1
|
DeBonis J, Veiseh O, Igoshin OA. Uncovering the interleukin-12 pharmacokinetic desensitization mechanism and its consequences with mathematical modeling. CPT Pharmacometrics Syst Pharmacol 2024. [PMID: 39415353 DOI: 10.1002/psp4.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
The cytokine interleukin-12 (IL-12) is a potential immunotherapy because of its ability to induce a Th1 immune response. However, success in the clinic has been limited due to a phenomenon called IL-12 desensitization - the trend where repeated exposure to IL-12 leads to reduced IL-12 concentrations (pharmacokinetics) and biological effects (pharmacodynamics). Here, we investigated IL-12 pharmacokinetic desensitization via a modeling approach to (i) validate proposed mechanisms in literature and (ii) develop a mathematical model capable of predicting IL-12 pharmacokinetic desensitization. Two potential causes of IL-12 pharmacokinetic desensitization were identified: increased clearance or reduced bioavailability of IL-12 following repeated doses. Increased IL-12 clearance was previously proposed to occur due to the upregulation of IL-12 receptor on T cells that causes increased receptor-mediated clearance in the serum. However, our model with this mechanism, the accelerated-clearance model, failed to capture trends in clinical trial data. Alternatively, our novel reduced-bioavailability model assumed that upregulation of IL-12 receptor on T cells in the lymphatic system leads to IL-12 sequestration, inhibiting the transport to the blood. This model accurately fits IL-12 pharmacokinetic data from three clinical trials, supporting its biological relevance. Using this model, we analyzed the model parameter space to illustrate that IL-12 desensitization occurs over a robust range of parameter values and to identify the conditions required for desensitization. We next simulated local, continuous IL-12 delivery and identified several methods to mitigate systemic IL-12 exposure. Ultimately, our results provide quantitative validation of our proposed mechanism and allow for accurate prediction of IL-12 pharmacokinetics over repeated doses.
Collapse
Affiliation(s)
- Jonathon DeBonis
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
| |
Collapse
|
2
|
Li B, Ouyang X, Liu Y, Ba Z, Yang Y, Zhang J, Yang P, Yang T, Wang Y, Zhao Y, Mao W, Zhong C, Liu H, Zhang Y, Gou S, Ni J. Novel β-Hairpin Antimicrobial Peptide Containing the β-Turn Sequence of -NG- and the Tryptophan Zippers Facilitate Self-Assembly into Nanofibers, Exhibiting Excellent Antimicrobial Performance. J Med Chem 2024; 67:6365-6383. [PMID: 38436574 DOI: 10.1021/acs.jmedchem.3c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Antimicrobial peptides (AMPs) have emerged as promising agents to combat the antibiotic resistance crisis due to their rapid bactericidal activity and low propensity for drug resistance. However, AMPs face challenges in terms of balancing enhanced antimicrobial efficacy with increased toxicity during modification processes. In this study, de novo d-type β-hairpin AMPs are designed. The conformational transformation of self-assembling peptide W-4 in the environment of the bacterial membrane and the erythrocyte membrane affected its antibacterial activity and hemolytic activity and finally showed a high antibacterial effect and low toxicity. Furthermore, W-4 displays remarkable stability, minimal occurrence of drug resistance, and synergistic effects when combined with antibiotics. The in vivo studies confirm its high safety and potent wound-healing properties at the sites infected by bacteria. This study substantiates that nanostructured AMPs possess enhanced biocompatibility. These advances reveal the superiority of self-assembled AMPs and contribute to the development of nanoantibacterial materials.
Collapse
Affiliation(s)
- Beibei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yao Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zufang Ba
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yinyin Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingting Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhuan Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Hui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
3
|
Datta-Mannan A, Choi H, Jin Z, Liu L, Lu J, Stokell DJ, Murphy AT, Dunn KW, Martinez MM, Feng Y. Reducing target binding affinity improves the therapeutic index of anti-MET antibody-drug conjugate in tumor bearing animals. PLoS One 2024; 19:e0293703. [PMID: 38630694 PMCID: PMC11023234 DOI: 10.1371/journal.pone.0293703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 04/19/2024] Open
Abstract
Many oncology antibody-drug conjugates (ADCs) have failed to demonstrate efficacy in clinic because of dose-limiting toxicity caused by uptake into healthy tissues. We developed an approach that harnesses ADC affinity to broaden the therapeutic index (TI) using two anti-mesenchymal-epithelial transition factor (MET) monoclonal antibodies (mAbs) with high affinity (HAV) or low affinity (LAV) conjugated to monomethyl auristatin E (MMAE). The estimated TI for LAV-ADC was at least 3 times greater than the HAV-ADC. The LAV- and HAV-ADCs showed similar levels of anti-tumor activity in the xenograft model, while the 111In-DTPA studies showed similar amounts of the ADCs in HT29 tumors. Although the LAV-ADC has ~2-fold slower blood clearance than the HAV-ADC, higher liver toxicity was observed with HAV-ADC. While the SPECT/CT 111In- and 124I- DTPA findings showed HAV-ADC has higher accumulation and rapid clearance in normal tissues, intravital microscopy (IVM) studies confirmed HAV mAb accumulates within hepatic sinusoidal endothelial cells while the LAV mAb does not. These results demonstrated that lowering the MET binding affinity provides a larger TI for MET-ADC. Decreasing the affinity of the ADC reduces the target mediated drug disposition (TMDD) to MET expressed in normal tissues while maintaining uptake/delivery to the tumor. This approach can be applied to multiple ADCs to improve the clinical outcomes.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Exploratory Medicine and Pharmacology, Lilly Corporate Center, Indianapolis, IN, United States of America
| | - Hiuwan Choi
- Bioproduct Research & Development, Lilly Technology Center North, Indianapolis, IN, United States of America
| | - Zhaoyan Jin
- Drug Disposition/Commercialization, Lilly Corporate Center, Indianapolis, IN, United States of America
| | - Ling Liu
- Biotechnology Discovery Research, Lilly Technology Center North, Indianapolis, IN, United States of America
| | - Jirong Lu
- Biotechnology Discovery Research, Lilly Technology Center North, Indianapolis, IN, United States of America
| | - David J. Stokell
- Biotechnology Discovery Research, Lilly Technology Center North, Indianapolis, IN, United States of America
| | - Anthony T. Murphy
- Drug Disposition/Commercialization, Lilly Corporate Center, Indianapolis, IN, United States of America
| | - Kenneth W. Dunn
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Michelle M. Martinez
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yiqing Feng
- Biotechnology Discovery Research, Lilly Technology Center North, Indianapolis, IN, United States of America
| |
Collapse
|
4
|
Bei R, Thomas J, Kapur S, Woldeyes M, Rauk A, Robarge J, Feng J, Abbou Oucherif K. Predicting the clinical subcutaneous absorption rate constant of monoclonal antibodies using only the primary sequence: a machine learning approach. MAbs 2024; 16:2352887. [PMID: 38745390 PMCID: PMC11110684 DOI: 10.1080/19420862.2024.2352887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Subcutaneous injections are an increasingly prevalent route of administration for delivering biological therapies including monoclonal antibodies (mAbs). Compared with intravenous delivery, subcutaneous injections reduce administration costs, shorten the administration time, and are strongly preferred from a patient experience point of view. An understanding of the absorption process of a mAb from the injection site to the systemic circulation is critical to the process of subcutaneous mAb formulation development. In this study, we built a model to predict the absorption rate constant (ka), which denotes how fast a mAb is absorbed from the site of administration. Once trained, our model (enabled by the XGBoost algorithm in machine learning) can predict the ka of a mAb following a subcutaneous injection using in silico molecular properties alone (generated from the primary sequence). Our model does not need clinically observed plasma concentration-time data; this is a novel capability not previously achieved in predictive pharmacokinetic models. The model also showed improved performance when benchmarked against a recently reported mechanistic model that relied on clinical data to predict subcutaneous absorption of mAbs. We further interpreted the model to understand which molecular properties affect the absorption rate and showed that our findings are consistent with previous studies evaluating subcutaneous absorption through direct experimentation. Taken altogether, this study reports the development, validation, benchmarking, and interpretation of a model that can predict the clinical ka of a mAb using its primary sequence as the only input.
Collapse
Affiliation(s)
- Ronghua Bei
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, USA
| | - Justin Thomas
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, USA
| | - Shiven Kapur
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mahlet Woldeyes
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, USA
| | - Adam Rauk
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jason Robarge
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jiangyan Feng
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kaoutar Abbou Oucherif
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
5
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Su X, Huang Z, Xu W, Wang Q, Xing L, Lu L, Jiang S, Xia S. IgG Fc-Binding Peptide-Conjugated Pan-CoV Fusion Inhibitor Exhibits Extended In Vivo Half-Life and Synergistic Antiviral Effect When Combined with Neutralizing Antibodies. Biomolecules 2023; 13:1283. [PMID: 37759683 PMCID: PMC10526447 DOI: 10.3390/biom13091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The peptide-based pan-coronavirus fusion inhibitor EK1 is in phase III clinical trials, and it has, thus far, shown good clinical application prospects against SARS-CoV-2 and its variants. To further improve its in vivo long-acting property, we herein developed an Fc-binding strategy by conjugating EK1 with human immunoglobulin G Fc-binding peptide (IBP), which can exploit the long half-life advantage of IgG in vivo. The newly engineered peptide IBP-EK1 showed potent and broad-spectrum inhibitory activity against SARS-CoV-2 and its variants, including various Omicron sublineages and other human coronaviruses (HCoVs) with low cytotoxicity. In mouse models, IBP-EK1 possessed potent prophylactic and therapeutic efficacy against lethal HCoV-OC43 challenge, and it showed good safety profile and low immunogenicity. More importantly, IBP-EK1 exhibited a significantly extended in vivo half-life in rhesus monkeys of up to 37.7 h, which is about 20-fold longer than that reported for EK1. Strikingly, IBP-EK1 displayed strong in vitro or ex vivo synergistic anti-HCoV effect when combined with monoclonal neutralizing antibodies, including REGN10933 or S309, suggesting that IBP-conjugated EK1 can be further developed as a long-acting, broad-spectrum anti-HCoV agent, either alone or in combination with neutralizing antibodies, to combat the current COVID-19 pandemic or future outbreaks caused by emerging and re-emerging highly pathogenic HCoVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai 200032, China; (X.S.); (Z.H.); (W.X.); (Q.W.); (L.X.); (L.L.)
