1
|
Yesilbas Aksel Y, Barut EN, Engin S. Fosaprepitant improves cyclophosphamide-induced bladder damage by alleviating inflammatory response in mice. Toxicol Appl Pharmacol 2024; 492:117120. [PMID: 39378958 DOI: 10.1016/j.taap.2024.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Inhibition of inflammatory process is a key therapeutic target for the treatment of interstitial cystitis (IC). Recent reports indicate that neurokinin 1 receptor (NK1R) antagonists have beneficial roles in inflammatory-based diseases. Herein, we investigate the protective effects of fosaprepitant (FOS), a NK1R antagonist, in cyclophosphamide (CP)-induced cystitis. The cystitis model was established multiple CP (80 mg/kg; i.p.) injection one day apart, and mice were treated with FOS (20 and 60 mg/kg/day; i.p.) for seven consecutive days. Detrusor contractility, vesical vascular permeability, myeloperoxidase (MPO) activity and protein expression levels of the TLR4 pathway were evaluated in mice bladder. Carbachol and electric field stimulation-evoked contractions of detrusor strips were significantly increased in CP-treated mice, which was significantly attenuated by FOS (60 mg/kg/day) treatment (p<0.001, p<0.05). Notably, vesical vascular permeability was markedly impaired in CP-induced cystitis, that was restored by FOS (60 mg/kg/day) treatment (p<0.01). MPO activity was significantly increased in cystitis group whereas FOS (20 and 60 mg/kg/day) treatment remarkably suppressed MPO activity in bladder tissue (p<0.001). Although TLR4 expression increased with cystitis, MyD88 and p-NFκBSer536/total NFκB did not change, FOS (20 and 60 mg/kg/day) treatment caused a dramatic decrease in TLR4 expression (p<0.001), indicating the anti-inflammatory effect of FOS. In conclusion, FOS improved detrusor overactivity and inflammatory response by inhibiting MPO activity and TLR4 expression, resulting in functional and histological recovery in CP-induced cystitis.
Collapse
Affiliation(s)
- Yaren Yesilbas Aksel
- Karadeniz Technical University, Graduate School of Health Sciences, Department of Pharmacology, Türkiye
| | - Elif Nur Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye.
| | - Seckin Engin
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye
| |
Collapse
|
2
|
Mehboob R, Oehme P, Anwar T, von Kries JP. Substance P - a regulatory peptide with defense and repair functions. Results and perspectives for the fight against COVID-19. Front Neurol 2024; 15:1370454. [PMID: 38872816 PMCID: PMC11169637 DOI: 10.3389/fneur.2024.1370454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS CoV-2) is the cause of Corona virus disease 2019 (COVID-19), which turned into a pandemic in late 2019 and early 2020. SARS CoV-2 causes endothelial cell destruction and swelling, microthrombosis, constriction of capillaries, and malfunction of pericytes, all of which are detrimental to capillary integrity, angiogenesis, and healing processes. Cytokine storming has been connected to COVID-19 disease. Hypoxemia and tissue hypoxia may arise from impaired oxygen diffusion exchange in the lungs due to capillary damage and congestion. This personal view will look at how inflammation and capillary damage affect blood and tissue oxygenation, cognitive function, and the duration and intensity of COVID-19 disease. The general effects of microvascular injury, hypoxia, and capillary damage caused by COVID-19 in key organs are also covered in this point of view. Once initiated, this vicious cycle leads to diminished capillary function, which exacerbates inflammation and tissue damage, and increased inflammation due to hypoxia. Brain damage may result from low oxygen levels and high cytokines in brain tissue. In this paper we give a summary in this direction with focus on the role of the neuropeptide Substance P. On the basis of this, we discuss selected approaches to the question: "How Substance P is involved in the etiology of the COVID-19 and how results of our research could improve the prevention or therapy of corona? Thereby pointing out the role of Substance P in the post-corona syndrome and providing novel concepts for therapy and prevention.
Collapse
Affiliation(s)
- Riffat Mehboob
- Lahore Medical Research Center, Lahore, Pakistan
- National Heart Lung and Blood Institute, National Institute of Health, Bethesda, MD, United States
| | | | | | | |
Collapse
|
3
|
Ebrahimi S, Erfani B, Alalikhan A, Ghorbani H, Farzadnia M, Afshari AR, Mashkani B, Hashemy SI. The In Vitro Pro-inflammatory Functions of the SP/NK1R System in Prostate Cancer: a Focus on Nuclear Factor-Kappa B (NF-κB) and Its Pro-inflammatory Target Genes. Appl Biochem Biotechnol 2023; 195:7796-7807. [PMID: 37093533 DOI: 10.1007/s12010-023-04495-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Prostate cancer is one of the main global health threats for men which is in close association with chronic inflammation. Neuropeptide substance P (SP), acting through neurokinin receptor (NK-1R), induces various pro-inflammatory responses which are strongly involved in the pathogenesis of several diseases as well as cancer. Therefore, we aimed to investigate the pro-inflammatory functions of the SP/NK1R complex in prostate cancer and the therapeutic effects of its inhibition by NK-1R antagonist, aprepitant, in vitro. MTT assay was conducted for the cytotoxicity assessment of aprepitant in prostate cancer cells. The protein expression levels were evaluated by Western blot assay. Quantitative real-time PCR (qRT-PCR) was applied to measure mRNA expression levels of pro-inflammatory cytokines. Concurrently, the protein concentrations of pro-inflammatory cytokines were also analyzed by enzyme-linked immunosorbent assay. We observed that SP increased the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), while treatment with aprepitant reduced the effects of SP. We also indicated that SP increased the protein levels of nuclear factor-kappa B (NF-κB), as the main regulator of inflammatory processes, and also an NF-κB target gene, cyclooxygenase 2 (COX-2) in prostate cancer cells, while treatment with aprepitant reversed these effects. Taken together, our findings highlight the importance of the SP/NK1R system in the modulation of pro-inflammatory responses in prostate cancer cells and suggest that aprepitant may be developed as a novel anti-inflammatory agent for the management of cancer-associated inflammation.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Erfani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Ghorbani
- Kidney Transplantation Complication Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Farzadnia
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - BaratAli Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Abdullah M, Ali A, Usman M, Naz A, Qureshi JA, Bajaber MA, Zhang X. Post COVID-19 complications and follow up biomarkers. NANOSCALE ADVANCES 2023; 5:5705-5716. [PMID: 37881715 PMCID: PMC10597564 DOI: 10.1039/d3na00342f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023]
Abstract
Millions of people were infected by the coronavirus disease (COVID-19) epidemic, which left a huge burden on the care of post COVID-19 survivors around the globe. The self-reported COVID-19 symptoms were experienced by an estimated 1.3 million people in the United Kingdom (2% of the population), and these symptoms persisted for about 4 weeks from the beginning of the infection. The symptoms most frequently reported were exhaustion, shortness of breath, muscular discomfort, joint pain, headache, cough, chest pain, cognitive impairment, memory loss, anxiety, sleep difficulties, diarrhea, and a decreased sense of smell and taste in post-COVID-19 affected people. The post COVID-19 complications were frequently related to the respiratory, cardiac, nervous, psychological and musculoskeletal systems. The lungs, liver, kidneys, heart, brain and other organs had been impaired by hypoxia and inflammation in post COVID-19 individuals. The upregulation of substance "P" (SP) and various cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 1 beta (IL-1β), angiotensin-converting enzyme 2 (ACE2) and chemokine C-C motif ligand 3 (CCL3) has muddled respiratory, cardiac, neuropsychiatric, dermatological, endocrine, musculoskeletal, gastrointestinal, renal and genitourinary complications in post COVID-19 people. To prevent these complications from worsening, it was therefore important to study how these biomarkers were upregulated and block their receptors.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Institute of Molecular Biology and Biotechnology, University of Lahore Pakistan
| | - Amjed Ali
- University Institute of Physical Therapy, University of Lahore Pakistan
| | - Muhammad Usman
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University Xuzhou China
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Pakistan
| | - Javed Anver Qureshi
- Institute of Molecular Biology and Biotechnology, University of Lahore Pakistan
| | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University Xuzhou China
| |
Collapse
|
5
|
Martins MS, Almeida IF, Cruz MT, Sousa E. Chronic pruritus: from pathophysiology to drug design. Biochem Pharmacol 2023; 212:115568. [PMID: 37116666 DOI: 10.1016/j.bcp.2023.115568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Pruritus, the most common symptom in dermatology, is an innate response capable of protecting skin against irritants. Nonetheless, when it lasts more than six weeks it is assumed to be a chronic pathology having a negative impact on people's lives. Chronic pruritus (CP) can occur in common and rare skin diseases, having a high prevalence in global population. The existing therapies are unable to counteract CP or are associated with adverse effects, so the development of effective treatments is a pressing issue. The pathophysiological mechanisms underlying CP are not yet completely dissected but, based on current knowledge, involve a wide range of receptors, namely neurokinin 1 receptor (NK1R), Janus kinase (JAK), and transient receptor potential (TRP) ion channels, especially transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1). This review will address the relevance of these molecular targets for the treatment of CP and molecules capable of modulating these receptors that have already been studied clinically or have the potential to possibly alleviate this pathology. According to scientific and clinical literature, there is an increase in the expression of these molecular targets in the lesioned skin of patients experiencing CP when compared with non-lesioned skin, highlighting their importance for the development of potential efficacious drugs through the design of antagonists/inhibitors.
Collapse
Affiliation(s)
- Márcia S Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isaobel F Almeida
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria T Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Emília Sousa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Bandyopadhyay M, Morelli AE, Balmert SC, Ward NL, Erdos G, Sumpter TL, Korkmaz E, Kaplan DH, Oberbarnscheidt MH, Tkacheva O, Shufesky WJ, Falo LD, Larregina AT. Skin codelivery of contact sensitizers and neurokinin-1 receptor antagonists integrated in microneedle arrays suppresses allergic contact dermatitis. J Allergy Clin Immunol 2022; 150:114-130. [PMID: 35085664 PMCID: PMC9271537 DOI: 10.1016/j.jaci.2021.12.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/03/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Allergic contact dermatitis (CD) is a chronic inflammatory skin disease caused by type 1 biased adaptive immunity for which there is an unmet need for antigen (Ag)-specific immunotherapies. Exposure to skin sensitizers stimulates secretion of the proinflammatory neuropeptides substance P and hemokinin 1, which signal via the neurokinin-1 receptor (NK1R) to promote the innate and adaptive immune responses of CD. Accordingly, mice lacking the NK1R develop impaired CD. Nonetheless, the role and therapeutic opportunities of targeting the NK1R in CD remain to be elucidated. OBJECTIVE We sought to develop an Ag-specific immunosuppressive approach to treat CD by skin codelivery of hapten and NK1R antagonists integrated in dissolvable microneedle arrays (MNA). METHODS In vivo mouse models of contact hypersensitivity and ex vivo models of human skin were used to delineate the effects and mechanisms of NK1R signaling and the immunosuppressive effects of the contact sensitizer NK1R antagonist MNA in CD. RESULTS We demonstrated in mice that CD requires NK1R signaling by substance P and hemokinin 1. Specific deletion of the NK1R in keratinocytes and dendritic cells, but not in mast cells, prevented CD. Skin codelivery of hapten or Ag MNA inhibited neuropeptide-mediated skin inflammation in mouse and human skin, promoted deletion of Ag-specific effector T cells, and increased regulatory T cells, which prevented CD onset and relapses locally and systemically in an Ag-specific manner. CONCLUSIONS Immunoregulation by engineering localized skin neuroimmune networks can be used to treat cutaneous diseases that like CD are caused by type 1 immunity.
