1
|
Fardel O, Moreau A, Jouan E, Denizot C, Le Vée M, Parmentier Y. Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs. Expert Opin Drug Metab Toxicol 2025; 21:463-480. [PMID: 39799554 DOI: 10.1080/17425255.2025.2453486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays. AREA COVERED This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results. Applications of the assays to drugs are summarized, with special emphasis to the performance values of some assays for predicting hepatotoxicity/cholestatic effects of drugs. EXPERT OPINION Human liver cell-based assays for evaluating drug-mediated inhibition of bile acid efflux transporters face various limitations, such as the lack of method standardization and validation, the present poor adaptability to high throughput approaches, and some pitfalls with respect to interpretation of bile acid biliary excretion indexes. Hepatotoxicity of drugs is additionally likely multifactorial, highlighting that inhibition of hepatic bile salt efflux by drugs provides important, but not full, information about potential drug hepatotoxicity.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay Gif-sur-Yvette, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | | |
Collapse
|
2
|
Subash S, Prasad B. Age-Dependent Changes in Cytochrome P450 Abundance and Composition in Human Liver. Drug Metab Dispos 2024; 52:1363-1372. [PMID: 39284705 PMCID: PMC11585312 DOI: 10.1124/dmd.124.001608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024] Open
Abstract
Cytochrome P450 (CYP) superfamily represents the major drug-metabolizing enzymes responsible for metabolizing over 65% of therapeutic drugs, including those for pediatric use. CYP-ontogeny based physiologically based pharmacokinetic (PBPK) modeling has emerged as useful approach to mechanistically extrapolate adult pharmacokinetic data to children. However, these models integrate physiological differences in the pediatric population including age-dependent differences in the abundances of CYP enzymes. Conventionally, developmental changes in CYP enzymes have been reported using protein abundance and activity data from subcellular fractions such as microsomes, which are prone to high technical variability. Similarly, the available pediatric pharmacokinetic data suffer from the lack of specific CYP substrates, especially in younger children. In the present study, we used viable hepatocytes from 50 pediatric (age, 1 day-18 years) and 8 adult human donors and carried out global proteomics-based quantification of all major hepatic CYP enzymes, including orphan enzymes that have not been studied previously. While CYPs 2B6, 3A5, 4A11, 4F3, and 4V2 did not show a significant association with age, all other quantified isoforms either increased or decreased with age. CYPs 1A2, 2C8, 2C18, and 2C19 were absent or barely detected in the neonatal group, while CYP3A7 was the highest in this group. The >1 to 2 years age group showed the highest total abundance of all CYP enzymes. The age-dependent differences in CYP enzymes reported in this study can be used to develop ontogeny-based PBPK models, which in turn can help improve pediatric dose prediction based on adult dosing, leading to safer drug pharmacology in children. SIGNIFICANCE STATEMENT: We quantified the age-dependent differences in the abundances of hepatic CYP enzymes using a large set of viable pediatric and adult hepatocytes using quantitative global proteomics. We report for the first time the ontogeny in the abundance of CYP enzymes in human hepatocytes, especially, orphan CYPs 20A1, 27A1, 51A1, 7B1, and 8B1 and CYP4 subfamily of enzymes. Our study provides important data about CYP ontogeny that can be used for the better prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Sandhya Subash
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
3
|
Benzi JRDL, Tsang YP, Unadkat JD. The effect of pregnancy-related hormones on hepatic transporters: studies with premenopausal human hepatocytes. Front Pharmacol 2024; 15:1440010. [PMID: 39170705 PMCID: PMC11335556 DOI: 10.3389/fphar.2024.1440010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Pregnancy results in significant changes in drug pharmacokinetics (PK). While previous studies have elucidated the impact of pregnancy-related hormones (PRH) on mRNA or protein expression and activity of major hepatic metabolizing enzymes, their effect on hepatic drug transporters remains largely unexplored. Therefore, we investigated the effect of a cocktail of PRH on the mRNA expression and activity of hepatic transporters. Methods Plated human hepatocytes (PHH) from 3 premenopausal donors were incubated, in triplicate, for 72 h, with vehicle (DMSO < 0.01%), rifampin (10 μM; positive control) or a cocktail of PRH consisting of estrone, estradiol, estriol, estetrol, progesterone, cortisol, testosterone, oxytocin, and placental growth hormone. The PRH concentrations replicated 0.1×, 1×, or 10× of the plasma concentrations of these hormones observed during each of the three trimesters of pregnancy. After treatment, mRNA expression (quantified by qPCR) of hepatic influx and efflux transporters as well as the activity of influx transporters was quantified (uptake of a selective substrate ± corresponding transporter inhibitor). The data were expressed relative to that in the control (vehicle) group. Significance was evaluated by ANOVA (followed by Dunn's multiple comparisons) or unpaired t-test when the within-lot data were analyzed, or repeated measures ANOVA (followed by Dunn's multiple comparisons) or paired t-test when data from all 3 lots were analyzed (p < 0.05). Results and Discussion In general, a) PRH cocktails significantly induced transporter mRNA expression in the following order OAT2 ≈ NTCP ≈ OCT1 > OATP2B1 and repressed mRNA expression in the following order OATP1B3 > OATP1B1; b) these changes translated into significant induction of OAT2 (T1-T3) and NTCP (T2-T3, in only two lots) activity at the 1× PRH concentration. Compared with the influx transporters, the induction of mRNA expression of efflux transporters was modest, with mRNA expression of MRP2 and BSEP being induced the most. Conclusion Once these data are verified through in vivo probe drug PK studies in pregnancy, they can be populated into physiologically based pharmacokinetic (PBPK) models to predict, for all trimesters of pregnancy, transporter-mediated clearance of any drug that is a substrate of the affected transporters.
Collapse
Affiliation(s)
| | | | - Jashvant D. Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Russell LE, Yadav J, Maldonato BJ, Chien HC, Zou L, Vergara AG, Villavicencio EG. Transporter-mediated drug-drug interactions: regulatory guidelines, in vitro and in vivo methodologies and translation, special populations, and the blood-brain barrier. Drug Metab Rev 2024:1-28. [PMID: 38967415 DOI: 10.1080/03602532.2024.2364591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
This review, part of a special issue on drug-drug interactions (DDIs) spearheaded by the International Society for the Study of Xenobiotics (ISSX) New Investigators, explores the critical role of drug transporters in absorption, disposition, and clearance in the context of DDIs. Over the past two decades, significant advances have been made in understanding the clinical relevance of these transporters. Current knowledge on key uptake and efflux transporters that affect drug disposition and development is summarized. Regulatory guidelines from the FDA, EMA, and PMDA that inform the evaluation of potential transporter-mediated DDIs are discussed in detail. Methodologies for preclinical and clinical testing to assess potential DDIs are reviewed, with an emphasis on the utility of physiologically based pharmacokinetic (PBPK) modeling. This includes the application of relative abundance and expression factors to predict human pharmacokinetics (PK) using preclinical data, integrating the latest regulatory guidelines. Considerations for assessing transporter-mediated DDIs in special populations, including pediatric, hepatic, and renal impairment groups, are provided. Additionally, the impact of transporters at the blood-brain barrier (BBB) on the disposition of CNS-related drugs is explored. Enhancing the understanding of drug transporters and their role in drug disposition and toxicity can improve efficacy and reduce adverse effects. Continued research is essential to bridge remaining gaps in knowledge, particularly in comparison with cytochrome P450 (CYP) enzymes.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Quantitative, Translational, and ADME Sciences, AbbVie Inc, North Chicago, IL, USA
| | - Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc, Redwood City, CA, USA
| | - Huan-Chieh Chien
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ling Zou
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc, South San Francisco, CA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism, and Bioanalytics, Merck & Co., Inc, Rahway, NJ, USA
| | - Erick G Villavicencio
- Department of Biology-Discovery, Imaging and Functional Genomics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
5
|
Yin M, Balhara A, Marie S, Tournier N, Gáborik Z, Unadkat JD. Successful Prediction of Human Hepatic Concentrations of Transported Drugs Using the Proteomics-Informed Relative Expression Factor Approach. Clin Pharmacol Ther 2024; 115:595-605. [PMID: 38037845 DOI: 10.1002/cpt.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Tissue drug concentrations determine the efficacy and toxicity of drugs. When a drug is the substrate of transporters that are present at the blood:tissue barrier, the steady-state unbound tissue drug concentrations cannot be predicted from their corresponding plasma concentrations. To accurately predict transporter-modulated tissue drug concentrations, all clearances (CLs) mediating the drug's entry and exit (including metabolism) from the tissue must be accurately predicted. Because primary cells of most tissues are not available, we have proposed an alternative approach to predict such CLs, that is the use of transporter-expressing cells/vesicles (TECs/TEVs) and relative expression factor (REF). The REF represents the abundance of the relevant transporters in the tissue vs. in the TECs/TEVs. Here, we determined the transporter-based intrinsic CL of glyburide (GLB) and pitavastatin (PTV) in OATP1B1, OATP1B3, OATP2B1, and NTCP-expressing cells and MRP3-, BCRP-, P-gp-, and MRP2-expressing vesicles and scaled these CLs to in vivo using REF. These predictions fell within a priori set twofold range of the hepatobiliary CLs of GLB and PTV, estimated from their hepatic positron emission tomography imaging data: 272.3 and 607.8 mL/min for in vivo hepatic sinusoidal uptake CL, 47.8 and 17.4 mL/min for sinusoidal efflux CL, and 0 and 4.20 mL/min for biliary efflux CL, respectively. Moreover, their predicted hepatic concentrations (area under the hepatic concentration-time curve (AUC) and maximum plasma concentration (Cmax )), fell within twofold of their mean observed data. These data, together with our previous findings, confirm that the REF approach can successfully predict transporter-based drug CLs and tissue concentrations to enhance success in drug development.
