1
|
Granata L, Fanikos M, Brenhouse HC. Early life adversity accelerates hypothalamic drive of pubertal timing in female rats with associated enhanced acoustic startle. Horm Behav 2024; 159:105478. [PMID: 38241961 PMCID: PMC10926229 DOI: 10.1016/j.yhbeh.2024.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Early life adversity in the form of childhood maltreatment in humans or as modeled by maternal separation (MS) in rodents is often associated with an earlier emergence of puberty in females. Earlier pubertal initiation is an example of accelerated biological aging and predicts later risk for anxiety in women, especially in populations exposed to early life trauma. Here we investigated external pubertal markers as well as hypothalamic gene expression of pubertal regulators kisspeptin and gonadotropin-releasing hormone, to determine a biological substrate for MS-induced accelerated puberty. We further investigated a mechanism by which developmental stress might regulate pubertal timing. As kisspeptin and gonadotropin-releasing hormone secretion are typically inhibited by corticotropin releasing hormone at its receptor CRH-R1, we hypothesized that MS induces a downregulation of Crhr1 gene transcription in a cell-specific manner. Finally, we explored the association between pubertal timing and anxiety-like behavior in an acoustic startle paradigm, to drive future preclinical research linking accelerated puberty and anxiety. We replicated previous findings that MS leads to earlier puberty in females but not males, and found expression of kisspeptin and gonadotropin-releasing hormone mRNA to be prematurely increased in MS females. RNAscope confirmed increased expression of these genes, and further revealed that kisspeptin-expressing neurons in females were less likely to express Crhr1 after MS. Early puberty was associated with higher acoustic startle magnitude in females. Taken together, these findings indicate precocial maturation of central pubertal timing mechanisms after MS, as well as a potential role of CRH-R1 in these effects and an association with a translational measure of anxiety.
Collapse
Affiliation(s)
- Lauren Granata
- Psychology Department, Northeastern University, Boston, MA, United States of America
| | - Michaela Fanikos
- Psychology Department, Northeastern University, Boston, MA, United States of America
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, Boston, MA, United States of America.
| |
Collapse
|
2
|
Parra-Mercado GK, Fuentes-Gonzalez AM, Hernandez-Aranda J, Diaz-Coranguez M, Dautzenberg FM, Catt KJ, Hauger RL, Olivares-Reyes JA. CRF 1 Receptor Signaling via the ERK1/2-MAP and Akt Kinase Cascades: Roles of Src, EGF Receptor, and PI3-Kinase Mechanisms. Front Endocrinol (Lausanne) 2019; 10:869. [PMID: 31920979 PMCID: PMC6921279 DOI: 10.3389/fendo.2019.00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
In the present study, we determined the cellular regulators of ERK1/2 and Akt signaling pathways in response to human CRF1 receptor (CRF1R) activation in transfected COS-7 cells. We found that Pertussis Toxin (PTX) treatment or sequestering Gβγ reduced CRF1R-mediated activation of ERK1/2, suggesting the involvement of a Gi-linked cascade. Neither Gs/PKA nor Gq/PKC were associated with ERK1/2 activation. Besides, CRF induced EGF receptor (EGFR) phosphorylation at Tyr1068, and selective inhibition of EGFR kinase activity by AG1478 strongly inhibited the CRF1R-mediated phosphorylation of ERK1/2, indicating the participation of EGFR transactivation. Furthermore, CRF-induced ERK1/2 phosphorylation was not altered by pretreatment with batimastat, GM6001, or an HB-EGF antibody indicating that metalloproteinase processing of HB-EGF ligands is not required for the CRF-mediated EGFR transactivation. We also observed that CRF induced Src and PYK2 phosphorylation in a Gβγ-dependent manner. Additionally, using the specific Src kinase inhibitor PP2 and the dominant-negative-SrcYF-KM, it was revealed that CRF-stimulated ERK1/2 phosphorylation depends on Src activation. PP2 also blocked the effect of CRF on Src and EGFR (Tyr845) phosphorylation, further demonstrating the centrality of Src. We identified the formation of a protein complex consisting of CRF1R, Src, and EGFR facilitates EGFR transactivation and CRF1R-mediated signaling. CRF stimulated Akt phosphorylation, which was dependent on Gi/βγ subunits, and Src activation, however, was only slightly dependent on EGFR transactivation. Moreover, PI3K inhibitors were able to inhibit not only the CRF-induced phosphorylation of Akt, as expected, but also ERK1/2 activation by CRF suggesting a PI3K dependency in the CRF1R ERK signaling. Finally, CRF-stimulated ERK1/2 activation was similar in the wild-type CRF1R and the phosphorylation-deficient CRF1R-Δ386 mutant, which has impaired agonist-dependent β-arrestin-2 recruitment; however, this situation may have resulted from the low β-arrestin expression in the COS-7 cells. When β-arrestin-2 was overexpressed in COS-7 cells, CRF-stimulated ERK1/2 phosphorylation was markedly upregulated. These findings indicate that on the base of a constitutive CRF1R/EGFR interaction, the Gi/βγ subunits upstream activation of Src, PYK2, PI3K, and transactivation of the EGFR are required for CRF1R signaling via the ERK1/2-MAP kinase pathway. In contrast, Akt activation via CRF1R is mediated by the Src/PI3K pathway with little contribution of EGFR transactivation.
Collapse
Affiliation(s)
- G. Karina Parra-Mercado
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Alma M. Fuentes-Gonzalez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Judith Hernandez-Aranda
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Monica Diaz-Coranguez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | | | - Kevin J. Catt
- Section on Hormonal Regulation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - J. Alberto Olivares-Reyes
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
- *Correspondence: J. Alberto Olivares-Reyes
| |
Collapse
|
3
|
Sabzevari S, Rohbani K, Sadat-Shirazi MS, Babhadi-Ashar N, Shakeri A, Ashabi G, Khalifeh S, Ale-Ebrahim M, Zarrindast MR. Morphine exposure before conception affects anxiety-like behavior and CRF level (in the CSF and plasma) in the adult male offspring. Brain Res Bull 2018; 144:122-131. [PMID: 30503221 DOI: 10.1016/j.brainresbull.2018.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 02/03/2023]
Abstract
It has been proven that exposure to some drugs even before gestation had transgenerational effects. To investigate the changes which induced by parental morphine exposure before gestation; mainly the anxiety-like behavior, Corticotropin Releasing Factor (CRF) level in the CSF and plasma, CRF Receptor 1 (CRFR1), and the level of protein kinase C (PKC-α) were evaluated in the male offspring. Male and female Wistar rats were exposed to morphine for 21 following days. Ten days after last drug exposure, animals were prepared for mating in 4 distinct groups as follow: drug-naïve female and male (used as control), drug-naïve female and morphine-abstinent male, drug-naïve male and morphine-abstinent female, and morphine abstinent male and female. Offspring were subjected to assess anxiety-like behavior (using elevated plus maze test). CSF and plasma were gathered, and the CRF level was evaluated by ELISA. Using real-time PCR, the CRFR1 level in the brain was evaluated. Results showed that anxiety-like behavior increased in the offspring of morphine-abstinent parent(s) compared with the control group. CRF level in the plasma and CSF also increased in the litter of morphine-abstinent parent(s). CRFR1 mRNA level was upregulated in the brain of offspring with one and/or two morphine-abstinent parent(s). Furthermore, the level of PKC-α was decreased in the brain of offspring which had one and/or two morphine-abstinent parent(s). Taken together, our findings indicated that morphine exposure even before gestation induced transgenerational effects via dysregulation of HPA axis which results in anxiety in the adult male offspring.