Collapse
Affiliation(s)
- Mohna Bandyopadhyay
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Nicole L Ward
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio; Department of Dermatology, Case Western Reserve University, Cleveland, Ohio; Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Olga Tkacheva
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - William J Shufesky
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, Pa
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pa; University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, Pa; UPMC Hillman Cancer Center, Pittsburgh, Pa; McGowan Center for Regenerative Medicine, Pittsburgh, Pa
| | - Adriana T Larregina
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pa; UPMC Hillman Cancer Center, Pittsburgh, Pa; McGowan Center for Regenerative Medicine, Pittsburgh, Pa.
| |
Collapse
|
7
|
Esteban F, Ramos-García P, Muñoz M, González-Moles MÁ. Substance P and Neurokinin 1 Receptor in Chronic Inflammation and Cancer of the Head and Neck: A Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010375. [PMID: 35010633 PMCID: PMC8751191 DOI: 10.3390/ijerph19010375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 05/09/2023]
Abstract
Head and neck cancer is a growing worldwide public health problem, accounting for approximately 1,500,000 new cases and 500,000 deaths annually. Substance P (SP) is a peptide of the tachykinin family, which has roles related to a large number of physiological mechanisms in humans. The implications of SP in carcinogenesis have recently been reported through the stimulation of the neurokinin 1 receptor (NK1R), or directly, through the effects derived from the constitutive activation of NK1R. Consequently, SP/NK1R seems to play relevant roles in cancer, upregulating cell proliferation, cell migration and chronic inflammation, among other oncogenic actions. Furthermore, there is growing evidence pointing to a central role for SP in tumour progression, singularly so in laryngeal and oral squamous cell carcinomas. The current narrative review of the literature focuses on the relationship between the SP/NK1R system and chronic inflammation and cancer in the head-and-neck region. We described a role for SP/NK1R in the transition from chronic inflammation of the head and neck mucosa, to preneoplastic and neoplastic transformation and progression.
Collapse
Affiliation(s)
- Francisco Esteban
- Department of Otolaryngology, Hospital Universitario Virgen del Rocío, University of Sevilla, 41004 Sevilla, Spain;
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
- Correspondence:
| | - Miguel Muñoz
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla, Spain;
| | - Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
| |
Collapse
|
8
|
Kose D, Un H, Ugan RA, Halici Z, Cadirci E, Tastan TB, Kahramanlar A. Aprepitant: an antiemetic drug, contributes to the prevention of acute lung injury with its anti-inflammatory and antioxidant properties. J Pharm Pharmacol 2021; 73:1302-1309. [PMID: 34160038 DOI: 10.1093/jpp/rgab088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We investigated, the effects of aprepitant (APRE) on the lung tissues of rats with an experimental polymicrobial sepsis model (CLP: cecal ligation and puncture) biochemically, molecularly and histopathologically. METHODS A total of 40 rats were divided into 5 groups with 8 animals in each group. Group 1 (SHAM), control group; Group 2 (CLP), cecal ligation and puncture; Group 3 (CLP + APRE10), rats were administered CLP + 10 mg/kg aprepitant; Group 4 (CLP + APRE20), rats were administered CLP + 20 mg/kg aprepitant; and Group 5 (CLP + APRE40), rats were administered CLP + 40 mg/kg aprepitant. A polymicrobial sepsis model was induced with CLP. After 16 h, lung tissues were taken for examination. Tumour necrosis factor α (TNF-α) and nuclear factor-kappa b (NFK-b) messenger ribonucleic acid (mRNA) expressions were analysed by real-time PCR (RT-PCR), biochemically antioxidant parameters such as superoxide dismutase (SOD) and glutathione (GSH) and oxidant parameters such as malondialdehyde (MDA) and lung damage histopathologically. KEY FINDINGS AND CONCLUSIONS The GSH level and SOD activity increased while the MDA level and the expressions of TNF-α and NFK-b were reduced in the groups treated with APRE, especially in the CLP + APRE40 group. The histopathology results supported the molecular and biochemical results.
Collapse
Affiliation(s)
- Duygu Kose
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey
| | - Harun Un
- Faculty of Pharmacy, Department of Biochemistry, Agri İbrahim Çeçen University, Ağrı, Turkey
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Zekai Halici
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey
| | - Elif Cadirci
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Tugba Bal Tastan
- Faculty of Medicine, Department of Histology and Embryology Department, Binali Yıldırım University, Erzincan, Turkey
| | - Aysenur Kahramanlar
- Faculty of Pharmacy, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
9
|
Pan Y, Yu S, Wang J, Li W, Li H, Bai C, Sheng Y, Li M, Wang C, Liu J, Xie P, Wang C, Jiang J, Li J. N-acetyl-L-tryptophan attenuates hepatic ischemia-reperfusion injury via regulating TLR4/NLRP3 signaling pathway in rats. PeerJ 2021; 9:e11909. [PMID: 34434653 PMCID: PMC8362669 DOI: 10.7717/peerj.11909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the changes of TLR4/NLRP3 signal during hepatic ischemia-reperfusion injury (HIRI) and to verify whether N-acetyl-L-tryptophan (L-NAT) protected hepatocytes by regulating the activation of TLR4/NLRP3 signal. We have established the rat HIRI model and H2O2-induced cell damage model to simulate ischemia-reperfusion injury and detect the corresponding indicators. Compared with the sham group, Suzuki score and the level of serum ALT increased after HIRI, accompanied by an increased expression of NLRP3, ASC, Caspase-1, IL-1β, TLR4, and NF-κB. While L-NAT pretreatment reversed the above-mentioned changes. Compared with the control group, cells in the H2O2 treated group became smaller in cell volume and round in shape with unclear boundaries. Similar to the phenotypes in vivo, H2O2 treatment also induced significant increase in expression of pyroptosis-related proteins (NLRP3, ASC, Caspase-1 and IL-1β) and inflammatory factors (TLR4 and NF-κB). While L-NAT pretreatment attenuated injuries caused by H2O2. In conclusion, the present findings demonstrate that L-NAT alleviates HIRI by regulating activation of NLRP3 inflammasome, which may be related to the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yitong Pan
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Shuna Yu
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jianxin Wang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Wanzhen Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Huiting Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Chen Bai
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Yaxin Sheng
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Ming Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Chenchen Wang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jiao Liu
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Peitong Xie
- 2018 Grade 2 Glasses, Anaesthesiology Specialty, Weifang Medical University, Weifang, Shandong, China
| | - Can Wang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jiying Jiang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jianguo Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
10
|
Ceci L, Francis H, Zhou T, Giang T, Yang Z, Meng F, Wu N, Kennedy L, Kyritsi K, Meadows V, Wu C, Liangpunsakul S, Franchitto A, Sybenga A, Ekser B, Mancinelli R, Onori P, Gaudio E, Glaser S, Alpini G. Knockout of the Tachykinin Receptor 1 in the Mdr2 -/- (Abcb4 -/-) Mouse Model of Primary Sclerosing Cholangitis Reduces Biliary Damage and Liver Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2251-2266. [PMID: 32712019 PMCID: PMC7592721 DOI: 10.1016/j.ajpath.2020.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Activation of the substance P (SP)/neurokinin 1 receptor (NK1R) axis triggers biliary damage/senescence and liver fibrosis in bile duct ligated and Mdr2-/- (alias Abcb4-/-) mice through enhanced transforming growth factor-β1 (TGF-β1) biliary secretion. Recent evidence indicates a role for miR-31 (MIR31) in TGF-β1-induced liver fibrosis. We aimed to define the role of the SP/NK1R/TGF-β1/miR-31 axis in regulating biliary proliferation and liver fibrosis during cholestasis. Thus, we generated a novel model with double knockout of Mdr2-/- and NK1R-/ (alias Tacr1-/-) to further address the role of the SP/NK1R axis during chronic cholestasis. In vivo studies were performed in the following 12-week-old male mice: (i) NK1R-/-; (ii) Mdr2-/-; and (iii) NK1R-/-/Mdr2-/- (Tacr1-/-/Abcb4-/-) and their corresponding wild-type controls. Liver tissues and cholangiocytes were collected, and liver damage, changes in biliary mass/senescence, and inflammation as well as liver fibrosis were evaluated by both immunohistochemistry in liver sections and real-time PCR. miR-31 expression was measured by real-time PCR in isolated cholangiocytes. Decreased ductular reaction, liver fibrosis, biliary senescence, and biliary inflammation were observed in NK1R-/-/Mdr2-/- mice compared with Mdr2-/- mice. Elevated expression of miR-31 was observed in Mdr2-/- mice, which was reduced in NK1R-/-/Mdr2-/- mice. Targeting the SP/NK1R and/or miR-31 may be a potential approach in treating human cholangiopathies, including primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Heather Francis
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Thao Giang
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Zhihong Yang
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Fanyin Meng
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Nan Wu
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Vik Meadows
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Suthat Liangpunsakul
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | | | - Amelia Sybenga
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Gianfranco Alpini
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
11
|
Rodionova K, Hilgers KF, Paulus EM, Tiegs G, Ott C, Schmieder R, Schiffer M, Amann K, Veelken R, Ditting T. Neurogenic tachykinin mechanisms in experimental nephritis of rats. Pflugers Arch 2020; 472:1705-1717. [PMID: 33070237 PMCID: PMC7691313 DOI: 10.1007/s00424-020-02469-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/30/2020] [Indexed: 01/24/2023]
Abstract
We demonstrated earlier that renal afferent pathways combine very likely “classical” neural signal transduction to the central nervous system and a substance P (SP)–dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Eva-Maria Paulus
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Gisa Tiegs
- Center of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ott
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Schmieder
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany. .,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany.