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai 200032, China; (X.S.); (Z.H.); (W.X.); (Q.W.); (L.X.); (L.L.)
| |
Collapse
|
7
|
M Morris N, A Blee J, Hauert S. Global parameter optimisation and sensitivity analysis of antivenom pharmacokinetics and pharmacodynamics. Toxicon 2023; 232:107206. [PMID: 37356552 DOI: 10.1016/j.toxicon.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In recent years it has become possible to design snakebite antivenoms with diverse pharmacokinetic properties. Owing to the pharmacokinetic variability of venoms, the choice of antivenom scaffold may influence a treatment's neutralisation coverage. Computation offers a useful medium through which to assess the pharmacokinetics and pharmacodynamics of envenomation-treatment systems, as antivenoms with identical neutralising capacities can be simulated. In this study, we simulate envenomation and treatment with a variety of antivenoms, to define the properties of effective antivenoms. Systemic envenomation and treatment were described using a two-compartment pharmacokinetic model. Treatment of Naja sumatrana and Cryptelytrops purpureomaculatus envenomation was simulated with a set of 200,000 theoretical antivenoms across 10 treatment time delays. These two venoms are well-characterised and have differing pharmacokinetic properties. The theoretical antivenom set varied across molecular weight, dose, kon, koff, and valency. The best and worst treatments were identified using an area under the curve metric, and a global sensitivity analysis was performed to quantify the influence of the input parameters on treatment outcome. The simulations show that scaffolds of diverse molecular formats can be effective. Molecular weight and valency have a negligible direct impact on treatment outcome, however low molecular weight scaffolds offer more flexibility across the other design parameters, particularly when treatment is delayed. The simulations show kon to primarily mediate treatment efficacy, with rates above 105 M-1s-1 required for the most effective treatments. koff has the greatest impact on the performance of less effective scaffolds. While the same scaffold preferences for improved treatment are seen for both model snakes, the parameter bounds for C. purpureomaculatus envenomation are more constrained. This paper establishes a computational framework for the optimisation of antivenom design.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
8
|
Prabaharan CB, Giri S, Allen KJH, Bato KEM, Mercado TR, Malo ME, Carvalho JLC, Dadachova E, Uppalapati M. Comparative Molecular Characterization and Pharmacokinetics of IgG1-Fc and Engineered Fc Human Antibody Variants to Insulin-like Growth Factor 2 Receptor (IGF2R). Molecules 2023; 28:5839. [PMID: 37570809 PMCID: PMC10420659 DOI: 10.3390/molecules28155839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Novel therapeutic approaches are much needed for the treatment of osteosarcoma. Targeted radionuclide therapy (TRT) and radioimmunotherapy (RIT) are promising approaches that deliver therapeutic radiation precisely to the tumor site. We have previously developed a fully human antibody, named IF3, that binds to insulin-like growth factor 2 receptor (IGF2R). IF3 was used in TRT to effectively inhibit tumor growth in osteosarcoma preclinical models. However, IF3's relatively short half-life in mice raised the need for improvement. We generated an Fc-engineered version of IF3, termed IF3δ, with amino acid substitutions known to enhance antibody half-life in human serum. In this study, we confirmed the specific binding of IF3δ to IGF2R with nanomolar affinity, similar to wild-type IF3. Additionally, IF3δ demonstrated binding to human and mouse neonatal Fc receptors (FcRn), indicating the potential for FcRn-mediated endocytosis and recycling. Biodistribution studies in mice showed a higher accumulation of IF3δ in the spleen and bone than wild-type IF3, likely attributed to abnormal spleen expression of IGF2R in mice. Therefore, the pharmacokinetics data from mouse xenograft models may not precisely reflect their behavior in canine and human patients. However, the findings suggest both IF3 and IF3δ as promising options for the RIT of osteosarcoma.
Collapse
Affiliation(s)
- Chandra B. Prabaharan
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Sabeena Giri
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.G.); (K.J.H.A.); (M.E.M.); (J.L.C.C.)
| | - Kevin J. H. Allen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.G.); (K.J.H.A.); (M.E.M.); (J.L.C.C.)
| | - Katrina E. M. Bato
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (K.E.M.B.); (T.R.M.)
| | - Therese R. Mercado
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (K.E.M.B.); (T.R.M.)
| | - Mackenzie E. Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.G.); (K.J.H.A.); (M.E.M.); (J.L.C.C.)
| | - Jorge L. C. Carvalho
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.G.); (K.J.H.A.); (M.E.M.); (J.L.C.C.)
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (S.G.); (K.J.H.A.); (M.E.M.); (J.L.C.C.)
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
9
|
Tyagi P, Harper G, McGeehan P, Davis SP. Current status and prospect for future advancements of long-acting antibody formulations. Expert Opin Drug Deliv 2023; 20:895-903. [PMID: 37249542 DOI: 10.1080/17425247.2023.2219445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Biologics, especially monoclonal antibodies (mAbs), have become a major class of therapeutics in recent years addressing the needs of millions of patients and becoming one of the best-selling treatments in the pharmaceutical market. A wide range of multifaceted chronic diseases have benefitted from antibody therapeutics. Long-term treatment for chronic diseases with mAb therapies can mean a lifetime of frequent injections. Technologies that can minimize the total number of injections present meaningful value to patients and the companies that develop them. AREAS COVERED This review summarizes the challenges encountered during the development of long-acting versions of mAbs. The focus will be on questions addressed during drug product development, delivery device selection, business implications, and understanding the market potential of long-acting presentations. EXPERT OPINION Long-acting drug delivery systems have reached the market for small molecules and peptides. However, these drug delivery systems, and their development lessons, cannot be extrapolated directly to antibodies. We must develop new delivery technologies suitable for biologics, identify critical attributes to capture dynamic changes in proteins during the encapsulation process, and develop analytical processes to evaluate long-term stability.
Collapse
Affiliation(s)
- Puneet Tyagi
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Garrett Harper
- Insights & Analytics, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Shawn P Davis
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
10
|
Novikoff A, Müller TD. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides 2023; 165:171003. [PMID: 36997003 PMCID: PMC10265134 DOI: 10.1016/j.peptides.2023.171003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Within recent decades glucagon receptor (GcgR) agonism has drawn attention as a therapeutic tool for the treatment of type 2 diabetes and obesity. In both mice and humans, glucagon administration enhances energy expenditure and suppresses food intake suggesting a promising metabolic utility. Therefore synthetic optimization of glucagon-based pharmacology to further resolve the physiological and cellular underpinnings mediating these effects has advanced. Chemical modifications to the glucagon sequence have allowed for greater peptide solubility, stability, circulating half-life, and understanding of the structure-function potential behind partial and "super"-agonists. The knowledge gained from such modifications has provided a basis for the development of long-acting glucagon analogues, chimeric unimolecular dual- and tri-agonists, and novel strategies for nuclear hormone targeting into glucagon receptor-expressing tissues. In this review, we summarize the developments leading toward the current advanced state of glucagon-based pharmacology, while highlighting the associated biological and therapeutic effects in the context of diabetes and obesity.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
11
|
Gonzalez-Bocco IH, Beluch K, Cho A, Lahoud C, Reyes FA, Moshovitis DG, Unger-Mochrie GM, Wang W, Hammond SP, Manne-Goehler J, Koo S. Safety and tolerability study of sotrovimab (VIR-7831) prophylaxis against COVID-19 infection in immunocompromised individuals with impaired SARS-CoV-2 humoral immunity. Pilot Feasibility Stud 2023; 9:100. [PMID: 37328890 PMCID: PMC10273764 DOI: 10.1186/s40814-023-01325-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Multiple vaccines have been approved since August 2021 to prevent infection with SARS-CoV-2; however, 20-40% of immunocompromised people fail to develop SARS-CoV-2 spike antibodies after COVID-19 vaccination and remain at high risk of infection and more severe illness than non-immunocompromised hosts. Sotrovimab (VIR-7831) is a monoclonal neutralizing antibody that binds a conserved epitope on the SARS-CoV-2 spike protein. It is neither renally excreted nor metabolized by P450 enzymes and therefore unlikely to interact with concomitant medications (e.g., immunosuppressive medications). In this open-label feasibility study protocol, we will define the optimal dose and dosing interval of sotrovimab as pre-exposure prophylaxis for immunocompromised individuals as well as its safety and tolerability in this population specifically. METHODS We will enroll 93 eligible immunocompromised adults with a negative or low-positive (< 50 U/mL) SARS-CoV-2 spike antibody. In phase 1, the first 10 patients will participate in a lead-in pharmacokinetics (PK) cohort study to determine the optimal dosing interval. Phase 2 will expand this population to 50 participants to examine rates of infusion-related reactions (IRR) with a 30-min 500 mg sotrovimab IV infusion. Phase 3 will be an expansion cohort for further assessment of the safety and tolerability of sotrovimab. In phase 4, the first 10 patients receiving 2000 mg IV of sotrovimab on the second sotrovimab infusion day will comprise a lead-in safety cohort that will inform the duration of observation following administration of the drug. The patients will be followed for safety and COVID-19 events for 36 weeks after the second dose. DISCUSSION In a previous phase III randomized, placebo-controlled pivotal trial, there were no significant differences in the prevalence of adverse events in patients receiving sotrovimab vs. placebo. Thus, we propose an open-label feasibility study protocol of sotrovimab as pre-exposure prophylaxis for immunocompromised individuals to evaluate its PK in immunocompromised individuals with impaired SARS-CoV-2 humoral immunity and define optimal dosing intervals. We also aim to determine COVID-19 infections over the study period and self-reported quality of life measures throughout the study. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05210101.
Collapse
Affiliation(s)
- Isabel H Gonzalez-Bocco
- Division of Infectious Disease, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Katherine Beluch
- Division of Infectious Disease, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
| | - Alyssa Cho
- Division of Infectious Disease, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
| | - Chloe Lahoud
- Division of Infectious Disease, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fabiola A Reyes
- Division of Infectious Disease, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dimitrios G Moshovitis
- Division of Infectious Disease, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Wei Wang
- Harvard Medical School, Boston, MA, USA
- Medicine Department, Brigham and Women's Hospital, Boston, MA, USA
| | - Sarah P Hammond
- Division of Infectious Disease, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer Manne-Goehler
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Sophia Koo
- Division of Infectious Disease, Dana-Farber Cancer Institute, Boston, MA, USA.
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Zou P. Predicting Human Bioavailability of Subcutaneously Administered Fusion Proteins and Monoclonal Antibodies Using Human Intravenous Clearance or Antibody Isoelectric Point. AAPS J 2023; 25:31. [PMID: 36959523 DOI: 10.1208/s12248-023-00798-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/25/2023] Open
Abstract
There has been an increasing trend towards subcutaneous (SC) delivery of fusion proteins and monoclonal antibodies (mAbs) in recent years versus intravenous (IV) administration. The prediction of bioavailability is one of the major barriers in clinical translation of SC-administered therapeutic proteins due to a lack of reliable in vitro and preclinical in vivo predictive models. In this study, we explored the relationships between human SC bioavailability and physicochemical or pharmacokinetic properties of 19 Fc- or albumin-fusion proteins and 98 monoclonal antibodies. An inverse linear correlation was observed between human SC bioavailability and intravenous clearance (CL) or isoelectric point (pI). Multivariate regression models were developed using intravenous CL and pI of a training set (N = 59) as independent variables. The predictive models of mAbs were validated with an independent test set (N = 33). Two linear regression models resulted in 24 (73%) and 27 (82%) among 33 predictions within 0.8- to 1.2-fold deviations. Due to the small sample size of dataset, regression model validation was not conducted for fusion proteins. Overall, this study demonstrated that CL- and pI-based multivariate regression models could be used to predict human SC bioavailability of mAbs.
Collapse
Affiliation(s)
- Peng Zou
- Quantitative Clinical Pharmacology, Daiichi Sankyo, Inc., 211 Mt. Airy Road, Basking Ridge, New Jersey, 07920, USA.
| |
Collapse
|
14
|
Nedved A, Maddocks K, Nowakowski GS. Clinical Treatment Guidelines for Tafasitamab Plus Lenalidomide in Patients with Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Oncologist 2023; 28:199-207. [PMID: 36648324 PMCID: PMC10020798 DOI: 10.1093/oncolo/oyac256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/27/2022] [Indexed: 01/18/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) accounts for approximately 24% of new cases of B-cell non-Hodgkin lymphoma in the US each year. Up to 50% of patients relapse or are refractory (R/R) to the standard first-line treatment option, R-CHOP. The anti-CD19 monoclonal antibody tafasitamab, in combination with lenalidomide (LEN), is an NCCN preferred regimen for transplant-ineligible patients with R/R DLBCL and received accelerated approval in the US (July 2020) and conditional marketing authorization in Europe (August 2021) and other countries, based on data from the L-MIND study. The recommended dose of tafasitamab is 12 mg/kg by intravenous infusion, administered in combination with LEN 25 mg for 12 cycles, followed by tafasitamab monotherapy until disease progression or unacceptable toxicity. Tafasitamab + LEN is associated with durable responses in patients with R/R DLBCL. The majority of clinically significant treatment-associated adverse events are attributable to LEN and can be managed with dose modification and supportive therapy. We provide guidelines for the management of patients with R/R DLBCL treated with tafasitamab and LEN in routine clinical practice, including elderly patients and those with renal and hepatic impairment, and advice regarding patient education as part of a comprehensive patient engagement plan. Our recommendations include LEN administration at a reduced dose if required in patients unable to tolerate the recommended dose. No dose modification is required for tafasitamab in special patient populations.