Collapse
Affiliation(s)
- Saba Sabzevari
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Kiyana Rohbani
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Babhadi-Ashar
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Shakeri
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
4
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Janeček M, Dabrowska J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res 2018; 375:143-172. [PMID: 30054732 DOI: 10.1007/s00441-018-2889-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/04/2018] [Indexed: 01/28/2023]
Abstract
Despite its relatively well-understood role as a reproductive and pro-social peptide, oxytocin (OT) tells a more convoluted story in terms of its modulation of fear and anxiety. This nuanced story has been obscured by a great deal of research into the therapeutic applications of exogenous OT, driving more than 400 ongoing clinical trials. Drawing from animal models and human studies, we review the complex evidence concerning OT's role in fear learning and anxiety, clarifying the existing confusion about modulation of fear versus anxiety. We discuss animal models and human studies demonstrating the prevailing role of OT in strengthening fear memory to a discrete signal or cue, which allows accurate and rapid threat detection that facilitates survival. We also review ostensibly contrasting behavioral studies that nonetheless provide compelling evidence of OT attenuating sustained contextual fear and anxiety-like behavior, arguing that these OT effects on the modulation of fear vs. anxiety are not mutually exclusive. To disambiguate how endogenous OT modulates fear and anxiety, an understudied area compared to exogenous OT, we survey behavioral studies utilizing OT receptor (OTR) antagonists. Based on emerging evidence about the role of OTR in rat dorsolateral bed nucleus of stria terminalis (BNST) and elsewhere, we postulate that OT plays a critical role in facilitating accurate discrimination between stimuli representing threat and safety. Supported by human studies, we demonstrate that OT uniquely facilitates adaptive fear but reduces maladaptive anxiety. Last, we explore the limited literature on endogenous OT and its interaction with corticotropin-releasing factor (CRF) with a special emphasis on the dorsolateral BNST, which may hold the key to the neurobiology of phasic fear and sustained anxiety.
Collapse
Affiliation(s)
- Michael Janeček
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. .,Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
6
|
Martinon D, Dabrowska J. Corticotropin-Releasing Factor Receptors Modulate Oxytocin Release in the Dorsolateral Bed Nucleus of the Stria Terminalis (BNST) in Male Rats. Front Neurosci 2018; 12:183. [PMID: 29618970 PMCID: PMC5871712 DOI: 10.3389/fnins.2018.00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
The neuropeptide oxytocin (OT) plays an important role in the regulation of social and anxiety-like behavior. Our previous studies have shown that OT neurons send projections from the hypothalamus to the dorsolateral bed nucleus of the stria terminalis (BNSTdl), a forebrain region critically involved in the modulation of anxiety-like behavior. Importantly, these OT terminals in the BNSTdl express presynaptic corticotropin releasing factor (CRF) receptor type 2 (CRFR2). This suggests that CRFR2 might be involved in the modulation of OT release. To test this hypothesis, we measured OT content in microdialysates collected from the BNSTdl of freely-moving male Sprague-Dawley rats following the administration of a selective CRFR2 agonist (Urocortin 3) or antagonist (Astressin 2B, As2B). To determine if type 1 CRF receptors (CRFR1) are also involved, we used selective CRFR1 antagonist (NBI35965) as well as CRF, a putative ligand of both CRFR1 and CRFR2. All compounds were delivered directly into the BNSTdl via reverse dialysis. OT content in the microdialysates was measured with highly sensitive and selective radioimmunoassay. Blocking CRFR2 with As2B caused an increase in OT content in BNSTdl microdialysates, whereas CRFR2 activation by Urocortin 3 did not have an effect. The As2B-induced increase in OT release was blocked by application of the CRFR1 antagonist demonstrating that the effect was dependent on CRFR1 transmission. Interestingly, CRF alone caused a delayed increase in OT content in BNSTdl microdialysates, which was dependent on CRF2 but not CRF1 receptors. Our results suggest that members of the CRF peptide family modulate OT release in the BNSTdl via a fine-tuned mechanism that involves both CRFR1 and CRFR2. Further exploration of mechanisms by which endogenous OT system is modulated by CRF peptide family is needed to better understand the role of these neuropeptides in the regulation of anxiety and the stress response.
Collapse
Affiliation(s)
- Daisy Martinon
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
7
|
Sotiriou I, Chalkiadaki K, Nikolaidis C, Sidiropoulou K, Chatzaki E. Pharmacotherapy in smoking cessation: Corticotropin Releasing Factor receptors as emerging intervention targets. Neuropeptides 2017; 63:49-57. [PMID: 28222901 DOI: 10.1016/j.npep.2017.02.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
Smoking represents perhaps the single most important health risk factor and a global contributor to mortality that can unquestionably be prevented. Smoking is responsible for many diseases, including various types of cancer, chronic obstructive pulmonary disease, coronary heart disease, peripheral vascular disease and peptic ulcer, while it adversely affects fetal formation and development. Since smoking habit duration is a critical factor for mortality, the goal of treatment should be its timely cessation and relapse prevention. Drug intervention therapy is an important ally in smoking cessation. Significant positive steps have been achieved in the last few years in the development of supportive compounds. In the present review, we analyze reports studying the role of Corticotropin Releasing Factor (CRF), the principle neuroendocrine mediator of the stress response and its two receptors (CRF1 and CRF2) in the withdrawal phase as well as in the abstinence from nicotine use. Although still in pre-clinical evaluation, therapeutic implications of these data were investigated in order to highlight potential pharmaceutical interventions.
Collapse
Affiliation(s)
- Ioannis Sotiriou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Christos Nikolaidis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| |
Collapse
|
8
|
Varghese SP, Montalvo-Ortiz JL, Csernansky JG, Eiger RI, Herrold AA, Koola MM, Dong H. Early Life Stress as a Risk Factor for Substance use Disorders: Clinical and Neurobiological Substrates. Indian J Psychol Med 2015; 37:36-41. [PMID: 25722510 PMCID: PMC4341308 DOI: 10.4103/0253-7176.150816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Early Life Stress (ELS) can profoundly influence an individual's genotype and phenotype. Effects of ELS can manifest in the short-term, late life and even in subsequent generations. ELS activate corticotrophin releasing factor (CRF); CRF influences drug seeking and addiction. The aim of this study was to examine the effects of endogenous elevated levels of CRF on addiction. MATERIALS AND METHODS Inducible forebrain over-expression of CRF mice (tetop-CRH x CaMKII-tTA) was used for this study. Morphine (10 mg/kg) was administered every other day for 10 days or with increasing doses of morphine: 20, 40, 60, 80, 100, and 100 mg/kg. The behavioral trials including morphine sensitization, Somatic Opiate Withdrawal Symptoms (SOWS) were conducted in a single, open field, activity. After behavioral trial, animals were perfused for immunohistochemistry analysis. RESULTS CRF-over expressed (CRF-OE) mice showed increase in morphine sensitization and withdrawal symptoms after morphine administration compared to wild type (WT) mice. The two-way ANOVA in the morphine sensitization study showed a significant effect of treatment (P<0.05) and genotype for distance traveled (P<0.01). In the SOWS study, opiate withdrawal symptoms such as rearings, circling behavior, grooming, and jump in CRF-OE were amplified in parallel to WT mice. In the immunohistochemistry study, pro-dynorphine (PDYN) expression was increased after morphine administration in both amygdala and nucleus accumbens (NAcc). CONCLUSIONS CRF-OE in the forebrain increases the sensitization and withdrawal symptoms in morphine treated mice. On exposure to morphine, in CRF-OE mice the PDYN protein expression was increased as compared to WT mice in the amygdala and NAcc.