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
12
|
Wang J, Yu S, Li J, Li H, Jiang H, Xiao P, Pan Y, Zheng J, Yu L, Jiang J. Protective role of N-acetyl-l-tryptophan against hepatic ischemia-reperfusion injury via the RIP2/caspase-1/IL-1β signaling pathway. PHARMACEUTICAL BIOLOGY 2019; 57:385-391. [PMID: 31184936 PMCID: PMC6566838 DOI: 10.1080/13880209.2019.1617750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/29/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Context: Hepatic ischemia-reperfusion injury (HIRI) is a complex process observed during liver resection and transplantation. N-acetyl-l-tryptophan (l-NAT), an antagonist of neurokinin 1 receptor, has been used for the treatment of nausea and neurodegenerative diseases. Objective: This study investigates the protective effect of l-NAT against HIRI and explores the potential underlying mechanisms. Materials and methods: Adult male Sprague-Dawley (SD) rats were randomly divided into three groups: sham, I/R and I/R + l-NAT. HIRI model was generated by clamping the hepatic artery, portal vein and common bile duct with a microvascular bulldog clamp for 45 min, and then removing the clamp and allowing reperfusion for 6 h. BRL cells were exposed to 200 µM H2O2 with or without 10 µM l-NAT for 6 h. Results: After l-NAT intervention, the structure of hepatic lobules was intact, and no swelling was noted in the cells. Furthermore, cell viability was found to be significantly enhanced when compared with the controls (p < 0.05). The mRNA and protein expression levels of serine-threonine kinase 2 (RIP2) and interleukin-1β (IL-1β) were significantly increased in the I/R and H2O2 groups when compared with the controls; however, these levels were significantly decreased after l-NAT intervention. Similarly, IL-1β activity and caspase-1 activity were significantly decreased in the H2O2 group when compared with the controls, after l-NAT intervention. Conclusions: Our findings indicated that l-NAT may exert a hepatoprotective role in HIRI through inhibiting RIP2/caspase-1/IL-1β signaling pathway, which can provide evidence for l-NAT to be a potential effective drug against HIRI during clinical practice.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Shuna Yu
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Jianguo Li
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Huiting Li
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Hongxin Jiang
- Morphology Laboratory of Weifang Medical University, Weifang, China
| | - Peilun Xiao
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Yitong Pan
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Jie Zheng
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Li Yu
- Departments of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Jiying Jiang
- Department of Anatomy, Weifang Medical University, Weifang, China
| |
Collapse
|
13
|
Muñoz M, Coveñas R. Glioma and Neurokinin-1 Receptor Antagonists: A New Therapeutic Approach. Anticancer Agents Med Chem 2019; 19:92-100. [PMID: 29692265 DOI: 10.2174/1871520618666180420165401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND In adults, the most lethal and frequent primary brain tumor is glioblastoma. Despite multimodal aggressive therapies, the median survival time after diagnosis is around 15 months. In part, this is due to the blood-brain barrier that restricts common treatments (e.g., chemotherapy). Unfortunately, glioma recurs in 90% of patients. New therapeutic strategies against glioma are urgently required. Substance P (SP), through the neurokinin (NK)-1 receptor, controls cancer cell proliferation by activating c-myc, mitogenactivated protein kinases, activator protein 1 and extracellular signal-regulated kinases 1 and 2. Glioma cells overexpress NK-1 receptors when compared with normal cells. The NK-1 receptor/SP system regulates the proliferation/migration of glioma cells and stimulates angiogenesis, triggering inflammation which contributes to glioma progression. In glioma cells, SP favors glycogen breakdown, essential for glycolysis. By contrast, in glioma, NK-1 receptor antagonists block the proliferation of tumor cells and the breakdown of glycogen and also promote the death (apoptosis) of these cells. These antagonists also inhibit angiogenesis and exert antimetastatic and anti-inflammatory actions. OBJECTIVE This review updates the involvement of the NK-1 receptor/SP system in the development of glioma and the potential clinical application of NK-1 receptor antagonists as antiglioma agents. CONCLUSION The NK-1 receptor plays a crucial role in glioma and NK-1 receptor antagonists could be used as anti-glioma drugs.
Collapse
Affiliation(s)
- Miguel Muñoz
- Virgen del Rocío University Hospital, Research Laboratory on Neuropeptides (IBIS), Seville, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic, Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Abstract
Background::Human tumor cells lines and tumor samples overexpress the neurokinin-1 receptor (NK-1R). Substance P (SP), after binding to NK-1Rs, induces tumor cell proliferation, an antiapoptotic effect and promotes angiogenesis and the migration of cancer cells for invasion and metastasis.Methods: :In contrast, NK-1R antagonists block the previous pathophysiological actions mediated by SP. These antagonists promote the death of tumor cells by apoptosis. Peptide and non-peptide NK-1R antagonists have been reported.Results: :Peptide NK-1R antagonists show chemical modifications of the SP molecule (L-amino acids being replaced by D-amino acids), whereas non-peptide NK-1R antagonists include numerous compounds with different chemical compositions while showing similar stereochemical features (affinity for the NK- 1R). Currently, there are more than 300 NK-1R antagonists.Conclusion::In combination therapy with classic cytostatics, NK-1R antagonists have additive or synergic effects and minimize the side-effects of cytostatics. The effect of NK-1R antagonists as broad-spectrum anticancer drugs is reviewed and the use of these antagonists for the treatment of cancer is suggested.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital (IBIS), Sevilla, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL) University of Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Cellular and behavioral effects of lipopolysaccharide treatment are dependent upon neurokinin-1 receptor activation. J Neuroinflammation 2018; 15:60. [PMID: 29486768 PMCID: PMC6389133 DOI: 10.1186/s12974-018-1098-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Several psychiatric conditions are affected by neuroinflammation and neuroimmune activation. The transcription factor nuclear factor kappa light-chain-enhancer of activated B cells (NFkB) plays a major role in inflammation and innate immunity. The neurokinin-1 receptor (NK1R) is the primary endogenous target of the neuroactive peptide substance P, and some data suggests that NK1R stimulation may influence NFkB activity. Both NK1R and NFkB have been shown to play a functional role in complex behaviors including stress responsivity, depression, and addiction. In this study, we test whether NFkB activity in the brain (stimulated by lipopolysaccharide administration) is dependent upon the NK1R. Methods Adult male Wistar rats were treated systemically with the NK1R antagonist L822429 followed by administration of systemic lipopolysaccharide (LPS, a strong activator of NFkB). Hippocampal extracts were used to assess expression of proinflammatory cytokines and NFkB-DNA-binding potential. For behavioral studies, rats were trained to consume 1% (w/v) sucrose solution in a continuous access two-bottle choice model. After establishment of baseline, animals were treated with L822429 and LPS and sucrose preference was measured 12 h post-treatment. Results Systemic LPS treatment causes a significant increase in proinflammatory cytokine expression and NFkB-DNA-binding activity within the hippocampus. These increases are attenuated by systemic pretreatment with the NK1R antagonist L822429. Systemic LPS treatment also led to the development of anhedonic-like behavior, evidenced by decreased sucrose intake in the sucrose preference test. This behavior was significantly attenuated by systemic pretreatment with the NK1R antagonist L822429. Conclusions Systemic LPS treatment induced significant increases in NFkB activity, evidenced by increased NFkB-DNA binding and by increased proinflammatory cytokine expression in the hippocampus. LPS also induced anhedonic-like behavior. Both the molecular and behavioral effects of LPS treatment were significantly attenuated by systemic NK1R antagonism, suggesting that NK1R stimulation lies upstream of NFkB activation following systemic LPS administration and is at least in part responsible for NFkB activation.
Collapse
|
16
|
Pakai E, Tekus V, Zsiboras C, Rumbus Z, Olah E, Keringer P, Khidhir N, Matics R, Deres L, Ordog K, Szentes N, Pohoczky K, Kemeny A, Hegyi P, Pinter E, Garami A. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice. Front Immunol 2018; 9:166. [PMID: 29459872 PMCID: PMC5807668 DOI: 10.3389/fimmu.2018.00166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Neurokinin (NK) signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS). A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally) to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ ) or absent (Tacr1-/- ) and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2) expression, and prostaglandin (PG) E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1-/- compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1-/- mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1-/- and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1-/- mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1-/- mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the "cytokine-COX-2-prostaglandin E2" axis in systemic inflammation, thereby open up the possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- Eszter Pakai
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences - University of Szeged, Szeged, Hungary
| | - Valeria Tekus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Csaba Zsiboras
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Patrik Keringer
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nora Khidhir
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robert Matics
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Ordog
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztina Pohoczky
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Agnes Kemeny
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,Department of Medical Biology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences - University of Szeged, Szeged, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
17
|
Solomon I, Voiculescu VM, Caruntu C, Lupu M, Popa A, Ilie MA, Albulescu R, Caruntu A, Tanase C, Constantin C, Neagu M, Boda D. Neuroendocrine Factors and Head and Neck Squamous Cell Carcinoma: An Affair to Remember. DISEASE MARKERS 2018; 2018:9787831. [PMID: 29854027 PMCID: PMC5966665 DOI: 10.1155/2018/9787831] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/21/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive malignancies. Therefore, the major goal of cancer treatment is inhibition of tumor cell growth and of metastasis development. In order to choose the best management option for HNSCC patients, we need to identify reliable prognostic factors and to develop new molecular techniques in order to obtain a better understanding of therapy resistance. By acting as neurohormones, neurotransmitters, or neuromodulators, the neuroendocrine factors are able to signal the maintenance of physiological homeostasis or progression to malignant disease. Certain neuropeptides possess strong antitumor properties acting as tumor suppressors and immunomodulators, providing additional benefits for future potential therapeutic strategies. In light of the current understanding, cancer starts as a localized disease that can be effectively treated if discovered on proper time. Unfortunately, more than often cancer cells migrate to the surrounding tissues generating distant metastases, thus making the prognosis and survival in this stage much worse. As cellular migration is mandatory for tumor invasion and metastasis development, searching for alternate controllers of these processes, such as the neuroendocrine factors, it is an active tremendous task.
Collapse
Affiliation(s)
- Iulia Solomon
- 1Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Vlad Mihai Voiculescu
- 1Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
- 2Department of Dermatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Constantin Caruntu
- 3Department of Physiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- 4Department of Dermatology, “Prof. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| | - Mihai Lupu
- 5Department of Dermatology, MEDAS Titan Medical Center, Bucharest, Romania
| | - Alexandra Popa
- 1Department of Dermatology and Allergology, Elias Emergency University Hospital, Bucharest, Romania
| | - Mihaela Adriana Ilie
- 6Dermatology Research Laboratory, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- 7Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Radu Albulescu
- 8Chemical and Pharmaceutical National Institute, Bucharest, Romania
| | - Ana Caruntu
- 9Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, Bucharest, Romania
- 10Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Cristiana Tanase
- 10Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- 11Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Carolina Constantin
- 11Victor Babes National Institute of Pathology, Bucharest, Romania
- 12Colentina Clinical Hospital, Bucharest, Romania
| | - Monica Neagu
- 11Victor Babes National Institute of Pathology, Bucharest, Romania
- 12Colentina Clinical Hospital, Bucharest, Romania
- 13Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Daniel Boda
- 6Dermatology Research Laboratory, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
18
|
Lupu M, Caruntu A, Caruntu C, Papagheorghe LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki M, Drakoulis N, Mamoulakis C, Tzanakakis G, Neagu M, Spandidos DA, Izotov BN, Tsatsakis AM. Neuroendocrine factors: The missing link in non‑melanoma skin cancer (Review). Oncol Rep 2017; 38:1327-1340. [PMID: 28713981 PMCID: PMC5549028 DOI: 10.3892/or.2017.5817] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Non‑melanoma skin cancer (NMSC) is the most common form of cancer worldwide, comprising 95% of all cutaneous malignancies and approximately 40% of all cancers. In spite of intensive efforts aimed towards awareness campaigns and sun‑protective measures, epidemiological data indicate an increase in the incidence of NMSC. This category of skin cancers has many common environmental triggers. Arising primarily on sun‑exposed skin, it has been shown that ultraviolet radiation is, in the majority of cases, the main trigger involved in the pathogenesis of NMSC. Aside from the well‑known etiopathogenic factors, studies have indicated that several neuroactive factors are involved in the carcinogenesis of two of the most common types of NMSC, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), with the exception of penile SCC, for which a paucity of specific data on their pathogenic role exists. The complex interaction between the peripheral nervous system and target cells in the skin appears to be mediated by locally released neuroendocrine factors, such as catecholamines, substance P, calcitonin gene‑related peptide and somatostatin, as well as neurohormones, such as proopiomelanocortin and its derived peptides, α‑melanocyte‑stimulating hormone and adrenocorticotropin. All these factors have been, at least at some point, a subject of debate regarding their precise role in the pathogenesis of NMSC. There is also a significant body of evidence indicating that psychological stress is a crucial impact factor influencing the course of skin cancers, including SCC and BCC. Numerous studies have suggested that neuroendocrine factor dysregulation, as observed in stress reactions, may be involved in tumorigenesis, accelerating the development and progression, and suppressing the regression of NMSC. Further studies are required in order to elucidate the exact mechanisms through which neuroactive molecules promote or inhibit cutaneous carcinogenesis, as this could lead to the development of more sophisticated and tailored treatment protocols, as well as open new perspectives in skin cancer research.
