1
|
Zhang J, Zhu P, Li S, Gao Y, Xing Y. From heart failure and kidney dysfunction to cardiorenal syndrome: TMAO may be a bridge. Front Pharmacol 2023; 14:1291922. [PMID: 38074146 PMCID: PMC10703173 DOI: 10.3389/fphar.2023.1291922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 10/23/2024] Open
Abstract
The study of trimethylamine oxide (TMAO), a metabolite of gut microbiota, and heart failure and chronic kidney disease has made preliminary achievements and been summarized by many researchers, but its research in the field of cardiorenal syndrome is just beginning. TMAO is derived from the trimethylamine (TMA) that is produced by the gut microbiota after consumption of carnitine and choline and is then transformed by flavin-containing monooxygenase (FMO) in the liver. Numerous research results have shown that TMAO not only participates in the pathophysiological progression of heart and renal diseases but also significantly affects outcomes in chronic heart failure (CHF) and chronic kidney disease (CKD), besides influencing the general health of populations. Elevated circulating TMAO levels are associated with adverse cardiovascular events such as HF, myocardial infarction, and stroke, patients with CKD have a poor prognosis as well. However, no study has confirmed an association between TMAO and cardiorenal syndrome (CRS). As a syndrome in which heart and kidney diseases intersect, CRS is often overlooked by clinicians. Here, we summarize the research on TMAO in HF and kidney disease and review the existing biomarkers of CRS. At the same time, we introduced the relationship between exercise and gut microbiota, and appropriately explored the possible mechanisms by which exercise affects gut microbiota. Finally, we discuss whether TMAO can serve as a biomarker of CRS, with the aim of providing new strategies for the detection, prognostic, and treatment evaluation of CRS.
Collapse
Affiliation(s)
- Jialun Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peining Zhu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Siyu Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Xing
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Zhang Y, Barupal DK, Fan S, Gao B, Zhu C, Flenniken AM, McKerlie C, Nutter LMJ, Lloyd KCK, Fiehn O. Sexual Dimorphism of the Mouse Plasma Metabolome Is Associated with Phenotypes of 30 Gene Knockout Lines. Metabolites 2023; 13:947. [PMID: 37623890 PMCID: PMC10456929 DOI: 10.3390/metabo13080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Although metabolic alterations are observed in many monogenic and complex genetic disorders, the impact of most mammalian genes on cellular metabolism remains unknown. Understanding the effect of mouse gene dysfunction on metabolism can inform the functions of their human orthologues. We investigated the effect of loss-of-function mutations in 30 unique gene knockout (KO) lines on plasma metabolites, including genes coding for structural proteins (11 of 30), metabolic pathway enzymes (12 of 30) and protein kinases (7 of 30). Steroids, bile acids, oxylipins, primary metabolites, biogenic amines and complex lipids were analyzed with dedicated mass spectrometry platforms, yielding 827 identified metabolites in male and female KO mice and wildtype (WT) controls. Twenty-two percent of 23,698 KO versus WT comparison tests showed significant genotype effects on plasma metabolites. Fifty-six percent of identified metabolites were significantly different between the sexes in WT mice. Many of these metabolites were also found to have sexually dimorphic changes in KO lines. We used plasma metabolites to complement phenotype information exemplified for Dhfr, Idh1, Mfap4, Nek2, Npc2, Phyh and Sra1. The association of plasma metabolites with IMPC phenotypes showed dramatic sexual dimorphism in wildtype mice. We demonstrate how to link metabolomics to genotypes and (disease) phenotypes. Sex must be considered as critical factor in the biological interpretation of gene functions.
Collapse
Affiliation(s)
- Ying Zhang
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Dinesh K. Barupal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Sili Fan
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chao Zhu
- College of Medicine & Nursing, Dezhou University, Dezhou 253023, China
| | - Ann M. Flenniken
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lauryl M. J. Nutter
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kevin C. Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California Davis, Davis, CA 95616, USA;
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
The role of gut-dependent molecule trimethylamine N-oxide as a novel target for the treatment of chronic kidney disease. Int Urol Nephrol 2023:10.1007/s11255-023-03500-9. [PMID: 36797553 DOI: 10.1007/s11255-023-03500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/09/2023] [Indexed: 02/18/2023]
Abstract
Trimethylamine N-oxide (TMAO) is an intestinal uremic toxin molecule mainly excreted by the kidney. Therefore, the plasma TMAO concentration is significantly increased in chronic kidney disease (CKD) patients, and plasma TMAO can be cleared by dialysis. Furthermore, TMAO damage the kidney mainly through three mechanisms: oxidative stress, inflammation and endoplasmic reticulum stress. Clinical experiments have indicated that higher TMAO levels are strongly related to the elevated incidence and mortality of cardiovascular (CV) events in CKD patients. Moreover, experimental data have shown that high levels of TMAO directly aggravate atherosclerosis, thrombosis and enhance myocardial contractility, resulting in myocardial ischemia and stroke. Specially, there are currently four potential ways to reduce blood TMAO concentration or block the effect of TMAO, including reducing the intake of trimethylamine (TMA) precursors in the diet, regulating the intestinal flora to reduce TMA production, interrupting the role of flavin-dependent monooxygenase isoforms (FMOs) to reduce the generation of TMAO, and blocking the TMAO receptor protein kinase R-like endoplasmic reticulum kinase (PERK). We hope that more clinical studies and clinicians will focus on clinical treatment to reduce the concentration of TMAO and alleviate renal damage.
