1
|
Krogsbaek M, Larsen NY, Yarmahmoudi F, Søndergaard J, Landau AM, Sanchez C, Nyengaard JR. Chronic olanzapine treatment leads to increased opioid receptor expression and changes in feeding regulating neurons in the female rat hypothalamus. Psychoneuroendocrinology 2024; 171:107225. [PMID: 39486358 DOI: 10.1016/j.psyneuen.2024.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Opioid receptor antagonists have shown increasing promise as an adjunct therapy to psychotropic medication. The goal is to reduce the weight gain and metabolic adverse effects that are associated with certain second-generation antipsychotics, such as olanzapine and clozapine. In this study, female rats were treated for 4 weeks with a long-acting injectable formulation of olanzapine to assess effects on hypothalamic feeding regulation. Using quantitative spatial in situ hybridization and receptor autoradiography, expression levels of the mu, kappa and delta opioid receptors were defined in the five hypothalamic areas: paraventricular nucleus (PVN), arcuate nucleus (ARC), ventromedial nucleus (VMN), dorsomedial nucleus (DMN) and lateral hypothalamus (LH). In addition, hypothalamic neuron number and size were estimated using the unbiased optical fractionator and spatial rotator methods. Hyperphagia was observed after only 24 hours of olanzapine treatment, with continued weight gain throughout the duration of the study. In contrast, the observed food intake reversed to control levels after 2 weeks of olanzapine treatment. Chronic olanzapine treatment increased expression of kappa opioid receptor mRNA and receptor availability in the PVN, as well as increased mu opioid receptor availability in the PVN, ARC and VMN. These changes were accompanied by fewer anorexigenic proopiomelanocortin-expressing neurons of the ARC and corticotropin-releasing hormone expressing neurons of the PVN. This study links olanzapine-driven metabolic effects to increased opioid receptor expression in the hypothalamus, thus providing a rationale for the positive effects of using opioid receptor antagonists to relieve olanzapine adverse effects.
Collapse
Affiliation(s)
- Maiken Krogsbaek
- Core Centre for Molecular Morphology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Nick Yao Larsen
- Core Centre for Molecular Morphology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Fatemeh Yarmahmoudi
- Core Centre for Molecular Morphology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jeppe Søndergaard
- Core Centre for Molecular Morphology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Jens Randel Nyengaard
- Core Centre for Molecular Morphology, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Yin J, Wang Y, Han W, Ge W, Yu Q, Jing Y, Yan W, Liu Q, Gong L, Yan S, Wang S, Li X, Li Y, Hu H. Oxytocin Attenuates Sympathetic Innervation with Inhibition of Cardiac Mast Cell Degranulation in Rats after Myocardial Infarction. J Pharmacol Exp Ther 2024; 390:240-249. [PMID: 38902033 DOI: 10.1124/jpet.124.002064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/05/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Sympathetic hyperinnervation is the leading cause of fatal ventricular arrhythmia (VA) after myocardial infarction (MI). Cardiac mast cells cause arrhythmias directly through degranulation. However, the role and mechanism of mast cell degranulation in sympathetic remodeling remain unknown. We investigated the role of oxytocin (OT) in stabilizing cardiac mast cells and improving sympathetic innervation in rats. MI was induced by coronary artery ligation. Western blotting, immunofluorescence, and toluidine staining of mast cells were performed to determine the expression and location of target protein. Mast cells accumulated significantly in peri-infarcted tissues and were present in a degranulated state. They expressed OT receptor (OTR), and OT infusion reduced the number of degranulated cardiac mast cells post-MI. Sympathetic hyperinnervation was attenuated as assessed by immunofluorescence for tyrosine hydroxylase (TH). Seven days post-MI, the arrhythmia score of programmed electrical stimulation was higher in vehicle-treated rats with MI than in rats treated with OT. An in vitro study showed that OT stabilized mast cells via the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Further in vivo studies on OTR-deficient mice showed worsening mast cell degranulation and worsening sympathetic innervation. OT pretreatment inhibited cardiac mast cell degranulation post-MI and prevented sympathetic hyperinnervation, along with mast cell stabilization via the PI3K/Akt pathway. SIGNIFICANCE STATEMENT: This is the first study to elucidate the role and mechanism of oxytocin (OT) in inflammatory-sympathetic communication mediated sympathetic hyperinnervation after myocardial infarction (MI), providing new approaches to prevent fatal arrhythmias.