Collapse
Affiliation(s)
- Mihai Lupu
- Department of Dermatology, MEDAS Medical Center, 030442 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- ‘Titu Maiorescu’ University, Faculty of Medicine, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | | | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Vlad Voiculescu
- Department of Dermatology and Allergology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Colentina University Hospital, 020125 Bucharest, Romania
| | - Cristiana Tanase
- ‘Titu Maiorescu’ University, Faculty of Medicine, 031593 Bucharest, Romania
- ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Maria Sifaki
- Laboratory of Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School, 71003 Heraklion, Greece
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Monica Neagu
- ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Colentina University Hospital, 020125 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Boris N. Izotov
- Department of Analytical Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia
| | - Aristides M. Tsatsakis
- Laboratory of Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
19
|
Wan Y, Meng F, Wu N, Zhou T, Venter J, Francis H, Kennedy L, Glaser T, Bernuzzi F, Invernizzi P, Glaser S, Huang Q, Alpini G. Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells. Hepatology 2017; 66:528-541. [PMID: 28256736 PMCID: PMC5519428 DOI: 10.1002/hep.29138] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/01/2017] [Accepted: 02/25/2017] [Indexed: 12/16/2022]
Abstract
UNLABELLED Substance P (SP) is involved in the proliferation of cholangiocytes in bile duct-ligated (BDL) mice and human cholangiocarcinoma growth by interacting with the neurokinin-1 receptor (NK-1R). To identify whether SP regulates liver fibrosis during cholestasis, wild-type or NK-1R knockout (NK-1R-/- ) mice that received BDL or sham surgery and multidrug resistance protein 2 knockout (Mdr2-/- ) mice treated with either an NK-1R antagonist (L-733,060) or saline were used. Additionally, wild-type mice were treated with SP or saline intraperitoneally. In vivo, there was increased expression of tachykinin precursor 1 (coding SP) and NK-1R in both BDL and Mdr2-/- mice compared to wild-type mice. Expression of tachykinin precursor 1 and NK-1R was significantly higher in liver samples from primary sclerosing cholangitis patients compared to healthy controls. Knockout of NK-1R decreased BDL-induced liver fibrosis, and treatment with L-733,060 resulted in decreased liver fibrosis in Mdr2-/- mice, which was shown by decreased sirius red staining, fibrosis gene and protein expression, and reduced transforming growth factor-β1 levels in serum and cholangiocyte supernatants. Furthermore, we observed that reduced liver fibrosis in NK-1R-/- mice with BDL surgery or Mdr2-/- mice treated with L-733,060 was associated with enhanced cellular senescence of hepatic stellate cells and decreased senescence of cholangiocytes. In vitro, L-733,060 inhibited SP-induced expression of fibrotic genes in hepatic stellate cells and cholangiocytes; treatment with L-733,060 partially reversed the SP-induced decrease of senescence gene expression in cultured hepatic stellate cells and the SP-induced increase of senescence-related gene expression in cultured cholangiocytes. CONCLUSION Collectively, our results demonstrate the regulatory effects of the SP/NK-1R axis on liver fibrosis through changes in cellular senescence during cholestatic liver injury. (Hepatology 2017;66:528-541).
Collapse
Affiliation(s)
- Ying Wan
- Research, Central Texas Veterans Health Care System, Temple, TX,Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX,Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX,Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX,Operational Funds, Baylor Scott & White, Temple, TX,Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White, Temple, TX
| | - Nan Wu
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White, Temple, TX
| | - Tianhao Zhou
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White, Temple, TX
| | - Julie Venter
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White, Temple, TX
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX,Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX,Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White, Temple, TX
| | - Lindsey Kennedy
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White, Temple, TX
| | - Trenton Glaser
- Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX
| | | | | | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX,Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX,Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White, Temple, TX
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX,Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX,Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White, Temple, TX
| |
Collapse
|
20
|
Ketamine suppresses the substance P-induced production of IL-6 and IL-8 by human U373MG glioblastoma/astrocytoma cells. Int J Mol Med 2017; 39:687-692. [PMID: 28204809 DOI: 10.3892/ijmm.2017.2875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
The neuropeptide substance P (SP) is an important mediator of neurogenic inflammation within the central and peripheral nervous systems. SP has been shown to induce the expression of pro-inflammatory cytokines implicated in the pathogenesis of several disorders of the human brain via the neurokinin-1 receptor (NK-1R). Ketamine, an intravenous anesthetic agent, functions as a competitive antagonist of the excitatory neurotransmission N-methyl-D‑aspartate (NMDA) receptor, and also antagonizes the NK-1R by interfering with the binding of SP. In the present study, we investigated the anti-inflammatory effects of ketamine on the SP-induced activation of a human astrocytoma cell line, U373MG, which expresses high levels of NK-1R. The results from our experiments indicated that ketamine suppressed the production of interleukin (IL)-6 and IL-8 by the U373MG cells. Furthermore, ketamine inhibited the SP-induced activation of extracellular signal‑regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). Taken together, these observations suggest that ketamine may suppress the SP-induced activation (IL-6 and IL-8 production) of U373MG cells by inhibiting the phosphorylation of signaling molecules (namely ERK1/2, p38 MAPK and NF-κB), thereby exerting anti‑inflammatory effects. Thus, ketamine may modulate SP-induced inflammatory responses by NK-1R‑expressing cells through the suppression of signaling molecules (such as ERK1/2, p38 MAPK and NF-κB).
Collapse
|
21
|
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016; 73:4249-4264. [PMID: 27314883 PMCID: PMC5056132 DOI: 10.1007/s00018-016-2293-z] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Mohsen Tehrani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO 80309 USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, Inflammatory Bowel Disease Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
22
|
Lan CZ, Ding L, Su YL, Guo K, Wang L, Kan HW, Ou YR, Gao S. Grape seed proanthocyanidins prevent DOCA-salt hypertension-induced renal injury and its mechanisms in rats. Food Funct 2015; 6:2179-2186. [PMID: 26011796 DOI: 10.1039/c5fo00253b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Renal dysfunction is one of the major effects of DOCA (deoxycorticosterone acetate)-salt hypertension and there is an increasing amount of evidence that oxidative stress damages the function of the kidney. Grape seed proanthocyanidins (GSPE) have been reported to be potent anti-oxidants and free radical scavengers. The present study sought to investigate the ability of GSPE to prevent renal injury in DOCA-salt hypertensive rats and to explore the molecular mechanisms underlying its protective effects. A total of 54 Sprague Dawley (SD) rats were randomly divided into 7 groups: Sham group (n = 7), UnX-sham group (n = 8), DOCA-salt group (n = 8), GSPE150 group (150 mg kg(-1), n = 7), GSPE240 group (240 mg kg(-1), n = 8), GSPE384 group (384 mg kg(-1), n = 8) and ALM (amlodipine besylate tablets) group (5 mg kg(-1), n = 8), and treated for 4 weeks. Compared to sham group rats, renal injury was observed in DOCA-salt hypertensive group rats as the urine protein, KW/BW (kidney weight/body weight), degree of renal fibrosis, renal MDA (malondialdehyde) and Hyp (hydroxyproline) contents significantly increased (P < 0.01). Moreover, SOD (Superoxide Dismutase) activities decreased in the model group (P < 0.01). In contrast, DOCA-salt hypertensive rats treated with different dose of GSPE or ALM showed a significant improvement of renal injury with decreased urine protein, KW/BW, degree of renal fibrosis, renal total MDA and Hyp contents compared to the untreated group. In addition, SOD activities increased in the treatment group. Since the experimental modeling time was short, kidney damage occurs to a lesser extent. BUN (Blood Urea Nitrogen), Scr (Serum Creatinine) and UA (Uric Acid) contents did not appear significantly changed in all groups. Finally, the activation of JNK and p38 kinases in the kidney was suppressed in rats treated with GSPEs or ALM compared to the untreated group, suggesting that the inhibition of these kinase pathways by GSPE contributes to the improvement of renal function. Taking these results together, we conclude that the anti-hypertensive and anti-oxidative stress beneficial effects of GSPE on renal injury in rats with DOCA-salt hypertension occur via the attenuation of JNK and p38 activity.
Collapse
Affiliation(s)
- Chao-Zong Lan
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Ling Ding
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| | - Yi-Lin Su
- Department of Pediatric Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Kun Guo
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| | - Li Wang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| | - Hong-Wei Kan
- Department of Pharmacology, Anhui Institute of Material Medica, Hefei 230022, China
| | - Yu-Rong Ou
- Department of Pathology, Bengbu Medical College, Bengbu 233000, China.
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
23
|
Muñoz M, Coveñas R, Esteban F, Redondo M. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J Biosci 2015; 40:441-63. [DOI: 10.1007/s12038-015-9530-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Wang JB, Wang DL, Wang HT, Wang ZH, Wen Y, Sun CM, Zhao YT, Wu J, Liu P. Tumor necrosis factor-alpha-induced reduction of glomerular filtration rate in rats with fulminant hepatic failure. J Transl Med 2014; 94:740-51. [PMID: 24887412 DOI: 10.1038/labinvest.2014.71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/11/2014] [Accepted: 04/20/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanism of renal failure during fulminant hepatic failure (FHF) or end-stage of liver disease is not fully understood. The present study aims to delineate the mechanisms of decreased glomerular filtration rate (GFR) in acute hepatic failure. A rat model of renal insufficiency in severe liver injury was established by lipopolysaccharide (LPS) plus D-galactosamine (GalN) exposure. GFR was evaluated by continuous infusion of fluorescein isothiocyanate-inulin with implanted micro-osmotic pumps. GalN/LPS intoxication resulted in severe hepatocyte toxicity as evidenced by liver histology and biochemical tests, whereas renal morphology remained normal. GFR was reduced by 33% of the controls 12 h after GalN/LPS exposure, accompanied with a decreased serum sodium levels, a marked increase in serum TNF-α and ET-1 levels as well as significantly upregulated renal type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) expression. The upregulated IP3R1 expression was abrogated by the treatment of anti-TNF-α antibodies, but not by 2-aminoethoxydiphenylborate (2-APB), which blocks the inositol 1,4,5-trisphosphate signaling pathway. Treatments with either TNF-α antibodies or 2-APB also significantly improved the compromised GFR, elevated serum urea nitrogen and creatinine levels, and reversed the decrease in glomerular inulin space and the increase in glomerular calcium content in GalN/LPS-exposed rats. The extent of acute liver injury as reflected by serum ALT levels was much more attenuated by anti-TNF-α antibodies than by 2-APB. Liver histology further confirmed that anti-TNF-α antibodies conferred better protection than 2-APB in GalN/LPS-exposed rats. LPS-elicited TNF-α over-production is responsible for decreased GFR through IP3R1 overexpression, and the compromised GFR resulted in the development of acute renal failure in rats with FHF.