Collapse
|
4
|
Gut Microbial-Derived Metabolites as Immune Modulators of T Helper 17 and Regulatory T Cells. Int J Mol Sci 2023; 24:ijms24021806. [PMID: 36675320 PMCID: PMC9867388 DOI: 10.3390/ijms24021806] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The gut microbiota and its derived metabolites greatly impact the host immune system, both innate and adaptive responses. Gut dysbiosis and altered levels of microbiota-derived metabolites have been described in several immune-related and immune-mediated diseases such as intestinal bowel disease, multiple sclerosis, or colorectal cancer. Gut microbial-derived metabolites are synthesized from dietary compounds ingested by the host or host-produced metabolites, and additionally, some bacterial products can be synthesized de novo. In this review, we focus on the two first metabolites families including short-chain fatty acids, indole metabolites, polyamines, choline-derived compounds, and secondary bile acids. They all have been described as immunoregulatory molecules that specifically affect the adaptive immune system and T helper 17 and regulatory T cells. We discuss the mechanisms of action and the consequences in health and diseases related to these gut microbial-derived metabolites. Finally, we propose that the exogenous administration of these molecules or other compounds that bind to their immunoregulatory receptors in a homologous manner could be considered therapeutic approaches.
Collapse
|
5
|
Cao H, Zhu Y, Hu G, Zhang Q, Zheng L. Gut microbiome and metabolites, the future direction of diagnosis and treatment of atherosclerosis? Pharmacol Res 2023; 187:106586. [PMID: 36460280 DOI: 10.1016/j.phrs.2022.106586] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Over the past few decades, the treatment of atherosclerotic cardiovascular disease has mainly been through an LDL lowering strategy and treatments targeting other traditional risk factors for atherosclerosis, which has significantly reduced cardiovascular mortality. However, the overall benefit of targeting these risk factors has stagnated, and the discovery of new therapeutic targets for atherosclerosis remains a challenge. Accumulating evidence from clinical and animal experiments has revealed that the gut microbiome play a significant role in human health and disease, including cardiovascular diseases. The gut microbiome contribute to host health and disease through microbial composition and function. The gut microbiome function like an endocrine organ by generating bioactive metabolites that can impact atherosclerosis. In this review, we describe two gut microbial metabolites/pathways by which the gut affects atherosclerotic cardiovascular disease. On the one hand, we discuss the effects of trimethylamine oxide (TMAO), bile acids and aromatic amino acid metabolites on the development of atherosclerosis, and the protective effects of beneficial metabolites short chain amino acids and polyamines on atherosclerosis. On the other hand, we discuss novel therapeutic strategies for directly targeting gut microbial metabolites to improve cardiovascular outcomes. Reducing gut-derived TMAO levels and interfering with the bile acid receptor farnesoid X receptor (FXR) are new therapeutic strategies for atherosclerotic disease. Enzymes and receptors in gut microbiota metabolic pathways are potential new drug targets. We need solid insight into these underlying mechanisms to pave the way for therapeutic strategies targeting gut microbial metabolites/pathways for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Huanhuan Cao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Gaofei Hu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| |
Collapse
|
6
|
Massey W, Osborn LJ, Banerjee R, Horak A, Fung KK, Orabi D, Chan ER, Sangwan N, Wang Z, Brown JM. Flavin-Containing Monooxygenase 3 (FMO3) Is Critical for Dioxin-Induced Reorganization of the Gut Microbiome and Host Insulin Sensitivity. Metabolites 2022; 12:364. [PMID: 35448550 PMCID: PMC9029240 DOI: 10.3390/metabo12040364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Exposure to some environmental pollutants can have potent endocrine-disrupting effects, thereby promoting hormone imbalance and cardiometabolic diseases such as non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiorenal diseases. Recent evidence also suggests that many environmental pollutants can reorganize the gut microbiome to potentially impact these diverse human diseases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent endocrine-disrupting dioxin pollutants, yet our understanding of how TCDD impacts the gut microbiome and systemic metabolism is incompletely understood. Here, we show that TCDD exposure in mice profoundly stimulates the hepatic expression of flavin-containing monooxygenase 3 (Fmo3), which is a hepatic xenobiotic metabolizing enzyme that is also responsible for the production of the gut microbiome-associated metabolite trimethylamine N-oxide (TMAO). Interestingly, an enzymatic product of FMO3 (TMAO) has been associated with the same cardiometabolic diseases that these environmental pollutants promote. Therefore, here, we examined TCDD-induced alterations in the gut microbiome, host liver transcriptome, and glucose tolerance in Fmo3+/+ and Fmo3-/- mice. Our results show that Fmo3 is a critical component of the transcriptional response to TCDD, impacting the gut microbiome, host liver transcriptome, and systemic glucose tolerance. Collectively, this work uncovers a previously underappreciated role for Fmo3 in integrating diet-pollutant-microbe-host interactions.