Collapse
Affiliation(s)
- Mengyue Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Ankit Balhara
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Solène Marie
- Université Paris-Saclay, CEA, Inserm, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Nicolas Tournier
- Université Paris-Saclay, CEA, Inserm, CNRS, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, Budapest, Hungary
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Bi YA, Jordan S, King-Ahmad A, West MA, Yamaguchi E, Ryu S, Mathialagan S, Tess DA, Varma MVS. Low molecular weight acids and OATP1B mediated hepatic clearance: In vitro and in vivo evaluation using novel hypoxia-inducible factor prolyl hydroxylase inhibitors (Dustats). Drug Metab Dispos 2024; 52:DMD-AR-2023-001630. [PMID: 38388380 DOI: 10.1124/dmd.123.001630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP1B) plays a key role in the hepatic clearance of a majority of high molecular weight (MW) acids and zwitterions. Here, we evaluated the role of OATP1B-mediated uptake in the clearance of novel hypoxia-inducible factor prolyl hydroxylase inhibitors ("Dustats"), which are typically low MW (300-400 daltons) aliphatic carboxylic acids. Five acid dustats, namely daprodustat, desidustat, enarodustat, roxadustat and vadadustat, showed specific transport by OATP1B1/1B3 in transporter-transfected HEK293 cells. Neutral compound, molidustat, was not a substrate to OATP1B1/1B3. None of the dustats showed transport by other hepatic uptake transporters, including NTCP, OAT2 and OAT7. In the primary human hepatocytes, uptake of all acids was significantly reduced by rifampin (OATP1B inhibitor); with an estimated fraction transported by OATP1B (ft ,OATP1B) of up to >80% (daprodustat). Molidustat uptake was minimally inhibited by rifampin; and low permeability acids (desidustat and enarodustat) also showed biliary efflux in sandwich culture human hepatocytes. In vivo, intravenous pharmacokinetics of all 5 acids was significantly altered by a single-dose rifampin (30 mg/kg) in Cynomolgus monkey. Hepatic clearance (non-renal) was about 4-fold (vadadustat) to >11-fod (daprodustat and roxadustat) higher in control group compared to rifampin-treated subjects. In vivo ft ,OATP1B was estimated to be ~70-90%. In the case of molidustat, rifampin had a minimal effect on overall clearance. Rifampin also considerably reduced volume of distribution of daprodustat and roxadustat. Overall, OATP1B significantly contribute to the hepatic clearance and pharmacokinetics of several dustats, which are low MW carboxylic acids. OATP1B activity should therefore by evaluated in this property space. Significance Statement Our in vitro and in vivo results suggest that OATP1B-mediated hepatic uptake play a significant role in the pharmacokinetics of low MW acidic dustats, which are being developed or approved for the treatment of anemia in chronic kidney disease. Significant active uptake mechanisms are not apparent for the neutral compound, molidustat. Characterization of uptake mechanisms is therefore important in predicting human pharmacokinetics and evaluating drug-drug interactions for low MW acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sumathy Mathialagan
- Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc, United States
| | | | | |
Collapse
|
7
|
Mitra P, Kasliwala R, Iboki L, Madari S, Williams Z, Takahashi R, Taub ME. Mechanistic Static Model based Prediction of Transporter Substrate Drug-Drug Interactions Utilizing Atorvastatin and Rifampicin. Pharm Res 2023; 40:3025-3042. [PMID: 37821766 DOI: 10.1007/s11095-023-03613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE An in vitro relative activity factor (RAF) technique combined with mechanistic static modeling was examined to predict drug-drug interaction (DDI) magnitude and analyze contributions of different clearance pathways in complex DDIs involving transporter substrates. Atorvastatin and rifampicin were used as a model substrate and inhibitor pair. METHODS In vitro studies were conducted with transfected HEK293 cells, hepatocytes and human liver microsomes. Prediction success was defined as predictions being within twofold of observations. RESULTS The RAF method successfully translated atorvastatin uptake from transfected cells to hepatocytes, demonstrating its ability to quantify transporter contributions to uptake. Successful translation of atorvastatin's in vivo intrinsic hepatic clearance (CLint,h,in vivo) from hepatocytes to liver was only achieved through consideration of albumin facilitated uptake or through application of empirical scaling factors to transporter-mediated clearances. Transporter protein expression differences between hepatocytes and liver did not affect CLint,h,in vivo predictions. By integrating cis and trans inhibition of OATP1B1/OATP1B3, atorvastatin-rifampicin (single dose) DDI magnitude could be accurately predicted (predictions within 0.77-1.0 fold of observations). Simulations indicated that concurrent inhibition of both OATP1B1 and OATP1B3 caused approximately 80% of atorvastatin exposure increases (AUCR) in the presence of rifampicin. Inhibiting biliary elimination, hepatic metabolism, OATP2B1, NTCP, and basolateral efflux are predicted to have minimal to no effect on AUCR. CONCLUSIONS This study demonstrates the effective application of a RAF-based translation method combined with mechanistic static modeling for transporter substrate DDI predictions and subsequent mechanistic interpretation.
Collapse
Affiliation(s)
- Pallabi Mitra
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., 900 Old Ridgebury Road, Ridgefield, CT, 06877, USA.
| | - Rumanah Kasliwala
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Laeticia Iboki
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Shilpa Madari
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Zachary Williams
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Ryo Takahashi
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Mitchell E Taub
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| |
Collapse
|
8
|
Yin M, Ishida K, Liang X, Lai Y, Unadkat JD. Interpretation of Protein-Mediated Uptake of Statins by Hepatocytes Is Confounded by the Residual Statin-Protein Complex. Drug Metab Dispos 2023; 51:1381-1390. [PMID: 37429727 DOI: 10.1124/dmd.123.001386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
Inclusion of plasma (or plasma proteins) in human hepatocyte uptake studies narrows, but does not close, the gap in in vitro to in vivo extrapolation (IVIVE) of organic anion transporting polypeptide (OATP)-mediated hepatic clearance (CLh) of statins. We have previously shown that this "apparent" protein-mediated uptake effect (PMUE) of statins by OATP1B1-expressing cells, in the presence of 5% human serum albumin (HSA), is mostly an artifact caused by residual statin-HSA complex remaining in the uptake assay. We determined if the same was true with plated human hepatocytes (PHH) and if this artifact can be reduced using suspended human hepatocytes (SHH) and the oil-spin method. We quantified the uptake of a cocktail of five statins by PHH and SHH in the absence and presence of 5% HSA. After terminating the uptake assay, the amount of residual HSA was quantified by quantitative targeted proteomics. For both PHH and SHH, except for atorvastatin and cerivastatin, the increase in total, active, and passive uptake of the statins, in the presence of 5% HSA, was explained by the estimated residual stain-HSA complex. In addition, the increase in active statin uptake by SHH, where present, was marginal (<50%), much smaller than that observed with PHH. Such a marginal increase cannot bridge the gap in IVIVE of CLh of statins. These data disprove the prevailing hypotheses for the in vitro PMUE. A true PMUE should be evaluated using the uptake data corrected for the residual drug-protein complex. SIGNIFICANCE STATEMENT: We show that the apparent protein-mediated uptake (PMUE) of statins by human hepatocytes is largely confounded by residual statin when plated or suspended human hepatocytes are used. Therefore, mechanisms other than PMUE need to be explored to explain the underprediction of the in vivo human hepatic clearance of statins by human hepatocyte uptake assays.