Collapse
Affiliation(s)
| | - Kami Maddocks
- Arthur G. James Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Grzegorz S Nowakowski
- Corresponding author: Grzegorz S. Nowakowski, MD, Division of Hematology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
15
|
Hettie KS, Chin FT. NIRDye 812: A molecular platform tailored for multimodal bioimaging applications of targeted fluorescence- and photoacoustic-guided surgery. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112683. [PMID: 36934549 DOI: 10.1016/j.jphotobiol.2023.112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The primary treatment for malignant tumors remains to be surgical removal of the diseased tissue. The presence or absence of residual diseased tissue at the tumor margin is the strongest predictor of postoperative prognosis and recurrence. Accordingly, reliance on the ability of surgeons to visually distinguish diseased tissue from healthy tissue unambiguously in real time is crucial. Near infrared-I (NIRI) fluorescence-emitting targeting biomolecular constructs such as anticancer antibody-fluorophore conjugates, namely cetuximab-IRDye® 800CW (CTB-IRDye® 800CW), are FDA-approved for clinical trial usage in the fluorescence-guided resection of diseased tissue due to affording improved direct visualization of tumor tissue when compared to the use of either the unaided eye under standard white light illumination (WLI) surgical techniques or non-targeting fluorophores. Unfortunately, though helpful, CTB-IRDye® 800CW affords limited (i) identification of diseased tissue and (ii) tumor margin delineation, because the immunoconjugate generates suboptimal tumor-to-background ratios (TBRs) as a result of its spectral/photophysical profiles poorly aligning with the fixed optical windows of pre-/clinical setups. As such, CTB-IRDye® 800CW is more prone to affording incomplete resection compared to if TBRs were higher due to otherwise. To aid in accurately identifying deep-seated diseased tissue, photoacoustic (PA) tomography has been implemented alongside CTB-IRDye® 800CW to achieve PA signals that could result in higher TBRs. However, in clinical trial practice, using IRDye® 800CW for PA imaging also yields subpar TBRs due to it affording low PA signals. To overcome such limitations, we developed NIRDye 812, a structurally-modified topological equivalent of IRDye® 800CW, to confer it the capability to yield both higher TBRs and superior PA signal than that of the equivalent CTB-conjugate and fluorophore IRDye® 800CW itself, respectively. To do so, we substituted the oxygen atom at its meso-position with a sulfur atom. CTB-NIRDye 812 demonstrated a red-shifted absorption wavelength at 796 nm and a peak NIR-I fluorescence emission wavelength at 820 nm, which better dovetails with the fixed windows of preinstalled fixed emission filters within commercial pre-/clinical NIR-I fluorescence imaging instruments. Overall, CTB-NIRDye 812 provided a ∼ 2-fold increase in TBRs compared to those of CTB-IRDye® 800CW in vivo. Also, NIRDye 812 displayed an ∼60% higher PA signal than that of IRDye® 800CW. Collectively, we achieved our goal of improving upon the spectral/photophysical and PA properties of IRDye® 800CW via introducing a subtle modification to its electronic core such that its CTB immunoconjugate could potentially allow for fast track or breakthrough designation by the FDA due to its near-identical structure displaying considerably improved efficacy.
Collapse
Affiliation(s)
- Kenneth S Hettie
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA 94305, USA.
| | - Frederick T Chin
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Datta-Mannan A, Molitoris BA, Feng Y, Martinez MM, Sandoval RM, Brown RM, Merkel D, Croy JE, Dunn KW. Intravital Microscopy Reveals Unforeseen Biodistribution Within the Liver and Kidney Mechanistically Connected to the Clearance of a Bifunctional Antibody. Drug Metab Dispos 2023; 51:403-412. [PMID: 36460476 PMCID: PMC11022859 DOI: 10.1124/dmd.122.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Bifunctional antibody (BfAb) therapeutics offer the potential for novel functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including changes in pharmacokinetics that limit the compound's therapeutic profile. A better understanding of how molecular modifications affect in vivo tissue interactions could help inform BfAb design. The present studies were predicated on the observation that a BfAb designed to have minimal off-target interactions cleared from the circulation twice as fast as the monoclonal antibody (mAb) from which it was derived. The present study leverages the spatial and temporal resolution of intravital microscopy (IVM) to identify cellular interactions that may explain the different pharmacokinetics of the two compounds. Disposition studies of mice demonstrated that radiolabeled compounds distributed similarly over the first 24 hours, except that BfAb accumulated approximately two- to -three times more than mAb in the liver. IVM studies of mice demonstrated that both distributed to endosomes of liver endothelia but with different kinetics. Whereas mAb accumulated rapidly within the first hour of administration, BfAb accumulated only modestly during the first hour but continued to accumulate over 24 hours, ultimately reaching levels similar to those of the mAb. Although neither compound was freely filtered by the mouse or rat kidney, BfAb, but not mAb, was found to accumulate over 24 hours in endosomes of proximal tubule cells. These studies demonstrate how IVM can be used as a tool in drug design, revealing unpredicted cellular interactions that are undetectable by conventional analyses. SIGNIFICANCE STATEMENT: Bifunctional antibodies offer novel therapeutic functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including undesirable changes in pharmacokinetics. Studies of the dynamic distribution of a bifunctional antibody and its parent monoclonal antibody presented here demonstrate how intravital microscopy can expand our understanding of the in vivo disposition of therapeutics, detecting off-target interactions that could not be detected by conventional pharmacokinetics approaches or predicted by conventional physicochemical analyses.
Collapse
Affiliation(s)
- Amita Datta-Mannan
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| | - Bruce A Molitoris
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| | - Yiqing Feng
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| | - Michelle M Martinez
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| | - Ruben M Sandoval
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| | - Robin M Brown
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| | - Daniel Merkel
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| | - Johnny E Croy
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| | - Kenneth W Dunn
- Exploratory Medicine and Pharmacology (A.D-M.), Clinical Laboratory Services (R.M.B.), and Biotechnology Discovery Research (Y.F., D.M., J.E.C.), Lilly Research Laboratories, Indianapolis, Indiana and Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana (K.W.D.)
| |
Collapse
|
17
|
Homšek A, Spasić J, Nikolić N, Stanojković T, Jovanović M, Miljković B, Vučićević KM. Pharmacokinetic characterization, benefits and barriers of subcutaneous administration of monoclonal antibodies in oncology. J Oncol Pharm Pract 2023; 29:431-440. [PMID: 36349366 DOI: 10.1177/10781552221137702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Therapeutic monoclonal antibodies in oncology are slowly becoming the dominant treatment option for many different cancer types. The main route of administration, infusion, requires extensive product preparations, patient hospitalization and close monitoring. Patient comfort improvement, staff workload reduction and cost savings dictated the development of subcutaneous formulations. The aim of this review is to present pharmacokinetic characteristics of subcutaneous products, discuss the differences between intravenous and subcutaneous routes and to point out the advantages as well as challenges of administration route shift from the formulation development and pharmacometric angle. DATA SOURCES Food and Drug administration's Purple book database and electronic medicines compendium were used to identify monoclonal antibodies in oncology approved as subcutaneous forms. Using keywords subcutaneous, monoclonal antibodies, pharmacokinetics, model, as well as specific drugs previously identified, both PubMed and ScienceDirect databases were researched. DATA SUMMARY There are currently six approved subcutaneous onco-monoclonal antibodies on the market. For each of them, exposure to the drug was similar in relation to infusion, treatment effectiveness was the same, administration was well tolerated by the patients and costs of the medical service were reduced. CONCLUSION Development of subcutaneous forms for existing and emerging new monoclonal antibodies for cancer treatment as well as shifting from administration via infusion should be encouraged due to patient preference, lower costs and overall lack of substantial differences in efficacy and safety between the two routes.
Collapse
Affiliation(s)
- Ana Homšek
- Department of Pharmacokinetics and Clinical Pharmacy, 186111University of Belgrade - Faculty of Pharmacy, Belgrade, Republic of Serbia
| | - Jelena Spasić
- Clinic for Medical Oncology, 119083Institute for Oncology and Radiology of Serbia, Belgrade, Republic of Serbia
| | - Neda Nikolić
- Clinic for Medical Oncology, 119083Institute for Oncology and Radiology of Serbia, Belgrade, Republic of Serbia
| | - Tatjana Stanojković
- Department of Experimental Oncology, 119083Institute for Oncology and Radiology of Serbia, Belgrade, Republic of Serbia
| | - Marija Jovanović
- Department of Pharmacokinetics and Clinical Pharmacy, 186111University of Belgrade - Faculty of Pharmacy, Belgrade, Republic of Serbia
| | - Branislava Miljković
- Department of Pharmacokinetics and Clinical Pharmacy, 186111University of Belgrade - Faculty of Pharmacy, Belgrade, Republic of Serbia
| | - Katarina M Vučićević
- Department of Pharmacokinetics and Clinical Pharmacy, 186111University of Belgrade - Faculty of Pharmacy, Belgrade, Republic of Serbia
| |
Collapse
|
18
|
Busto-Iglesias M, Rodríguez-Martínez L, Rodríguez-Fernández CA, González-López J, González-Barcia M, de Domingo B, Rodríguez-Rodríguez L, Fernández-Ferreiro A, Mondelo-García C. Perspectives of Therapeutic Drug Monitoring of Biological Agents in Non-Infectious Uveitis Treatment: A Review. Pharmaceutics 2023; 15:pharmaceutics15030766. [PMID: 36986627 PMCID: PMC10051556 DOI: 10.3390/pharmaceutics15030766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Biological drugs, especially those targeting anti-tumour necrosis factor α (TNFα) molecule, have revolutionized the treatment of patients with non-infectious uveitis (NIU), a sight-threatening condition characterized by ocular inflammation that can lead to severe vision threatening and blindness. Adalimumab (ADA) and infliximab (IFX), the most widely used anti-TNFα drugs, have led to greater clinical benefits, but a significant fraction of patients with NIU do not respond to these drugs. The therapeutic outcome is closely related to systemic drug levels, which are influenced by several factors such as immunogenicity, concomitant treatment with immunomodulators, and genetic factors. Therapeutic drug monitoring (TDM) of drug and anti-drug antibody (ADAbs) levels is emerging as a resource to optimise biologic therapy by personalising treatment to bring and maintain drug concentration within the therapeutic range, especially in those patients where a clinical response is less than expected. Furthermore, some studies have described different genetic polymorphisms that may act as predictors of response to treatment with anti-TNFα agents in immune-mediated diseases and could be useful in personalising biologic treatment selection. This review is a compilation of the published evidence in NIU and in other immune-mediated diseases that support the usefulness of TDM and pharmacogenetics as a tool to guide clinicians’ treatment decisions leading to better clinical outcomes. In addition, findings from preclinical and clinical studies, assessing the safety and efficacy of intravitreal administration of anti-TNFα agents in NIU are discussed.
Collapse
Affiliation(s)
- Manuel Busto-Iglesias
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Lorena Rodríguez-Martínez
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Carmen Antía Rodríguez-Fernández
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
- Ophthalmology Department, Bellvitge University Hospital, 08907 Barcelona, Spain
| | - Jaime González-López
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Begoña de Domingo
- Ophthalmology Department, University Clinical Hospital of Santiago Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Luis Rodríguez-Rodríguez
- Musculoskeletal Pathology Group, Hospital Clínico San Carlos, Instituto Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (L.R.-R.); (A.F.-F.)
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (L.R.-R.); (A.F.-F.)