Collapse
Affiliation(s)
- Sajoy Purathumuriyil Varghese
- Department of Mental Health, Captain James A. Lovell Federal Health Care Center, North Chicago, IL 60064, USA ; Departments of Psychiatry and Behavioral Sciences, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Janitza L Montalvo-Ortiz
- Departments of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John G Csernansky
- Departments of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rodney I Eiger
- Departments of Psychiatry and Behavioral Sciences, Jesse Brown Veterans Affairs Medical Center, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | - Amy A Herrold
- Departments of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA ; Department of Psychiatry and Behavioral Sciences, Center of Innovation for Complex Chronic Healthcare, Edward Hines Jr., Veteran Affairs Hospital, Hines, IL 60141, USA
| | - Maju Mathew Koola
- Department of Psychiatry, Clinical Research Program, Sheppard Pratt Health System, University of Maryland School of Medicine, Baltimore, MD 21204, USA
| | - Hongxin Dong
- Departments of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
9
|
M T, JE G, RL H, AL H, VB R. The role of PKC signaling in CRF-induced modulation of startle. Psychopharmacology (Berl) 2013; 229:579-89. [PMID: 23722830 PMCID: PMC3784645 DOI: 10.1007/s00213-013-3114-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/11/2013] [Indexed: 02/06/2023]
Abstract
RATIONALE Hypersignaling of corticotropin releasing factor (CRF) has been implicated in stress disorders; however, many of its downstream mechanisms of action remain unclear. In vitro, CRF1 receptor activation initiates multiple cell signaling cascades, including protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase kinase MEK1/2 signaling. It is unclear, however, which of these signaling cascades mediate CRF-induced behaviors during stress. OBJECTIVES We examined the role of PKA, PKC, and MEK1/2 signaling pathways in CRF-induced anxiety as measured by startle hyperreactivity. METHODS Mice treated with intracerbroventricular (ICV) ovine CRF (oCRF) were pretreated with the PKA inhibitor Rp-cAMPS, PKC inhibitor bisindolylmaleimide (BIM), or MEK1/2 inhibitor PD98059 (ICV) and assessed for acoustic startle reactivity. RESULTS The PKC inhibitor BIM significantly attenuated CRF-induced increases in startle. BIM was also able to block startle increases induced by oCRF when both compounds were infused directly into the bed nucleus of stria terminalis (BNST). PKA and MEK1/2 inhibition had no significant effects on CRF-induced changes in startle at the dose ranges tested. CRF-induced disruption of prepulse inhibition was not significantly reversed by any of the three pretreatments at the dose ranges tested. CONCLUSIONS PKC signaling is required for CRF-induced increases in startle, and this effect is mediated at least in part at the BNST. These findings suggest that PKC signaling cascades (1) may be important for the acute effects of CRF to induce startle hyperreactivity and (2) support further research of the role of PKC signaling in startle abnormalities relevant to disorders such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Toth M
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Gresack JE
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York NY USA
| | - Hauger RL
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Halberstadt AL
- Dept. of Psychiatry, University of California San Diego, La Jolla CA USA
| | - Risbrough VB
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla CA USA,Dept. of Psychiatry, University of California San Diego, La Jolla CA USA,Corresponding author: Victoria Risbrough, Ph.D., University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla CA 92093-0804, Tel: 16195433582; Fax: 16195432475:
| |
Collapse
|
10
|
Babwah AV, Pampillo M, Min L, Kaiser UB, Bhattacharya M. Single-cell analyses reveal that KISS1R-expressing cells undergo sustained kisspeptin-induced signaling that is dependent upon an influx of extracellular Ca2+. Endocrinology 2012; 153:5875-87. [PMID: 23070548 PMCID: PMC3512071 DOI: 10.1210/en.2012-1747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The kisspeptin receptor (KISS1R) is a Gα(q/11)-coupled seven-transmembrane receptor activated by a group of peptides referred to as kisspeptins (Kps). The Kp/KISS1R signaling system is a powerful regulator of GnRH secretion, and inactivating mutations in this system are associated with hypogonadotropic hypogonadism. A recent study revealed that Kp triggers prolonged signaling; not from the inability of the receptor to undergo rapid desensitization, but instead from the maintenance of a dynamic and active pool of KISS1R at the cell surface. To investigate this further, we hypothesized that if a dynamic pool of receptor is maintained at the cell surface for a protracted period, chronic Kp-10 treatment would trigger the sustained activation of Gα(q/11) as evidenced through the prolonged activation of phospholipase C, protein kinase C, and prolonged mobilization of intracellular Ca(2+). Through single-cell analyses, we tested our hypothesis in human embryonic kidney (HEK) 293 cells and found that was indeed the case. We subsequently determined that prolonged KISS1R signaling was not a phenomenon specific to HEK 293 cells but is likely a conserved property of KISS1R-expressing cells because evidence of sustained KISS1R signaling was also observed in the GT1-7 GnRH neuronal and Chinese hamster ovary cell lines. While exploring the regulation of prolonged KISS1R signaling, we identified a critical role for extracellular Ca(2+). We found that although free intracellular Ca(2+), primarily derived from intracellular stores, was sufficient to trigger the acute activation of a major KISS1R secondary effector, protein kinase C, it was insufficient to sustain chronic KISS1R signaling; instead extracellular Ca(2+) was absolutely required for this.
Collapse
Affiliation(s)
- Andy V Babwah
- Children's Health Research Institute, The University of Western Ontario, London, Ontario, Canada N6C 2V5.
| | | | | | | | | |
Collapse
|
11
|
Lodge NJ, Lelas S, Li YW, Molski T, Grace J, Sivarao DV, Post-Munson D, Healy F, Bronson JJ, Hartz R, Macor JE, Zaczek R. Pharmacological and behavioral characterization of the novel CRF1 antagonist BMS-763534. Neuropharmacology 2012; 67:284-93. [PMID: 23174340 DOI: 10.1016/j.neuropharm.2012.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 12/19/2022]
Abstract
BMS-763534 is a potent (CRF(1) IC(50) = 0.4 nM) and selective (>1000-fold selectivity vs. all other sites tested) CRF(1) receptor antagonist (pA2 = 9.47 vs. CRF(1)-mediated cAMP production in Y79 cells). BMS-763534 accelerated the dissociation of (125)I-o-CRF from rat frontal cortex membrane CRF(1) receptors consistent with a negative allosteric modulation of CRF binding. BMS-763534 produced dose-dependent increases in CRF(1) receptor occupancy and anxiolytic efficacy; lowest effective anxiolytic dose = 0.56 mg/kg, PO, which was associated with 71 ± 5% CRF(1) receptor occupancy of frontoparietal CRF(1) receptors. Sedative/ataxic effects of BMS-763534 were only observed at high dose multiples (54-179×) relative to the lowest dose required for anxiolytic efficacy. At doses of 5- to 18-fold higher than the lowest efficacious dose in the anxiety assay, BMS-763534 shared subjective effects with the benzodiazepine chlordiazepoxide. Interestingly BMS-790318, the O-demethylated metabolite of BMS-763534, showed weak affinity for the TBOB site of the GABA(A) receptor (67% inhibition at 10 μM) and augmented GABA evoked currents (EC(50) = 1.6 μM). Thus, the unanticipated signal in the drug discrimination assay may have resulted from an interaction of the metabolite BMS-790318 with the TBOB site on the GABA(A) channel where it appears to behave as an allosteric potentiator of GABA evoked currents.