Collapse
Affiliation(s)
- William Massey
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lucas J. Osborn
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kevin K. Fung
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - E. Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Naseer Sangwan
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Microbial Sequencing & Analytics Core Facility, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules 2021; 11:biom11121892. [PMID: 34944536 PMCID: PMC8699500 DOI: 10.3390/biom11121892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions.
Collapse
|
8
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
9
|
Zhou J, Wang D, Li B, Li X, Lai X, Lei S, Li N, Zhang X. Relationship between Plasma Trimethylamine N-Oxide Levels and Renal Dysfunction in Patients with Hypertension. Kidney Blood Press Res 2021; 46:421-432. [PMID: 34233325 DOI: 10.1159/000513033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Trimethylamine N-oxide (TMAO) is a metabolite produced by gut bacteria. Although increased TMAO levels have been linked to hypertension (HTN) and chronic kidney disease (CKD) with poor prognosis, no clinical studies have directly addressed the relationship between them. In this study, we investigated the relationship between TMAO and renal dysfunction in hypertensive patients. METHODS We included healthy controls (n = 50), hypertensive patients (n = 46), and hypertensive patients with renal dysfunction (n = 143). Their blood pressure values were taken as the highest measured blood pressure. Renal function was evaluated using the estimated glomerular filtration rate. Plasma TMAO levels were measured using high-performance liquid chromatography tandem mass spectrometry. RESULTS We found significant differences in plasma TMAO levels among the 3 groups (p < 0.01). The plasma TMAO of patients with HTN was significantly higher than that of healthy people, and the plasma TMAO of patients with HTN complicated by renal dysfunction was significantly higher than either of the other groups. Patients in the highest TMAO quartile were at a higher risk of developing CKD stage 5 than those in the lowest quartile. In the receiver operating characteristic curve, the area under the curve of TMAO combined with β 2-macroglobulin for predicting renal dysfunction in patients with HTN was 0.85 (95% confidence interval 0.80-0.90). CONCLUSION An elevated TMAO level reflects higher levels of HTN and more severe renal dysfunction. TMAO, combined with β 2-macroglobulin levels, may assist in diagnosing CKD in hypertensive patients. Plasma TMAO has predictive value for early kidney disease in hypertensive patients.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dingkun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bingong Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Cardiovascular Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xuelian Li
- Department of Cardiovascular Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xingjun Lai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shufang Lei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuting Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Kimber C, Zhang S, Johnson C, West RE, Prokopienko AJ, Mahnken JD, Yu AS, Hoofnagle AN, Ir D, Robertson CE, Miyazaki M, Chonchol M, Jovanovich A, Kestenbaum B, Frank DN, Nolin TD, Stubbs JR. Randomized, Placebo-Controlled Trial of Rifaximin Therapy for Lowering Gut-Derived Cardiovascular Toxins and Inflammation in CKD. ACTA ACUST UNITED AC 2020; 1:1206-1216. [PMID: 34322673 PMCID: PMC8315698 DOI: 10.34067/kid.0003942020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Recent evidence suggests the systemic accumulation of by-products of gut microbes contributes to cardiovascular morbidity in patients with CKD. Limiting the generation of toxic bacterial by-products by manipulating the intestinal microbiota may be a novel strategy for reducing cardiovascular disease in CKD. Rifaximin is a minimally absorbed, oral antibiotic that targets intestinal pathogens and is commonly used as chronic therapy for the prevention of encephalopathy in patients with cirrhosis. Methods We conducted a randomized, double-blinded, placebo-controlled trial to determine the effect of a 10-day course of oral rifaximin 550 mg BID versus placebo on circulating concentrations of gut-derived cardiovascular toxins and proinflammatory cytokines in patients with stage 3-5 CKD (n=38). The primary clinical outcome was change in serum trimethylamine N-oxide (TMAO) concentrations from baseline to study end. Secondary outcomes included change in serum concentrations of p-cresol sulfate, indoxyl sulfate, kynurenic acid, deoxycholic acid, and inflammatory cytokines (C-reactive protein, IL-6, IL-1β), and change in composition and diversity of fecal microbiota. Results A total of 19 patients were randomized to each of the rifaximin and placebo arms, with n=17 and n=14 completing both study visits in these respective groups. We observed no difference in serum TMAO change (post-therapy minus baseline TMAO) between the rifaximin and placebo groups (mean TMAO change -3.9±15.4 for rifaximin versus 0.5±9.5 for placebo, P=0.49). Similarly, we found no significant change in serum concentrations for p-cresol sulfate, indoxyl sulfate, kynurenic acid, deoxycholic acid, and inflammatory cytokines. We did observe differences in colonic bacterial communities, with the rifaximin group exhibiting significant decreases in bacterial richness (Chao1, P=0.02) and diversity (Shannon H, P=0.05), along with altered abundance of several bacterial genera. Conclusions Short-term rifaximin treatment failed to reduce gut-derived cardiovascular toxins and inflammatory cytokines in patients with CKD. Clinical Trial registry name and registration number Rifaximin Therapy in Chronic Kidney Disease, NCT02342639.