Collapse
Affiliation(s)
- Jing-Bo Wang
- 1] Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang City, People's Republic of China [2] Division of Gastroenterology, Department of Internal Medicine, The Sixth People's Hospital of Shenyang, Shenyang City, People's Republic of China
| | - Dong-Lei Wang
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang City, People's Republic of China
| | - Hai-Tao Wang
- Division of Hepatobiliary Diseases, Department of Surgery, The Affiliated Shenzhou Hospital of Shenyang Medical College, Shenyang City, People's Republic of China
| | - Zhao-Han Wang
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang City, People's Republic of China
| | - Ying Wen
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang City, People's Republic of China
| | - Cui-Ming Sun
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang City, People's Republic of China
| | - Yi-Tong Zhao
- Division of Gastroenterology, Department of Internal Medicine, The Sixth People's Hospital of Shenyang, Shenyang City, People's Republic of China
| | - Jian Wu
- 1] Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California, Davis Medical Center, Sacramento, CA, USA [2] Key Laboratory of Molecular Virology, Fudan University College of Basic Medical Sciences, Shanghai, People's Republic of China
| | - Pei Liu
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang City, People's Republic of China
| |
Collapse
|
25
|
Borrego JF, Huelsmeyer MK, Pinkerton ME, Muszynski JL, Miller SAK, Kurzman ID, Vail DM. Neurokinin-1 receptor expression and antagonism by the NK-1R antagonist maropitant in canine melanoma cell lines and primary tumour tissues. Vet Comp Oncol 2014; 14:210-24. [PMID: 24751104 DOI: 10.1111/vco.12093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/04/2014] [Accepted: 03/24/2014] [Indexed: 01/13/2023]
Abstract
We interrogated the neurokinin-1 receptor (NK-1R)/substance P (SP) pathway in canine melanoma tumour tissues and cell lines. NK-1R messenger RNA (mRNA) and protein expression were observed in the majority of tumour tissues. Immunohistochemical assessment of archived tissue sections revealed NK-1R immunoreactivity in 11 of 15 tumours, which may have diagnostic, prognostic and therapeutic utility. However, we were unable to identify a preclinical in vitro cell line or in vivo xenograft model that recapitulates NK-1R mRNA and protein expression documented in primary tumours. While maropitant inhibited proliferation and enhanced apoptosis in cell lines, in the absence of documented NK-1R expression, this may represent off-target effects. Furthermore, maropitant failed to suppress tumour growth in a canine mouse xenograft model derived from a cell line expressing mRNA but not protein. While NK-1R represents a novel target, in the absence of preclinical models, in-species clinical trials will be necessary to investigate the therapeutic potential for antagonists such as maropitant.
Collapse
Affiliation(s)
- J F Borrego
- The Barbara Suran Comparative Oncology Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - M K Huelsmeyer
- The Barbara Suran Comparative Oncology Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - M E Pinkerton
- The Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - J L Muszynski
- The Barbara Suran Comparative Oncology Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - S A K Miller
- The Barbara Suran Comparative Oncology Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - I D Kurzman
- The Barbara Suran Comparative Oncology Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - D M Vail
- The Barbara Suran Comparative Oncology Research Institute, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
26
|
Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids 2014; 46:1727-50. [PMID: 24705689 DOI: 10.1007/s00726-014-1736-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
The peptide substance P (SP) shows a widespread distribution in both the central and peripheral nervous systems, but it is also present in cells not belonging to the nervous system (immune cells, liver, lung, placenta, etc.). SP is located in all body fluids, such as blood, cerebrospinal fluid, breast milk, etc. i.e. it is ubiquitous in human body. After binding to the neurokinin-1 (NK-1) receptor, SP regulates many pathophysiological functions in the central nervous system, such as emotional behavior, stress, depression, anxiety, emesis, vomiting, migraine, alcohol addiction, seizures and neurodegeneration. SP has been also implicated in pain, inflammation, hepatitis, hepatotoxicity, cholestasis, pruritus, myocarditis, bronchiolitis, abortus, bacteria and viral infection (e.g., HIV infection) and it plays an important role in cancer (e.g., tumor cell proliferation, antiapoptotic effects in tumor cells, angiogenesis, migration of tumor cells for invasion, infiltration and metastasis). This means that the SP/NK-1 receptor system is involved in the molecular bases of many human pathologies. Thus, knowledge of this system is the key for a better understanding and hence a better management of many human diseases. In this review, we update the involvement of the SP/NK-1 receptor system in the physiopathology of the above-mentioned pathologies and we suggest valuable future therapeutic interventions involving the use of NK-1 receptor antagonists, particularly in the treatment of emesis, depression, cancer, neural degeneration, inflammatory bowel disease, viral infection and pruritus, in which that system is upregulated.
Collapse
|
27
|
Muñoz M, Coveñas R. Involvement of substance P and the NK-1 receptor in pancreatic cancer. World J Gastroenterol 2014; 20:2321-2334. [PMID: 24605029 PMCID: PMC3942835 DOI: 10.3748/wjg.v20.i9.2321] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/23/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer related-death for both men and women and the 1- and 5-year relative survival rates are 25% and 6%, respectively. Thus, it is urgent to investigate new antitumor drugs to improve the survival of pancreatic cancer patients. The peptide substance P (SP) has a widespread distribution throughout the body. After binding to the neurokinin-1 (NK-1) receptor, SP regulates biological functions related to cancer, such as tumor cell proliferation, neoangiogenesis, the migration of tumor cells for invasion, infiltration and metastasis, and it exerts an antiapoptotic effects on tumor cells. It is known that the SP/NK-1 receptor system is involved in pancreatic cancer progression: (1) pancreatic cancer cells and samples express NK-1 receptors; (2) the NK-1 receptor is overexpressed in pancreatic cancer cells in comparison with non-tumor cells; (3) nanomolar concentrations of SP induce pancreatic cancer cell proliferation; (4) NK-1 receptor antagonists inhibit pancreatic cell proliferation in a concentration-dependent manner, at a certain concentration, these antagonists inhibit 100% of tumor cells; (5) this antitumor action is mediated through the NK-1 receptor, and tumor cells die by apoptosis; and (6) NK-1 receptor antagonists inhibit angiogenesis in pancreatic cancer xenografts. All these data suggest that the SP/NK-1 receptor system could play an important role in the development of pancreatic cancer; that the NK-1 receptor could be a new promising therapeutic target in pancreatic cancer, and that NK-1 receptor antagonists could improve the treatment of pancreatic cancer.
Collapse
|
28
|
Muñoz M, Coveñas R. Involvement of substance P and the NK-1 receptor in cancer progression. Peptides 2013; 48:1-9. [PMID: 23933301 DOI: 10.1016/j.peptides.2013.07.024] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
Many data suggest the deep involvement of the substance P (SP)/neurokinin (NK)-1 receptor system in cancer: (1) Tumor cells express SP, NK-1 receptors and mRNA for the tachykinin NK-1 receptor; (2) Several isoforms of the NK-1 receptor are expressed in tumor cells; (3) the NK-1 receptor is involved in the viability of tumor cells; (4) NK-1 receptors are overexpressed in tumor cells in comparison with normal ones and malignant tissues express more NK-1 receptors than benign tissues; (5) Tumor cells expressing the most malignant phenotypes show an increased percentage of NK-1 receptor expression; (6) The expression of preprotachykinin A is increased in tumor cells in comparison with the levels found in normal cells; (7) SP induces the proliferation and migration of tumor cells and stimulates angiogenesis by increasing the proliferation of endothelial cells; (8) NK-1 receptor antagonists elicit the inhibition of tumor cell growth; (9) The specific antitumor action of NK-1 receptor antagonists on tumor cells occurs through the NK-1 receptor; (10) Tumor cell death is due to apoptosis; (11) NK-1 receptor antagonists inhibit the migration of tumor cells and neoangiogenesis. The NK-1 receptor is a therapeutic target in cancer and NK-1 receptor antagonists could be considered as broad-spectrum antitumor drugs for the treatment of cancer. It seems that a common mechanism for cancer cell proliferation mediated by SP and the NK-1 receptor is triggered, as well as a common mechanism exerted by NK-1 receptor antagonists on tumor cells, i.e. apoptosis.
Collapse
Affiliation(s)
- Miguel Muñoz
- Virgen del Rocío University Hospital, Research Laboratory on Neuropeptides (IBIS), Sevilla, Spain.
| | | |
Collapse
|
29
|
Fehér E, Pongor É, Altdorfer K, Kóbori L, Lengyel G. Neuroimmunomodulation in human autoimmune liver disease. Cell Tissue Res 2013; 354:543-50. [PMID: 23881405 DOI: 10.1007/s00441-013-1683-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/10/2013] [Indexed: 01/15/2023]
Abstract
Bidirectional interaction between immune and nervous systems is considered an important biological process in health and disease. However, little is known about the mechanisms involved in their interaction in the human liver. This study examines the distribution of intrahepatic NPY, SP immunoreactive (IR) nerve fibers and their antomical relationship with immunocells containing tumor necrosis factor-α (TNF-α) and nuclear factor κB (NF-κB) in patients with autoimmune hepatitis. Liver specimens were obtained from control liver and autoimmune hepatitis patients. The immunoreactivity was determined by immunohisto- and immunocytochemistry and confocal laser microscopy. In hepatitis, the number of NPY-IR and SP-IR nerve fibers increased significantly. These IR nerve fibers were in very close contact with the lymphocytes. In healthy controls, no NPY-IR, SP-IR or NF-κB IR lymphocytes and only a few TNF-α positive cells, were observed. In hepatitis, some of the lymphocytes showed immunoreactivity for SP and NPY in the portal area. Fluorescent double-labeled immunostaining revealed that in these cells NPY did not colocalize with TNF-α or NF-κB. However, some of the SP fluorescence-positive immune cells exhibited immunostaining for p65 of NF-κB, where their labeling was detected in the nuclei. Under the electronmicroscope, these cells could be identified (lymphocytes, plasmacells and mast cells). The gap between the IR nerve fibers and immunocells was 1 μm or even less. Overexpression of SP in lymphocytes may amplify local inflammation, while NPY may contribute to liver homeostasis in hepatitis. Neural immunomodulation (SP antagonists and NPY) might be a novel therapeutic concept in the management of liver inflammation.
Collapse
Affiliation(s)
- Erzsébet Fehér
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary,
| | | | | | | | | |
Collapse
|
30
|
Yang Y, Yan M, Zhang H, Wang X. Substance P participates in immune-mediated hepatic injury induced by concanavalin A in mice and stimulates cytokine synthesis in Kupffer cells. Exp Ther Med 2013; 6:459-464. [PMID: 24137208 PMCID: PMC3786810 DOI: 10.3892/etm.2013.1152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/17/2013] [Indexed: 12/14/2022] Open
Abstract
Studies have indicated that the immune system plays a pivotal role in hepatitis. Substance P (SP) has been shown to modulate the immune response. In order to investigate the role of SP in liver injury and to determine whether it leads to pro-inflammatory signaling, we established a mouse model of hepatic injury induced by concanavalin A (ConA). We also exposed mouse Kupffer cells (KCs) to SP in vitro. Cytokine and SP levels in liver homogenates were detected using enzyme-linked immunosorbent assay (ELISA) and the protective effects of L-703,606 were evaluated through serological and histological assessments. Neurokinin-1 receptor (NK-1R) expression was evaluated by immunofluorescence and quantitative polymerase chain reaction (PCR). The levels of SP, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly increased in the ConA-treated mice and the levels of ALT and AST were markedly reduced by L-703,606-pretreatment. Liver injury was significantly reduced by treatment with L-703,606. The mouse KCs expressed NK-1R and SP increased NK-1R mRNA expression. Furthermore, NK-1R blockade eliminated the effect of SP on NK-1R mRNA expression. The cytokine levels exhibited a substantial increase in the SP-pretreated KCs compared with the KCs that were cultured in control medium. The inter-leukin (IL)-6 and tumor necrosis factor (TNF)-α levels in the L-703,606-pretreated KCs were significantly lower compared with those in the SP-pretreated KCs. Our study suggests that neurogenic inflammation induced by SP plays an important role in hepatitis. Mouse KCs express NK-1R and SP increases NK-1R mRNA expression. SP enhances IL-6 and TNF-α secretion and an NK-1R antagonist inhibits this secretion.