Collapse
Affiliation(s)
- Mengyue Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| | - Kazuya Ishida
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| | - Xiaomin Liang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| | - Yurong Lai
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.Y., J.D.U.); and Drug Metabolism, Gilead Sciences, Inc., Foster City, California (K.I., X.L., Y.L.)
| |
Collapse
|
9
|
The next frontier in ADME science: Predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol Ther 2022; 238:108271. [DOI: 10.1016/j.pharmthera.2022.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 12/25/2022]
|
10
|
Mori A, Masuda T, Ito S, Ohtsuki S. Human Hepatic Transporter Signature Peptides for Quantitative Targeted Absolute Proteomics: Selection, Digestion Efficiency, and Peptide Stability. Pharm Res 2022; 39:2965-2978. [PMID: 36131112 DOI: 10.1007/s11095-022-03387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Quantitative targeted absolute proteomics (QTAP) quantifies proteins by measuring the signature peptides produced from target proteins by trypsin digestion. The selection of signature peptides is critical for reliable peptide quantification. The purpose of this study was to comprehensively assess the digestion efficiency and stability of tryptic peptides and to identify optimal signature peptides for human hepatic transporters and membrane marker proteins. METHODS The plasma membrane fraction of the human liver was digested at different time points and the peptides were comprehensively quantified using quantitative proteomics. Transporters and membrane markers were quantified using the signature peptides by QTAP. RESULTS Tryptic peptides were classified into clusters with low digestion efficiency, low stability, and high digestion efficiency and stability. Using the cluster information, we found that a proline residue next to the digestion site or the peptide position in or close to the transmembrane domains lowers digestion efficiency. A peptide containing cysteine at the N-terminus or arginine-glycine lowers peptide stability. Based on this information and the time course of peptide quantification, optimal signature peptides were identified for human hepatic transporters and membrane markers. The quantification of transporters with multiple signature peptides yielded consistent absolute values with less than 30% of coefficient variants in human liver microsomes and homogenates. CONCLUSIONS The signature peptides selected in the present study enabled the reliable quantification of human hepatic transporters. The QTAP protocol using these optimal signature peptides provides quantitative data on hepatic transporters usable for integrated pharmacokinetic studies.
Collapse
Affiliation(s)
- Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
11
|
Balhara A, Kumar AR, Unadkat JD. Predicting Human Fetal Drug Exposure Through Maternal-Fetal PBPK Modeling and In Vitro or Ex Vivo Studies. J Clin Pharmacol 2022; 62 Suppl 1:S94-S114. [PMID: 36106781 PMCID: PMC9494623 DOI: 10.1002/jcph.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Medication (drug) use in human pregnancy is prevalent. Determining fetal safety and efficacy of drugs is logistically challenging. However, predicting (not measuring) fetal drug exposure (systemic and tissue) throughout pregnancy is possible through maternal-fetal physiologically based pharmacokinetic (PBPK) modeling and simulation. Such prediction can inform fetal drug safety and efficacy. Fetal drug exposure can be quantified in 2 complementary ways. First, the ratio of the steady-state unbound plasma concentration in the fetal plasma (or area under the plasma concentration-time curve) to the corresponding maternal plasma concentration (ie, Kp,uu ). Second, the maximum unbound peak (Cu,max,ss,f ) and trough (Cu,min,ss,f ) fetal steady-state plasma concentrations. We (and others) have developed a maternal-fetal PBPK model that can successfully predict maternal drug exposure. To predict fetal drug exposure, the model needs to be populated with drug specific parameters, of which transplacental clearances (active and/or passive) and placental/fetal metabolism of the drug are critical. Herein, we describe in vitro studies in cells/tissue fractions or the perfused human placenta that can be used to determine these drug-specific parameters. In addition, we provide examples whereby this approach has successfully predicted systemic fetal exposure to drugs that passively or actively cross the placenta. Apart from maternal-fetal PBPK models, animal studies also have the potential to estimate fetal drug exposure by allometric scaling. Whether such scaling will be successful is yet to be determined. Here, we review the above approaches to predict fetal drug exposure, outline gaps in our knowledge to make such predictions and map out future research directions that could fill these gaps.
Collapse
Affiliation(s)
- Ankit Balhara
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Aditya R Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Saran C, Fu D, Ho H, Klein A, Fallon JK, Honkakoski P, Brouwer KLR. A novel differentiated HuH-7 cell model to examine bile acid metabolism, transport and cholestatic hepatotoxicity. Sci Rep 2022; 12:14333. [PMID: 35995956 PMCID: PMC9395349 DOI: 10.1038/s41598-022-18174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatic cell lines serve as economical and reproducible alternatives for primary human hepatocytes. However, the utility of hepatic cell lines to examine bile acid homeostasis and cholestatic toxicity is limited due to abnormal expression and function of bile acid-metabolizing enzymes, transporters, and the absence of canalicular formation. We discovered that culturing HuH-7 human hepatoma cells with dexamethasone (DEX) and 0.5% dimethyl sulfoxide (DMSO) for two weeks, with Matrigel overlay after one week, resulted in a shorter and improved differentiation process. These culture conditions increased the expression and function of the major bile acid uptake and efflux transporters, sodium taurocholate co-transporting polypeptide (NTCP) and the bile salt export pump (BSEP), respectively, in two-week cultures of HuH-7 cells. This in vitro model was further characterized for expression and function of bile acid-metabolizing enzymes, transporters, and cellular bile acids. Differentiated HuH-7 cells displayed a marked shift in bile acid composition and induction of cytochrome P450 (CYP) 7A1, CYP8B1, CYP3A4, and bile acid-CoA: amino acid N-acyltransferase (BAAT) mRNAs compared to control. Inhibition of taurocholate uptake and excretion after a 24-h treatment with prototypical cholestatic drugs suggests that differentiated HuH-7 cells are a suitable model to examine cholestatic hepatotoxicity.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Henry Ho
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Abigail Klein
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Weng Y, Fonseca KR, Bi YA, Mathialagan S, Riccardi K, Tseng E, Bessire AJ, Cerny MA, Tess DA, Rodrigues AD, Kalgutkar AS, Litchfield JE, Di L, Varma MVS. Transporter-Enzyme Interplay in the Pharmacokinetics of PF-06835919, A First-in-class Ketohexokinase Inhibitor for Metabolic Disorders and Non-alcoholic Fatty Liver Disease. Drug Metab Dispos 2022; 50:DMD-AR-2022-000953. [PMID: 35779864 DOI: 10.1124/dmd.122.000953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Excess dietary fructose consumption promotes metabolic dysfunction thereby increasing the risk of obesity, type 2 diabetes, non-alcoholic steatohepatitis (NASH), and related comorbidities. PF-06835919, a first-in-class ketohexokinase (KHK) inhibitor, showed reversal of such metabolic disorders in preclinical models and clinical studies, and is under clinical development for the potential treatment of NASH. In this study, we evaluated the transport and metabolic pathways of PF-06835919 disposition and assessed pharmacokinetics in preclinical models. PF-06835919 showed active uptake in cultured primary human hepatocytes, and substrate activity to organic anion transporter (OAT)2 and organic anion transporting-polypeptide (OATP)1B1 in transfected cells. "SLC-phenotyping" studies in human hepatocytes suggested contribution of passive uptake, OAT2- and OATP1B-mediated transport to the overall uptake to be about 15%, 60% and 25%, respectively. PF-06835919 showed low intrinsic metabolic clearance in vitro, and was found to be metabolized via both oxidative pathways (58%) and acyl glucuronidation (42%) by CYP3A, CYP2C8, CYP2C9 and UGT2B7. Following intravenous dosing, PF-06835919 showed low clearance (0.4-1.3 mL/min/kg) and volume of distribution (0.17-0.38 L/kg) in rat, dog and monkey. Human oral pharmacokinetics are predicted within 20% error when considering transporter-enzyme interplay in a PBPK model. Finally, unbound liver-to-plasma ratio (Kpuu) measured in vitro using rat, NHP and human hepatocytes was found to be approximately 4, 25 and 10, respectively. Similarly, liver Kpuu in rat and monkey following intravenous dosing of PF-06835919 was found to be 2.5 and 15, respectively, and notably higher than the muscle and brain Kpuu, consistent with the active uptake mechanisms observed in vitro. Significance Statement This work characterizes the transport/metabolic pathways in the hepatic disposition of PF-06835919, a first-in-class KHK inhibitor for the treatment of metabolic disorders and NASH. Phenotyping studies using transfected systems, human hepatocytes and liver microsomes signifies the role of OAT2 and OATP1B1 in the hepatic uptake and multiple enzymes in the metabolism of PF-06835919. Data presented suggest hepatic transporter-enzyme interplay in determining its systemic concentrations and potential enrichment in liver, a target site for KHK inhibition.