Collapse
Affiliation(s)
- Cassandra Kimber
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shiqin Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Cassandra Johnson
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Raymond E West
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander J Prokopienko
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan D Mahnken
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Diana Ir
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Charles E Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington.,Kidney Research Institute, Seattle, Washington
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason R Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
11
|
Huang JY, Luu HN, Butler LM, Midttun Ø, Ulvik A, Wang R, Jin A, Gao YT, Tan Y, Ueland PM, Koh WP, Yuan JM. A prospective evaluation of serum methionine-related metabolites in relation to pancreatic cancer risk in two prospective cohort studies. Int J Cancer 2020; 147:1917-1927. [PMID: 32222976 PMCID: PMC11537248 DOI: 10.1002/ijc.32994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
Abstract
Deficiencies in methyl donor status may render DNA methylation changes and DNA damage, leading to carcinogenesis. Epidemiological studies reported that higher dietary intake of choline is associated with lower risk of pancreatic cancer, but no study has examined the association of serum choline and its metabolites with risk of pancreatic cancer. Two parallel case-control studies, one nested within the Shanghai Cohort Study (129 cases and 258 controls) and the other within the Singapore Chinese Health Study (58 cases and 104 controls), were conducted to evaluate the associations of baseline serum concentrations of choline, betaine, methionine, total methyl donors (i.e., sum of choline, betaine and methionine), dimethylglycine and trimethylamine N-oxide (TMAO) with pancreatic cancer risk. In the Shanghai cohort, odds ratios and 95% confidence intervals of pancreatic cancer for the highest quartile of choline, betaine, methionine, total methyl donors and TMAO were 0.27 (0.11-0.69), 0.57 (0.31-1.05), 0.50 (0.26-0.96), 0.37 (0.19-0.73) and 2.81 (1.37-5.76), respectively, compared to the lowest quartile. The corresponding figures in the Singapore cohort were 0.85 (0.23-3.17), 0.50 (0.17-1.45), 0.17 (0.04-0.68), 0.33 (0.10-1.16) and 1.42 (0.50-4.04). The inverse associations of methionine and total methyl donors including choline, betaine and methionine with pancreatic cancer risk in both cohorts support that DNA repair and methylation play an important role against the development of pancreatic cancer. In the Shanghai cohort, TMAO, a gut microbiota-derived metabolite of dietary phosphatidylcholine, may contribute to higher risk of pancreatic cancer, suggesting a modifying role of gut microbiota in the dietary choline-pancreatic cancer risk association.
Collapse
Affiliation(s)
- Joyce Y. Huang
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Hung N. Luu
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Lesley M. Butler
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Arve Ulvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Renwei Wang
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Aizhen Jin
- Health Service and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute/Shanghai Jiaotong University, Shanghai, China
| | - Yuting Tan
- Department of Epidemiology, Shanghai Cancer Institute/Shanghai Jiaotong University, Shanghai, China
| | - Per M. Ueland
- Bevital A/S, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Woon-Puay Koh
- Health Service and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
12
|
Abstract
We critically review potential involvement of trimethylamine N-oxide (TMAO) as a link between diet, the gut microbiota and CVD. Generated primarily from dietary choline and carnitine by gut bacteria and hepatic flavin-containing mono-oxygenase (FMO) activity, TMAO could promote cardiometabolic disease when chronically elevated. However, control of circulating TMAO is poorly understood, and diet, age, body mass, sex hormones, renal clearance, FMO3 expression and genetic background may explain as little as 25 % of TMAO variance. The basis of elevations with obesity, diabetes, atherosclerosis or CHD is similarly ill-defined, although gut microbiota profiles/remodelling appear critical. Elevated TMAO could promote CVD via inflammation, oxidative stress, scavenger receptor up-regulation, reverse cholesterol transport (RCT) inhibition, and cardiovascular dysfunction. However, concentrations influencing inflammation, scavenger receptors and RCT (≥100 µm) are only achieved in advanced heart failure or chronic kidney disease (CKD), and greatly exceed pathogenicity of <1-5 µm levels implied in some TMAO-CVD associations. There is also evidence that CVD risk is insensitive to TMAO variance beyond these levels in omnivores and vegetarians, and that major TMAO sources are cardioprotective. Assessing available evidence suggests that modest elevations in TMAO (≤10 µm) are a non-pathogenic consequence of diverse risk factors (ageing, obesity, dyslipidaemia, insulin resistance/diabetes, renal dysfunction), indirectly reflecting CVD risk without participating mechanistically. Nonetheless, TMAO may surpass a pathogenic threshold as a consequence of CVD/CKD, secondarily promoting disease progression. TMAO might thus reflect early CVD risk while providing a prognostic biomarker or secondary target in established disease, although mechanistic contributions to CVD await confirmation.