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Jones G, Zeng L, Kim J. Mechanism-Based Pharmacokinetic Modeling of Absorption and Disposition of a Deferoxamine-Based Nanochelator in Rats. Mol Pharm 2023; 20:481-490. [PMID: 36378830 DOI: 10.1021/acs.molpharmaceut.2c00737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deferoxamine (DFO) is an effective FDA-approved iron chelator. However, its use is considerably limited by off-target toxicities and an extremely cumbersome dose regimen with daily infusions. The recent development of a deferoxamine-based nanochelator (DFO-NP) with selective renal excretion has shown promise in ameliorating animal models of iron overload with a substantially improved safety profile. To further the preclinical development of this promising nanochelator and to inform on the feasibility of clinical development, it is necessary to fully characterize the dose and administration-route-dependent pharmacokinetics and to develop predictive pharmacokinetic (PK) models describing absorption and disposition. Herein, we have evaluated the absorption, distribution, and elimination of DFO-NPs after intravenous and subcutaneous (SC) injection at therapeutically relevant doses in Sprague Dawley rats. We also characterized compartment-based model structures and identified model-based parameters to quantitatively describe the PK of DFO-NPs. Our modeling efforts confirmed that disposition could be described using a three-compartment mamillary model with elimination and saturable reabsorption both occurring from the third compartment. We also determined that absorption was nonlinear and best described by parallel saturable and first-order processes. Finally, we characterized a novel pathway for saturable SC absorption of an ultrasmall organic nanoparticle directly into the systemic circulation, which offers a novel strategy for improving drug exposure for nanotherapeutics.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lingxue Zeng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
20
|
Saleh HA, Mitwasi N, Ullrich M, Kubeil M, Toussaint M, Deuther-Conrad W, Neuber C, Arndt C, R. Loureiro L, Kegler A, González Soto KE, Belter B, Rössig C, Pietzsch J, Frenz M, Bachmann M, Feldmann A. Specific and safe targeting of glioblastoma using switchable and logic-gated RevCAR T cells. Front Immunol 2023; 14:1166169. [PMID: 37122703 PMCID: PMC10145173 DOI: 10.3389/fimmu.2023.1166169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Glioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects. To overcome such limitation, we applied our switchable RevCAR system to target both the epidermal growth factor receptor (EGFR) and the disialoganglioside GD2, which are expressed in GBM. The RevCAR system is a modular platform that enables controllability, improves safety, specificity and flexibility. Briefly, it consists of RevCAR T cells having a peptide epitope as extracellular domain, and a bispecific target module (RevTM). The RevTM acts as a switch key that recognizes the RevCAR epitope and the tumor-associated antigen, and thereby activating the RevCAR T cells to kill the tumor cells. However, in the absence of the RevTM, the RevCAR T cells are switched off. In this study, we show that the novel EGFR/GD2-specific RevTMs can selectively activate RevCAR T cells to kill GBM cells. Moreover, we show that gated targeting of GBM is possible with our Dual-RevCAR T cells, which have their internal activation and co-stimulatory domains separated into two receptors. Therefore, a full activation of Dual-RevCAR T cells can only be achieved when both receptors recognize EGFR and GD2 simultaneously via RevTMs, leading to a significant killing of GBM cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, Technische Universität Dresden, Dresden, Germany
| | - Liliana R. Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Birgit Belter
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Münster, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Marcus Frenz
- Faculty Informatik and Wirtschaftsinformatik, Provadis School of International Management and Technology AG, Frankfurt, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
- *Correspondence: Michael Bachmann,
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
| |
Collapse
|
21
|
de la Rosa A, Metzendorf NG, Morrison JI, Faresjö R, Rofo F, Petrovic A, O’Callaghan P, Syvänen S, Hultqvist G. Introducing or removing heparan sulfate binding sites does not alter brain uptake of the blood-brain barrier shuttle scFv8D3. Sci Rep 2022; 12:21479. [PMID: 36509864 PMCID: PMC9744743 DOI: 10.1038/s41598-022-25965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier (BBB) greatly limits the delivery of protein-based drugs into the brain and is a major obstacle for the treatment of brain disorders. Targeting the transferrin receptor (TfR) is a strategy for transporting protein-based drugs into the brain, which can be utilized by using TfR-binding BBB transporters, such as the TfR-binding antibody 8D3. In this current study, we investigated if binding to heparan sulfate (HS) contributes to the brain uptake of a single chain fragment variable of 8D3 (scFv8D3). We designed and produced a scFv8D3 mutant, engineered with additional HS binding sites, HS(+)scFv8D3, to assess whether increased HS binding would improve brain uptake. Additionally, a mutant with a reduced number of HS binding sites, HS(-)scFv8D3, was also engineered to see if reducing the HS binding sites could also affect brain uptake. Heparin column chromatography showed that only the HS(+)scFv8D3 mutant bound HS in the experimental conditions. Ex vivo results showed that the brain uptake was unaffected by the introduction or removal of HS binding sites, which indicates that scFv8D3 is not dependent on the HS binding sites for brain uptake. Conversely, introducing HS binding sites to scFv8D3 decreased its renal excretion while removing them had the opposite effect.
Collapse
Affiliation(s)
- Andrés de la Rosa
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicole G. Metzendorf
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jamie I. Morrison
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Rebecca Faresjö
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Fadi Rofo
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Alex Petrovic
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Paul O’Callaghan
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- grid.8993.b0000 0004 1936 9457Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- grid.8993.b0000 0004 1936 9457Protein Drug Design Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Jones G, Zeng L, Stiles WR, Park SH, Kang H, Choi HS, Kim J. Pharmacokinetics and tissue distribution of deferoxamine-based nanochelator in rats. Nanomedicine (Lond) 2022; 17:1649-1662. [PMID: 36547231 PMCID: PMC9869290 DOI: 10.2217/nnm-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Aim: To characterize the pharmacokinetics of deferoxamine-conjugated nanoparticles (DFO-NPs), a novel nanochelator for removing excess iron. Materials & methods: The pharmacokinetics of DFO-NPs were evaluated in Sprague-Dawley rats at three doses (3.3, 10 and 30 μmol/kg) after intravenous and subcutaneous administration. Results: DFO-NPs exhibited a biphasic concentration-time profile after intravenous administration with a short terminal half-life (2.0-3.2 h), dose-dependent clearance (0.111-0.179 l/h/kg), minimal tissue distribution and exclusive renal excretion with a possible saturable reabsorption mechanism. DFO-NPs after subcutaneous administration exhibited absorption-rate-limited kinetics with a prolonged half-life (5.7-10.1 h) and favorable bioavailability (47-107%). Conclusion: DFO-NPs exhibit nonlinear pharmacokinetics with increasing dose, and subcutaneous administration substantially improves drug exposure, thereby making it a clinically viable administration route for iron chelation.
Collapse
Affiliation(s)
- Gregory Jones
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Lingxue Zeng
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Wesley R Stiles
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Seung Hun Park
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Homan Kang
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
23
|
Li Z, Xing X, Gomez-Salazar MA, Xu M, Negri S, Xu J, James AW. Pharmacological inhibition of DKK1 promotes spine fusion in an ovariectomized rat model. Bone 2022; 162:116456. [PMID: 35688363 DOI: 10.1016/j.bone.2022.116456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Osteoporosis is common in patients undergoing spine surgery, and carries a considerable risk of adverse outcomes. New methods to positively influence bone regeneration and spine fusion under osteoporotic conditions would be impactful. Neutralizing anti-Dickkopf-1 (DKK1) antibodies has been used as a bone anabolic agent, and recently reported by our group to aid in stem cell-mediated appendicular bone regeneration. Here, a small molecule designed as a DKK1 inhibitor, WAY-262611, was used to induce posterolateral spine fusion in an ovariectomized rat model. In vitro, pharmacological inhibition of DKK1 enhanced osteogenesis and Wnt signaling activity among rat bone marrow-derived stem/stromal cells (BMSCs). In vivo, systemic treatment with WAY-262611 promoted both chondrogenesis and osteogenesis within the spinal fusion site, and ultimately led to significant improvements in lumbar fusion as assessed by XR, μCT, histology and manual palpation assessments. No significant effect on osteoclast numbers or fusion site angiogenesis was detected, suggesting a primary direct effect on mesenchymal cells of the implantation site. Finally, evidence from human stem/stromal cells further demonstrated that pharmacologic inhibition of DKK1 promoted osteogenic differentiation in vitro. Taken together, our results suggest that targeting DKK1 promotes local bone formation and suggests potential clinical value for osteoporotic bone repair.
Collapse
Affiliation(s)
- Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | | | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA; Department of Orthopaedics and Traumatology, University of Verona, Verona 37129, Italy
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,USA.
| |
Collapse
|
24
|
Esposito S, Orsatti L, Pucci V. Subcutaneous Catabolism of Peptide Therapeutics: Bioanalytical Approaches and ADME Considerations. Xenobiotica 2022; 52:828-839. [PMID: 36039395 DOI: 10.1080/00498254.2022.2119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Many peptide drugs such as insulin and glucagon-like peptide (GLP-1) analogues are successfully administered subcutaneously (SC). Following SC injection, peptides may undergo catabolism in the SC compartment before entering systemic circulation, which could compromise their bioavailability and in turn affect their efficacy.This review will discuss how both technology and strategy have evolved over the past years to further elucidate peptide SC catabolism.Modern bioanalytical technologies (particularly liquid chromatography-high-resolution mass spectrometry) and bioinformatics platforms for data mining has prompted the development of in silico, in vitro and in vivo tools for characterizing peptide SC catabolism to rapidly address proteolytic liabilities and, ultimately, guide the design of peptides with improved SC bioavailability.More predictive models able to recapitulate the interplay between SC catabolism and other factors driving SC absorption are highly desirable to improve in vitro/in vivo correlations.We envision the routine incorporation of in vitro and in vivo SC catabolism studies in ADME screening funnels to develop more effective peptide drugs for SC delivery.
Collapse
|
25
|
Yang B, Gomes Dos Santos A, Puri S, Bak A, Zhou L. The industrial design, translation, and development strategies for long-acting peptide delivery. Expert Opin Drug Deliv 2022; 19:1233-1245. [PMID: 35787229 DOI: 10.1080/17425247.2022.2098276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Peptides are widely recognized as therapeutic agents in the treatment of a wide range of diseases, such as cancer, diabetes etc. However, their use has been limited by their short half-life, due to significant metabolism by exo- and endo-peptidases as well as their inherent poor physical and chemical stability. Research with the aim of improving their half-life in the body, and thus improving patient compliance (by decreasing the frequency of injections) has gained significant attention. AREAS COVERED This review outlines the current landscape and industrial approaches to achieve extended peptide exposure and reduce dosing frequency. Emphasis is placed on identifying challenges in drug product manufacturing and desirable critical quality attributes that are essential for activity and safety, providing insights into chemistry and design aspects impacting peptide release, and summarizing important considerations for CMC developability assessments of sustained release peptide drugs. EXPERT OPINION Bring the patient and disease perspective early into development. Substantial advances have been made in the field of sustained delivery of peptides despite their complexity. The article will also highlight considerations for early-stage product design and development, providing an industrial perspective on risk mitigation in developing sustained release peptide drug products.
Collapse
Affiliation(s)
- Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ana Gomes Dos Santos
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| | - Liping Zhou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| |
Collapse
|
26
|
Klepach A, Tran H, Ahmad Mohammed F, ElSayed ME. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv Drug Deliv Rev 2022; 186:114322. [PMID: 35526665 DOI: 10.1016/j.addr.2022.114322] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Peptides, an emerging modality within the biopharmaceutical industry, are often delivered subcutaneously with evolving prospects on oral delivery. Barrier biology within the subcutis or gastrointestinal tract is a significant challenge in limiting absorption or otherwise disrupting peptide disposition. Aspects of peptide pharmacokinetic performance and ADME can be mitigated with careful molecular design that tailors for properties such as effective size, hydrophobicity, net charge, proteolytic stability, and albumin binding. In this review, we endeavor to highlight effective techniques in qualifying physicochemical properties of peptides and discuss advancements of in vitro models of subcutaneous and oral delivery. Additionally, we will delineate empirical findings around the relationship of these physicochemical properties and in vivo (animal or human) impact. We conclude that robust peptide characterization methods and in vitro techniques with demonstrated correlations to in vivo data are key routines to incorporate in the drug discovery and development to improve the probability of technical and commercial success of peptide therapeutics.