Collapse
Affiliation(s)
- Nicholas J Lodge
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Grammatopoulos DK. Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction. Br J Pharmacol 2012; 166:85-97. [PMID: 21883143 DOI: 10.1111/j.1476-5381.2011.01631.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During evolution, mammals have developed remarkably similar molecular mechanisms to respond to external challenges and maintain survival. Critical regulators of these mechanisms are the family of 'stress'-peptides that consists of the corticotropin-releasing hormone (CRH) and urocortins (Ucns). These neuropeptides 'fine-tune' integration of an intricate series of physiological responses involving the autonomic, endocrine, immune, cardiovascular and reproductive systems, which induce a spectrum of behavioural and homeostatic changes. CRH and Ucns exert their actions by activating two types of CRH receptors (CRH-R), CRH-R1 and CRH-R2, which belong to the class-B1 family of GPCRs. The CRH-Rs exhibit signalling promiscuity facilitated by their ability to couple to multiple G-proteins and regulate diverse intracellular networks that involve intracellular effectors such as cAMP and an array of PKs in an agonist and tissue-specific manner, a property that allows them to exert unique roles in the integration of homeostatic mechanisms. We only now begin to unravel the plethora of CRH-R biological actions and the transcriptional and post-translational mechanisms such as alternative mRNA splicing or phosphorylation-mediated desensitization developed to tightly control CRH-Rs biological activity and regulate their physiological actions. This review summarizes the current understanding of CRH-R signalling complexity and regulatory mechanisms that underpin cellular responses to CRH and Ucns.
Collapse
|
13
|
Kuperman Y, Issler O, Vaughan J, Bilezikjian L, Vale W, Chen A. Expression and regulation of corticotropin-releasing factor receptor type 2β in developing and mature mouse skeletal muscle. Mol Endocrinol 2010; 25:157-69. [PMID: 21084379 DOI: 10.1210/me.2010-0308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Corticotropin-releasing factor receptor type 2 (CRFR2) is highly expressed in skeletal muscle (SM) tissue where it is suggested to inhibit interactions between insulin signaling pathway components affecting whole-body glucose homeostasis. However, little is known about factors regulating SM CRFR2 expression. Here, we demonstrate the exclusive expression of CRFR2, and not CRFR1, in mature SM tissue using RT-PCR and ribonuclease protection assays and report a differential expression of CRF receptors during C2C12 myogenic differentiation. Whereas C2C12 myoblasts exclusively express CRFR1, the C2C12 myotubes solely express CRFR2. Using cAMP luciferase assays and calcium mobilization measurements, we further demonstrate the functionality of these differentially expressed receptors. Using luciferase reporter assays we show a differential activation of CRFR promoters during myogenic differentiation. Transfections with different fragments of the 5'-flanking region of the mCRFR2β gene fused to a luciferase reporter gene show a promoter-dependent expression of the reporter gene and reveal the importance of the myocyte enhancer factor 2 consensus sequence located at the 3'-proximal region of CRFR2β promoter. Furthermore, we demonstrate that CRFR2 gene transcription in the mature mouse is stimulated by both high-fat diet and chronic variable stress conditions. Performing a whole-genome expression microarray analysis of SM tissues obtained from CRFR2-null mice or wild-type littermates revealed a robust reduction in retinol-binding protein 4 expression levels, an adipokine whose serum levels are elevated in insulin-resistant states. In correlation with the SM CRFR2β levels, the SM retinol-binding protein 4 levels were also elevated in mice subjected to high-fat diet and chronic variable stress conditions. The current findings further position the SM CRFR2 pathways as a relevant physiological system that may affect the known reciprocal relationship between psychological and physiological challenges and the metabolic syndrome.
Collapse
Affiliation(s)
- Yael Kuperman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Gądek-Michalska A, Bugajski J. Interleukin-1 (IL-1) in stress-induced activation of limbic-hypothalamic-pituitary adrenal axis. Pharmacol Rep 2010; 62:969-82. [DOI: 10.1016/s1734-1140(10)70359-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/26/2010] [Indexed: 01/07/2023]
|
15
|
Gutknecht E, Vauquelin G, Dautzenberg FM. Corticotropin-releasing factor receptors induce calcium mobilization through cross-talk with Gq-coupled receptors. Eur J Pharmacol 2010; 642:1-9. [PMID: 20594969 DOI: 10.1016/j.ejphar.2010.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 04/28/2010] [Accepted: 05/25/2010] [Indexed: 11/20/2022]
Abstract
The cross-talk between corticotropin-releasing factor (CRF) and muscarinic receptors was investigated by measuring evoked transient increases in cytosolic calcium concentration. HEK293 cells stably expressing human CRF type 1 (hCRF(1)) and type 2(a) (hCRF(2(a))) receptors were stimulated with the muscarinic receptor agonist carbachol and shortly after by a CRF agonist. Unexpectedly, this second response was enhanced when compared to stimulating naive cells either with carbachol or CRF agonist only. Priming with 100 microM carbachol increased the maximal CRF agonist response and shifted its concentration-response curve to the left to attain almost the same potency as for stimulating the production of the natural second messenger cyclic AMP. Yet, priming did not affect CRF agonist-stimulated cyclic AMP production itself. Carbachol priming was not restricted to recombinant CRF receptors only since endogenously expressed beta(2)-adrenoceptors also started to produce a robust calcium signal. Without priming no such signal was observed. Similar findings were made in the human retinoblastoma cell line Y79 for endogenously expressed CRF(1) receptors and the type 1 pituitary adenylate cyclase-activating polypeptide receptors but not for the CRF(2(a)) receptors. This differentiation between CRF(1) and CRF(2) receptors was further supported by use of selective agonists and antagonists. The results suggest that stimulating a Gq-coupled receptor shortly before stimulating a Gs-coupled receptor may result in a parallel signaling event on top of the classical cyclic AMP pathway.
Collapse
Affiliation(s)
- Eric Gutknecht
- Johnson & Johnson Research & Development, CNS Research, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | |
Collapse
|
16
|
Hauger RL, Risbrough V, Oakley RH, Olivares-Reyes JA, Dautzenberg FM. Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann N Y Acad Sci 2009; 1179:120-43. [PMID: 19906236 DOI: 10.1111/j.1749-6632.2009.05011.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Markers of hyperactive central corticotropin releasing factor (CRF) systems and CRF-related single nucleotide polymorphisms (SNPs) have been identified in patients with anxiety and depressive disorders. Designing more effective antagonists may now be guided by data showing that small molecules bind to transmembrane domains. Specifically, CRF(1) receptor antagonists have been developed as novel anxiolytic and antidepressant treatments. Because CRF(1) receptors become rapidly desensitized by G protein-coupled receptor kinase (GRK) and beta-arrestin mechanisms in the presence of high agonist concentrations, neuronal hypersecretion of synaptic CRF alone may be insufficient to account for excessive central CRF neurotransmission in stress-induced affective pathophysiology. In addition to desensitizing receptor function, GRK phosphorylation and beta-arrestin binding can shift a G protein-coupled receptor (GPCR) to signal selectively via the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK-MAPK) or Akt pathways independent of G proteins. Also, Epac-dependent CRF(1) receptor signaling via the ERK-MAPK pathway has been found to potentiate brain-derived neurotrophic factor (BDNF)-stimulated TrkB signaling. Thus, genetic or acquired abnormalities in GRK and beta-arrestin function may be involved in the pathophysiology of stress-induced anxiety and depression.