Collapse
Affiliation(s)
- Yan Yang
- Health Examination Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012
| | | | | | | |
Collapse
|
31
|
Abstract
INTRODUCTION The substance P (SP)/neurokinin (NK)-1 receptor system is involved in many pathological processes. NK-1 receptor antagonists have many promising therapeutic indications. However, the only NK-1 receptor antagonist used in clinical practice is the drug aprepitant and its intravenously administered prodrug, fosaprepitant. In general, NK-1 receptor antagonists are safe and well tolerated. AREAS COVERED A search was carried out in Medline using the following terms: adverse events, aprepitant, casopitant, clinical trials, CP-122,721, ezlopitant, fosaprepitant, NK-1 receptor antagonists, randomized, safety, side effects, tolerability and vofopitant. EXPERT OPINION Most clinical trials have focused on the antiemetic action of aprepitant in cancer patients treated with chemotherapy. However, the efficacy and safety of aprepitant have not been fully tested in other diseases in which the SP/NK-1 receptor system is involved (e.g., cancer, HIV, alcoholism); thus, clinical trials are required. The use of NK-1 receptor antagonists in oncology therapy is quite promising, but to date pharmacological therapy has not exploited the many possible therapies offered by such antagonists.
Collapse
Affiliation(s)
- Miguel Muñoz
- Virgen del Rocío University Hospital, Research Laboratory on Neuropeptides, Sevilla, Spain.
| | | |
Collapse
|
32
|
Song Y, Stål PS, Yu JG, Forsgren S. Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis. BMC Musculoskelet Disord 2013; 14:134. [PMID: 23587295 PMCID: PMC3637117 DOI: 10.1186/1471-2474-14-134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022] Open
Abstract
Background Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. Methods The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1–6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Results Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. Conclusions The observations show an up-regulation of the tachykinin system bilaterally during muscle derangement/myositis in response to pronounced unilateral muscle overuse. This up-regulation occurred in inflammatory areas and was related not only to increased tachykinin innervation but also to tachykinin expression in blood vessel walls and inflammatory cells. Importantly, the tachykinin system appears to be an important factor not only ipsilaterally but also contralaterally in these processes.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
33
|
Abstract
Substance P (SP), a neurokinin-1 receptor (NK-1R) agonist, is mainly produced and stored in primary sensory nerves and, upon its release, participates in cardiovascular and renal functional regulation. This study tests the hypothesis that activation of the NK-1Rs by SP occurs during hypertension induced by deoxycorticosterone (DOCA)-salt treatment, which contributes to renal injury in this model. C57BL/6 mice were subjected to uninephrectomy and DOCA-salt treatment in the presence or absence of administration of selective NK-1 antagonists, L-733,060 (20 mg/kg·d, ip) or RP-67580 (8 mg/kg·d, ip). Five weeks after the treatment, mean arterial pressure determined by the telemetry system increased in DOCA-salt mice but without difference between NK-1R antagonist-treated or NK-1R antagonist-untreated DOCA-salt groups. Plasma SP levels were increased in DOCA-salt compared with control mice (P < 0.05). Renal hypertrophy and increased urinary 8-isoprostane and albumin excretion were observed in DOCA-salt compared with control mice (P < 0.05). Periodic acid-Schiff and Masson's trichrome staining showed more severe glomerulosclerosis and tubulointerstitial injury in the renal cortex in DOCA-salt compared with control mice, respectively (P < 0.05). Hydroxyproline assay and F4/80-staining showed that renal collagen levels and interstitial monocyte/macrophage infiltration were greater in DOCA-salt compared with control mice, respectively (P < 0.05). Blockade of the NK-1R with L-733,060 or RP-67580 in DOCA-salt mice suppressed increments in urinary 8-isoprostane and albumin excretion, interstitial monocyte/macrophage infiltration, and glomerulosclerosis and tubulointerstitial injury and fibrosis (P < 0.05). Thus, our data show that blockade of the NK-1Rs alleviates renal functional and tissue injury in the absence of alteration in blood pressure in DOCA-salt-hypertensive mice. The results suggest that elevated SP levels during DOCA-salt hypertension play a significant role contributing to renal damage possibly via enhancing oxidative stress and macrophage infiltration of the kidney.
Collapse
Affiliation(s)
- Youping Wang
- Central Laboratory and Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | | |
Collapse
|
34
|
|
35
|
Muñoz M, Martinez-Armesto J, Coveñas R. NK-1 receptor antagonists as antitumor drugs: a survey of the literature from 2000 to 2011. Expert Opin Ther Pat 2012; 22:735-46. [PMID: 22697287 DOI: 10.1517/13543776.2012.697153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION After binding to the neurokinin (NK-1) receptor, substance P (SP) induces tumor cell proliferation, the migration of tumor cells (invasion and metastasis) and angiogenesis. By contrast, NK-1 receptor antagonists inhibit tumor cell proliferation (tumor cells die by apoptosis), block the migratory activity of tumor cells and exert antiangiogenic properties. AREAS COVERED This review offers a 12-year overview of the underlying mechanism of the action of the SP/NK-1 receptor system and NK-1 receptor antagonists in cancer, providing a new approach to the treatment of tumors. EXPERT OPINION Chemically diverse NK-1 receptor antagonists have been identified. The antitumor action of these compounds is independent of their chemical structures and such action is associated with their affinity for the NK-1 receptor and with the dose of the antagonist administered. The NK-1 receptor can be considered as a target in cancer treatment and NK-1 receptor antagonists could be considered as new antitumor drugs. The NK-1 receptor antagonist aprepitant is used in clinical practice and exerts an antitumor action against tumor cells in vitro. In the future, such antitumor action should be tested in human clinical trials.
Collapse
Affiliation(s)
- Miguel Muñoz
- Hospital Infantil Universitario Virgen del Rocío, Unidad de Cuidados Intensivos Pediátricos, Av. Manuel Siurot s/n, 41013 - Sevilla, Spain.
| | | | | |
Collapse
|
36
|
Rosso M, Muñoz M, Berger M. The role of neurokinin-1 receptor in the microenvironment of inflammation and cancer. ScientificWorldJournal 2012; 2012:381434. [PMID: 22545017 PMCID: PMC3322385 DOI: 10.1100/2012/381434] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 11/20/2011] [Indexed: 12/11/2022] Open
Abstract
The recent years have witnessed an exponential increase in cancer research, leading to a considerable investment in the field. However, with few exceptions, this effort has not yet translated into a better overall prognosis for patients with cancer, and the search for new drug targets continues. After binding to the specific neurokinin-1 (NK-1) receptor, the peptide substance P (SP), which is widely distributed in both the central and peripheral nervous systems, triggers a wide variety of functions. Antagonists against the NK-1 receptor are safe clinical drugs that are known to have anti-inflammatory, analgesic, anxiolytic, antidepressant, and antiemetic effects. Recently, it has become apparent that SP can induce tumor cell proliferation, angiogenesis, and migration via the NK-1 receptor, and that the SP/NK-1 receptor complex is an integral part of the microenvironment of inflammation and cancer. Therefore, the use of NK-1 receptor antagonists as a novel and promising approach for treating patients with cancer is currently under intense investigation. In this paper, we evaluate the recent scientific developments regarding this receptor system, its role in the microenvironment of inflammation and cancer, and its potentials and pitfalls for the usage as part of modern anticancer strategies.
Collapse
Affiliation(s)
- Marisa Rosso
- Research Laboratory on Neuropeptides, Hospital Infantil Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, 41013 Seville, Spain.
| | | | | |
Collapse
|
37
|
Ditting T, Freisinger W, Siegel K, Fiedler C, Small L, Neuhuber W, Heinlein S, Reeh PW, Schmieder RE, Veelken R. Tonic Postganglionic Sympathetic Inhibition Induced by Afferent Renal Nerves? Hypertension 2012; 59:467-76. [DOI: 10.1161/hypertensionaha.111.185538] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tilmann Ditting
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Wolfgang Freisinger
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Kirsten Siegel
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Christian Fiedler
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Lisa Small
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Winfried Neuhuber
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Sonja Heinlein
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Peter W. Reeh
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Roland E. Schmieder
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Roland Veelken
- From the Departments of Internal Medicine 4-Nephrology and Hypertension (T.D., W.F., K.S., C.F., L.S., S.H., R.E.S., R.V.), Anatomy I (W.N.), and Physiology 1 (P.W.R.), Friedrich-Alexander University Erlangen, Erlangen, Germany
| |
Collapse
|
38
|
Glaser S, Gaudio E, Renzi A, Mancinelli R, Ueno Y, Venter J, White M, Kopriva S, Chiasson V, DeMorrow S, Francis H, Meng F, Marzioni M, Franchitto A, Alvaro D, Supowit S, DiPette DJ, Onori P, Alpini G. Knockout of the neurokinin-1 receptor reduces cholangiocyte proliferation in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 2011; 301:G297-305. [PMID: 21596993 PMCID: PMC3154601 DOI: 10.1152/ajpgi.00418.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In bile duct-ligated (BDL) rats, cholangiocyte proliferation is regulated by neuroendocrine factors such as α-calcitonin gene-related peptide (α-CGRP). There is no evidence that the sensory neuropeptide substance P (SP) regulates cholangiocyte hyperplasia. Wild-type (WT, (+/+)) and NK-1 receptor (NK-1R) knockout (NK-1R(-/-)) mice underwent sham or BDL for 1 wk. Then we evaluated 1) NK-1R expression, transaminases, and bilirubin serum levels; 2) necrosis, hepatocyte apoptosis and steatosis, and the number of cholangiocytes positive by CK-19 and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling in liver sections; 3) mRNA expression for collagen 1α and α-smooth muscle (α-SMA) actin in total liver samples; and 4) PCNA expression and PKA phosphorylation in cholangiocytes. In cholangiocyte lines, we determined the effects of SP on cAMP and D-myo-inositol 1,4,5-trisphosphate levels, proliferation, and PKA phosphorylation. Cholangiocytes express NK-1R with expression being upregulated following BDL. In normal NK-1R(-/-) mice, there was higher hepatocyte apoptosis and scattered hepatocyte steatosis compared with controls. In NK-1R (-)/(-) BDL mice, there was a decrease in serum transaminases and bilirubin levels and the number of CK-19-positive cholangiocytes and enhanced biliary apoptosis compared with controls. In total liver samples, the expression of collagen 1α and α-SMA increased in BDL compared with normal mice and decreased in BDL NK-1R(-/-) compared with BDL mice. In cholangiocytes from BDL NK-1R (-)/(-) mice there was decreased PCNA expression and PKA phosphorylation. In vitro, SP increased cAMP levels, proliferation, and PKA phosphorylation of cholangiocytes. Targeting of NK-1R may be important in the inhibition of biliary hyperplasia in cholangiopathies.