Collapse
Affiliation(s)
- Jie Yin
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Ye Wang
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Weizhong Han
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Weili Ge
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Qingxia Yu
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Yanyan Jing
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Wenju Yan
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Qian Liu
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Liping Gong
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Suhua Yan
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Shuanglian Wang
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Xiaolu Li
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Yan Li
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| | - Hesheng Hu
- Department of Cardiology (J.Y., Y.W., S.Y., H.H.), Department of Emergency Medicine (X.L.), and Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine (Y.L.), The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; Department of Cardiology, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China (J.Y., W.H.); Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical University, Zhejiang, China (W.G.); School of Medicine, Shandong University, Jinan, China (Q.Y., Y.J., W.Y., Q.L.); Department of Infectious Disease and Hepatology, the Second Hospital of Shandong University, Shandong University, Jinan, China (L.G.); and Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China (S.W.)
| |
Collapse
|
3
|
Goel N, Philippe TJ, Chang J, Koblanski ME, Viau V. Cellular and serotonergic correlates of habituated neuroendocrine responses in male and female rats. Psychoneuroendocrinology 2022; 136:105599. [PMID: 34891046 DOI: 10.1016/j.psyneuen.2021.105599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Male and females appear equally capable of showing habituated hypothalamic-pituitary-adrenal (HPA) axis output responses to repeated exposures of the same challenge. Whether this reflects, within males and females, common mechanisms of decreased neuronal activity within stress responding, afferents to the paraventricular hypothalamic nucleus (PVH), the final common pathway to the HPA axis, has not been examined. Here we compared in adult male and female rats the extent to which declines in HPA axis responses to repeated restraint are met by habituated cellular (Fos) responses, in addition to changes in serotonin (5-hydroxytryptamine; 5-HT) expression and signaling, which normally stimulates the HPA axis. Thus, alterations in this component of HPA axis drive could provide an underlying basis for sex differences in adaptive responses. Males and females showed reliable declines in ACTH and corticosterone responses after 10 daily episodes of repeated restraint, recapitulated, in largest part, by similar regional patterns of Fos habituation, including within the PVH, several stress sensitive cell groups of the limbic forebrain, as well as within the raphe nucleus. Serotonin staining in the dorsal raphe and terminal profiles in the forebrain continued to reflect a higher pre-synaptic capacity for the 5-HT system in females. The sexual dimorphism encountered within the lateral septum and medial preoptic area of control animals was less distinguished in the repeat condition, however, whereas 5-HT varicosities in the PVH increased after repeated restraint only in females. Relative to their singly restrained counterparts, males displayed an increase in 5-HT 1 A receptor expression in the raphe nucleus after repeated restraint, whereas females showed a decrease in 5-HT 1 A mRNA levels in the hippocampus and in the zona incerta, representing the most proximal of cell groups expressing the 5-HT 1 A receptor in the vicinity of the PVH. In conclusion, similar regional profiles of cellular habituation in males and females suggest common CNS substrates of neuroendocrine adaptation. However, this process may be met by underlying sex differences in serotonergic control, given the respective roles for pre- and postsynaptic 5-HT 1 A receptors in mediating serotonin availability and signal transfer.