Collapse
|
27
|
Morris NM, Blee JA, Hauert S. Developing a computational pharmacokinetic model of systemic snakebite envenomation and antivenom treatment. Toxicon 2022; 215:77-90. [PMID: 35716719 DOI: 10.1016/j.toxicon.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Snakebite envenomation is responsible for over 100,000 deaths and 400,000 cases of disability annually, most of which are preventable through access to safe and effective antivenoms. Snake venom toxins span a wide molecular weight range, influencing their absorption, distribution, and elimination within the body. In recent years, a range of scaffolds have been applied to antivenom development. These scaffolds similarly span a wide molecular weight range and subsequently display diverse pharmacokinetic behaviours. Computational simulations represent a powerful tool to explore the interplay between these varied antivenom scaffolds and venoms, to assess whether a pharmacokinetically optimal antivenom exists. The purpose of this study was to establish a computational model of systemic snakebite envenomation and treatment, for the quantitative assessment and comparison of conventional and next-generation antivenoms. A two-compartment mathematical model of envenomation and treatment was defined and the system was parameterised using existing data from rabbits. Elimination and biodistribution parameters were regressed against molecular weight to predict the dynamics of IgG, F(ab')2, Fab, scFv, and nanobody antivenoms, spanning a size range of 15-150 kDa. As a case study, intramuscular envenomation by Naja sumatrana (equatorial spitting cobra) and its treatment using Fab, F(ab')2, and IgG antivenoms was simulated. Variable venom dose tests were applied to visualise effective antivenom dose levels. Comparisons to existing antivenoms and experimental rescue studies highlight the large dose reductions that could result from recombinant antivenom use. This study represents the first comparative in silico model of snakebite envenomation and treatment.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
28
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
29
|
Physiological based pharmacokinetic and biopharmaceutics modelling of subcutaneously administered compounds – an overview of in silico models. Int J Pharm 2022; 621:121808. [DOI: 10.1016/j.ijpharm.2022.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
|
30
|
Self WH, Sandkovsky U, Reilly CS, Vock DM, Gottlieb RL, Mack M, Golden K, Dishner E, Vekstein A, Ko ER, Der T, Franzone J, Almasri E, Fayed M, Filbin MR, Hibbert KA, Rice TW, Casey JD, Hayanga JA, Badhwar V, Leshnower BG, Sharifpour M, Knowlton KU, Peltan ID, Bakowska E, Kowalska J, Bowdish ME, Sturek JM, Rogers AJ, Files DC, Mosier JM, Gong MN, Douin DJ, Hite RD, Trautner BW, Jain MK, Gardner EM, Khan A, Jensen JU, Matthay MA, Ginde AA, Brown SM, Higgs ES, Pett S, Weintrob AC, Chang CC, Murrary DD, Günthard HF, Moquete E, Grandits G, Engen N, Grund B, Sharma S, Cao H, Gupta R, Osei S, Margolis D, Zhu Q, Polizzotto MN, Babiker AG, Davey VJ, Kan V, Thompson BT, Gelijns AC, Neaton JD, Lane HC, Jundgren JD, Tierney J, Barrett K, Herpin BR, Smolskis MC, Voge SE, McNay LA, Cahill K, Crew P, Kirchoff M, Sardana R, Raim SS, Chiu J, Hensley L, Lorenzo J, Mock R, Shaw-Saliba K, Zuckerman J, Adam SJ, Currier J, Read S, Hughes E, Amos L, Carlsen A, Carter A, Davis B, Denning E, DuChene A, Harrison M, Kaiser P, Koopmeiners J, Meger S, Murray T, Quan K, Quan SF, Thompson G, Walski J, Wentworth D, Moskowitz AJ, Bagiella E, O'Sullivan K, Marks ME, Accardi E, Kinzel E, Bedoya G, Gupta L, Overbey JR, Padillia ML, Santos M, Gillinov MA, Miller MA, Taddei-Peters WC, Fenton K, Berhe M, Haley C, Bettacchi C, Duhaime E, Ryan M, Burris S, Jones F, Villa S, Want S, Robert R, Coleman T, Clariday L, Baker R, Hurutado-Rodriguez M, Iram N, Fresnedo M, Davis A, Leonard K, Ramierez N, Thammavong J, Duque K, Turner E, Fisher T, Robinson D, Ransom D, Lusk E, Killian A, Palacious A, Solis E, Jerrow J, Watts M, Whitacre H, Cothran E, Smith PK, Barkauskas CE, Dreyer GR, Witte M, Mosaly N, Mourad A, Holland TL, Lane K, Bouffler A, McGowan LM, Motta M, Tipton G, Stallings B, Stout G, McLendon-Arvik B, Hollister BA, Giangiacomo DM, Sharma S, Pappers B, McCarthy P, Krupica T, Sarwari A, Reece R, Fornaresio L, Glaze C, Evans R, Preamble K, Sutton LG, Buterbaugh S, Bartolo EB, Williams R, Bunner R, Bender W, Miller J, Baio KT, McBride MK, Fielding M, Mathewson S, Porte K, Maton M, Ponder C, Haley E, Spainhour C, Rogers S, Tyler D, Wald-Dickler N, Hutcheon D, Towfighi A, Lee MM, Lewis MR, Spellberg B, Sher L, Sharma A, Olds AP, Justino C, Lozano E, Romero C, Leong J, Rodina V, Possemato T, Escobar J, Chiu C, Weissman K, Barros A, Enfield KB, Kadl A, Green CJ, Simon RM, Fox A, Thornton K, Parrino PE, Spindel S, Bansal A, Baumgarten K, Hand J, Vonderhaar D, Nossaman B, Laudun S, Ames D, Broussard S, Hernandez N, Isaac G, Dinh H, Zheng Y, Tran S, McDaniel H, Crovetto N, Miller L, Schelle B, McLean S, Rothbaum HR, Alvarez MS, Kalan SP, Germann HH, Hendershot J, Maroney K, Herring K, Cook S, Paul P, Madathil RJ, Rabin J, Levine A, Saharia K, Tabatabai A, Lau C, Gammie JS, Peguero ML, McKernan K, Audette M, Fleischmann E, Akbari F, Lee M, Lee M, Chi A, Salehi H, Pariser A, Nguyen PT, Moore J, Gee A, Vincent S, Zuckerman RA, Iribarne A, Metzler S, Shipman S, Caccia T, Johnson H, Newton C, Parr D, Rodriguez V, Bokhart G, Eichman SM, North C, Oldmixon C, Ringwood N, Fitzgerald L, Morin HD, Muzikansky A, Morse R, Brower RG, Reineck LA, Aggarwal NR, Bienstock K, Hou P, Steingrub J, Tidswell MA, Kozikowski LA, Kardos C, DeSouza L, Thornton-Thompson S, Talmor D, Shapiro N, Banner-Goodspeed V, Boyle KL, Hayes S, Jones AE, Galbraith J, Nandi U, Peacock RK, Parry BA, Margolin JD, Brait K, Beakes C, Kangelaris KN, Yee KJ, Ashktorab K, Jauregui AE, Zhuo H, Hendey G, Hubel KA, Hughes AR, Garcia RL, Wilson JG, Vojnik R, Roque J, Perez C, Lim GW, Chang SY, Beutler R, Agarwal T, Vargas J, Moss M, Baduashvili A, Chauhan L, Finck LL, Howell M, Hyzy RC, Park PK, Nelson K, McSparron JI, Co IN, Wang BR, Jia S, Sullins B, Hanna S, Olbrich N, Richardson LD, Nair R, Offor O, Lopez B, Amosu O, Tzehaie H, Terndrup TE, Wiedemann HP, Duggal A, Thiruchelvam N, Ashok K, King AH, Mehkri O, Hudock K, Kiran S, More H, Roads T, Martinkovic J, Kennedy S, Robinson BH, Hough CL, Krol OF, Kinjal M, Mills E, McDougal M, Deshmukh R, Chen P, Torbati SS, Matusov Y, Choe J, Hindoyan NA, Jackman SE, Bayoumi E, Wynter T, Caudill A, Pascual E, Clapham GJ, Herrera L, Ojukwu C, Mehdikhani S, O'Mahony DS, Nyatsatsang ST, Wilson DM, Wallick JA, Miller C, Gibbs KW, Flores LS, LaRose ME, Landreth LD, Morris PE, Sturgill JL, Cassity EP, Dhar S, Montgomery-Yates AA, Pasha SN, Mayer KP, Bissel B, Bledsoe J, Brown S, Lanspa M, Leither L, Armbruster BP, Montgomery Q, Applegate D, Kumar N, Fergus M, Serezlic E, Imel K, Palmer G, Webb B, Aston VT, Johnson J, Gray C, Hays M, Roth M, Sánchez A, Popielski L, Rivasplata H, Turner M, Vjecha M, Petersen T, Kamel D, Hansen L, Lucas CS, DellaValle N, Gonzales S, Scott J, Wyles D, Douglas I, Haukoos J, Kamis K, Robinson C, Baker JV, Frosch A, Goldsmith R, Jibrell H, Lo M, Klaphake J, Mackedanz S, Ngo L, Garcia-Myers K, Markowitz N, Pastor E, Ramesh M, Brar I, Rivers E, Kumar P, Menna M, Biswas K, Harrington C, Delp A, Pandit L, Hines-Munson C, Van J, Dillon L, Want Y, Lichtenberger P, Baracco G, Ramos C, Bjork L, Sueiro M, Tien P, Freasier H, Buck T, Nekach H, Nagy-Agren S, Vasudeva S, Ochalek T, Roller B, Nguyen C, Mikail A, Raben D, Jensen TO, Aagaard B, Nielsen CB, Krapp K, Nykjær BR, Kanne KL, Grevsen AL, Joensen ZM, Bruun T, Bojesen A, Woldbye F, Normand NE, Esmann FV, Clausen CL, Hovmand N, Pedersen KB, Thorlacius-Ussing L, Tinggaard M, Høgsberg DS, Rastoder E, Kamstrup T, Bergsøe CM, Østergaard L, Stærke NB, Johansen IS, Knudtzen FC, Larsen L, Hertz MA, Fabricius T, Helleberg M, Gerstoft J, Jensen TØ, Lindegaard B, Pedersen TI, Røge BT, Løfberg SV, Hansen TM, Nielsen AD, von Huth SL, Nielsen H, Thisted RK, Podlekareva D, Johnsen S, Andreassen HF, Pedersen L, Lindnér CECE, Wiese L, Knudsen LS, Nytofte NJS, Havmøller SR, Paredes R, Exposito M, Fernández-Cruz E, Muñoz J, Arribas JR, Estrada V, Horcajada JP, Burgos J, Morales-Rull JL, Braun DL, West E, M'Rabeth-Bensalah K, Eichinger ML, Grüttner-Durmaz M, Grube C, Zink V, Horban A, Bednarska A, Jurek N, Fätkenheuer G, Malinm JJ, Matthews G, Kelleher A, Cabrera G, Carey C, Hough S, Virachit S, Zhong A, Young BE, Chia PY, Lee TH, Lin RJ, Lye D, Ong S, Puah SH, Yeo TW, Diong SH, Ongko J, Hudson F, Parmar MKB, Goodman A, Badrock J, Gregory A, Harris N, Touloumi G, Pantaz N, Gioukari V, Lutaakome J, Kityo CM, Mugerwa H, Kiweewa F, Osinusi A, Tipple C, Willis A, Peppercorn A, Watson H, Alexander E, Mogalian E, Lin L, Ding X, Yan L, Girardet JL, Ma J, Hong Z, Adams A, Albert S, Balde A, Baracz M, Baseler B, Becker N, Bielica M, Billouin-Frazier S, Cash J, Choudhary J, Dolney S, Dixon M, Eyler C, Frye L, Galcik M, Gertz J, Giebeig L, Gulati N, Hankinson L, Hissey D, Hogarty D, Hohn M, Holley HP, Hoopengardner L, Huber L, Jankelevich S, Krauss G, Lake E, Linton J, MacDonald L, Manandhar M, Spinelli-Nadzam M, Oluremi C, Proffitt C, Rudzinski E, Sandrus J, Schaffhauser M, Schechner A, Suders C, Gerry NP, Smith K, Solomon C, Kubernac A, Rashid M, Patel B, Kubernac R, Murphy J, Hoover ML, Brown C, DuChateau N, Flosi A, Johnson L, Treagus A, Wenner C. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:622-635. [PMID: 34953520 PMCID: PMC8700279 DOI: 10.1016/s1473-3099(21)00751-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND We aimed to assess the efficacy and safety of two neutralising monoclonal antibody therapies (sotrovimab [Vir Biotechnology and GlaxoSmithKline] and BRII-196 plus BRII-198 [Brii Biosciences]) for adults admitted to hospital for COVID-19 (hereafter referred to as hospitalised) with COVID-19. METHODS In this multinational, double-blind, randomised, placebo-controlled, clinical trial (Therapeutics for Inpatients with COVID-19 [TICO]), adults (aged ≥18 years) hospitalised with COVID-19 at 43 hospitals in the USA, Denmark, Switzerland, and Poland were recruited. Patients were eligible if they had laboratory-confirmed SARS-CoV-2 infection and COVID-19 symptoms for up to 12 days. Using a web-based application, participants were randomly assigned (2:1:2:1), stratified by trial site pharmacy, to sotrovimab 500 mg, matching placebo for sotrovimab, BRII-196 1000 mg plus BRII-198 1000 mg, or matching placebo for BRII-196 plus BRII-198, in addition to standard of care. Each study product was administered as a single dose given intravenously over 60 min. The concurrent placebo groups were pooled for analyses. The primary outcome was time to sustained clinical recovery, defined as discharge from the hospital to home and remaining at home for 14 consecutive days, up to day 90 after randomisation. Interim futility analyses were based on two seven-category ordinal outcome scales on day 5 that measured pulmonary status and extrapulmonary complications of COVID-19. The safety outcome was a composite of death, serious adverse events, incident organ failure, and serious coinfection up to day 90 after randomisation. Efficacy and safety outcomes were assessed in the modified intention-to-treat population, defined as all patients randomly assigned to treatment who started the study infusion. This study is registered with ClinicalTrials.gov, NCT04501978. FINDINGS Between Dec 16, 2020, and March 1, 2021, 546 patients were enrolled and randomly assigned to sotrovimab (n=184), BRII-196 plus BRII-198 (n=183), or placebo (n=179), of whom 536 received part or all of their assigned study drug (sotrovimab n=182, BRII-196 plus BRII-198 n=176, or placebo n=178; median age of 60 years [IQR 50-72], 228 [43%] patients were female and 308 [57%] were male). At this point, enrolment was halted on the basis of the interim futility analysis. At day 5, neither the sotrovimab group nor the BRII-196 plus BRII-198 group had significantly higher odds of more favourable outcomes than the placebo group on either the pulmonary scale (adjusted odds ratio sotrovimab 1·07 [95% CI 0·74-1·56]; BRII-196 plus BRII-198 0·98 [95% CI 0·67-1·43]) or the pulmonary-plus complications scale (sotrovimab 1·08 [0·74-1·58]; BRII-196 plus BRII-198 1·00 [0·68-1·46]). By day 90, sustained clinical recovery was seen in 151 (85%) patients in the placebo group compared with 160 (88%) in the sotrovimab group (adjusted rate ratio 1·12 [95% CI 0·91-1·37]) and 155 (88%) in the BRII-196 plus BRII-198 group (1·08 [0·88-1·32]). The composite safety outcome up to day 90 was met by 48 (27%) patients in the placebo group, 42 (23%) in the sotrovimab group, and 45 (26%) in the BRII-196 plus BRII-198 group. 13 (7%) patients in the placebo group, 14 (8%) in the sotrovimab group, and 15 (9%) in the BRII-196 plus BRII-198 group died up to day 90. INTERPRETATION Neither sotrovimab nor BRII-196 plus BRII-198 showed efficacy for improving clinical outcomes among adults hospitalised with COVID-19. FUNDING US National Institutes of Health and Operation Warp Speed.