Collapse
Affiliation(s)
- Richard L Hauger
- Psychiatry Service, VA Healthcare System, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | |
Collapse
|
17
|
Hubbard CS, Dolence EK, Shires JA, Rose JD. Identification of brain target neurons using a fluorescent conjugate of corticotropin-releasing factor. J Chem Neuroanat 2009; 37:245-53. [PMID: 19481009 PMCID: PMC2732013 DOI: 10.1016/j.jchemneu.2009.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/18/2009] [Accepted: 01/24/2009] [Indexed: 11/23/2022]
Abstract
Corticotropin-releasing factor (CRF) is a peptide well known for its role in coordinating various neuroendocrine, autonomic, and behavioral components of the vertebrate stress response, including rapid enhancement of locomotor activity. Although CRF's locomotor enhancing properties are well documented, the neuronal mechanisms and specific target neurons that underlie the peptide's effect on locomotor behavior remain poorly understood. In the present study, we describe the synthesis and functional characteristics of a CRF rhodamine analogue TAMRA-X conjugate mixture (CRF-TAMRA 1), to be used for tracking this peptide's internalization into target neurons in the brainstem of an amphibian, the roughskin newt (Taricha granulosa). CRF-TAMRA 1 conjugate administration into the lateral cerebral ventricle resulted in a rapid, endosomal-like internalization of fluorescence into brainstem medullary neurons. In addition, central CRF-TAMRA 1 administration produced neurobehavioral effects comparable to the native peptide, effects that were blocked by pre-treatment with the CRF receptor antagonist, alpha-helical CRF. Taken together, our results show the efficacy of CRF-TAMRA 1 as a novel tool for tracking CRF internalization into targets neurons in vivo and ultimately, aiding in elucidating the neuronal mechanisms and circuitry underlying CRF's influence on behavioral and physiological responses to stress.
Collapse
Affiliation(s)
- Catherine S Hubbard
- Neuroscience Program, University of Wyoming, Laramie, WY 82071-3166, United States.
| | | | | | | |
Collapse
|
18
|
Kageyama K, Suda T. Role and action in the pituitary corticotroph of corticotropin-releasing factor (CRF) in the hypothalamus. Peptides 2009; 30:810-6. [PMID: 19124055 DOI: 10.1016/j.peptides.2008.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 11/16/2022]
Abstract
Corticotropin-releasing factor (CRF), produced in the hypothalamic paraventricular nucleus (PVN) in response to stress, stimulates the synthesis and secretion of adrenocorticotropin (ACTH) via CRF receptor type 1 (CRF(1) receptor) in the anterior pituitary (AP) of mammals. CRF is critical for the circadian rhythmicity of the hypothalamic-pituitary-adrenal axis and the augmented release of ACTH from the pituitary in response to the stress. A higher molecular weight form of immunoreactive beta-endorphin, putative proopiomelanocortin (POMC), is increased in CRF-knockout mice (CRF KO), suggesting the important role of CRF in the processing of POMC. In fact, CRF is able to modulate the processing of POMC through changes in prohormone convertase (PC)-1 expression levels. Multiple forms of ACTH-related peptides containing unprocessed ones are present in some cases of ACTH-producing tumors, presumably without action of PC-1 under the control of CRF. Following CRF-activated stimulation of the receptor signaling, CRF(1) receptor is down-regulated and desensitized. In fact, CRF facilitates the degradation of CRF(1) receptor mRNA via the protein kinase A pathway. Prolonged agonist activation of CRF(1) receptor leads to a loss of responsiveness, or desensitization of the receptor. G protein-coupled receptor kinase 2 is involved in desensitization of CRF(1) receptor by CRF in the corticotroph.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Zaifu-cho, Aomori, Japan.
| | | |
Collapse
|
19
|
Jagge CL, Pietrantonio PV. Diuretic hormone 44 receptor in Malpighian tubules of the mosquito Aedes aegypti: evidence for transcriptional regulation paralleling urination. INSECT MOLECULAR BIOLOGY 2008; 17:413-426. [PMID: 18651923 DOI: 10.1111/j.1365-2583.2008.00817.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the mosquito Aedes aegypti (L.), the molecular endocrine mechanisms underlying rapid water elimination upon eclosion and blood feeding are not fully understood. The genome contains a single predicted diuretic hormone 44 (DH44) gene, but two DH44 receptor genes. The identity of the DH44 receptor(s) in the Malpighian tubule is unknown in any mosquito species. We show that VectorBase gene ID AAEL008292 encodes the DH44 receptor (GPRDIH1) most highly expressed in Malpighian tubules. Sequence analysis and transcript localization indicate that AaegGPRDIH1 is the co-orthologue of the Drosophila melanogaster DH44 receptor (CG12370-PA). Time-course quantitative PCR analysis of Malpighian tubule cDNA revealed AaegGPRDIH1 expression changes paralleling periods of excretion. This suggests that target tissue receptor biology is linked to the known periods of release of diuretic hormones from the nervous system pointing to a common up-stream regulatory mechanism.
Collapse
Affiliation(s)
- C L Jagge
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | | |
Collapse
|
20
|
Gutknecht E, Hauger RL, Van der Linden I, Vauquelin G, Dautzenberg FM. Expression, binding, and signaling properties of CRF2(a) receptors endogenously expressed in human retinoblastoma Y79 cells: passage-dependent regulation of functional receptors. J Neurochem 2007; 104:926-36. [PMID: 17976162 DOI: 10.1111/j.1471-4159.2007.05052.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endogenous expression of the corticotropin-releasing factor type 2a receptor [CRF2(a)] but not CRF2(b) and CRF2(c) was observed in higher passage cultures of human Y79 retinoblastoma cells. Functional studies further demonstrated an increase in CRF2(a) mRNA and protein levels with higher passage numbers (> 20 passages). Although the CRF1 receptor was expressed at higher levels than the CRF2(a) receptor, both receptors were easily distinguishable from one another by selective receptor ligands. CRF(1)-preferring or non-selective agonists such as CRF, urocortin 1 (UCN1), and sauvagine stimulated cAMP production in Y79 to maximal responses of approximately 100 pmoles/10(5) cells, whereas the exclusive CRF2 receptor-selective agonists UCN2 and 3 stimulated cAMP production to maximal responses of approximately 25-30 pmoles/10(5) cells. UCN2 and 3-mediated cAMP stimulation was potently blocked by the approximately 300-fold selective CRF2 antagonist antisauvagine (IC50 = 6.5 +/- 1.6 nmol/L), whereas the CRF(1)-selective antagonist NBI27914 only blocked cAMP responses at concentrations > 10 microL. When the CRF(1)-preferring agonist ovine CRF was used to activate cAMP signaling, NBI27914 (IC50 = 38.4 +/- 3.6 nmol/L) was a more potent inhibitor than antisauvagine (IC50 = 2.04 +/- 0.2 microL). Finally, UCN2 and 3 treatment potently and rapidly desensitized the CRF2 receptor responses in Y79 cells. These data demonstrate that Y79 cells express functional CRF1 and CRF2a receptors and that the CRF2(a) receptor protein is up-regulated during prolonged culture.