Collapse
|
13
|
Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020; 12:E1330. [PMID: 32392758 PMCID: PMC7284902 DOI: 10.3390/nu12051330] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is generated in a microbial-mammalian co-metabolic pathway mainly from the digestion of meat-containing food and dietary quaternary amines such as phosphatidylcholine, choline, betaine, or L-carnitine. Fish intake provides a direct significant source of TMAO. Human observational studies previously reported a positive relationship between plasma TMAO concentrations and cardiometabolic diseases. Discrepancies and inconsistencies of recent investigations and previous studies questioned the role of TMAO in these diseases. Several animal studies reported neutral or even beneficial effects of TMAO or its precursors in cardiovascular disease model systems, supporting the clinically proven beneficial effects of its precursor, L-carnitine, or a sea-food rich diet (naturally containing TMAO) on cardiometabolic health. In this review, we summarize recent preclinical and epidemiological evidence on the effects of TMAO, in order to shed some light on the role of TMAO in cardiometabolic diseases, particularly as related to the microbiome.
Collapse
|
14
|
Oakley CI, Vallejo JA, Wang D, Gray MA, Tiede-Lewis LM, Shawgo T, Daon E, Zorn G, Stubbs JR, Wacker MJ. Trimethylamine- N-oxide acutely increases cardiac muscle contractility. Am J Physiol Heart Circ Physiol 2020; 318:H1272-H1282. [PMID: 32243768 DOI: 10.1152/ajpheart.00507.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality among patients with chronic kidney disease (CKD). Trimethylamine-N-oxide (TMAO), a uremic metabolite that is elevated in the setting of CKD, has been implicated as a nontraditional risk factor for cardiovascular disease. While association studies have linked elevated plasma levels of TMAO to adverse cardiovascular outcomes, its direct effect on cardiac and smooth muscle function remains to be fully elucidated. We hypothesized that pathological concentrations of TMAO would acutely increase cardiac and smooth muscle contractility. These effects may ultimately contribute to cardiac dysfunction during CKD. High levels of TMAO significantly increased paced, ex vivo human cardiac muscle biopsy contractility (P < 0.05). Similarly, TMAO augmented contractility in isolated mouse hearts (P < 0.05). Reverse perfusion of TMAO through the coronary arteries via a Langendorff apparatus also enhanced cardiac contractility (P < 0.05). In contrast, the precursor molecule, trimethylamine (TMA), did not alter contractility (P > 0.05). Multiphoton microscopy, used to capture changes in intracellular calcium in paced, adult mouse hearts ex vivo, showed that TMAO significantly increased intracellular calcium fluorescence (P < 0.05). Interestingly, acute administration of TMAO did not have a statistically significant influence on isolated aortic ring contractility (P > 0.05). We conclude that TMAO directly increases the force of cardiac contractility, which corresponds with TMAO-induced increases in intracellular calcium but does not acutely affect vascular smooth muscle or endothelial function of the aorta. It remains to be determined if this acute inotropic action on cardiac muscle is ultimately beneficial or harmful in the setting of CKD.NEW & NOTEWORTHY We demonstrate for the first time that elevated concentrations of TMAO acutely augment myocardial contractile force ex vivo in both murine and human cardiac tissue. To gain mechanistic insight into the processes that led to this potentiation in cardiac contraction, we used two-photon microscopy to evaluate intracellular calcium in ex vivo whole hearts loaded with the calcium indicator dye Fluo-4. Acute treatment with TMAO resulted in increased Fluo-4 fluorescence, indicating that augmented cytosolic calcium plays a role in the effects of TMAO on force production. Lastly, TMAO did not show an effect on aortic smooth muscle contraction or relaxation properties. Our results demonstrate novel, acute, and direct actions of TMAO on cardiac function and help lay the groundwork for future translational studies investigating the complex multiorgan interplay involved in cardiovascular pathogenesis during CKD.