Collapse
|
31
|
Overview of authorized drug products for subcutaneous administration: pharmaceutical, therapeutic, and physicochemical properties. Eur J Pharm Sci 2022; 173:106181. [DOI: 10.1016/j.ejps.2022.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
|
32
|
Bohlender LL, Parsons J, Hoernstein SNW, Bangert N, Rodríguez-Jahnke F, Reski R, Decker EL. Unexpected Arabinosylation after Humanization of Plant Protein N-Glycosylation. Front Bioeng Biotechnol 2022; 10:838365. [PMID: 35252146 PMCID: PMC8894861 DOI: 10.3389/fbioe.2022.838365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 02/03/2023] Open
Abstract
As biopharmaceuticals, recombinant proteins have become indispensable tools in medicine. An increasing demand, not only in quantity but also in diversity, drives the constant development and improvement of production platforms. The N-glycosylation pattern on biopharmaceuticals plays an important role in activity, serum half-life and immunogenicity. Therefore, production platforms with tailored protein N-glycosylation are of great interest. Plant-based systems have already demonstrated their potential to produce pharmaceutically relevant recombinant proteins, although their N-glycan patterns differ from those in humans. Plants have shown great plasticity towards the manipulation of their glycosylation machinery, and some have already been glyco-engineered in order to avoid the attachment of plant-typical, putatively immunogenic sugar residues. This resulted in complex-type N-glycans with a core structure identical to the human one. Compared to humans, plants lack the ability to elongate these N-glycans with β1,4-linked galactoses and terminal sialic acids. However, these modifications, which require the activity of several mammalian enzymes, have already been achieved for Nicotiana benthamiana and the moss Physcomitrella. Here, we present the first step towards sialylation of recombinant glycoproteins in Physcomitrella, human β1,4-linked terminal N-glycan galactosylation, which was achieved by the introduction of a chimeric β1,4-galactosyltransferase (FTGT). This chimeric enzyme consists of the moss α1,4-fucosyltransferase transmembrane domain, fused to the catalytic domain of the human β1,4-galactosyltransferase. Stable FTGT expression led to the desired β1,4-galactosylation. However, additional pentoses of unknown identity were also observed. The nature of these pentoses was subsequently determined by Western blot and enzymatic digestion followed by mass spectrometric analysis and resulted in their identification as α-linked arabinoses. Since a pentosylation of β1,4-galactosylated N-glycans was reported earlier, e.g., on recombinant human erythropoietin produced in glyco-engineered Nicotiana tabacum, this phenomenon is of a more general importance for plant-based production platforms. Arabinoses, which are absent in humans, may prevent the full humanization of plant-derived products. Therefore, the identification of these pentoses as arabinoses is important as it creates the basis for their abolishment to ensure the production of safe biopharmaceuticals in plant-based systems.
Collapse
Affiliation(s)
- Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Nina Bangert
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fernando Rodríguez-Jahnke
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Eva L. Decker,
| |
Collapse
|
33
|
Ball K, Bruin G, Escandon E, Funk C, Pereira JN, Yang TY, Yu H. Characterizing the pharmacokinetics and biodistribution of therapeutic proteins: an industry white paper. Drug Metab Dispos 2022; 50:858-866. [PMID: 35149542 DOI: 10.1124/dmd.121.000463] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Characterization of the pharmacokinetics (PK) and biodistribution of therapeutic proteins (TPs) is a hot topic within the pharmaceutical industry, particularly with an ever-increasing catalog of novel modality TPs. Here, we review the current practices, and provide a summary of extensive cross-company discussions as well as a survey completed by International Consortium for Innovation and Quality (IQ consortium) members on this theme. A wide variety of in vitro, in vivo and in silico techniques are currently used to assess PK and biodistribution of TPs, and we discuss the relevance of these from an industry perspective, focusing on PK/PD understanding at the preclinical stage of development, and translation to human. We consider that the 'traditional in vivo biodistribution study' is becoming insufficient as a standalone tool, and thorough characterization of the interaction of the TP with its target(s), target biology, and off-target interactions at a microscopic scale are key to understand the overall biodistribution at a full-body scale. Our summary of the current challenges and our recommendations to address these issues could provide insight into the implementation of best practices in this area of drug development, and continued cross-company collaboration will be of tremendous value. Significance Statement The Innovation & Quality Consortium (IQ) Translational and ADME Sciences Leadership Group (TALG) working group for the ADME of therapeutic proteins evaluates the current practices, recent advances, and challenges in characterizing the PK and biodistribution of therapeutic proteins during drug development, and proposes recommendations to address these issues. Incorporating the in vitro, in vivo and in silico approaches discussed herein may provide a pragmatic framework to increase early understanding of PK/PD relationships, and aid translational modelling for first-in-human dose predictions.
Collapse
Affiliation(s)
| | - Gerard Bruin
- Novartis Institutes for Biomedical Research, Switzerland
| | | | - Christoph Funk
- Dept. of Drug Metabolism and Pharmacokinetics, F. Hoffmann-La Roche Ltd., Switzerland
| | | | | | - Hongbin Yu
- Boehringer Ingelheim Pharmaceuticals, Inc, United States
| |
Collapse
|
34
|
James BH, Papakyriacou P, Gardener MJ, Gliddon L, Weston CJ, Lalor PF. The Contribution of Liver Sinusoidal Endothelial Cells to Clearance of Therapeutic Antibody. Front Physiol 2022; 12:753833. [PMID: 35095549 PMCID: PMC8795706 DOI: 10.3389/fphys.2021.753833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Many chronic inflammatory diseases are treated by administration of “biological” therapies in terms of fully human and humanized monoclonal antibodies or Fc fusion proteins. These tools have widespread efficacy and are favored because they generally exhibit high specificity for target with a low toxicity. However, the design of clinically applicable humanized antibodies is complicated by the need to circumvent normal antibody clearance mechanisms to maintain therapeutic dosing, whilst avoiding development of off target antibody dependent cellular toxicity. Classically, professional phagocytic immune cells are responsible for scavenging and clearance of antibody via interactions with the Fc portion. Immune cells such as macrophages, monocytes, and neutrophils express Fc receptor subsets, such as the FcγR that can then clear immune complexes. Another, the neonatal Fc receptor (FcRn) is key to clearance of IgG in vivo and serum half-life of antibody is explicitly linked to function of this receptor. The liver is a site of significant expression of FcRn and indeed several hepatic cell populations including Kupffer cells and liver sinusoidal endothelial cells (LSEC), play key roles in antibody clearance. This combined with the fact that the liver is a highly perfused organ with a relatively permissive microcirculation means that hepatic binding of antibody has a significant effect on pharmacokinetics of clearance. Liver disease can alter systemic distribution or pharmacokinetics of antibody-based therapies and impact on clinical effectiveness, however, few studies document the changes in key membrane receptors involved in antibody clearance across the spectrum of liver disease. Similarly, the individual contribution of LSEC scavenger receptors to antibody clearance in a healthy or chronically diseased organ is not well characterized. This is an important omission since pharmacokinetic studies of antibody distribution are often based on studies in healthy individuals and thus may not reflect the picture in an aging or chronically diseased population. Therefore, in this review we consider the expression and function of key antibody-binding receptors on LSEC, and the features of therapeutic antibodies which may accentuate clearance by the liver. We then discuss the implications of this for the design and utility of monoclonal antibody-based therapies.
Collapse
Affiliation(s)
- Bethany H. James
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Pantelitsa Papakyriacou
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew J. Gardener
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Louise Gliddon
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Christopher J. Weston
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Patricia F. Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Patricia F. Lalor,
| |
Collapse
|
35
|
Hu S, Datta-Mannan A, D’Argenio DZ. Physiologically Based Modeling to Predict Monoclonal Antibody Pharmacokinetics in Humans from in vitro Physiochemical Properties. MAbs 2022; 14:2056944. [PMID: 35491902 PMCID: PMC9067474 DOI: 10.1080/19420862.2022.2056944] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/01/2022] Open
Abstract
A model-based framework is presented to predict monoclonal antibody (mAb) pharmacokinetics (PK) in humans based on in vitro measures of antibody physiochemical properties. A physiologically based pharmacokinetic (PBPK) model is used to explore the predictive potential of 14 in vitro assays designed to measure various antibody physiochemical properties, including nonspecific cell-surface interactions, FcRn binding, thermal stability, hydrophobicity, and self-association. Based on the mean plasma PK time course data of 22 mAbs from humans reported in the literature, we found a significant positive correlation (R = 0.64, p = .0013) between the model parameter representing antibody-specific vascular to endothelial clearance and heparin relative retention time, an in vitro measure of nonspecific binding. We also found that antibody-specific differences in paracellular transport due to convection and diffusion could be partially explained by antibody heparin relative retention time (R = 0.52, p = .012). Other physiochemical properties, including antibody thermal stability, hydrophobicity, cross-interaction and self-association, in and of themselves were not predictive of model-based transport parameters. In contrast to other studies that have reported empirically derived expressions relating in vitro measures of antibody physiochemical properties directly to antibody clearance, the proposed PBPK model-based approach for predicting mAb PK incorporates fundamental mechanisms governing antibody transport and processing, informed by in vitro measures of antibody physiochemical properties, and can be expanded to include more descriptive representations of each of the antibody processing subsystems, as well as other antibody-specific information.