Collapse
Affiliation(s)
- Yan Weng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., United States
| | | | | | - Sumathy Mathialagan
- Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc, United States
| | | | - Elaine Tseng
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, United States
| | | | | | | | | | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research and Development, United States
| | | | - Li Di
- Pharmacokintics Dynamics and Metabolism, Pfizer Inc., United States
| | | |
Collapse
|
14
|
Ahire D, Kruger L, Sharma S, Mettu VS, Basit A, Prasad B. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol Rev 2022; 74:769-796. [PMID: 35738681 PMCID: PMC9553121 DOI: 10.1124/pharmrev.121.000449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reliable translation of in vitro and preclinical data on drug absorption, distribution, metabolism, and excretion (ADME) to humans is important for safe and effective drug development. Precision medicine that is expected to provide the right clinical dose for the right patient at the right time requires a comprehensive understanding of population factors affecting drug disposition and response. Characterization of drug-metabolizing enzymes and transporters for the protein abundance and their interindividual as well as differential tissue and cross-species variabilities is important for translational ADME and precision medicine. This review first provides a brief overview of quantitative proteomics principles including liquid chromatography-tandem mass spectrometry tools, data acquisition approaches, proteomics sample preparation techniques, and quality controls for ensuring rigor and reproducibility in protein quantification data. Then, potential applications of quantitative proteomics in the translation of in vitro and preclinical data as well as prediction of interindividual variability are discussed in detail with tabulated examples. The applications of quantitative proteomics data in physiologically based pharmacokinetic modeling for ADME prediction are discussed with representative case examples. Finally, various considerations for reliable quantitative proteomics analysis for translational ADME and precision medicine and the future directions are discussed. SIGNIFICANCE STATEMENT: Quantitative proteomics analysis of drug-metabolizing enzymes and transporters in humans and preclinical species provides key physiological information that assists in the translation of in vitro and preclinical data to humans. This review provides the principles and applications of quantitative proteomics in characterizing in vitro, ex vivo, and preclinical models for translational research and interindividual variability prediction. Integration of these data into physiologically based pharmacokinetic modeling is proving to be critical for safe, effective, timely, and cost-effective drug development.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
15
|
Storelli F, Li CY, Sachar M, Kumar V, Heyward S, Sáfár Z, Kis E, Unadkat JD. Prediction of Hepatobiliary Clearances and Hepatic Concentrations of Transported Drugs in Humans Using Rosuvastatin as a Model Drug. Clin Pharmacol Ther 2022; 112:593-604. [DOI: 10.1002/cpt.2556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Flavia Storelli
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Cindy Yanfei Li
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Madhav Sachar
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Vineet Kumar
- Department of Pharmaceutics University of Washington Seattle WA USA
| | | | | | | | | |
Collapse
|
16
|
Neuhoff S, Harwood MD, Rostami-Hodjegan A, Achour B. Application of proteomic data in the translation of in vitro observations to associated clinical outcomes. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:13-22. [PMID: 34906322 DOI: 10.1016/j.ddtec.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
Translation of information on drug exposure and effect is facilitated by in silico models that enable extrapolation of in vitro measurements to in vivo clinical outcomes. These models integrate drug-specific data with information describing physiological processes and pathological changes, including alterations to proteins involved in drug absorption, distribution and elimination. Over the past 15 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. In this review, we explore current and emerging applications of targeted and global (untargeted) proteomics in translational pharmacology as well as strategies for improved integration into model-based drug development.
Collapse
Affiliation(s)
- Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Matthew D Harwood
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Amin Rostami-Hodjegan
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK; Centre for Applied Pharmacokinetic Research (CAPKR), School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
17
|
Yadav J, El Hassani M, Sodhi J, Lauschke VM, Hartman JH, Russell LE. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab Rev 2021; 53:207-233. [PMID: 33989099 DOI: 10.1080/03602532.2021.1922435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | | | - Jasleen Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
18
|
Chothe PP, Pemberton R, Hariparsad N. Function and Expression of Bile Salt Export Pump in Suspension Human Hepatocytes. Drug Metab Dispos 2021; 49:314-321. [PMID: 33472814 DOI: 10.1124/dmd.120.000057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022] Open
Abstract
The mechanistic understanding of bile salt disposition is not well established in suspension human hepatocytes (SHH) because of the limited information on the expression and function of bile salt export protein (BSEP) in this system. We investigated the transport function of BSEP in SHH using a method involving in situ biosynthesis of bile salts from their precursor bile acids, cholic acid (CA) and chenodeoxycholic acid (CDCA). Our data indicated that glycine- and taurine-conjugated CA and CDCA were generated efficiently and transported out of hepatocytes in a concentration- and time-dependent manner. We also observed that the membrane protein abundance of BSEP was similar between SHH and sandwich-cultured human hepatocytes. Furthermore, known cholestatic agents significantly inhibited G-CA and G-CDCA efflux in SHH. Interestingly, cyclosporine A, troglitazone, itraconazole, loratadine, and lovastatin inhibited G-CA efflux more potently than G-CDCA efflux (3- to 5-fold). Because of these significant differential effects on G-CA and G-CDCA efflux inhibition, we determined the IC50 values of troglitazone for G-CA (9.9 µM) and for G-CDCA (43.1 µM) efflux. The observed discrepancy in the IC50 was attributed to the fact that troglitazone also inhibits organic anion transporting polypeptides and Na+/taurocholate cotransporting polypeptide in addition to BSEP. The hepatocyte uptake study suggested that both active uptake and passive diffusion contribute to the liver uptake of CA, whereas CDCA primarily undergoes passive diffusion into the liver. In summary, these data demonstrated the expression and function of BSEP and its major role in transport of bile salts in cryopreserved SHH. SIGNIFICANCE STATEMENT: BSEP transport function and protein abundance was evident in SHH in the present study. The membrane abundance of BSEP protein was similar between SHH and sandwich-cultured human hepatocytes. The study also illustrated the major role of BSEP relative to basolateral MRP3 and MRP4 in transport of bile salts in SHH. Understanding of BSEP function in SHH may bolster the utility of this platform in mechanistic understanding of bile salt disposition and potentially in the assessment of drugs for BSEP inhibition.
Collapse
Affiliation(s)
- Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| |
Collapse
|
19
|
Kumar V, Yin M, Ishida K, Salphati L, Hop CECA, Rowbottom C, Xiao G, Lai Y, Mathias A, Chu X, Humphreys WG, Liao M, Nerada Z, Szilvásy N, Heyward S, Unadkat JD. Prediction of Transporter-Mediated Rosuvastatin Hepatic Uptake Clearance and Drug Interaction in Humans Using Proteomics-Informed REF Approach. Drug Metab Dispos 2021; 49:159-168. [PMID: 33051248 DOI: 10.1124/dmd.120.000204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Suspended, plated, or sandwich-cultured human hepatocytes are routinely used for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated hepatic clearance (CL) of drugs. However, these hepatocyte models have been reported to underpredict transporter-mediated in vivo hepatic uptake CL (CL uptake,in vivo ) of some drugs. Therefore, we determined whether transporter-expressing cells (TECs) can accurately predict the CL uptake,in vivo of drugs. To do so, we determined the uptake CL (CL int,uptake,cells ) of rosuvastatin (RSV) by TECs (organic anion transporting polypeptides/Na+-taurocholate cotransporting polypeptide) and then scaled it to that in vivo by relative expression factor (REF) (the ratio of transporter abundance in human livers and TEC) determined by liquid chromatography tandem mass spectrometry-based quantitative proteomics. Both the TEC and hepatocyte models did not meet our predefined success criteria of predicting within 2-fold the RSV CL uptake,in vivo value obtained from our positron emission tomography (PET) imaging. However, the TEC performed better than the hepatocyte models. Interestingly, using REF, TECs successfully predicted RSV CL int,uptake,hep obtained by the hepatocyte models, suggesting that the underprediction of RSV CL uptake,in vivo by TECs and hepatocytes is due to endogenous factor(s) not present in these in vitro models. Therefore, we determined whether inclusion of plasma (or albumin) in TEC uptake studies improved IVIVE of RSV CL uptake,in vivo It did, and our predictions were close to or just fell above our lower 2-fold acceptance boundary. Despite this success, additional studies are needed to improve transporter-mediated IVIVE of hepatic uptake CL of drugs. However, using REF and TEC, we successfully predicted the magnitude of PET-imaged inhibition of RSV CL uptake,in vivo by cyclosporine A. SIGNIFICANCE STATEMENT: We showed that the in vivo transporter-mediated hepatic uptake CL of rosuvastatin, determined by PET imaging, can be predicted (within 2-fold) from in vitro studies in transporter-expressing cells (TECs) (scaled using REF), but only when plasma proteins were included in the in vitro studies. This conclusion did not hold when plasma proteins were absent in the TEC or human hepatocyte studies. Thus, additional studies are needed to improve in vitro to in vivo extrapolation of transporter-mediated drug CL.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Mengyue Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Kazuya Ishida
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Laurent Salphati
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Cornelis E C A Hop
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Christopher Rowbottom
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Guangqing Xiao
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Yurong Lai
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Anita Mathias
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Xiaoyan Chu
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - W Griffith Humphreys
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Mingxiang Liao
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Zsuzsanna Nerada
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Nóra Szilvásy
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and Drug Metabolism (Y.L.), Gilead Sciences, Inc., Foster City, California; Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, New Jersey (X.C.); Bristol-Myers Squibb Company, Princeton, New Jersey (W.G.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); SOLVO Biotechnology, Budaörs, Hungary (Z.N., N.S.); and BioIVT, Baltimore, Maryland (S.H.)
| |
Collapse
|
20
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Abstract
Accurate estimation of in vivo clearance in human is pivotal to determine the dose and dosing regimen for drug development. In vitro-in vivo extrapolation (IVIVE) has been performed to predict drug clearance using empirical and physiological scalars. Multiple in vitro systems and mathematical modeling techniques have been employed to estimate in vivo clearance. The models for predicting clearance have significantly improved and have evolved to become more complex by integrating multiple processes such as drug metabolism and transport as well as passive diffusion. This chapter covers the use of conventional as well as recently developed methods to predict metabolic and transporter-mediated clearance along with the advantages and disadvantages of using these methods and the associated experimental considerations. The general approaches to improve IVIVE by use of appropriate scalars, incorporation of extrahepatic metabolism and transport and application of physiologically based pharmacokinetic (PBPK) models with proteomics data are also discussed. The chapter also provides an overview of the advantages of using such dynamic mechanistic models over static models for clearance predictions to improve IVIVE.