Collapse
Affiliation(s)
- Carlee I Oakley
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Julian A Vallejo
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri.,Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Derek Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Mark A Gray
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Tilitha Shawgo
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Emmanuel Daon
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - George Zorn
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R Stubbs
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael J Wacker
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
15
|
Abstract
Advances in our understanding of how the gut microbiota contributes to human health and diseases have expanded our insight into how microbial composition and function affect the human host. Heart failure is associated with splanchnic circulation congestion, leading to bowel wall oedema and impaired intestinal barrier function. This situation is thought to heighten the overall inflammatory state via increased bacterial translocation and the presence of bacterial products in the systemic blood circulation. Several metabolites produced by gut microorganisms from dietary metabolism have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. These findings suggest that the gut microbiome functions like an endocrine organ by generating bioactive metabolites that can directly or indirectly affect host physiology. In this Review, we discuss several newly discovered gut microbial metabolic pathways, including the production of trimethylamine and trimethylamine N-oxide, short-chain fatty acids, and secondary bile acids, that seem to participate in the development and progression of cardiovascular diseases, including heart failure. We also discuss the gut microbiome as a novel therapeutic target for the treatment of cardiovascular disease, and potential strategies for targeting intestinal microbial processes.
Collapse
Affiliation(s)
- W H Wilson Tang
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.
| | - Daniel Y Li
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Stanley L Hazen
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Urinary TMAO Levels Are Associated with the Taxonomic Composition of the Gut Microbiota and with the Choline TMA-Lyase Gene ( cutC) Harbored by Enterobacteriaceae. Nutrients 2019; 12:nu12010062. [PMID: 31881690 PMCID: PMC7019844 DOI: 10.3390/nu12010062] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Gut microbiota metabolization of dietary choline may promote atherosclerosis through trimethylamine (TMA), which is rapidly absorbed and converted in the liver to proatherogenic trimethylamine-N-oxide (TMAO). The aim of this study was to verify whether TMAO urinary levels may be associated with the fecal relative abundance of specific bacterial taxa and the bacterial choline TMA-lyase gene cutC. The analysis of sequences available in GenBank grouped the cutC gene into two main clusters, cut-Dd and cut-Kp. A quantitative real-time polymerase chain reaction (qPCR) protocol was developed to quantify cutC and was used with DNA isolated from three fecal samples collected weekly over the course of three consecutive weeks from 16 healthy adults. The same DNA was used for 16S rRNA gene profiling. Concomitantly, urine was used to quantify TMAO by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). All samples were positive for cutC and TMAO. Correlation analysis showed that the cut-Kp gene cluster was significantly associated with Enterobacteriaceae. Linear mixed models revealed that urinary TMAO levels may be predicted by fecal cut-Kp and by 23 operational taxonomic units (OTUs). Most of the OTUs significantly associated with TMAO were also significantly associated with cut-Kp, confirming the possible relationship between these two factors. In conclusion, this preliminary method-development study suggests the existence of a relationship between TMAO excreted in urine, specific fecal bacterial OTUs, and a cutC subgroup ascribable to the choline-TMA conversion enzymes of Enterobacteriaceae.
Collapse
|
17
|
Catucci G, Gao C, Rampolla G, Gilardi G, Sadeghi SJ. Uncoupled human flavin-containing monooxygenase 3 releases superoxide radical in addition to hydrogen peroxide. Free Radic Biol Med 2019; 145:250-255. [PMID: 31580948 DOI: 10.1016/j.freeradbiomed.2019.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/21/2022]
Abstract
Human flavin-containing monooxygenase 3 (hFMO3) is a drug-metabolizing enzyme capable of performing N- or S-oxidation using the C4a-hydroperoxy intermediate. In this work, we employ both wild type hFMO3 as well as an active site polymorphic variant (N61S) to unravel the uncoupling reactions in the catalytic cycle of this enzyme. We demonstrate that in addition to H2O2 this enzyme also produces superoxide anion radicals as its uncoupling products. The level of uncoupling was found to vary between 50 and 70% (WT) and 90-98% (N61S) for incubations with NADPH and benzydamine over a period of 5 or 20 min, respectively. For the first time, we were able to follow the production of the superoxide radical in hFMO3, which was found to account for 13-18% of the total uncoupling of this human enzyme. Moreover, measurements in the presence or absence of the substrate show that the substrate lowers the level of uncoupling only related to the H2O2 and not the superoxide radical. This is consistent with the entry point of the substrate in this enzyme's catalytic cycle. These findings highlight the importance of the involvement of hFMO3 in the production of radicals in the endoplasmic reticulum, as well as the relevance of single-nucleotide polymorphism leading to deleterious effects of oxidative stress.