Collapse
Affiliation(s)
- Shihao Hu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Amita Datta-Mannan
- Department of Exploratory Medicine and Pharmacology, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - David Z. D’Argenio
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
36
|
Radiobiology of Targeted Alpha Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Pharmacokinetic Developability and Disposition Profiles of Bispecific Antibodies: A Case Study with Two Molecules. Antibodies (Basel) 2021; 11:antib11010002. [PMID: 35076469 PMCID: PMC8788489 DOI: 10.3390/antib11010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Bispecific antibodies (BsAb) that engage multiple pathways are a promising therapeutic strategy to improve and prolong the efficacy of biologics in complex diseases. In the early stages of discovery, BsAbs often exhibit a broad range of pharmacokinetic (PK) behavior. Optimization of the neonatal Fc receptor (FcRn) interactions and removal of undesirable physiochemical properties have been used to improve the 'pharmacokinetic developability' for various monoclonal antibody (mAb) therapeutics, yet there is a sparsity of such information for BsAbs. The present work evaluated the influence of FcRn interactions and inherent physiochemical properties on the PK of two related single chain variable fragment (scFv)-based BsAbs. Despite their close relation, the two BsAbs exhibit disparate PK in cynomolgus monkeys with BsAb-1 having an aberrant clearance of ~2 mL/h/kg and BsAb-2 displaying a an ~10-fold slower clearance (~0.2 mL/h/kg). Evaluation of the physiochemical characteristics of the molecules, including charge, non-specific binding, thermal stability, and hydrophobic properties, as well as FcRn interactions showed some differences. In-depth drug disposition results revealed that a substantial disparity in the complete release from FcRn at a neutral pH is a primary factor contributing to the rapid clearance of the BsAb-1 while other biophysical characteristics were largely comparable between molecules.
Collapse
|
38
|
Mahmood I, Pettinato M. Impact of Intrinsic and Extrinsic Factors on the Pharmacokinetics of Peptides: When Is the Assessment of Certain Factors Warranted? Antibodies (Basel) 2021; 11:antib11010001. [PMID: 35076485 PMCID: PMC8788552 DOI: 10.3390/antib11010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 12/19/2021] [Indexed: 12/29/2022] Open
Abstract
Peptides are short chains of 2 to 50 amino acids (molecular weight of less than 10 kDa) linked together by peptide bonds. As therapeutic agents, peptides are of interest because the body naturally produces many different peptides. Short-chain peptides have many advantages as compared with long-chain peptides (e.g., low toxicity). The first peptide corticotropin was approved in 1952 for multiple inflammatory diseases and West syndrome. Since then, more than 60 peptides have been approved by the FDA. Pharmacokinetics (PK) is widely used in modern-day drug development for designing a safe and efficacious dose to treat a wide variety of diseases. There are, however, several factors termed as “intrinsic” or “extrinsic” which can influence the PK of a drug, and as a result, one has to adjust the dose in a patient population. These intrinsic and extrinsic factors can be described as age, gender, disease states such as renal and hepatic impairment, drug–drug interaction, food, smoking, and alcohol consumption. It is well known that these intrinsic and extrinsic factors can have a substantial impact on the PK of small molecules, but for macromolecules, the impact of these factors is not well established. This review summarizes the impact of intrinsic and extrinsic factors on the PK of peptides.
Collapse
|
39
|
Abstract
Drug--drug interactions (DDIs) have been a clinical challenge in HIV medicine for over two decades. The newer antiretroviral drugs (ARTs) have significantly fewer DDIs than protease inhibitors and boosted integrase inhibitors (INSTIs). The lower propensity of such newer antiretrovirals (e.g. unboosted integrase inhibitors; doravirine) to cause DDIs, has been largely offset by the ageing cohort of patients with multiple comorbidities, who are taking multiple chronic medicines. Furthermore, the introduction of newly marketed drugs into clinical practice needs to be closely monitored, as the new drugs may be perpetrators of DDIs, leading to a potential change in the efficacy or toxicity of the coadministered antiretrovirals.
Collapse
Affiliation(s)
- Phumla Z Sinxadi
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Saye H Khoo
- Department of Pharmacology, University of Liverpool, Liverpool
| | - Marta Boffito
- Chelsea and Westminster Hospital
- Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Adiguzel Y. Information-theoretic approach in allometric scaling relations of DNA and proteins. Chem Biol Drug Des 2021; 99:331-343. [PMID: 34855304 DOI: 10.1111/cbdd.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 11/28/2022]
Abstract
Allometric scaling relations can be observed in between molecular parameters. Hence, we looked for presence of such relation among sizes (i.e., lengths) of proteins and genes. Protein lengths exist in the literature as the number of amino acids. They can also be derived from the mRNA lengths. Here, we looked for allometric scaling relation by using such data and simultaneously, the data was compared with the sizes of genes and proteins that were obtained from our modified information-theoretic approach. Results implied presence of scaling relation in the calculated results. This was expected due to the implemented modification in the information-theoretic calculation. Relation in the literature-based data was lacking high goodness of fit value. It could be due to physical factors and selective pressures, which ended up in deviations of the literature-sourced values from those in the model. Genome size is correlated with cell size. Intracellular volume, which is related to the DNA size, would require certain number of proteins, the sizes of which can therefore be correlated with the protein sizes. Cell sizes, genome sizes, and average protein and gene sizes, along with the number of proteins, namely the expression levels of the genes, are the physical factors, and the molecular factors influence those physical factors. The selective pressures on those can act through the connection between those physical factors and limit the dynamic ranges. Biological measures could be prone to such forces and are likely to deviate from expected models, regardless of the validity of assumptions, unless those are also implemented in the models. Yet, present discrepancies could be pointing at the need for model improvement, data imperfection, invalid assumptions, etc. Still, current work highlights possible use of information-theoretic approach in allometric scaling relations' studies.
Collapse
Affiliation(s)
- Yekbun Adiguzel
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| |
Collapse
|
41
|
Malviya R, Verma S, Sundram S. Advancement and Strategies for the Development of Peptide-Drug Conjugates: Pharmacokinetic Modulation, Role and Clinical Evidence Against Cancer Management. Curr Cancer Drug Targets 2021; 22:286-311. [PMID: 34792003 DOI: 10.2174/1568009621666211118111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Currently, many new treatment strategies are being used for the management of cancer. Among them, chemotherapy based on peptides has been of great interest due to the unique features of peptides. This review discusses the role of peptide and peptides analogues in the treatment of cancer, with special emphasis on their pharmacokinetic modulation and research progress. Low molecular weight, targeted drug delivery, enhanced permeability, etc., of the peptide-linked drug conjugates, lead to an increase in the effectiveness of cancer therapy. Various peptides have recently been developed as drugs and vaccines with an altered pharmacokinetic parameter which has subsequently been assessed in different phases of the clinical study. Peptides have made a great impact in the area of cancer therapy and diagnosis. Targeted chemotherapy and drug delivery techniques using peptides are emerging as excellent tools in minimizing problems with conventional chemotherapy. It can be concluded that new advances in using peptides to treat different types of cancer have been shown by different clinical studies indicating that peptides could be used as an ideal therapeutic method in treating cancer due to the novel advantages of peptides. The development of identifying and synthesizing novel peptides could provide a promising choice to patients with cancer.
Collapse
Affiliation(s)
- Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Swati Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| |
Collapse
|
42
|
Taguchi K, Hayashi Y, Ohuchi M, Yamada H, Yagishita S, Enoki Y, Matsumoto K, Hamada A. Augmented clearance of nivolumab is associated with renal functions in chronic renal disease model rats. Drug Metab Dispos 2021; 50:822-826. [PMID: 34348939 DOI: 10.1124/dmd.121.000520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022] Open
Abstract
The clinically approved dose of nivolumab is 240 mg Q2W. However, previous studies have shown that baseline nivolumab clearance (CL) is associated with treatment outcomes in patients with solid cancers, thus motivating researchers to identify prognostic factors and indices influencing nivolumab CL. This study used chronic kidney disease model rats to investigate whether chronic renal impairment affected nivolumab CL and explored the surrogate markers associated with nivolumab CL. We observed that the total CL for nivolumab (CLtot) was approximately 1.42-times higher in chronic kidney disease model rats than that in sham rats with an increased urinary excretion. Additionally, CLtot showed positive correlation with renal CL for nivolumab (CLR), but not with extrarenal CL. Furthermore, the baseline levels of creatinine, blood urea nitrogen, creatinine CL, and urinary albumin/creatine ratio based on laboratory data were also significantly correlated with CLR Our findings suggest that nivolumab CL increases as renal function deteriorates due to an increased excretion of nivolumab in the urine; additionally, laboratory data reflecting renal function may be a feasible index to qualitatively estimate nivolumab CL prior to nivolumab treatment under conditions of renal impairment. Significance Statement We demonstrated that nivolumab was rapidly eliminated from the circulation in chronic kidney disease model rats compared to sham rats with an increased urinary nivolumab excretion. Moreover, nivolumab clearance was significantly correlated with the baseline levels of certain laboratory parameters reflecting renal functions. These results indicate the potential applicability of baseline renal function as a prognostic index to qualitatively estimate nivolumab clearance prior to nivolumab treatment under conditions with renal impairment.
Collapse
Affiliation(s)
| | | | - Mayu Ohuchi
- Division of Molecular Pharmacology, National Cancer Center Research Institute., Japan
| | - Hotaka Yamada
- Faculty of Pharmacy, Keio University of Pharmacy, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute., Japan
| | - Yuki Enoki
- Faculty of Pharmacy, Keio University of Pharmacy, Japan
| | | | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute., Japan
| |
Collapse
|
43
|
Kaempffe A, Dickgiesser S, Rasche N, Paoletti A, Bertotti E, De Salve I, Sirtori FR, Kellner R, Könning D, Hecht S, Anderl J, Kolmar H, Schröter C. Effect of Conjugation Site and Technique on the Stability and Pharmacokinetics of Antibody-Drug Conjugates. J Pharm Sci 2021; 110:3776-3785. [PMID: 34363839 DOI: 10.1016/j.xphs.2021.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022]
Abstract
Appropriate selection of conjugation sites and conjugation technologies is now widely accepted as crucial for the success of antibody-drug conjugates (ADCs). Herein, we present ADCs conjugated by different conjugation methods to different conjugation positions being systematically characterized by multiple in vitro assays as well as in vivo pharmacokinetic (PK) analyses in transgenic Tg276 mice. Conjugation to cysteines, genetically introduced at positions N325, L328, S239, D265, and S442, was compared to enzymatic conjugation via microbial transglutaminase (mTG) either to C-terminal light (LC) or heavy chain (HC) recognition motifs or to endogenous position Q295 of a native antibody. All conjugations yielded homogeneous DAR 2 ADCs with similar hydrophobicity, thermal stability, human neonatal Fc receptor (huFcRn) binding, and serum stability properties, but with pronounced differences in their PK profiles. mTG-conjugated ADC variants conjugated either to Q295 or to LC recognition motifs showed superior PK behavior. Within the panel of engineered cysteine variants L328 showed a similar PK profile compared to previously described S239 but superior PK compared to S442, D265, and N325. While all positions were first tested with trastuzumab, L328 and mTG LC were further evaluated with additional antibody scaffolds derived from clinically evaluated monoclonal antibodies (mAb). Based on PK analyses, this study confirms the newly described position L328 as favorable site for cysteine conjugation, comparable to the well-established engineered cysteine position S239, and emphasizes the favorable position Q295 of native antibodies and the tagged LC antibody variant for enzymatic conjugations via mTG. In addition, hemizygous Tg276 mice are evaluated as an adequate model for ADC pharmacokinetics, facilitating the selection of suitable ADC candidates early in the drug discovery process.
