interactions.
Collapse
Affiliation(s)
- Lucie Navrátilová
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy in Hradec Králové, Charles University , Hradec Králové , Czech Republic
| | - Jana Ramos Mandíková
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy in Hradec Králové, Charles University , Hradec Králové , Czech Republic
| | - Petr Pávek
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy in Hradec Králové, Charles University , Hradec Králové , Czech Republic
| | - Přemysl Mladěnka
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy in Hradec Králové, Charles University , Hradec Králové , Czech Republic
| | - František Trejtnar
- a Department of Pharmacology and Toxicology , Faculty of Pharmacy in Hradec Králové, Charles University , Hradec Králové , Czech Republic
| |
Collapse
|
24
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
25
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
26
|
Apigenin, a novel candidate involving herb-drug interaction (HDI), interacts with organic anion transporter 1 (OAT1). Pharmacol Rep 2017; 69:1254-1262. [PMID: 29128807 DOI: 10.1016/j.pharep.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/23/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Apigenin is a flavonoid compound, widely distributed in natural plants. Various studies have suggested that apigenin has inhibitory effects towards several drug transporters, such as the organic anion transporting (OAT) polypeptides, 1B1 and 1B3 (OATP1B1 and OATP1B3). However, the mechanism by which apigenin interacts with OAT1 has not been well studied. METHODS MDCK cells stably-expressing OAT1 were used to examine the inhibitory effects of apigenin on OAT1. UPLC-MS/MS was used to evaluate the in vitro and in vivo effects of apigenin on the uptake of acyclovir by OAT1. Cytotoxicity was determined by the cell viability, MTT assays. RESULTS Apigenin effectively inhibited the activity of OAT1 in a dose-dependent manner with an IC50 value of 0.737μM. Pre-incubation of cells with apigenin caused a time-dependent inhibition (TDI) of OAT1. Additionally, we examined the interactions between apigenin and acyclovir or adefovir. Data showed that apigenin (1μM) significantly blocked the uptake of acyclovir by OAT1 in vitro with an inhibition rate of 55%. In vivo, apigenin could increase the concentration of acyclovir in plasma when co-administered with acyclovir. Importantly, the MTT assays showed that, at a dose of 50μM, apigenin significantly reduced the cytotoxicity of adefovir and substantially increased cell viability from 50.6% to 112.62%. CONCLUSION Our results demonstrate that apigenin regulates OAT1, and can cause TDI or herb-drug interaction (HDI) when used in combination with acyclovir or adefovir. Therefore, apigenin could be used as a nephroprotective agent when used in combination with the substrates of OAT1.
Collapse
|
27
|
Miron A, Aprotosoaie AC, Trifan A, Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann N Y Acad Sci 2017. [PMID: 28632894 DOI: 10.1111/nyas.13384] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anca Miron
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Adriana Trifan
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine; University of Macau; Taipa Macau
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou Fujian China
| |
Collapse
|
28
|
Jones RS, Parker MD, Morris ME. Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6. Mol Pharm 2017; 14:2930-2936. [PMID: 28513167 DOI: 10.1021/acs.molpharmaceut.7b00264] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monocarboxylate transporter 6 (MCT6; SLC16A5) has been recognized for its role as a xenobiotic transporter, with characterized substrates probenecid, bumetanide, and nateglinide. To date, the impact of commonly ingested dietary compounds on MCT6 function has not been investigated, and therefore, the objective of this study was to evaluate a variety of flavonoids for their potential MCT6-specific interactions. Flavonoids are a large group of polyphenolic phytochemicals found in commonly consumed plant-based products that have been recognized for their dietary health benefits. The uptake of bumetanide in human MCT6 gene-transfected Xenopus laevis oocytes was significantly decreased in the presence of a variety of flavonoids (e.g., quercetin, luteolin, phloretin, and morin), but was not significantly affected by flavonoid glycosides (e.g., naringin, rutin, phlorizin). The IC50 values of quercetin, phloretin, and morin were determined to be 25.3 ± 3.36, 17.3 ± 2.37, and 33.1 ± 3.29 μM, respectively. The mechanism of inhibition of phloretin was reversible and competitive, with a Ki value of 22.8 μM. Furthermore, typical MCT substrates were also investigated for their potential interactions with MCT6. Substrates of MCTs 1, 2, 4, 8, and 10 did not cause any significant decrease in MCT6-mediated bumetanide uptake, suggesting that MCT6 has distinct compound selectivity. In summary, these results suggest that dietary aglycon flavonoids may significantly alter the pharmacokinetics and pharmacodynamics of bumetanide and other MCT6-specific substrates, and may represent potential substrates for MCT6.