Collapse
Affiliation(s)
- Nirupa Goel
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Judy Chang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maya E Koblanski
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
4
|
Sheng JA, Tan SML, Hale TM, Handa RJ. Androgens and Their Role in Regulating Sex Differences in the Hypothalamic/Pituitary/Adrenal Axis Stress Response and Stress-Related Behaviors. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2022; 2:261-274. [PMID: 35024695 PMCID: PMC8744007 DOI: 10.1089/andro.2021.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Androgens play a pivotal role during development. These gonadal hormones and their receptors exert organizational actions that shape brain morphology in regions controlling the stress regulatory systems in a male-specific manner. Specifically, androgens drive sex differences in the hypothalamic/pituitary/adrenal (HPA) axis and corresponding hypothalamic neuropeptides. While studies have examined the role of estradiol and its receptors in sex differences in the HPA axis and associated behaviors, the role of androgens remains far less studied. Androgens are generally thought to modulate the HPA axis through the activation of androgen receptors (ARs). They can also impact the HPA axis through reduction to estrogenic metabolites that can bind estrogen receptors in the brain and periphery. Such regulation of the HPA axis stress response by androgens can often result in sex-biased risk factors for stress-related disorders, such as anxiety and depression. This review focuses on the biosynthesis pathways and molecular actions of androgens and their nuclear receptors. The impact of androgens on hypothalamic neuropeptide systems (corticotropin-releasing hormone, arginine vasopressin, oxytocin, dopamine, and serotonin) that control the stress response and stress-related disorders is discussed. Finally, this review discusses potential therapeutics involving androgens (androgen replacement therapies, selective AR modulator therapies) and ongoing clinical trials.
Collapse
Affiliation(s)
- Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taben M Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Kermanian F, Seghatoleslam M, Mahakizadeh S. MDMA related neuro-inflammation and adenosine receptors. Neurochem Int 2022; 153:105275. [PMID: 34990730 DOI: 10.1016/j.neuint.2021.105275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a world-wide abused psychostimulant, which has the neurotoxic effects on dopaminergic and serotonergic neurons in both rodents and non-human primates. Adenosine acts as a neurotransmitter in the brain through the activation of four specific G-protein-coupled receptors and it acts as a neuromodulator of dopamine neurotransmission. Recent studies suggest that stimulation of adenosine receptors oppose many behavioral effects of methamphetamines. This review summarizes the specific cellular mechanisms involved in MDMA neuroinflammatory effects, along with the protective effects of adenosine receptors.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Seghatoleslam
- Evaluative Clinical Sciences, Sunnybrook Research Institute, University of Toronto, ON, Canada
| | - Simin Mahakizadeh
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
6
|
Dionysopoulou S, Charmandari E, Bargiota A, Vlahos NF, Mastorakos G, Valsamakis G. The Role of Hypothalamic Inflammation in Diet-Induced Obesity and Its Association with Cognitive and Mood Disorders. Nutrients 2021; 13:498. [PMID: 33546219 PMCID: PMC7913301 DOI: 10.3390/nu13020498] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is often associated with cognitive and mood disorders. Recent evidence suggests that obesity may cause hypothalamic inflammation. Our aim was to investigate the hypothesis that there is a causal link between obesity-induced hypothalamic inflammation and cognitive and mood disorders. Inflammation may influence hypothalamic inter-connections with regions important for cognition and mood, while it may cause dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis and influence monoaminergic systems. Exercise, healthy diet, and glucagon-like peptide receptor agonists, which can reduce hypothalamic inflammation in obese models, could improve the deleterious effects on cognition and mood.
Collapse
Affiliation(s)
- Sofia Dionysopoulou
- Division of Endocrinology, Metabolism and Diabetes, Hippocratio General Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
| | - Nikolaos F Vlahos
- 2nd Department of Obstetrics and Gynecology, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George Mastorakos
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Georgios Valsamakis
- Department of Endocrinology and Metabolic Diseases, University Hospital of Larisa, Medical School of Larisa, University of Thessaly, 41334 Larisa, Greece;
- Endocrine Unit, Areteion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
7
|
Arakawa H. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100011. [PMID: 36246512 PMCID: PMC9559098 DOI: 10.1016/j.crneur.2021.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
|
8
|
Lawrence RH, Palumbo MC, Freeman SM, Guoynes CD, Bales KL. Developmental Fluoxetine Exposure Alters Behavior and Neuropeptide Receptors in the Prairie Vole. Front Behav Neurosci 2020; 14:584731. [PMID: 33304247 PMCID: PMC7701284 DOI: 10.3389/fnbeh.2020.584731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022] Open
Abstract
Developmental exposure to selective serotonin reuptake inhibitor (SSRI) increases the risk of Autism Spectrum Disorder (ASD), however, the underlying neurobiology of this effect is not fully understood. Here we used the socially monogamous prairie vole as a translational model of developmental SSRI exposure. Paired female prairie voles (n = 20) were treated with 5 mg/kg subcutaneous fluoxetine (FLX) or saline (SAL) daily from birth of the second litter until the day of birth of the 4th litter. This design created three cohorts of FLX exposure: postnatal exposure in litter 2, both prenatal and postnatal exposure in litter 3, and prenatal exposure in litter 4. Post-weaning, subjects underwent behavioral testing to detect changes in sociality, repetitive behavior, pair-bond formation, and anxiety-like behavior. Quantitative receptor autoradiography was performed for oxytocin, vasopressin 1a, and serotonin 1a receptor density in a subset of brains. We observed increased anxiety-like behavior and reduced sociality in developmentally FLX exposed adults. FLX exposure decreased oxytocin receptor binding in the nucleus accumbens core and central amygdala, and vasopressin 1a receptor binding in the medial amygdala. FLX exposure did not affect serotonin 1A receptor binding in any areas examined. Changes to oxytocin and vasopressin receptors may underlie the behavioral changes observed and have translational implications for the mechanism of the increased risk of ASD subsequent to prenatal SSRI exposure.