Collapse
|
22
|
Bi YA, Ryu S, Tess DA, Rodrigues AD, Varma MVS. Effect of Human Plasma on Hepatic Uptake of Organic Anion-Transporting Polypeptide 1B Substrates: Studies Using Transfected Cells and Primary Human Hepatocytes. Drug Metab Dispos 2021; 49:72-83. [PMID: 33139461 DOI: 10.1124/dmd.120.000134] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 02/13/2025] Open
Abstract
Current challenges with the in vitro-in vivo extrapolation (IVIVE) of hepatic uptake clearance involving organic anion-transporting polypeptide (OATP) 1B1/1B3 hinder drug design strategies. Here we evaluated the effect of 100% human plasma on the uptake clearance using transfected human embryonic kidney (HEK) 293 cells and primary human hepatocytes and assessed IVIVE. Apparent unbound uptake clearance (PSinf,u) increased significantly (P < 0.05) in the presence of plasma (vs. buffer incubations) for about 50% of compounds in both OATP1B1-transfected and wild-type HEK cells. Thus, plasma showed a minimal effect on the uptake ratios. With cultured human hepatocytes, plasma significantly (P < 0.05) increased PSinf,u for 11 of 19 OATP1B substrates (median change of 2.1-fold). Cell accumulation in HEK cells and hepatocytes was also increased for tolbutamide, which is not an OATP substrate. Plasma-to-buffer ratio of PSinf,u obtained in hepatocytes showed a good correlation with unbound fraction in plasma, and the relationship was best described by a "facilitated-dissociation" model. IVIVE was evaluated for the 19 OATP1B substrates using hepatocyte data in the presence of buffer and plasma. PSinf,u from buffer incubations markedly underpredicted hepatic intrinsic clearance (calculated via well stirred and parallel tube models) with an estimated bias of 0.10-0.13. Predictions improved when using PSinf,u from plasma incubations; however, considerable systemic underprediction was still apparent (0.19-0.26 bias). Plasma data with a global scaling factor of 3.8-5.3 showed good prediction accuracy (95% predictions within 3-fold; average fold error = 1.7, bias = 1). In summary, this study offers insight into the effect of plasma on the uptake clearance and its scope in improving IVIVE. SIGNIFICANCE STATEMENT: Our study using diverse anionic compounds shows that human plasma facilitates organic anion-transporting polypeptide 1B-mediated as well as passive uptake clearance, particularly for the highly bound compounds. Leveraging data from transfected human embryonic kidney 293 cells and primary human hepatocytes, we further evaluated mechanisms involved in the observed plasma-facilitated uptake transport. Enhanced hepatic uptake rate in the presence of plasma could be of relevance, as such mechanisms likely prevail in vivo and emphasize the need to maintain physiologically relevant assay conditions to achieve improved translation of transport data.
Collapse
Affiliation(s)
- Yi-An Bi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (Y.-a.B., S.R., A.D.R., M.V.S.V.) and Modeling and Simulations Group, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts (D.A.T.)
| | - Sangwoo Ryu
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (Y.-a.B., S.R., A.D.R., M.V.S.V.) and Modeling and Simulations Group, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts (D.A.T.)
| | - David A Tess
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (Y.-a.B., S.R., A.D.R., M.V.S.V.) and Modeling and Simulations Group, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts (D.A.T.)
| | - A David Rodrigues
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (Y.-a.B., S.R., A.D.R., M.V.S.V.) and Modeling and Simulations Group, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts (D.A.T.)
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (Y.-a.B., S.R., A.D.R., M.V.S.V.) and Modeling and Simulations Group, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, Massachusetts (D.A.T.)
| |
Collapse
|
23
|
Yang Y, Liu L, Xu M, Zhang X, Wang L, He Q, Xu M, Jiang X. Tanshinone ⅡA may alleviate rifampin-induced cholestasis by regulating the expression and function of NTCP. Hum Exp Toxicol 2020; 40:1003-1011. [PMID: 33307820 DOI: 10.1177/0960327120979030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Na+-taurocholate cotransporting polypeptide (NTCP) acts as the major hepatic basolateral uptake system, and plays a key role in balancing bile flow. The anti-tuberculosis drugs rifampin (RFP) can affect bile flow causing liver injury, while tanshinone IIA (TAN IIA) has the effect of protecting liver. This study aimed to investigate the effects of RFP and TAN IIA on the NTCP expression and activity, and explore the potential connections. Herein, we established sandwich-cultured primary rat hepatocytes, and quantified mRNA and protein levels of NRF2 and NTCP after treatment with RFP (10, 25, or 50 μM) or co-treatment with TAN IIA (5, 10, or 20 μM) for 12, 24, 48 h (n = 3). NTCP activity was assessed by measuring the initial uptake rates of known substrates taurocholate (TCA) (n = 3) after treatment with different concentrations of RFP, TAN ⅡA for 12, 24 and 48 h. We found that RFP had inhibition effects on NRF2, NTCP mRNA and protein expression, and co-administration of TAN IIA could reverse RFP inhibition. TCA cellular accumulation was significantly decreased by RFP (39.1%), and TAN IIA could significantly induce TCA uptake of NTCP (2.9-fold at 48 h). The TCA uptake activity was correlated with the NTCP mRNA expression, confirming the role of RFP or TAN IIA on NTCP expression and activity is synchronous, and we can predict NTCP activity by detecting its mRNA expression. In conclusion, our work will enrich the significance of NTCP in the liver protection, and provide theoretical basis for TAN IIA to prevent RFP induced cholestatic liver injury.
Collapse
Affiliation(s)
- Y Yang
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China.,Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - L Liu
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China.,Department of Pharmacy, 575842the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - M Xu
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - X Zhang
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - L Wang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Q He
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - M Xu
- Department of Pharmacy, 159411The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - X Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, 535321West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Ito S, Lee W, Park JE, Yasunaga M, Mori A, Ohtsuki S, Sugiyama Y. Transient, Tunable Expression of NTCP and BSEP in MDCKII Cells for Kinetic Delineation of the Rate-Determining Process and Inhibitory Effects of Rifampicin in Hepatobiliary Transport of Taurocholate. J Pharm Sci 2020; 110:365-375. [PMID: 33159914 DOI: 10.1016/j.xphs.2020.10.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
In predicting the hepatic elimination of compounds, the extended clearance concept has proven useful. Yet, its experimental proof was scarce partly due to the lack of models with the controlled expression of transporters. Here, the uptake and efflux transporters [NTCP (SLC10A1) and BSEP (ABCB11), respectively] were doubly and transiently expressed in MDCKII cells by electroporation-based transfection (with the BSEP plasmid amount varied and with the NTCP plasmid fixed), achieving the activity levels of NTCP and BSEP comparable to those of sandwich cultured human hepatocytes. The biliary excretion clearance for taurocholate increased proportionally to the BSEP expression level. Under the same conditions, the basal-to-apical transcellular clearance of taurocholate displayed an initial increase, and a subsequent plateau, indicating that the basolateral uptake of taurocholate became rate-limiting. The doubly transfected MDCKII cells were also used to kinetically analyze the inhibitory effects of rifampicin on BSEP and NTCP. The obtained results showed a bell-shaped profile for cell-to-medium concentration ratios over a range of rifampicin concentrations, which were quantitatively captured by kinetic modeling based on the extended clearance concept. The present study highlights the utility of the transient, tunable transporter expression system in delineating the rate-determining process and providing mechanistic insights into intracellular substrate accumulation.
Collapse
Affiliation(s)
- Sumito Ito
- GenoMembrane Co., Ltd, 2-3-18 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-0052, Japan.