Collapse
Affiliation(s)
- Shannon Glaser
- 1Division of Research, Central Texas Veterans Health Care System, ,2Department of Medicine, ,3Scott & White Digestive Disease Research Center, and
| | - Eugenio Gaudio
- 5Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University of Rome “La Sapienza,” Rome, Italy;
| | - Anastasia Renzi
- 2Department of Medicine, ,5Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University of Rome “La Sapienza,” Rome, Italy;
| | - Romina Mancinelli
- 5Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University of Rome “La Sapienza,” Rome, Italy;
| | - Yoshiyuki Ueno
- 6Division of Gastroenterology, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan;
| | - Julie Venter
- 2Department of Medicine, ,3Scott & White Digestive Disease Research Center, and
| | - Mellanie White
- 2Department of Medicine, ,3Scott & White Digestive Disease Research Center, and
| | | | | | - Sharon DeMorrow
- 2Department of Medicine, ,3Scott & White Digestive Disease Research Center, and
| | - Heather Francis
- 2Department of Medicine, ,3Scott & White Digestive Disease Research Center, and ,4Division of Research and Education, Scott & White and Texas A&M Health Science Center College of Medicine, Temple, Texas;
| | - Fanyin Meng
- 2Department of Medicine, ,4Division of Research and Education, Scott & White and Texas A&M Health Science Center College of Medicine, Temple, Texas;
| | - Marco Marzioni
- 7Department of Gastroenterology, Università Politecnica delle Marche, Ospedali Riuniti General Hospital of Ancona, Italy;
| | - Antonio Franchitto
- 5Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, University of Rome “La Sapienza,” Rome, Italy;
| | - Domenico Alvaro
- 8Division of Gastroenterology, Department of Clinical Medicine, Polo Pontino, University of Rome, “Sapienza,” Rome, Italy;
| | - Scott Supowit
- 9Division of Cell Biology and Anatomy, Medicine, University of South Carolina Medical School, Columbia, South Carolina; and
| | - Donald J. DiPette
- 9Division of Cell Biology and Anatomy, Medicine, University of South Carolina Medical School, Columbia, South Carolina; and
| | - Paolo Onori
- 10Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Gianfranco Alpini
- 1Division of Research, Central Texas Veterans Health Care System, ,2Department of Medicine, ,3Scott & White Digestive Disease Research Center, and
| |
Collapse
|
39
|
Lv S, Song HL, Zhou Y, Li LX, Cui W, Wang W, Liu P. Tumour necrosis factor-alpha affects blood-brain barrier permeability and tight junction-associated occludin in acute liver failure. Liver Int 2010; 30:1198-210. [PMID: 20492508 DOI: 10.1111/j.1478-3231.2010.02211.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cerebral oedema leading to cerebral herniation is a major cause of death during acute liver failure (ALF), but the underlying mechanism is not clear. AIMS We investigated the role of tumour necrosis factor (TNF)-alpha in changing the permeability of the blood-brain barrier (BBB) during ALF. METHODS ALF animal models were generated by administering D-galactosamine (GalN) and lipopolysaccharide, or GalN and TNF-alpha. ALF induction was blocked by first administering anti-TNF-alpha-IgG or anti-TNF-alpha-R1. We investigated the BBB permeability with Evans blue staining, and the structure with electron microscopy. RESULTS BBB permeability increased in ALF mice and correlated with elevated serum TNF-alpha levels. No vascular endothelial cell (EC) apoptosis was detected, but electron microscopy of cells from human and mouse ALF tissues revealed tight junction (TJ) disruptions and EC shrinkage, as well as increased vesicles and vacuoles. In addition, the expression of the TJ-associated protein occludin was significantly decreased in both ALF mice and patients, although the expression of occludin mRNA did not change. Changes in BBB permeability, brain tissue ultrastructure and occludin expression in ALF-induced mice could be prevented by prophylaxis treatment with either antibody to TNF-alpha-IgG or antibody to TNF-alpha-R1. CONCLUSIONS Our results suggest that TNF-alpha plays a critical role in the development of brain oedema in ALF, and that both vasogenic and cytotoxic mechanisms may be involved. Increased BBB permeability may be because of the disruption of TJs, and loss of the TJ-associated protein occludin.
Collapse
Affiliation(s)
- Sa Lv
- Department of Infectious Diseases, the First Affiliated Hospital, China Medical University, Liaoning Province, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Muñoz M, Rosso M, González A, Saenz J, Coveñas R. The broad-spectrum antitumor action of cyclosporin A is due to its tachykinin receptor antagonist pharmacological profile. Peptides 2010; 31:1643-8. [PMID: 20542069 DOI: 10.1016/j.peptides.2010.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/02/2010] [Accepted: 06/02/2010] [Indexed: 01/21/2023]
Abstract
Cyclosporin A (CsA) is an immunosuppressive drug. In human cancer cells substance P (SP) and neurokinin-1 (NK-1) receptor antagonists, respectively, induce cell proliferation and inhibition. CsA is a tachykinin receptor antagonist that showed selectivity for both NK-1 and NK-2 receptors. CsA exerts antitumor action against gastric (AGS) and colon (HT29) carcinoma cell lines. However, the mechanisms involved in this action remain unknown, and it is unknown whether CsA exerts an antitumor action on other human cancer cell lines or not. To demonstrate that CsA exerts a broad-spectrum antitumor action, we carried out an in vitro study of the growth-inhibitory capacity of CsA against seven human cancer cell lines, namely GAMG glioma, SKN-BE(2) neuroblastoma, WERI-Rb-1 retinoblastoma, HEp-2 larynx carcinoma, CAPAN pancreas carcinoma, 23132/87 gastric carcinoma, and SW-403 colon carcinoma. A Coulter counter was used to determine viable cell numbers followed by application of the MTS colorimetric method. Micromolar concentrations of CsA inhibited the growth of these tumor cells, both with and without previous administration of nanomolar concentrations of SP; the inhibition occurred in a dose-dependent manner. Moreover, CsA blocks SP-induced mitogen stimulation of tumor cells, suggesting that the NK-1 receptor is involved in such action. Following administration of CsA apoptosis was observed in the above seven tumor cell lines. These findings suggest that the antitumor action of CsA is at least due to its NK-1 receptor antagonist pharmacological profile, since the involvement of NK-2 receptors in the mentioned action must not be discarded, and that CsA has a broad-spectrum antitumor action.
Collapse
Affiliation(s)
- Miguel Muñoz
- Virgen del Rocío University Children's Hospital, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
41
|
Muñoz M, Rosso M, Robles-Frias MJ, Salinas-Martín MV, Rosso R, González-Ortega A, Coveñas R. The NK-1 receptor is expressed in human melanoma and is involved in the antitumor action of the NK-1 receptor antagonist aprepitant on melanoma cell lines. J Transl Med 2010; 90:1259-69. [PMID: 20458280 DOI: 10.1038/labinvest.2010.92] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Melanoma, the most deadly form of skin cancer, is aggressive and resistant to current therapies. It has been previously reported that the substance P and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition, respectively, in human melanoma cell lines. Aprepitant is a selective high-affinity antagonist of the human NK-1 receptor. Until now, this drug has been used as an anxiolytic, antidepressant and antiemetic. Moreover, the antitumor action of aprepitant has been previously reported. However, the presence of NK-1 receptors in human melanomas and whether the antitumor action of the NK-1 receptor antagonist aprepitant is exerted on human malignant melanomas have not been previously described. The aims of this study are to show the presence of NK-1 receptors in human malignant melanomas and the antitumoral action of aprepitant against several human melanoma cell lines. Immunoblot analysis was used to determine the presence of NK-1 receptors in human melanoma cell lines, and immunohistochemistry was used to demonstrate NK-1 receptors in human melanoma samples. We performed an in vitro study of the cytotoxicity of the NK-1 receptor antagonist aprepitant on human melanoma cell lines. A coulter counter was used to determine viable cell numbers, followed by application of the tetrazolium compound MTS. The DAPI method was applied to demonstrate apoptosis. We observed that NK-1 receptors were present in all the melanoma samples studied as well as in human melanoma cell lines. We also showed that melanoma cell lines expressed mRNA for the NK-1 receptor. Moreover, after using a knockdown method, we showed that NK-1 receptors are involved in the viability of tumor cells. In this study, we also report that aprepitant, at 10-60 microM concentrations, elicits cell growth inhibition in a concentration-dependent manner in all melanoma cell lines studied, that the specific antitumor action of aprepitant occurs through the NK-1 receptor and that melanoma cell death is due to apoptosis. These findings show for the first time that the NK-1 receptor may be a promising new target and that the NK-1 receptor antagonist aprepitant could be a candidate as a new antitumor drug in the treatment of human melanoma.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
42
|
Muñoz M, Rosso M, González-Ortega A, Coveñas R. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines. Cancers (Basel) 2010; 2:611-23. [PMID: 24281084 PMCID: PMC3835094 DOI: 10.3390/cancers2020611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/14/2010] [Accepted: 04/19/2010] [Indexed: 01/17/2023] Open
Abstract
It has been recently demonstrated that substance P (SP) and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679). We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain; E-Mails: (M.R.); (A.G.-O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-955012965; Fax: +34-955012921
| | - Marisa Rosso
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain; E-Mails: (M.R.); (A.G.-O.)
| | - Ana González-Ortega
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla, Spain; E-Mails: (M.R.); (A.G.-O.)
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Laboratory 14), Salamanca, Spain; E-Mail: (R.C.)
| |
Collapse
|
43
|
Jiang Y, Bhargava V, Mittal RK. Mechanism of stretch-activated excitatory and inhibitory responses in the lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 2009; 297:G397-405. [PMID: 19520741 PMCID: PMC2724084 DOI: 10.1152/ajpgi.00108.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently found that an orally directed stretch of the esophagus activates a neurally mediated relaxation of the lower esophageal sphincter (LES). Goals of our study were to characterize the neural mechanisms responsible for axial and transverse stretch-activated responses in the LES. LES pressure was monitored in anesthetized and artificially ventilated mice. Sutures were placed in the esophagus to exert graded stretch in the longitudinal and transverse directions. Effects of bilateral vagotomy and pharmacological agents on the stretch-activated LES responses were investigated. The relationship between vagally stimulated axial stretch and LES relaxation was also studied. Stretch in the longitudinal and transverse directions caused a dose-dependent LES relaxation and contraction, respectively, that were not affected by bilateral vagotomy and sympathectomy but were blocked by tetrodotoxin. In bilateral vagotomized animals, hexamethonium, atropine, pyridoxalphosphate-6-azophenyl-2',4' disulfonic acid (PPADS), and ondansetron did not block the stretch-activated LES relaxation and contraction. Axial stretch-activated LES relaxation was blocked by nitric oxide inhibitor and transverse stretch-activated LES contraction was blocked by a combination of atropine and substance P antagonist. Electrical stimulation of the vagus nerve induced LES relaxation and axial stretch on the LES, both of which were blocked by rocuronium. Axial and transverse stretch-activated LES relaxation and contraction were present in the W/W(v) mice that lack interstitial cells of Cajal (ICC). Stretch-activated LES relaxation and contraction are mediated through mechanosensitive neurons located in the myenteric plexus, which involves neither synaptic transmission nor ICC.