Collapse
Affiliation(s)
- Eric Gutknecht
- CNS Research, Johnson & Johnson Research & Development, Beerse, Belgium
| | | | | | | | | |
Collapse
|
21
|
Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL. Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol 2007; 293:R209-22. [PMID: 17363685 PMCID: PMC3102763 DOI: 10.1152/ajpregu.00099.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary goal was to test the hypothesis that agonist-induced corticotropin-releasing factor type 1 (CRF(1)) receptor phosphorylation is required for beta-arrestins to translocate from cytosol to the cell membrane. We also sought to determine the relative importance to beta-arrestin recruitment of motifs in the CRF(1) receptor carboxyl terminus and third intracellular loop. beta-Arrestin-2 translocated significantly more rapidly than beta-arrestin-1 to agonist-activated membrane CRF(1) receptors in multiple cell lines. Although CRF(1) receptors internalized with agonist treatment, neither arrestin isoform trafficked with the receptor inside the cell, indicating that CRF(1) receptor-arrestin complexes dissociate at or near the cell membrane. Both arrestin and clathrin-dependent mechanisms were involved in CRF(1) receptor internalization. To investigate molecular determinants mediating the robust beta-arrestin-2-CRF(1) receptor interaction, mutagenesis was performed to remove potential G protein-coupled receptor kinase phosphorylation sites. Truncating the CRF(1) receptor carboxyl terminus at serine-386 greatly reduced agonist-dependent phosphorylation but only partially impaired beta-arrestin-2 recruitment. Removal of a serine/threonine cluster in the third intracellular loop also significantly reduced CRF(1) receptor phosphorylation but did not alter beta-arrestin-2 recruitment. Phosphorylation was abolished in a CRF(1) receptor possessing both mutations. Surprisingly, this mutant still recruited beta-arrestin-2. These mutations did not alter membrane expression or cAMP signaling of CRF(1) receptors. Our data reveal the involvement of at least the following two distinct receptor regions in beta-arrestin-2 recruitment: 1) a carboxyl-terminal motif in which serine/threonine residues must be phosphorylated and 2) an intracellular loop motif configured by agonist-induced changes in CRF(1) receptor conformation. Deficient beta-arrestin-2-CRF(1) receptor interactions could contribute to the pathophysiology of affective disorders by inducing excessive CRF(1) receptor signaling.
Collapse
Affiliation(s)
- Robert H Oakley
- Department of Psychiatry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kageyama K, Hanada K, Moriyama T, Imaizumi T, Satoh K, Suda T. Differential regulation of CREB and ERK phosphorylation through corticotropin-releasing factor receptors type 1 and 2 in AtT-20 and A7r5 cells. Mol Cell Endocrinol 2007; 263:90-102. [PMID: 17027144 DOI: 10.1016/j.mce.2006.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 06/26/2006] [Accepted: 08/28/2006] [Indexed: 11/18/2022]
Abstract
The corticotropin-releasing factor (CRF) family of peptides generally exerts its biological actions by binding to two major subtypes of CRF receptors: CRF receptor type 1 (CRF1 receptor) and CRF receptor type 2 (CRF2 receptor). In this study, we investigated the mechanism by which three ligands altered phosphorylation of CREB and ERK 1/2, using AtT-20 cells (expressing CRF1 receptor) and A7r5 cells (expressing CRF2 receptor). Incubation with 100 nM of CRF, urocortin 1 (UCN 1), or UCN 2 increased CREB phosphorylation. The protein kinase A pathway was involved in the CRF- or UCN-mediated increase in CREB phosphorylation in both cell lines. Bisindolylmaleimide partially inhibited the CRF-mediated increase in CREB phosphorylation, but only in AtT-20 cells, suggesting that the protein kinase C pathway is involved in regulation of CREB phosphorylation via CRF1 receptor but not CRF2 receptor. CRF increased ERK phosphorylation in AtT-20 cells, whereas the UCNs decreased it in A7r5 cells. Bisindolylmaleimide partially inhibited the UCN-mediated decrease in ERK phosphorylation in A7r5 cells, suggesting that the protein kinase C pathway is partially involved in CRF2 receptor signal transduction. In AtT-20 cells, the mitogen-activated protein kinase kinase pathway regulated ERK phosphorylation following CRF1 receptor activation. These findings suggest differential regulation of CREB and ERK 1/2 phosphorylation through CRF receptors.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology, Metabolism and Infectious Diseases, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Markovic D, Papadopoulou N, Teli T, Randeva H, Levine MA, Hillhouse EW, Grammatopoulos DK. Differential responses of corticotropin-releasing hormone receptor type 1 variants to protein kinase C phosphorylation. J Pharmacol Exp Ther 2006; 319:1032-42. [PMID: 16956982 DOI: 10.1124/jpet.106.107441] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) regulates diverse biological functions in mammals, through activation of two types of specific G protein-coupled receptors that are expressed as multiple mRNA spliced variants. In most cells, the type 1alpha CRH receptor (CRH-R1alpha) preferentially activates the G(s)-adenylyl cyclase signaling cascade. CRH-R1alpha-mediated signaling activity is impaired by insertion of 29 amino acids in the first intracellular loop, a sequence modification that is characteristic of the human-specific CRH-R1beta variant. In various tissues, CRH signaling events are regulated by protein kinase C (PKC). The CRH receptors contain multiple putative PKC phosphorylation sites that represent potential targets. To investigate this, we expressed recombinant CRH-R1alpha or CRH-R1beta in human embryonic kidney 293 cells and analyzed signaling events after PKC activation. Agonist (oxytocin) or phorbol 12-myristate 13-acetate-induced activation of PKC led to phosphorylation of both CRH-R1 variants. However, CRH-R1alpha and CRH-R1beta exhibited different functional responses to PKC-induced phosphorylation, with only the CRH-R1beta susceptible to cAMP signaling desensitization. This was associated with a significant decrease of accessible CRH-R1beta receptors expressed on the cell surface. Both CRH-R1 variants were susceptible to homologous desensitization and internalization following treatment with CRH; however, PKC activation increased internalization of CRH-R1beta but not CRH-R1alpha in a beta-arrestin-independent manner. Our findings indicate that CRH-R1alpha and -R1beta exhibit differential responses to PKC-induced phosphorylation, and this might represent an important mechanism for functional regulation of CRH signaling in target cells.
Collapse
Affiliation(s)
- Danijela Markovic
- Endocrinology and Metabolism, Division of Clinical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Hauger RL, Risbrough V, Brauns O, Dautzenberg FM. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2006; 5:453-79. [PMID: 16918397 PMCID: PMC1925123 DOI: 10.2174/187152706777950684] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Corticotropin-releasing factor (CRF) and the related urocortin peptides mediate behavioral, cognitive, autonomic, neuroendocrine and immunologic responses to aversive stimuli by activating CRF(1) or CRF(2) receptors in the central nervous system and anterior pituitary. Markers of hyperactive central CRF systems, including CRF hypersecretion and abnormal hypothalamic-pituitary-adrenal axis functioning, have been identified in subpopulations of patients with anxiety, stress and depressive disorders. Because CRF receptors are rapidly desensitized in the presence of high agonist concentrations, CRF hypersecretion alone may be insufficient to account for the enhanced CRF neurotransmission observed in these patients. Concomitant dysregulation of mechanisms stringently controlling magnitude and duration of CRF receptor signaling also may contribute to this phenomenon. While it is well established that the CRF(1) receptor mediates many anxiety- and depression-like behaviors as well as HPA axis stress responses, CRF(2) receptor functions are not well understood at present. One hypothesis holds that CRF(1) receptor activation initiates fear and anxiety-like responses, while CRF(2) receptor activation re-establishes homeostasis by counteracting the aversive effects of CRF(1) receptor signaling. An alternative hypothesis posits that CRF(1) and CRF(2) receptors contribute to opposite defensive modes, with CRF(1) receptors mediating active defensive responses triggered by escapable stressors, and CRF(2) receptors mediating anxiety- and depression-like responses induced by inescapable, uncontrollable stressors. CRF(1) receptor antagonists are being developed as novel treatments for affective and stress disorders. If it is confirmed that the CRF(2) receptor contributes importantly to anxiety and depression, the development of small molecule CRF(2) receptor antagonists would be therapeutically useful.