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eun Park
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Pharmacokinetics, Dynamics and Metabolism, Translational Medicine and Early Development, R&D, Sanofi K.K., 3 Chome-20-2, Nishishinjuku, Tokyo 160-0023, Japan
| | - Masa Yasunaga
- GenoMembrane Co., Ltd, 2-3-18 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-0052, Japan
| | - Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
25
|
Sachar M, Kumar V, Gormsen LC, Munk OL, Unadkat JD. Successful Prediction of Positron Emission Tomography-Imaged Metformin Hepatic Uptake Clearance in Humans Using the Quantitative Proteomics-Informed Relative Expression Factor Approach. Drug Metab Dispos 2020; 48:1210-1216. [PMID: 32843330 DOI: 10.1124/dmd.120.000156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Predicting transporter-mediated in vivo hepatic drug clearance (CL) from in vitro data (IVIVE) is important in drug development to estimate first-in-human dose and the impact of drug interactions and pharmacogenetics on hepatic drug CL. For IVIVE, one can use human hepatocytes and the traditional milligrams of protein content per gram of liver tissue (MGPGL) approach. However, this approach has been found to consistently underpredict the observed in vivo hepatic drug CL. Therefore, we hypothesized that using transporter-expressing cells and the relative expression factor (REF), determined using targeted quantitative proteomics, will accurately predict in vivo hepatic CL of drugs. We have successfully tested this hypothesis in rats with rosuvastatin, which is transported by hepatic Organic anion transporting polypeptides (OATPs). Here, we tested this hypothesis for another drug and another transporter; namely, organic cation transporter (OCT)1-mediated hepatic distributional CL of metformin. First, we estimated the in vivo metformin hepatic sinusoidal uptake CL (CLh,s,in) of metformin by reanalysis of previously published human positron emission tomography imaging data. Next, using the REF approach, we predicted the in vivo metformin CLh,s,in using OCT1-transporter-expressing HEK293 cells or plated human hepatocytes. Finally, we compared this REF-based prediction with that using the MGPGL approach. The REF approach accurately predicted the in vivo metformin hepatic CLh,s,in, whereas the MGPGL approach considerably underpredicted the in vivo metformin CLh,s,in Based on these and previously published data, the REF approach appears to be superior to the MGPGL approach for a diverse set of drugs transported by different transporters. SIGNIFICANCE STATEMENT: This study is the first to use organic cation transporter 1-expressing cells and plated hepatocytes to compare proteomics-informed REF approach with the traditional MGPGL approach to predict hepatic uptake CL of metformin in humans. The proteomics-informed REF approach, which corrected for plasma membrane abundance, accurately predicted the positron emission tomography-imaged metformin hepatic uptake CL, whereas the MGPGL approach consistently underpredicted this CL.
Collapse
Affiliation(s)
- Madhav Sachar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| | - Vineet Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| | - Lars C Gormsen
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| | - Ole Lajord Munk
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (M.S., V.K., J.D.U.) and Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N, Denmark (L.C.G., O.L.M.)
| |
Collapse
|
26
|
Tao G, Huang J, Moorthy B, Wang C, Hu M, Gao S, Ghose R. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin Drug Metab Toxicol 2020; 16:1109-1124. [PMID: 32841068 PMCID: PMC8059872 DOI: 10.1080/17425255.2020.1815705] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Toxicity of chemotherapy drugs is the leading cause of poor therapeutic outcome in many cancer patients. Gastrointestinal (GI) toxicity and hepatotoxicity are among the most common side effects of current chemotherapies. Emerging studies indicate that many chemotherapy-induced toxicities are driven by drug metabolism, but very few reviews summarize the role of drug metabolism in chemotherapy-induced GI toxicity and hepatotoxicity. In this review, we highlighted the importance of drug metabolizing enzymes (DMEs) in chemotherapy toxicity. AREAS COVERED Our review demonstrated that altered activity of DMEs play important role in chemotherapy-induced GI toxicity and hepatotoxicity. Besides direct changes in catalytic activities, the transcription of DMEs is also affected by inflammation, cell-signaling pathways, and/or by drugs in cancer patients due to the disease etiology. EXPERT OPINION More studies should focus on how DMEs are altered during chemotherapy treatment, and how such changes affect the metabolism of chemotherapy drug itself. This mutual interaction between chemotherapies and DMEs can lead to excessive exposure of parent drug or toxic metabolites which ultimately cause GI adverse effect.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Junqing Huang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | | | - Cathryn Wang
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, Texas Southern University, Houston TX, U.S
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| |
Collapse
|
27
|
Yoshikado T, Lee W, Toshimoto K, Morita K, Kiriake A, Chu X, Lee N, Kimoto E, Varma MVS, Kikuchi R, Scialis RJ, Shen H, Ishiguro N, Lotz R, Li AP, Maeda K, Kusuhara H, Sugiyama Y. Evaluation of Hepatic Uptake of OATP1B Substrates by Short Term-Cultured Plated Human Hepatocytes: Comparison With Isolated Suspended Hepatocytes. J Pharm Sci 2020; 110:376-387. [PMID: 33122051 DOI: 10.1016/j.xphs.2020.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Hepatic uptake clearance has been measured in suspended human hepatocytes (SHH). Plated human hepatocytes (PHH) after short-term culturing are increasingly employed to study hepatic transport driven mainly by its higher throughput. To know pros/cons of both systems, the hepatic uptake clearances of several organic anion transporting polypeptide 1B substrates were compared between PHH and SHH by determining the initial uptake velocities or through dynamic model-based analyses. For cerivastatin, pitavastatin and rosuvastatin, initial uptake clearances (PSinf) obtained using PHH were comparable to those using SHH, while cell-to-medium concentration (C/M) ratios were 2.7- to 5.4-fold higher. For pravastatin and dehydropravastatin, hydrophilic compounds with low uptake/cellular binding, their PSinf and C/M ratio in PHH were 1.8- to 3.2-fold lower than those in SHH. These hydrophilic substrates are more prone to wash-off during the uptake study using PHH, which may explain the apparently lower uptake than SHH. The C/M ratios obtained using PHH were stable over an extended time, making PHH suitable to estimate the C/M ratios and hepatocyte-to-medium unbound concentration ratios (Kp,uu). In conclusion, PHH is useful in evaluating hepatic uptake/efflux clearances and Kp,uu of OATP1B substrates in a high-throughput manner, however, a caution is warranted for hydrophilic drugs with low uptake/cellular binding.
Collapse
Affiliation(s)
- Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan; Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Kiyoe Morita
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Aya Kiriake
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | | | - Nora Lee
- Daewoong Pharmaceutical Co., Ltd, Seoul, Korea
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, CT, USA
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, CT, USA
| | | | | | - Hong Shen
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd, Kobe, Hyogo, Japan
| | - Ralf Lotz
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach an der Riss, Germany
| | - Albert P Li
- In Vitro ADMET Laboratories Inc, Columbia, MA, USA
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan.
| |
Collapse
|
28
|
Lee W, Koyama S, Morita K, Kiriake A, Kikuchi R, Chu X, Lee N, Scialis RJ, Shen H, Kimoto E, Tremaine L, Ishiguro N, Lotz R, Maeda K, Kusuhara H, Sugiyama Y. Cell-to-Medium Concentration Ratio Overshoot in the Uptake of Statins by Human Hepatocytes in Suspension, but Not in Monolayer: Kinetic Analysis Suggesting a Partial Loss of Functional OATP1Bs. AAPS JOURNAL 2020; 22:133. [PMID: 33063163 PMCID: PMC7561564 DOI: 10.1208/s12248-020-00512-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
Suspended human hepatocytes (SHH) have long been used in assessing hepatic drug uptake, while plated human hepatocytes in short-term monolayer culture (PHH) have gained use in recent years. This study aimed to cross-evaluate SHH and PHH in measuring the hepatic uptake mediated by organic anion transporting polypeptide 1Bs (OATP1Bs). We compared the time courses of cell-to-medium (C/M) concentration ratios and initial uptake clearance values of the OATP1B substrates (pitavastatin, rosuvastatin, cerivastatin, pravastatin, dehydropravastatin, and SC-62807) between SHH and PHH. For all compounds except cerivastatin, the C/M ratios in SHH displayed an apparent overshoot (an initial increase followed by a decrease) during the 180-min uptake experiment, but not in PHH. Based on the literature evidence suggesting the possible internalization of OATP1Bs in primary hepatocytes, separate experiments measured the drug uptake after varying lengths of pre-incubation in the drug-free medium. The initial uptake clearances of pitavastatin and rosuvastatin declined in SHH beyond an apparent threshold time of 20-min drug-free pre-incubation, but not in PHH. Kinetic modeling quantitatively captured the decline in the active uptake clearance in SHH, and more than half of the active uptake clearances of pitavastatin and rosuvastatin were prone to loss during the 180-min uptake experiment. These results suggested a partial, time-delayed loss of the functional OATP1Bs in SHH upon prolonged incubation. Our results indicate that PHH is more appropriate for experiments where a prolonged incubation is required, such as estimation of unbound hepatocyte-to-medium concentration ratio (Kp,uu) at the steady-state.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Satoshi Koyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Kiyoe Morita
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Aya Kiriake
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | | | - Xiaoyan Chu
- Merck & Co., Inc, North Wales, Pennsylvania, USA
| | - Nora Lee
- Daewoong Pharmaceutical Co., Ltd, Seoul, South Korea
| | | | - Hong Shen
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, Connecticut, USA
| | - Larry Tremaine
- Tremaine DMPK Consulting LLC, Merritt Island, Florida, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd, Kobe, Hyogo, Japan
| | - Ralf Lotz
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan.