Collapse
Affiliation(s)
- Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Chongliang Gao
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Giulia Rampolla
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Italy.
| |
Collapse
|
18
|
Prokopienko AJ, West RE, Schrum DP, Stubbs JR, Leblond FA, Pichette V, Nolin TD. Metabolic Activation of Flavin Monooxygenase-mediated Trimethylamine-N-Oxide Formation in Experimental Kidney Disease. Sci Rep 2019; 9:15901. [PMID: 31685846 PMCID: PMC6828678 DOI: 10.1038/s41598-019-52032-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/12/2019] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in chronic kidney disease (CKD) patients despite treatment of traditional risk factors, suggesting that non-traditional CVD risk factors are involved. Trimethylamine-N-oxide (TMAO) correlates with atherosclerosis burden in CKD patients and may be a non-traditional CVD risk factor. Serum TMAO concentrations are significantly increased in CKD patients, which may be due in part to increased hepatic flavin monooxygenase (FMO)-mediated TMAO formation. The objective of this work was to elucidate the mechanism of increased FMO activity in CKD. In this study, FMO enzyme activity experiments were conducted in vitro with liver microsomes isolated from experimental CKD and control rats. Trimethylamine was used as a probe substrate to assess FMO activity. The FMO activator octylamine and human uremic serum were evaluated. FMO gene and protein expression were also determined. FMO-mediated TMAO formation was increased in CKD versus control. Although gene and protein expression of FMO were not changed, metabolic activation elicited by octylamine and human uremic serum increased FMO-mediated TMAO formation. The findings suggest that metabolic activation of FMO-mediated TMAO formation is a novel mechanism that contributes to increased TMAO formation in CKD and represents a therapeutic target to reduce TMAO exposure and CVD.
Collapse
Affiliation(s)
- Alexander J Prokopienko
- Center for Clinical Pharmaceutical Sciences, Department of Pharmaceutical Sciences or Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Raymond E West
- Center for Clinical Pharmaceutical Sciences, Department of Pharmaceutical Sciences or Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel P Schrum
- Center for Clinical Pharmaceutical Sciences, Department of Pharmaceutical Sciences or Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason R Stubbs
- The Kidney Institute, and Department of Internal Medicine, Division of Nephrology & Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | | | - Vincent Pichette
- Service de Néphrologie et Centre de Recherche, Hôpital Maisonneuve-Rosemont, Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada
| | - Thomas D Nolin
- Center for Clinical Pharmaceutical Sciences, Department of Pharmaceutical Sciences or Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
19
|
Pelletier CC, Croyal M, Ene L, Aguesse A, Billon-Crossouard S, Krempf M, Lemoine S, Guebre-Egziabher F, Juillard L, Soulage CO. Elevation of Trimethylamine-N-Oxide in Chronic Kidney Disease: Contribution of Decreased Glomerular Filtration Rate. Toxins (Basel) 2019; 11:toxins11110635. [PMID: 31683880 PMCID: PMC6891811 DOI: 10.3390/toxins11110635] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota-dependent Trimethylamine-N-oxide (TMAO) has been reported to be strongly linked to renal function and to increased cardiovascular events in the general population and in Chronic Kidney Disease (CKD) patients. Considering the lack of data assessing renal handling of TMAO, we conducted this study to explore renal excretion and mechanisms of accumulation of TMAO during CKD. We prospectively measured glomerular filtration rate (mGFR) with gold standard methods and plasma concentrations of trimethylamine (TMA), TMAO, choline, betaine, and carnitine by LC-MS/MS in 124 controls, CKD, and hemodialysis (HD) patients. Renal clearance of each metabolite was assessed in a sub-group of 32 patients. Plasma TMAO was inversely correlated with mGFR (r2 = 0.388, p < 0.001), confirming elevation of TMAO plasma levels in CKD. TMAO clearances were not significantly different from mGFR, with a mean ± SD TMAO fractional excretion of 105% ± 32%. This suggests a complete renal excretion of TMAO by glomerular filtration with a negligible participation of tubular secretion or reabsorption, during all stages of CKD. Moreover, TMAO was effectively removed within 4 h of hemodiafiltration, showing a higher fractional reduction value than that of urea (84.9% ± 6.5% vs. 79.2% ± 5.7%, p = 0.04). This study reports a strong correlation between plasma TMAO levels and mGFR, in CKD, that can be mainly related to a decrease in TMAO glomerular filtration. Clearance data did not support a significant role for tubular secretion in TMAO renal elimination.
Collapse
Affiliation(s)
- Caroline C Pelletier
- Hospices Civils de Lyon, Service de Néphrologie, Dialyse et Hypertension Artérielle, Hôpital E Herriot, F-69003 Lyon, France.
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France.
| | - Mikael Croyal
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France.
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France.
| | - Lavinia Ene
- Hospices Civils de Lyon, Service de Néphrologie, Dialyse et Hypertension Artérielle, Hôpital E Herriot, F-69003 Lyon, France.
| | - Audrey Aguesse
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France.
| | | | - Michel Krempf
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France.
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France.
- ELSAN, clinique Bretéché, F-44000 Nantes, France.
| | - Sandrine Lemoine
- Hospices Civils de Lyon, Service de Néphrologie, Dialyse et Hypertension Artérielle, Hôpital E Herriot, F-69003 Lyon, France.