Collapse
Affiliation(s)
- Richard L Hauger
- San Diego VA Healthcare System, University of California San Diego, La Jolla, 929093-0603, USA.
| | | | | | | |
Collapse
|
25
|
Hillhouse EW, Grammatopoulos DK. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev 2006; 27:260-86. [PMID: 16484629 DOI: 10.1210/er.2005-0034] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The CRH receptor (CRH-R) is a member of the secretin family of G protein-coupled receptors. Wide expression of CRH-Rs in the central nervous system and periphery ensures that their cognate agonists, the family of CRH-like peptides, are capable of exerting a wide spectrum of actions that underpin their critical role in integrating the stress response and coordinating the activity of fundamental physiological functions, such as the regulation of the cardiovascular system, energy balance, and homeostasis. Two types of mammal CRH-R exist, CRH-R1 and CRH-R2, each with unique splicing patterns and remarkably distinct pharmacological properties, but similar signaling properties, probably reflecting their distinct and sometimes contrasting biological functions. The regulation of CRH-R expression and activity is not fully elucidated, and we only now begin to fully understand the impact on mammalian pathophysiology. The focus of this review is the current and evolving understanding of the molecular mechanisms controlling CRH-R biological activity and functional flexibility. This shows notable tissue-specific characteristics, highlighted by their ability to couple to distinct G proteins and activate tissue-specific signaling cascades. The type of activating agonist, receptor, and target cell appears to play a major role in determining the overall signaling and biological responses in health and disease.
Collapse
Affiliation(s)
- Edward W Hillhouse
- The Leeds Institute of Genetics, Health and Therapeutics, The University of Leeds, Leeds LS2 9NL, UK.
| | | |
Collapse
|
26
|
Kageyama K, Hanada K, Moriyama T, Nigawara T, Sakihara S, Suda T. G protein-coupled receptor kinase 2 involvement in desensitization of corticotropin-releasing factor (CRF) receptor type 1 by CRF in murine corticotrophs. Endocrinology 2006; 147:441-50. [PMID: 16195412 DOI: 10.1210/en.2005-0376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypothalamic CRF stimulates synthesis and secretion of ACTH via CRF receptor type 1 (CRFR1) in the anterior pituitary gland. After agonist-activated stimulation of receptor signaling, CRFR1 is down-regulated and desensitized. Generally, it is thought that G protein-coupled receptors may be desensitized by G protein-coupled receptor kinases (GRKs). However, the role of GRKs in corticotropic cells has not been determined. In this study we focused on involvement of GRKs in desensitization of CRFR1 by CRF in corticotropic cells. We found that GRK2 (but not GRK3) mRNA and protein were expressed in rat anterior pituitary cells and AtT-20 cells (a line of mouse corticotroph tumor cells). To determine the role of GRK2 in CRF-induced desensitization of CRFR1 in mouse corticotrophs, AtT-20 cells were transfected with a dominant-negative mutant GRK2 construct. CRF desensitized the cAMP-dependent response by CRFR1. Desensitization of CRFR1 by CRF was significantly less in AtT-20 cells transfected with the dominant-negative mutant GRK2 construct compared with desensitization in control (an empty vector-transfected) AtT-20 cells. Furthermore, pretreatment with a protein kinase A inhibitor also partially blocked desensitization of CRFR1 by CRF. These results suggest that GRK2 is involved in CRF-induced desensitization of CRFR1 in AtT-20 cells, and the protein kinase A pathway may also have an important role in desensitization of CRFR1 by CRF seen in corticotropic cells.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology, Metabolism, and Infectious Diseases, Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Jedema HP, Grace AA. Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J Neurosci 2005; 24:9703-13. [PMID: 15509759 PMCID: PMC6730164 DOI: 10.1523/jneurosci.2830-04.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide corticotropin-releasing hormone (CRH) activates locus ceruleus (LC) neurons, thereby increasing norepinephrine levels throughout the CNS. Despite anatomical and physiological evidence for CRH innervation of the LC, the mechanism of CRH-evoked activation of LC neurons is unknown. Moreover, given the apparent absence of mRNA for CRH receptors in LC neurons, the exact location of action of CRH within the cerulear region is debated. Using in vitro intracellular recordings from rat brainstem, we examined whether CRH exerts a direct effect on LC neurons and which ionic currents are likely affected by CRH. We demonstrate that CRH dose-dependently increases the firing rate of LC neurons through a direct (TTX- and cadmium-insensitive) mechanism by decreasing a potassium conductance. The CRH-evoked activation of LC neurons is, at least in part, mediated by CRH1 receptors and a cAMP-dependent second messenger system. These data provide additional support that CRH functions as an excitatory neurotransmitter in the LC and the hypothesis that dysfunction of the CRH peptidergic and noradrenergic systems observed in patients with mood and anxiety disorders are functionally related.
Collapse
Affiliation(s)
- Hank P Jedema
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
28
|
Dautzenberg FM, Gutknecht E, Van der Linden I, Olivares-Reyes JA, Dürrenberger F, Hauger RL. Cell-type specific calcium signaling by corticotropin-releasing factor type 1 (CRF1) and 2a (CRF2(a)) receptors: phospholipase C-mediated responses in human embryonic kidney 293 but not SK-N-MC neuroblastoma cells. Biochem Pharmacol 2004; 68:1833-44. [PMID: 15450949 DOI: 10.1016/j.bcp.2004.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 07/12/2004] [Indexed: 11/25/2022]
Abstract
The human corticotropin-releasing factor (hCRF) receptors CRF1 and CRF2(a) couple to the Gs protein. It has been postulated that CRF receptors may also signal through phospholipase C (PLC). To test this hypothesis, binding and signaling properties were determined for both receptor subtypes stably expressed in human embryonic kidney 293 (HEK293) and human SK-N-MC neuroblastoma cells. CRF receptors were highly expressed and strongly coupled to Gs in HEK293 and SK-N-MC cells. However, when the calcium mobilization pathway was investigated, marked differences were observed. In SK-N-MC cells, neither CRF receptor stimulated calcium mobilization in the fluorometric imaging plate reader (FLIPR) assay, whereas activation of orexin type 1 and 2 receptors stably expressed in SK-N-MC cells revealed robust calcium responses. In contrast, intracellular calcium was strongly mobilized by agonist stimulation of hCRF1 and hCRF2(a) receptors in HEK293 cells. In HEK293 cells, potency rank orders for calcium and cAMP responses were identical for both receptors, despite a rightward shift of the dose-response curves. Complete inhibition of calcium signaling of both hCRF1 and hCRF2(a) receptors was observed in the presence of the PLC inhibitor U-73,122 whereas ryanodine, an inhibitor of calcium release channels and the protein kinase A inhibitor Rp-cAMPS were ineffective. Finally, CRF agonists produced a small but significant stimulation of inositol 1,4,5-triphosphate (IP3) accumulation in hCRF1-and hCRF2(a)-transfected HEK293 cells. These data clearly show that phospholipase C-mediated signaling of CRF receptors is dependent upon the cellular background and that in HEK293 cells human CRF receptors robustly respond in the FLIPR format.