| |
Collapse
|
29
|
Devanathan AS, Fallon JK, White NR, Schauer AP, Van Horne B, Blake K, Sykes C, Kovarova M, Adamson L, Remling-Mulder L, Luciw P, Garcia JV, Akkina R, Pirone JR, Smith PC, Kashuba ADM. Antiretroviral Penetration and Drug Transporter Concentrations in the Spleens of Three Preclinical Animal Models and Humans. Antimicrob Agents Chemother 2020; 64:e01384-20. [PMID: 32661005 PMCID: PMC7508597 DOI: 10.1128/aac.01384-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Adequate antiretroviral (ARV) concentrations in lymphoid tissues are critical for optimal antiretroviral therapy (ART). While the spleen contains 25% of the body's lymphocytes, there are minimal data on ARV penetration in this organ. This study quantified total and protein-unbound splenic ARV concentrations and determined whether drug transporters, sex, or infection status were modifiers of these concentrations in animal models and humans. Two humanized mice models (hu-HSC-Rag [n = 36; 18 HIV-positive (HIV+) and 18 HIV-negative (HIV-)] and bone marrow-liver-thymus [n = 13; 7 HIV+ and 6 HIV-]) and one nonhuman primate (NHP) model (rhesus macaque [n = 18; 10 SHIV+ and 8 SHIV-]) were dosed to steady state with ARV combinations. HIV+ human spleens (n = 14) from the National NeuroAIDS Tissue Consortium were analyzed postmortem (up to 24 h postdose). ARV concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), drug transporter concentrations were measured with LC-MS proteomics, and protein binding in NHP spleens was determined by rapid equilibrium dialysis. Mice generally had the lowest splenic concentrations of the three species. Protein binding in splenic tissue was 6 to 96%, compared to 76 to 99% in blood plasma. NHPs had quantifiable Mrp4, Bcrp, and Ent1 concentrations, and humans had quantifiable ENT1 concentrations. None significantly correlated with tissue ARV concentrations. There was also no observable influence of infection status or sex. With these dosing strategies, NHP splenic penetration most closely resembled that of humans. These data can inform tissue pharmacokinetic scaling to humans to target HIV reservoirs by identifying important species-related differences.
Collapse
Affiliation(s)
- Aaron S Devanathan
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - John K Fallon
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Nicole R White
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Amanda P Schauer
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Brian Van Horne
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Kimberly Blake
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Craig Sykes
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Martina Kovarova
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | - Paul Luciw
- University of California, Davis, Davis, California, USA
| | - J Victor Garcia
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ramesh Akkina
- Colorado State University, Fort Collins, Colorado, USA
| | - Jason R Pirone
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Philip C Smith
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Angela D M Kashuba
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
Li N, Kulkarni P, Badrinarayanan A, Kefelegn A, Manoukian R, Li X, Prasad B, Karasu M, McCarty WJ, Knutson CG, Gupta A. P-glycoprotein Substrate Assessment in Drug Discovery: Application of Modeling to Bridge Differential Protein Expression Across In Vitro Tools. J Pharm Sci 2020; 110:325-337. [PMID: 32946896 DOI: 10.1016/j.xphs.2020.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (P-gp) efflux assay is an integral part of discovery screening, especially for drugs requiring brain penetration as P-gp efflux ratio (ER) inversely correlates with brain exposure. However, significant variability in P-gp ER generated across cell lines can lead to misclassification of a P-gp substrate and subsequently disconnect with brain exposure data. We hypothesized that the ER depends on P-gp protein expression level in the in vitro assay. Quantitative proteomics and immunofluorescence staining were utilized to characterize P-gp protein expression and localization in four recombinant cell lines, over-expressing human or mouse P-gp isoforms, followed by functional evaluation. Efflux data generated in each cell line was compared against available rodent brain distribution data. The results suggested that the cell line with highest P-gp expression (hMDCK-MDR1 sourced from NIH) led to greatest dynamic range for efflux; thus, proving to be the most sensitive model to predict brain penetration. Cell lines with lower P-gp expression exhibited the greatest tendency for compound-dependent in vitro efflux saturation leading to false negative results. Ultimately, P-gp kinetics were characterized using a compartmental model to generate system-independent parameters to resolve such discrepancy. This study highlights the need for careful choice of well characterized P-gp in vitro tools and utility of modeling techniques to enable appropriate interpretation of the data.
Collapse
Affiliation(s)
- Na Li
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Priyanka Kulkarni
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Akshay Badrinarayanan
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Adey Kefelegn
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Raffi Manoukian
- Department of Cytometry Sciences, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Xingwen Li
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Matthew Karasu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - William J McCarty
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Charles G Knutson
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA
| | - Anshul Gupta
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Kumar V, Li CY, Ishida K, Kis E, Gáborik Z, Unadkat JD. Pitfalls in Predicting Hepatobiliary Drug Transport Using Human Sandwich-Cultured Hepatocytes. AAPS JOURNAL 2020; 22:110. [DOI: 10.1208/s12248-020-00496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/01/2020] [Indexed: 01/13/2023]
|
32
|
Guo C, Brouwer KR, Stewart PW, Mosley C, Brouwer KLR. Probe Cocktail to Assess Transporter Function in Sandwich-Cultured Human Hepatocytes. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2020; 22:567-575. [PMID: 31804919 DOI: 10.18433/jpps30706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Probe substrates are used routinely to assess transporter function in vitro. Administration of multiple probe substrates together as a "cocktail" in sandwich-cultured human hepatocytes (SCHH) could increase the throughput of transporter function assessment in a physiologically-relevant in vitro system. This study was designed to compare transporter function between cocktail and single agent administration in SCHH. METHODS Rosuvastatin, digoxin, and metformin were selected as probe substrates of hepatic transporters OATP1B1, OATP1B3, BCRP, P-gp, and OCT1. Total accumulation (Cells+Bile) and biliary excretion index (BEI) values derived from administration of the cocktail were compared to values obtained after administration of single agents in the absence and presence of a model inhibitor, erythromycin estolate. RESULTS For rosuvastatin and metformin accumulation, the ratio of means [90% confidence interval (CI)] for cocktail to single agent administration was 100% [94%, 106%] and 90% [82%, 99%], respectively. Therefore, the cocktail and single-agent mode of administration were deemed equivalent per standard equivalence criterion of 80-120% for rosuvastatin and metformin accumulation, but not for digoxin accumulation (77% [62%, 92%]). The ratio of means [90% CI] for rosuvastatin BEI values between the two administration modes (105% [97%, 114%]) also was deemed equivalent. The ratio for digoxin BEI values between the two administration modes was 99% [78%, 120%]. In the presence of erythromycin estolate, the two administration modes were deemed equivalent for evaluation of rosuvastatin, digoxin, and metformin accumulation; the ratio of means [90% CI] was 104% [94%, 115%], 94% [82%, 105%], and 100% [88%, 111%], respectively. However, rosuvastatin and digoxin BEI values were low and quite variable in the presence of the inhibitor, so the BEI results were inconclusive. CONCLUSIONS These data suggest that rosuvastatin and metformin can be administered as a cocktail to evaluate the function of OATP1B1, OATP1B3, BCRP, and OCT1 in SCHH, and that digoxin may not be an ideal component of such a cocktail.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | | | | |
Collapse
|
33
|
Achour B, Al-Majdoub ZM, Rostami-Hodjegan A, Barber J. Mass Spectrometry of Human Transporters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:223-247. [PMID: 32084322 DOI: 10.1146/annurev-anchem-091719-024553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transporters are key to understanding how an individual will respond to a particular dose of a drug. Two patients with similar systemic concentrations may have quite different local concentrations of a drug at the required site. The transporter profile of any individual depends upon a variety of genetic and environmental factors, including genotype, age, and diet status. Robust models (virtual patients) are therefore required and these models are data hungry. Necessary data include quantitative transporter profiles at the relevant organ. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is currently the most powerful method available for obtaining this information. Challenges include sourcing the tissue, isolating the hydrophobic membrane-embedded transporter proteins, preparing the samples for MS (including proteolytic digestion), choosing appropriate quantification methodology, and optimizing the LC-MS/MS conditions. Great progress has been made with all of these, especially within the last few years, and is discussed here.