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France.
| | - Fitsum Guebre-Egziabher
- Hospices Civils de Lyon, Service de Néphrologie, Dialyse et Hypertension Artérielle, Hôpital E Herriot, F-69003 Lyon, France.
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France.
| | - Laurent Juillard
- Hospices Civils de Lyon, Service de Néphrologie, Dialyse et Hypertension Artérielle, Hôpital E Herriot, F-69003 Lyon, France.
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France.
| | - Christophe O Soulage
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France.
| |
Collapse
|
20
|
Chan MM, Yang X, Wang H, Saaoud F, Sun Y, Fong D. The Microbial Metabolite Trimethylamine N-Oxide Links Vascular Dysfunctions and the Autoimmune Disease Rheumatoid Arthritis. Nutrients 2019; 11:E1821. [PMID: 31394758 PMCID: PMC6723051 DOI: 10.3390/nu11081821] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Diet and microbiota each have a direct impact on many chronic, inflammatory, and metabolic diseases. As the field develops, a new perspective is emerging. The effects of diet may depend on the microbiota composition of the intestine. A diet that is rich in choline, red meat, dairy, or egg may promote the growth, or change the composition, of microbial species. The microbiota, in turn, may produce metabolites that increase the risk of cardiovascular disease. This article reviews our current understanding of the effects of the molecule trimethylamine-N-oxide (TMAO) obtained from food or produced by the microbiota. We review the mechanisms of actions of TMAO, and studies that associate it with cardiovascular and chronic kidney diseases. We introduce a novel concept: TMAO is one among a group of selective uremic toxins that may rise to high levels in the circulation or accumulate in various organs. Based on this information, we evaluate how TMAO may harm, by exacerbating inflammation, or may protect, by attenuating amyloid formation, in autoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Marion M Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Xiaofeng Yang
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dunne Fong
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73:2089-2105. [PMID: 31023434 PMCID: PMC6518422 DOI: 10.1016/j.jacc.2019.03.024] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Despite major strides in reducing cardiovascular disease (CVD) burden with modification of classic CVD risk factors, significant residual risks remain. Recent discoveries that linked intestinal microbiota and CVD have broadened our understanding of how dietary nutrients may affect cardiovascular health and disease. Although next-generation sequencing techniques can identify gut microbial community participants and provide insights into microbial composition shifts in response to physiological responses and dietary exposures, provisions of prebiotics or probiotics have yet to show therapeutic benefit for CVD. Our evolving understanding of intestinal microbiota-derived physiological modulators (e.g., short-chain fatty acids) and pathogenic mediators (e.g., trimethylamine N-oxide) of host disease susceptibility have created novel potential therapeutic opportunities for improved cardiovascular health. This review discusses the roles of human intestinal microbiota in normal physiology, their associations with CVD susceptibilities, and the potential of modulating intestinal microbiota composition and metabolism as a novel therapeutic target for CVD.
Collapse
Affiliation(s)
- W H Wilson Tang
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio; Center for Clinical Genomics, Cleveland Clinic, Cleveland, Ohio.
| | - Fredrik Bäckhed
- University of Gothenburg, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research and Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulf Landmesser
- Charité Universitätsmedizin Berlin, Berlin Institute of Health (BIH), Berlin, Germany and German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Stanley L Hazen
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
22
|
Chen H, Li J, Li N, Liu H, Tang J. Increased circulating trimethylamine N-oxide plays a contributory role in the development of endothelial dysfunction and hypertension in the RUPP rat model of preeclampsia. Hypertens Pregnancy 2019; 38:96-104. [PMID: 30821524 DOI: 10.1080/10641955.2019.1584630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We examined whether trimethylamine-N-oxide (TMAO) plays a role in endothelial dysfunction and hypertension in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia (PE). Methods: Normal pregnant rats and RUPP rats were treated without or with 3,3-Dimethyl-1-butanol (DMB, a TMAO inhibitor) from gestational day 14. Results: On day 19 of gestation, RUPP rats had higher plasma TMAO, impaired vasodilation and hypertension, decreased interleukin (IL)-10, increased superoxide production and proinflammatory cytokines in the aorta. All of which were reversed by DMD. Conclusion: Increased circulating TMAO downregulates IL-10 and promotes vascular inflammation and oxidative stress, contributing to endothelial dysfunction and hypertension in PE.
Collapse
Affiliation(s)
- Hui Chen
- a Department of Obstetrics , Affiliated Hospital of Jining Medical University , Jining , Shandong , China
| | - Jiabao Li
- b College of Clinical Medicine , Jining Medical University , Jining , Shandong , China
| | - Ning Li
- c College of Public Health , Jining Medical University , Jining , Shandong , China
| | - Hongsheng Liu
- d Cardiac Intensive Care Unit , Affiliated Hospital of Jining Medical University , Jining , Shandong , China
| | - Jiyun Tang
- a Department of Obstetrics , Affiliated Hospital of Jining Medical University , Jining , Shandong , China
| |
Collapse
|