Collapse
Affiliation(s)
- Robert S Jones
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, and ‡Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, New York 14214, United States
| | - Mark D Parker
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, and ‡Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, New York 14214, United States
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, and ‡Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, New York 14214, United States
| |
Collapse
|
29
|
Arslan BY, Arslan F, Erkalp K, Alagöl A, Sevdi MS, Yıldız G, Küçük SH, Altınay S. Luteolin ameliorates colistin-induced nephrotoxicity in the rat models. Ren Fail 2016; 38:1735-1740. [PMID: 27764981 DOI: 10.1080/0886022x.2016.1229995] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION AND AIM To study the protective, preventive effect of luteolin from colistin-induced nephrotoxicity. MATERIAL AND METHOD Four different treatment options were tested on rats: colistin, luteolin, and a combination of colistin and luteolin, intraperitoneally as two doses a day, for seven days. Another group of rats were used as the control and treated with sterile saline. Serum creatinine levels were measured before and after treatment. Histological changes and colistin-induced apoptosis (Insitu BrdU-red DNA Fragmentation Assay Kit) of the renal tissues were examined after the scarification procedure. RESULTS In the Colistin Group, post-treatment creatinine levels were statistically higher than the pretreatment levels (p = .001). In the remaining groups, no significant changes were observed. Cells that undergo apoptosis were counted and it was shown that all groups except the colistin-treated group had a similar number of apoptotic cells, whereas the colistin-treated group had statistically higher number of apoptotic cells compared to other groups (p = .0001). Renal histological damage was also measured and the score of the colistin treated group was higher as compared to other groups. CONCLUSION The results obtained from this study demonstrated us that luteolin was capable of preventing colistin-induced nephrotoxicity and that this effect was significant at histopathological level.
Collapse
Affiliation(s)
- Birsen Yigit Arslan
- a Department of Anesthesia and Reanimation, Faculty of Medicine , Esenyurt State Hospital , Istanbul , Turkey
| | - Ferhat Arslan
- b Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine , Istanbul Medeniyet University , Istanbul , Turkey
| | - Kerem Erkalp
- c Department of Anesthesia and Reanimation , Bagcılar Education and Training Hospital , Istanbul , Turkey
| | - Ayşin Alagöl
- c Department of Anesthesia and Reanimation , Bagcılar Education and Training Hospital , Istanbul , Turkey
| | - Mehmet Salih Sevdi
- c Department of Anesthesia and Reanimation , Bagcılar Education and Training Hospital , Istanbul , Turkey
| | - Güneş Yıldız
- c Department of Anesthesia and Reanimation , Bagcılar Education and Training Hospital , Istanbul , Turkey
| | - Suat Hayri Küçük
- d Department of Biochemistry , Bagcılar Education and Training Hospital , Istanbul , Turkey
| | - Serdar Altınay
- e Department of Pathology, Faculty of Medicine , Selçuk University , Konya , Turkey
| |
Collapse
|
30
|
Kimura O, Fujii Y, Haraguchi K, Ohta C, Koga N, Kato Y, Endo T. Effect of quercetin on the uptake and efflux of aristolochic acid I from Caco-2 cell monolayers. J Pharm Pharmacol 2016; 68:883-9. [DOI: 10.1111/jphp.12557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/13/2016] [Indexed: 12/27/2022]
Abstract
Abstract
Objective
The purpose of this study was to determine whether quercetin decreases the uptake of aristolochic acid I (AAI) from the apical membranes of Caco-2 cells via H+-linked MCTs at neutral pH as well as to confirm the secretion of AAI through the Caco-2 cell monolayers via ABC transporters.