Collapse
Affiliation(s)
- Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
- Certara, Princeton, New Jersey 08540, USA
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
34
|
A novel mass spectrometry method for the absolute quantification of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in the human liver. Anal Bioanal Chem 2020; 412:1729-1740. [PMID: 32030490 DOI: 10.1007/s00216-020-02445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/22/2019] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Cytochrome P450 (CYP450) and 5'-diphosphate glucuronosyltransferases (UGT) are the two major families of drug-metabolizing enzymes in the human liver microsome (HLM). As a result of their frequent abundance fluctuation among populations, the accurate quantification of these enzymes in different individuals is important for designing patient-specific dosage regimens in the framework of precision medicine. The preparation and quantification of internal standards is an essential step for the quantitative analysis of enzymes. However, the commonly employed stable isotope labeling-based strategy (QconCAT) suffers from requiring very expensive isotopic reagents, tedious experimental procedures, and long labeling times. Furthermore, arginine-to-proline conversion during metabolic isotopic labeling compromises the quantification accuracy. Therefore, we present a new strategy that replaces stable isotope-labeled amino acids with lanthanide labeling for the preparation and quantification of QconCAT internal standard peptides, which leads to a threefold reduction in the reagent costs and a fivefold reduction in the time consumed. The absolute amount of trypsin-digested QconCAT peptides can be obtained by lanthanide labeling and inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis with a high quantification accuracy (%RE < 20%). By taking advantage of the highly selective and facile ICP-OES procedure and multiplexed large-scale absolute target protein quantification using biological mass spectrometry, this strategy was successfully used for the absolute quantification of drug-metabolizing enzymes. We obtained good linearity (correlation coefficient > 0.95) over concentrations spanning 2.5 orders of magnitude with improved sensitivity (limit of quantification = 2 fmol) in nine HLM samples, indicating the potential of this method for large-scale absolute target protein quantification in clinical samples. Graphical abstract.
Collapse
|
35
|
Ito K, Sjöstedt N, Brouwer KLR. Mechanistic Modeling of the Hepatic Disposition of Estradiol-17 β-Glucuronide in Sandwich-Cultured Human Hepatocytes. Drug Metab Dispos 2020; 48:116-122. [PMID: 31744810 PMCID: PMC6978695 DOI: 10.1124/dmd.119.088898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022] Open
Abstract
Estradiol-17β-glucuronide (E217G) is an estrogen metabolite that has cholestatic properties. In humans, circulating E217G is transported into hepatocytes by organic anion transporting polypeptides (OATPs) and is excreted into bile by multidrug-resistance associated protein 2 (MRP2). E217G is also a substrate of the basolateral efflux transporters MRP3 and MRP4, which translocate E217G from hepatocytes to blood. However, the contribution of basolateral efflux to hepatocyte disposition of E217G has not been evaluated previously. To address this question, E217G disposition was studied in sandwich-cultured human hepatocytes and mechanistic modeling was applied to calculate clearance values (mean ± S.D.) for uptake, intrinsic biliary excretion (CLint,bile) and intrinsic basolateral efflux (CLint,BL). The biliary excretion index of E217G was 45% ± 6%. The CLint,BL of E217G [0.18 ± 0.03 (ml/min)/g liver) was 1.6-fold higher than CLint,bile [0.11 ± 0.06 (ml/min)/g liver]. Simulations were performed to study the effects of increased CLint,BL and a concomitant decrease in CLint,bile on hepatic E217G exposure. Results demonstrated that increased CLint,BL can effectively reduce hepatocellular and biliary exposure to this potent cholestatic agent. Simulations also revealed that basolateral efflux can compensate for impaired biliary excretion and, vice versa, to avoid accumulation of E217G in hepatocytes. However, when both clearance processes are impaired by 90%, hepatocyte E217G exposure increases up to 10-fold. These data highlight the contribution of basolateral efflux transport, in addition to MRP2-mediated biliary excretion, to E217G disposition in human hepatocytes. This elimination route could be important, especially in cases where basolateral efflux is induced, such as cholestasis. SIGNIFICANCE STATEMENT: The disposition of the cholestatic estrogen metabolite estradiol-17β-glucuronide (E217G) was characterized in sandwich-cultured human hepatocytes. The intrinsic basolateral efflux clearance was estimated to be 1.6-fold higher than the intrinsic biliary excretion clearance, emphasizing the contribution of basolateral elimination in addition to biliary excretion. Simulations highlight how hepatocytes can effectively cope with increased E217G through the regulation of both basolateral and biliary transporters.
Collapse
Affiliation(s)
- Katsuaki Ito
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| |
Collapse
|
36
|
Nozaki Y, Izumi S. Recent advances in preclinical in vitro approaches towards quantitative prediction of hepatic clearance and drug-drug interactions involving organic anion transporting polypeptide (OATP) 1B transporters. Drug Metab Pharmacokinet 2020; 35:56-70. [DOI: 10.1016/j.dmpk.2019.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/29/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
|
37
|
Quantitative mass spectrometry-based proteomics in the era of model-informed drug development: Applications in translational pharmacology and recommendations for best practice. Pharmacol Ther 2019; 203:107397. [DOI: 10.1016/j.pharmthera.2019.107397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
|
38
|
Prasad B, Achour B, Artursson P, Hop CECA, Lai Y, Smith PC, Barber J, Wisniewski JR, Spellman D, Uchida Y, Zientek M, Unadkat JD, Rostami-Hodjegan A. Toward a Consensus on Applying Quantitative Liquid Chromatography-Tandem Mass Spectrometry Proteomics in Translational Pharmacology Research: A White Paper. Clin Pharmacol Ther 2019; 106:525-543. [PMID: 31175671 PMCID: PMC6692196 DOI: 10.1002/cpt.1537] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Quantitative translation of information on drug absorption, disposition, receptor engagement, and drug-drug interactions from bench to bedside requires models informed by physiological parameters that link in vitro studies to in vivo outcomes. To predict in vivo outcomes, biochemical data from experimental systems are routinely scaled using protein quantity in these systems and relevant tissues. Although several laboratories have generated useful quantitative proteomic data using state-of-the-art mass spectrometry, no harmonized guidelines exit for sample analysis and data integration to in vivo translation practices. To address this gap, a workshop was held on September 27 and 28, 2018, in Cambridge, MA, with 100 experts attending from academia, the pharmaceutical industry, and regulators. Various aspects of quantitative proteomics and its applications in translational pharmacology were debated. A summary of discussions and best practices identified by this expert panel are presented in this "White Paper" alongside unresolved issues that were outlined for future debates.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - Philip C Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jacek R Wisniewski
- Biochemical Proteomics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Spellman
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, PA
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
- Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield, UK
| |
Collapse
|
39
|
Khatri R, Fallon JK, Rementer RJB, Kulick NT, Lee CR, Smith PC. Targeted quantitative proteomic analysis of drug metabolizing enzymes and transporters by nano LC-MS/MS in the sandwich cultured human hepatocyte model. J Pharmacol Toxicol Methods 2019; 98:106590. [PMID: 31158457 PMCID: PMC6701468 DOI: 10.1016/j.vascn.2019.106590] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/30/2019] [Accepted: 05/25/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sandwich-cultured human hepatocytes (SCHHs) are the most common in vitro hepatocyte model used for studying hepatic drug disposition and hepatotoxicity. Targeted quantification of key DME and transporter protein expression is useful for in vitro-in vivo extrapolation of drug and xenobiotic clearance and developing corresponding PBPK models. However, established methods for comprehensive quantification of drug metabolizing enzyme (DMEs) and transporter expression in SCHHs are lacking. In this study, a targeted quantitative proteomic isotope dilution nanoLC-MS/MS method developed in our laboratory was adapted to quantify a panel of phase I & II DMEs and transporter proteins in SCHHs under basal and induced conditions. METHODS SCHHs were treated with known inducers of DMEs (Rifampin: PXR activator, CITCO: CAR activator) and transporters (CDCA: FXR activator) or with vehicle control (DMSO) for 72 h. Membrane protein was isolated from the SCHHs using a membrane extraction kit and 30 μg membrane protein was digested with trypsin. The resulting peptides were analyzed by isotope dilution nanoLC-MS/MS to quantify the DMEs and transporters. RESULTS Using the method, we could quantify fourteen phase I and ten phase II DMEs, and twelve uptake/efflux transporters, under basal and induced conditions in the SCHHs. Analysis showed donor to donor variation in basal protein levels of CYP450s, UGTs and transporters, and that basal protein expression of CYP450s and UGTs was higher than that of transporters. In addition, induction of key proteins in response to rifampin, CITCO and CDCA was observed. DISCUSSION We have successfully quantified protein abundance of multiple phase I and II DMEs and uptake and efflux transporters in SCHHs using a method previously developed in our laboratory. Our method is sufficiently sensitive to quantify inter-donor differences in protein concentrations at the basal level as well as changes in protein expression in response to endogenous and exogenous stimuli.
Collapse
Affiliation(s)
- Raju Khatri
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Rebecca J B Rementer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Natasha T Kulick
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America.
| |
Collapse
|