Collapse
Affiliation(s)
- Yanfen Jiang
- Division of Gastroenterology, San Diego Veterans Affairs HealthCare System and University of California, San Diego, San Diego, California
| | - Valmik Bhargava
- Division of Gastroenterology, San Diego Veterans Affairs HealthCare System and University of California, San Diego, San Diego, California
| | - Ravinder K. Mittal
- Division of Gastroenterology, San Diego Veterans Affairs HealthCare System and University of California, San Diego, San Diego, California
| |
Collapse
|
44
|
Kroeger I, Erhardt A, Abt D, Fischer M, Biburger M, Rau T, Neuhuber WL, Tiegs G. The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatory liver injury in mice. J Hepatol 2009; 51:342-53. [PMID: 19464067 DOI: 10.1016/j.jhep.2009.03.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/11/2009] [Accepted: 03/26/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Calcitonin gene-related peptide (CGRP) is a potent vasodilator and supposed to be responsible for neurogenic inflammation involved in migraine. Its role in inflammatory diseases of other organs is controversial and poorly investigated regarding liver inflammation, although the organ is innervated by CGRP containing primary sensory nerve fibers. METHODS Male Balb/c and IL-10(-/-) mice were pretreated with either alphaCGRP or the CGRP receptor antagonists CGRP(8-37) or BIBN4096BS. Immune-mediated liver injury was induced by administration of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNFalpha) to galactosamine (GalN)-sensitized mice and evaluated by serum transaminase activities and cytokine levels. Furthermore, intrahepatic CGRP receptor expression and hepatic CGRP concentrations were examined. RESULTS CGRP receptor 1 was expressed by immune cells and hepatocytes in human and murine liver. During liver injury CGRP receptor expression was increased whereas hepatic CGRP concentrations concomitantly decreased. While CGRP receptor antagonists failed to affect liver damage, pretreatment with alphaCGRP protected mice from GalN/LPS-induced liver injury by suppression of the pro-inflammatory cytokine response independently from IL-10 but related to the induction of the transcriptional repressor inducible cAMP early repressor (ICER). In contrast, alphaCGRP failed to protect against GalN/TNFalpha-induced liver failure. CONCLUSION In the liver, CGRP exerts anti-inflammatory properties, which are characterized by a reduced production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Irena Kroeger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Substance P scavenger enhances antioxidant defenses and prevents prothrombotic effects on the rat lung after acute exposure to oil smoke. J Biomed Sci 2009; 16:58. [PMID: 19575822 PMCID: PMC2717930 DOI: 10.1186/1423-0127-16-58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 07/06/2009] [Indexed: 11/29/2022] Open
Abstract
Background Airborne particulate matter, from cooking oil, smoking, engine exhaust and other sources, is associated with the development of atherosclerosis and myocardial infarction. In order to explore the cellular and molecular events following exposure of rats to lard oil smoke, we measured the generation of reactive oxygen species (ROS), substance P, cellular adhesion molecules, and thrombosis in relation to inhibitors of substance P, the NK-1 receptor, and antioxidants. Methods Rats were exposed to oil smoke for 120 min with or without 20 min pretreatment with lovastatin (substance P scavenger), L733060 (NK-1 receptor antagonist), vitamin E (antioxidant) or catechins (antioxidant). The levels of substance P and ROS were measured. Histological studies observed ROS damage in the form of HEL adducts. The prothrombotic effects of oil smoke exposure were measured by experimental induction of thrombosis in vivo. Results Oil smoke exposure significantly increased substance P levels, ROS levels, ROS damage (HEL adduct levels), and the size of experimentally induced thrombi. The pretreatments reduced all of these effects of oil smoke exposure; at many time points the reductions were statistically significant. Conclusion We established a connection between oil smoke exposure and thrombosis which involves substance P and its receptor, the NK-1 receptor, and ROS. This study helps establish a mechanistic explanation of how airborne particulate matter can increase the risk of cardiovascular illness.
Collapse
|
46
|
Abstract
Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion--a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described.
Collapse
|
47
|
Muñoz M, Rosso M. The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest New Drugs 2009; 28:187-93. [PMID: 19148578 DOI: 10.1007/s10637-009-9218-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/06/2009] [Indexed: 01/11/2023]
Abstract
Aprepitant is a selective high-affinity antagonist of human substance P (SP)/Neurokinin-1 (NK-1) receptors. Until now this drug has been used as anxiolytic, antidepressant and antiemetic. It has been demonstrated that SP induces cell proliferation and NK-1 receptor antagonists different to aprepitant inhibit growth in several human cancer cell lines, where NK-1 receptors are overexpressed. The purpose of this study is to demonstrate the antitumor action of aprepitant. We performed an in vitro study of the growth inhibition capacity of the NK-1 receptor antagonist aprepitant against glioma, neuroblastoma, retinoblastoma and pancreas, larynx, gastric and colon carcinomas cell lines. Coulter counter was used to determine viable cell numbers followed by application of the MTS colorimetric method. Furthermore, a DAPI method was applied to demonstrate apoptosis. We have demonstrated: aprepitant at (5-70 microM) concentration elicits growth cell inhibition in a concentration dependent manner in all tumor cell line studied. Maximum inhibition (100%) was observed when the aprepitant was administered at a concentration of > or = 70 microM in all tumor cell lines studied. The specific antitumor action of aprepitant occurs through the NK-1 receptor and tumor cells death was by apoptosis pathway. These findings reported here for the first time indicate that aprepitant is a new and promising broad spectrum antitumor drug in the treatment of cancer.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen del Rocío University Children's Hospital, Sevilla, Spain.
| | | |
Collapse
|
48
|
González Moles MA, Esteban F, Ruiz-Avila I, Gil Montoya JA, Brener S, Bascones-Martínez A, Muñoz M. A role for the substance P/NK-1 receptor complex in cell proliferation and apoptosis in oral lichen planus. Oral Dis 2008; 15:162-9. [PMID: 19036058 DOI: 10.1111/j.1601-0825.2008.01504.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine whether substance P (SP) and NK-1 receptor (NK-1R) are expressed in oral lichen planus (OLP) and are related to cell proliferation and apoptosis in this disease. MATERIAL AND METHODS Tissue samples from 50 OLP patients and 26 healthy controls were studied. Immunohistochemistry was performed with anti-SP, anti-NK-1R, anti-ki-67 and anti-caspase-3 monoclonal antibodies and the clinical and pathological data of the OLP patients were evaluated. RESULTS With the exception of NK-1R expression in epithelial cell membrane and cytoplasm, all markers were more frequently present in OLP patients than in controls (P < 0.05). Higher cytoplasmatic expression of NK-1R was associated with higher epithelial expression of caspase-3 (P < 0.05). Higher epithelial expression of NK-1R and SP was associated with higher suprabasal and basal epithelial expression of ki-67 (P < 0.05 and P < 0.005, respectively). CONCLUSIONS Actions of the SP/NK-1R complex may contribute to the immune disorder underlying OLP and trigger stimuli to induce cell proliferation. These results indicate that this complex might play a role in the malignant transformation of OLP.
Collapse
Affiliation(s)
- M A González Moles
- Granada School of Dentistry, Oral Medicine, Granada University, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
49
|
Camara PRS, Ferraz GJN, Franco-Penteado CF, Sbragia-Neto L, Meirelles LR, Teixeira SA, Muscara MN, Velloso LA, Antunes E, Ferraz JGP. Ablation of primary afferent neurons by neonatal capsaicin treatment reduces the susceptibility of the portal hypertensive gastric mucosa to ethanol-induced injury in cirrhotic rats. Eur J Pharmacol 2008; 589:245-50. [PMID: 18555214 DOI: 10.1016/j.ejphar.2008.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/02/2008] [Accepted: 05/13/2008] [Indexed: 12/17/2022]
Abstract
Primary sensory afferent neurons modulate the hyperdynamic circulation in cirrhotic rats with portal hypertension. The stomach of cirrhotic rats is prone to damage induced by ethanol, a phenomenon associated with reduced gastric hyperemic response to acid-back diffusion. The aim of this study was to examine the impact of ablation of capsaicin-sensitive neurons and the tachykinin NK(1) receptor antagonist A5330 on the susceptibility of the portal hypertensive gastric mucosa to ethanol-induced injury and its effects on gastric cyclooxygenase (COX) and nitric oxide synthase (NOS) mRNA expression. Capsaicin was administered to neonatal, male, Wistar rats and the animals were allowed to grow. Cirrhosis was then induced by bile duct ligation in adult rats while controls had sham operation. Ethanol-induced gastric damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow was measured as well as COX/NOS mRNA expression. Topical application of ethanol produced significant gastric damage in cirrhotic rats compared to controls, which was reversed in capsaicin- and A5330-treated animals. Mean arterial and portal pressure was normalized in capsaicin-treated cirrhotic rats. Capsaicin and A5330 administration restored gastric blood flow responses to topical application of ethanol followed by acid in cirrhotic rats. Differential COX and NOS mRNA expression was noted in bile duct ligated rats relative to controls. Capsaicin treatment significantly modified gastric eNOS/iNOS/COX-2 mRNA expression in cirrhotic rats. Capsaicin-sensitive neurons modulate the susceptibility of the portal hypertensive gastric mucosa to injury induced by ethanol via tachykinin NK(1) receptors and signalling of prostaglandin and NO production/release.
Collapse
Affiliation(s)
- Paula R S Camara
- Departments of Pharmacology, Internal Medicine and Surgery, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li PC, Chen WC, Chang LC, Lin SC. Substance P acts via the neurokinin receptor 1 to elicit bronchoconstriction, oxidative stress, and upregulated ICAM-1 expression after oil smoke exposure. Am J Physiol Lung Cell Mol Physiol 2008; 294:L912-20. [PMID: 18326823 DOI: 10.1152/ajplung.00443.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to 1) assess whether substance P (SP) acts via neurokinin (NK)-1 and NK-2 receptors to stimulate neurogenic inflammation (indicated by formation of ICAM-1 expression and oxidative stress) following oil smoke exposure (OSE) in rats; and 2) determine if pretreatment with antioxidants ameliorates the deleterious effects of OSE. Rats were pretreated with NK-1 receptor antagonist CP-96345, NK-2 receptor antagonist SR-48968, vitamin C, or catechins. OSE was for 30-120 min. Rats were killed 0-8 h later. Total lung resistance (RL), airway smooth muscle activity (ASMA), lung ICAM-1 expression, neurogenic plasma extravasation (via India ink and Evans blue dye), bronchoalveolar lavage fluid SP concentrations, and reactive oxygen species formation [via lucigenin- and luminal-amplified chemiluminescence (CL)] were assessed. Lung histology was performed. SP concentrations increased significantly in nonpretreated rats following OSE in a dose-dependent manner. RL and total ASMA increased over time after OSE. Vitamin C and catechin pretreatments were associated with significantly reduced lucigenin CL 2 and 4 h after OSE. Pretreatment with catechins significantly reduced luminal CL counts 4 and 8 h after OSE. Evans blue levels were significantly reduced following 60 and 120 min of OSE in catechin- and CP-96345-pretreated rats. ICAM-1 protein expression was significantly decreased in all pretreatment groups after OSE. Thickening of the alveolar capillary membrane, focal hemorrhaging, interstitial pneumonitis, and peribronchiolar inflammation were apparent in OSE lungs. These findings suggest that SP acts via the NK-1 receptor to provoke neurogenic inflammation, oxidative stress, and ICAM-1 expression after OSE in rats.
Collapse
Affiliation(s)
- Ping-Chia Li
- Dept. of Occupational Therapy, I-Shou Univ., No. 8 E-Da Road, Jiau-Shu Tsuen, Yan-Chau Shiang, Kaohsiung County 824, Tainan City, Republic of China (Taiwan).
| | | | | | | |
Collapse
|