Methods
Caco-2 cells cultured on the dishes or permeable membranes were incubated with AAI in the absence or presence of quercetin or transporter inhibitors.
Key findings
Coincubation with quercetin decreased the uptake of AAI by Caco-2 cells cultured on the dishes at pH 7.4, and a similar decrease in AAI uptake was found when the cells were coincubated with acetic acid or benzoic acid. In contrast, the basolateral-to-apical transport of AAI was higher than the apical-to-basolateral transport of AAI at pH 7.4, and the former transport was decreased by quercetin and the BCRP inhibitors of Ko-143 and mitoxantrone, but not by P-gp or MRP2 inhibitors.
Conclusions
AAI appears to be secreted from the apical membranes of Caco-2 cells via BCRP at neutral pH, although a small amount of AAI is taken up from the apical membranes via H+-linked MCTs, and quercetin may decrease both the BCRP-mediated efflux and the MCT-mediated influx of AAI.
Collapse
Affiliation(s)
- Osamu Kimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yukiko Fujii
- Daiichi College of Pharmaceutical Sciences, Minami-Ku, Fukouka, Japan
| | - Koichi Haraguchi
- Daiichi College of Pharmaceutical Sciences, Minami-Ku, Fukouka, Japan
| | - Chiho Ohta
- Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-Ku, Fukouka, Japan
| | - Nobuyuki Koga
- Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-Ku, Fukouka, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Tetsuya Endo
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
31
|
Rizvi F, Mathur A, Krishna S, Siddiqi MI, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol 2015; 6:587-598. [PMID: 26513344 PMCID: PMC4633887 DOI: 10.1016/j.redox.2015.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 11/15/2022] Open
Abstract
Recent advances indicate a possible role of phytochemicals as modulatory factors in signaling pathways. We have previously demonstrated PHLPP2-mediated suppression of Nrf2 responses during oxidant attack. The present study was designed to explore Nrf2-potentiating mechanism of morin, a flavonol, via its possible role in intervening PHLPP2-regulated Akt/GSK3β/Fyn kinase axis. Efficacy of morin was evaluated against oxidative stress-mediated damage to primary hepatocytes by tert-butyl hydroperoxide (tBHP) and acetaminophen. The anti-cytotoxic effects of morin were found to be a consequence of fortification of Nrf2-regulated antioxidant defenses since morin failed to sustain activities of redox enzyme in Nrf2 silenced hepatocytes. Morin promoted Nrf2 stability and its nuclear retention by possibly modulating PHLPP2 activity which subdues cellular Nrf2 responses by activating Fyn kinase. Pull-down assay using morin-conjugated beads indicated the binding affinity of morin towards PHLPP2. Molecular docking also revealed the propensity of morin to occupy the active site of PHLPP2 enzyme. Thus, dietary phytochemical morin was observed to counteract oxidant-induced hepatocellular damage by promoting Nrf2-regulated transcriptional induction. The findings support the novel role of morin in potentiating Nrf2 responses by limiting PHLPP2 and hence Fyn kinase activation. Therefore, morin may be exploited in developing novel therapeutic strategy aimed at enhancing Nrf2 responses. Cytoprotection against tBHP-evoked oxidative stress by morin is Nrf2-regulated. Morin prevents Nrf2-destabilization via PHLPP2-Akt-GSK3β-Fyn kinase pathway. In silico docking studies confirmed PHLPP2 activity inhibition by morin. Morin mitigates APAP induced cytotoxicity by suppressing PHLPP2 pathway.
Collapse
Affiliation(s)
- Fatima Rizvi
- Herbal Research Laboratory, Food Drug and Chemical Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow, India
| | - Alpana Mathur
- Herbal Research Laboratory, Food Drug and Chemical Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Shagun Krishna
- Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Imran Siddiqi
- Molecular and Structural Biology Division, Council of Scientific and Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, Uttar Pradesh, India
| | - Poonam Kakkar
- Herbal Research Laboratory, Food Drug and Chemical Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow, India.
| |
Collapse
|