Collapse
Affiliation(s)
- Anna Kaempffe
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany; Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Stephan Dickgiesser
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Nicolas Rasche
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Andrea Paoletti
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Elisa Bertotti
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Ilse De Salve
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Federico Riccardi Sirtori
- NBE-DMPK Discovery and Preclinical Bioanalytics, Merck KGaA, RBM S.p.A., Via Ribes 1, 10010 Colleretto Giacosa (TO), Italy
| | - Roland Kellner
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Doreen Könning
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Stefan Hecht
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Jan Anderl
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christian Schröter
- Antibody Drug Conjugates & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| |
Collapse
|
44
|
Zheng F, Hou P, Corpstein CD, Park K, Li T. Multiscale pharmacokinetic modeling of systemic exposure of subcutaneously injected biotherapeutics. J Control Release 2021; 337:407-416. [PMID: 34324897 DOI: 10.1016/j.jconrel.2021.07.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022]
Abstract
Subcutaneously injected formulations have been developed for many biological products including monoclonal antibodies (mAbs). A knowledge gap nonetheless remains regarding the absorption and catabolism mechanisms and kinetics of a large molecule at the administration site. A multiscale pharmacokinetic (PK) model was thus developed by coupling multiphysics simulations of subcutaneous (SC) absorption kinetics with whole-body pharmacokinetic (PK) modeling, bridged by consideration of the presystemic clearance by the initial lymph. Our local absorption simulation of SC-injected albumin enabled the estimation of its presystemic clearance and led to the whole-body PK modeling of systemic exposure. The local absorption rate of albumin was found to be influential on the PK profile. Additionally, nineteen mAbs were explored via this multiscale simulation and modeling framework. The computational results suggest that stability propensities of the mAbs are correlated with the presystemic clearance, and electrostatic charges in the complementarity-determining region influence the local absorption rate. Still, this study underscores a critical need to experimentally determine various biophysical characteristics of a large molecule and the biomechanical properties of human skin tissues.
Collapse
Affiliation(s)
- Fudan Zheng
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA
| | - Peng Hou
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA
| | | | - Kinam Park
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA
| | - Tonglei Li
- Industrial & Physical Pharmacy, Purdue University West Lafayette, Indiana, USA.
| |
Collapse
|
45
|
|
46
|
Zou P, Wang F, Wang J, Lu Y, Tran D, Seo SK. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J Control Release 2021; 336:310-321. [PMID: 34186147 DOI: 10.1016/j.jconrel.2021.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 01/26/2023]
Abstract
For most approved subcutaneously (SC) administered drug products in the US, the recommended injection sites (i.e., abdomen, thigh, and upper arm) are usually based on experience from phase 3 trials. Relative bioavailability data directly comparing the pharmacokinetics (PK) of different SC injection sites are often not available and the underlying mechanisms that may affect SC absorption have not been systematically investigated. In this study, we surveyed clinical PK data (AUC, Cmax, and Tmax) for SC administered drug products including therapeutic proteins and peptides based on literature and FDA database. The PK data after abdominal injection was used as a reference to determine the relative bioavailability of SC injections to the arm and thigh. The survey retrieved 19 immunoglobulin G (IgGs), 18 peptides/small proteins (molecular weight < 16 kDa), and 8 non-IgG proteins that had available clinical PK data from multiple SC injection sites. Among these, 5 (26%) IgGs, 9 (50%) peptides/small proteins, and 3 (38%) non-IgG proteins, exhibited injection site-dependent PK (i.e. PK differed by injection sites). Correlation analyses revealed that the PK of peptides/small proteins undergoing rapid SC absorption (Tmax ≤ 2 h), elimination (CL/F ≥ 39 L/h) or low plasma protein binding were more sensitive to injection sites. Similarly, non-IgG proteins (molecular weight ≥ 16 kDa) with high CL/F and low Tmax are associated with high risk of injection site-dependent SC absorption. IgGs with T1/2 < 15 days or Tmax < 5 days are more likely to show injection site-dependent SC absorption. Positive charge of the drug molecule (isoelectric point ≥8) may reduce SC absorption from all three injection sites but is not associated with high risk of injection site-dependent SC absorption. In summary, the results suggested that regional differences in pre-systemic catabolism and local SC blood flow potentially contribute injection site-dependent SC absorption of peptides/small proteins while local lymphatic flow and FcRn binding likely contribute to site-dependent SC absorption of IgGs.
Collapse
Affiliation(s)
- Peng Zou
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA.
| | - Fuyuan Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Jie Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Yanhui Lu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Doanh Tran
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Shirley K Seo
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
47
|
In vivo safety testing of Antibody Drug Conjugates. Regul Toxicol Pharmacol 2021; 122:104890. [DOI: 10.1016/j.yrtph.2021.104890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022]
|
48
|
The Evolving Role of Microsampling in Therapeutic Drug Monitoring of Monoclonal Antibodies in Inflammatory Diseases. Molecules 2021; 26:molecules26061787. [PMID: 33810104 PMCID: PMC8004874 DOI: 10.3390/molecules26061787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) have been extensively developed over the past few years, for the treatment of various inflammatory diseases. They are large molecules characterized by complex pharmacokinetic and pharmacodynamic properties. Therapeutic drug monitoring (TDM) is routinely implemented in the therapy with mAbs, to monitor patients’ treatment response and to further guide dose adjustments. Serum has been the matrix of choice in the TDM of mAbs and its sampling requires the visit of the patients to laboratories that are not always easily accessible. Therefore, dried blood spots (DBS) and various microsampling techniques have been suggested as an alternative. DBS is a sampling technique in which capillary blood is deposited on a special filter paper. It is a relatively simple procedure, and the patients can perform the home-sampling. The convenience it offers has enabled its use in the quantification of small-molecule drugs, whilst in the recent years, studies aimed to develop microsampling methods that will facilitate the TDM of mAbs. Nevertheless, hematocrit still remains an obstacle that hinders a more widespread implementation of DBS in clinical practice. The introduction of novel analytical techniques and contemporary microsampling devices can be considered the steppingstone to the attempts made addressing this issue.
Collapse
|
49
|
Cignarella A, Fadini GP, Bolego C, Trevisi L, Boscaro C, Sanga V, Seccia TM, Rosato A, Rossi GP, Barton M. Clinical Efficacy and Safety of Angiogenesis Inhibitors: Sex Differences and Current Challenges. Cardiovasc Res 2021; 118:988-1003. [PMID: 33739385 DOI: 10.1093/cvr/cvab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Vasoactive molecules, such as vascular endothelial growth factor (VEGF) and endothelins, share cytokine-like activities and regulate endothelial cell (EC) growth, migration and inflammation. Some endothelial mediators and their receptors are targets for currently approved angiogenesis inhibitors, drugs that are either monoclonal antibodies raised towards VEGF, or inhibitors of vascular receptor protein kinases and signaling pathways. Pharmacological interference with the protective functions of ECs results in a similar spectrum of adverse effects. Clinically, the most common side effects of VEGF signaling pathway inhibition include an increase in arterial pressure, left ventricular (LV) dysfunction ultimately causing heart failure, and thromboembolic events, including pulmonary embolism, stroke, and myocardial infarction. Sex steroids such as androgens, progestins, and estrogen and their receptors (ERα, ERβ, GPER; PR-A, PR-B; AR) have been identified as important modifiers of angiogenesis, and sex differences have been reported for anti-angiogenic drugs. This review article discusses the current challenges clinicians are facing with regard to angiogenesis inhibitor treatments, including the need to consider sex differences affecting clinical efficacy and safety. We also propose areas for future research taking into account the role of sex hormone receptors and sex chromosomes. Development of new sex-specific drugs with improved target and cell-type selectivity likely will open the way personalized medicine in men and women requiring antiangiogenic therapy and result in reduced adverse effects and improved therapeutic efficacy.
Collapse
Affiliation(s)
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Italy
| | | | - Antonio Rosato
- Venetian Cancer Institute IOV - IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | | | - Matthias Barton
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.,Molecular Internal Medicine, University of Zürich, Switzerland.,Andreas Grüntzig Foundation, Zürich, Switzerland
| |
Collapse
|
50
|
Tafreshi NK, Kil H, Pandya DN, Tichacek CJ, Doligalski ML, Budzevich MM, Delva NC, Langsen ML, Vallas JA, Boulware DC, Engelman RW, Gage KL, Moros EG, Wadas TJ, McLaughlin ML, Morse DL. Lipophilicity Determines Routes of Uptake and Clearance, and Toxicity of an Alpha-Particle-Emitting Peptide Receptor Radiotherapy. ACS Pharmacol Transl Sci 2021; 4:953-965. [PMID: 33860213 DOI: 10.1021/acsptsci.1c00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/30/2022]
Abstract
Lipophilicity is explored in the biodistribution (BD), pharmacokinetics (PK), radiation dosimetry (RD), and toxicity of an internally administered targeted alpha-particle therapy (TAT) under development for the treatment of metastatic melanoma. The TAT conjugate is comprised of the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), conjugated to melanocortin receptor 1 specific peptidic ligand (MC1RL) using a linker moiety and chelation of the 225Ac radiometal. A set of conjugates were prepared with a range of lipophilicities (log D 7.4 values) by varying the chemical properties of the linker. Reported are the observations that higher log D 7.4 values are associated with decreased kidney uptake, decreased absorbed radiation dose, and decreased kidney toxicity of the TAT, and the inverse is observed for lower log D 7.4 values. Animals administered TATs with lower lipophilicities exhibited acute nephropathy and death, whereas animals administered the highest activity TATs with higher lipophilicities lived for the duration of the 7 month study and exhibited chronic progressive nephropathy. Changes in TAT lipophilicity were not associated with changes in liver uptake, dose, or toxicity. Significant observations include that lipophilicity correlates with kidney BD, the kidney-to-liver BD ratio, and weight loss and that blood urea nitrogen (BUN) levels correlated with kidney uptake. Furthermore, BUN was identified as having higher sensitivity and specificity of detection of kidney pathology, and the liver enzyme alkaline phosphatase (ALKP) had high sensitivity and specificity for detection of liver damage associated with the TAT. These findings suggest that tuning radiopharmaceutical lipophilicity can effectively modulate the level of kidney uptake to reduce morbidity and improve both safety and efficacy.
Collapse
Affiliation(s)
- Narges K Tafreshi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - HyunJoo Kil
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia 26506, United States.,Modulation Therapeutics, Inc., Morgantown, West Virginia 26506, United States
| | - Darpan N Pandya
- Department of Radiology, University of Iowa Health Care, Iowa City, Iowa 52242, United States
| | - Christopher J Tichacek
- Departments of Radiation Oncology and Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Department of Physics, University of South Florida, Tampa, Florida 33612, United States
| | - Michael L Doligalski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Mikalai M Budzevich
- Small Animal Imaging Laboratory and Biostatistics and Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Nella C Delva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Michael L Langsen
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - John A Vallas
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - David C Boulware
- Small Animal Imaging Laboratory and Biostatistics and Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Robert W Engelman
- Departments of Pediatrics, Pathology & Cell Biology and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612, United States
| | - Kenneth L Gage
- Departments of Radiation Oncology and Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States
| | - Eduardo G Moros
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Departments of Radiation Oncology and Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Department of Physics, University of South Florida, Tampa, Florida 33612, United States.,Departments of Pediatrics, Pathology & Cell Biology and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612, United States
| | - Thaddeus J Wadas
- Department of Radiology, University of Iowa Health Care, Iowa City, Iowa 52242, United States
| | - Mark L McLaughlin
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia 26506, United States.,Modulation Therapeutics, Inc., Morgantown, West Virginia 26506, United States
| | - David L Morse
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Department of Physics, University of South Florida, Tampa, Florida 33612, United States.,Small Animal Imaging Laboratory and Biostatistics and Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States.,Departments of Pediatrics, Pathology & Cell Biology and Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|