Collapse
Affiliation(s)
- Frank M Dautzenberg
- Johnson and Johnson Research and Development, CNS Research, Turnhoutseweg 30, Beerse, Belgium.
| | | | | | | | | | | |
Collapse
|
29
|
Rasmussen TN, Novak I, Nielsen SM. Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment. ACTA ACUST UNITED AC 2004; 271:4366-74. [PMID: 15560778 DOI: 10.1111/j.1432-1033.2004.04371.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The corticotropin releasing factor receptor 1 (CRFR1) belongs to the superfamily of G-protein coupled receptors. Though CRF is involved in the aetiology of several stress-related disorders, including depression and anxiety, details of CRFR1 regulation such as internalization remain uncharacterized. In the present study, agonist-induced internalization of CRFR1 in HEK293 cells was visualized by confocal microscopy and quantified using the radioligand 125I-labelled sauvagine. Recruitment of beta-arrestin 1 in response to receptor activation was demonstrated by confocal microscopy. The extent of 125I-labelled sauvagine stimulated internalization was significantly impaired by sucrose, indicating the involvement of clathrin-coated pits. No effect on the extent of internalization was observed in the presence of the second messenger dependent kinase inhibitors H-89 and staurosporine, indicating that cAMP-dependent protein kinase and protein kinase C are not prerequisites for CRFR1 internalization. Surprisingly, deletion of all putative phosphorylation sites in the C-terminal tail, as well as a cluster of putative phosphorylation sites in the third intracellular loop, did not affect receptor internalization. However, these mutations almost abolished the recruitment of beta-arrestin 1 following receptor activation. In conclusion, we demonstrate that CRFR1 internalization is independent of phosphorylation sites in the C-terminal tail and third intracellular loop, and the degree of beta-arrestin 1 recruitment.
Collapse
|
30
|
Teli T, Markovic D, Levine MA, Hillhouse EW, Grammatopoulos DK. Regulation of corticotropin-releasing hormone receptor type 1alpha signaling: structural determinants for G protein-coupled receptor kinase-mediated phosphorylation and agonist-mediated desensitization. Mol Endocrinol 2004; 19:474-90. [PMID: 15498832 DOI: 10.1210/me.2004-0275] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Attenuation of CRH receptor type 1 (CRH-R1) signaling activity might involve desensitization and uncoupling of CRH-R1 from intracellular effectors. We investigated the desensitization of native CRH-R in human myometrial cells from pregnant women and recombinant CRH-R1alpha stably overexpressed in human embryonic kidney (HEK) 293 cells. In both cell types, CRH-R1-mediated adenylyl cyclase activation was susceptible to homologous desensitization induced by pretreatment with high concentrations of CRH. Time course studies showed half-maximal desensitization occurring after approximately 40 min of pretreatment and full recovery of CRH-R1alpha functional response within 2 h of removal of CRH pretreatment. In HEK 293 cells, desensitization of CRH-R1alpha was associated with receptor phosphorylation and subsequent endocytosis. To analyze the mechanism leading to CRH-R1alpha desensitization, we overexpressed a truncated beta-arrestin (319-418) and performed coimmunoprecipitation and G protein-coupled receptor kinase (GRK) translocation studies. We found that GRK3 and GRK6 are the main isoforms that interact with CRH-R1alpha, and that recruitment of GRK3 requires Gbetagamma-subunits as well as beta-arrestin. Site-directed mutagenesis of Ser and Thr residues in the CRH-R1alpha C terminus, identified Thr399 as important for GRK-induced receptor phosphorylation and desensitization.We conclude that homologous desensitization of CRH-R1alpha involves the coordinated action of multiple GRK isoforms, Gbeta gamma dimers and beta-arrestin. Based on our identification of key amino acid(s) for GRK-dependent phosphorylation, we demonstrate the importance of the CRH-R1alpha carboxyl tail for regulation of receptor activity.
Collapse
Affiliation(s)
- Thalia Teli
- Sir Quinton Hazell Molecular Medicine Research Centre, Department of Biological Sciences, The University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Wietfeld D, Heinrich N, Furkert J, Fechner K, Beyermann M, Bienert M, Berger H. Regulation of the coupling to different G proteins of rat corticotropin-releasing factor receptor type 1 in human embryonic kidney 293 cells. J Biol Chem 2004; 279:38386-94. [PMID: 15252011 DOI: 10.1074/jbc.m405335200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of G protein activation by the rat corticotropin-releasing factor receptor type 1 (rCRFR1) in human embryonic kidney (HEK)293 (HEK-rCRFR1) cell membranes was studied. Corresponding to a high and low affinity ligand binding site, sauvagine and other peptidic CRFR1 ligands evoked high and low potency responses of G protein activation, differing by 64-fold in their EC(50) values as measured by stimulation of [(35)S]GTPgammaS binding. Contrary to the low potency response, the high potency response was of lower GTPgammaS affinity, pertussis toxin (PTX)-insensitive, and homologously desensitized. Distinct desensitization was also observed in the adenylate cyclase activity, when its high potency stimulation was abolished and the activity became low potently inhibited by sauvagine. From these results and immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(s) and Galpha(i) subunits it is concluded that the high and low potency [(35)S]GTPgammaS binding stimulation reflected coupling to G(s) and G(i) proteins, respectively, only G(s) coupling being homologously desensitized. Immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(q/11) revealed additional coupling to G(q/11), which also was homologously desensitized. Although Galpha(q/11) coupling was PTX-insensitive, half of the sauvagine-stimulated accumulation of inositol phosphates in the cells was PTX-sensitive, suggesting involvement of G(i) in addition to G(q/11)in the stimulation of inositol metabolism. It is concluded that CRFR1 signals through at least two different ways, one leading to G(s)- and G(q/11)-mediated signaling steps and desensitization and another leading to G(i) -mediated signals without being desensitized. Furthermore, the concentrations of the stimulating ligand and GTP and desensitization may be part of a regulatory mechanism determining the actual ratio of the coupling of CRFR1 to different G proteins.
Collapse
Affiliation(s)
- Doreen Wietfeld
- Institute of Molecular Pharmacology, Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Hypothalamic corticotropin releasing hormone (CRH) regulates pituitary ACTH secretion and mediates behavioral and autonomic responses to stress, through interaction with type 1 plasma membrane receptors (CRHR1) located in pituitary corticotrophs and the brain. Although the CHRI are essential for ACTH responses to stress, their number in the pituitary gland does not correlate with corticotroph responsiveness, suggesting that activation of a small number of receptors is sufficient for maximum ACTH production. CRH binding and hybridization studies in adrenalectomized, glucocorticoid-treated or stressed rats revealed divergent changes in CRH receptors and CRH1 mRNA in the pituitary, with a reduction in receptor binding but normal or elevated expression of CHR1 mRNA levels. Western blot analysis of CRHR1 protein in pituitary membranes from adrenalectomized rats showed unchanged receptor mRNA levels and increased CRHR1 protein, despite binding down-regulation, suggesting that decreased binding is due to homologous desensitization, rather than reduced receptor synthesis. In contrast, decreased CRH binding following glucocorticoid administration is associated with a reduction in CRHR1 protein, suggesting inhibition of CRH1 mRNA translation. The regulation of CRHR1 translation may involve binding of cytosolic proteins, and a minicistron in the 5'-UTR of the CRHR1 mRNA. It is likely that post-transcriptional regulatory mechanisms that permit rapid changes in CRH receptor activity are important for adaptation of corticotroph responsiveness to continuous changes in physiological demands.
Collapse
Affiliation(s)
- Greti Aguilera
- Section of Endocrine Physiology, Develomental Endocrinology Branch, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|