Collapse
Affiliation(s)
- Rebecca H Lawrence
- Department of Psychology, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Michelle C Palumbo
- California National Primate Research Center, University of California, Davis, Davis, CA, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sara M Freeman
- Department of Psychology, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States.,Department of Biology, Utah State University, Logan, UT, United States
| | - Caleigh D Guoynes
- Department of Psychology, University of California, Davis, Davis, CA, United States.,Department of Psychology, University of Wisconsin, Madison, WI, United States
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Arakawa H. Somatosensorimotor and Odor Modification, Along with Serotonergic Processes Underlying the Social Deficits in BTBR T+ Itpr3 tf/J and BALB/cJ Mouse Models of Autism. Neuroscience 2020; 445:144-162. [PMID: 32061779 PMCID: PMC8078887 DOI: 10.1016/j.neuroscience.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Abstract
Autism is a complex spectrum of disorders characterized by core behavioral deficits in social communicative behavior, which are also required for comprehensive analysis of preclinical mouse models. As animal models of the core behavioral deficits in autism, two inbred mouse strains, BTBR T+ Itpr3tf/J (BTBR) and BALB/cJ (BALB), were compared with the standard social strain, C57BL/6J (B6), regarding a variety of behavioral factors underlying social communicative interactions, including olfactory and tactile sensory processes, social recognition abilities and behavioral expression strategies. Although both female BTBR and BALB mice can express social recognition and approach behavior depending on the stimuli they encounter, the available sensory modalities, along with modulation of the serotonergic system, differ between the two strains. BALB mice have deficits in using volatile olfactory cues and tactile information in a social context; they fail to exhibit a social approach to volatile cues and seek nonvolatile cues by exhibiting substantial sniff/contact behavior when allowed direct contact with social opponents. Systemic injection of the serotonin (5-HT1A) agonist buspirone has little effect on these social deficits, suggesting a congenitally degraded serotonergic system in BALB mice. In contrast, BTBR mice exhibit impaired body coordination and social motivation-modified olfactory signals, which are relevant to a reduced social approach. A systemic injection of the 5-HT1A agonist restored these social deficits in BTBR mice, indicating that a downregulated serotonergic system is involved in the social deficits exhibited by BTBR mice.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Rodent Behavioral Core Department of Research Administration, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Lewis MW, Jones RT, Davis MT. Exploring the impact of trauma type and extent of exposure on posttraumatic alterations in 5-HT1A expression. Transl Psychiatry 2020; 10:237. [PMID: 32678079 PMCID: PMC7366706 DOI: 10.1038/s41398-020-00915-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The long-term behavioral, psychological, and neurobiological effects of exposure to potentially traumatic events vary within the human population. Studies conducted on trauma-exposed human subjects suggest that differences in trauma type and extent of exposure combine to affect development, maintenance, and treatment of a variety of psychiatric syndromes. The serotonin 1-A receptor (5-HT1A) is an inhibitory G protein-coupled serotonin receptor encoded by the HTR1A gene that plays a role in regulating serotonin release, physiological stress responding, and emotional behavior. Studies from the preclinical and human literature suggest that dysfunctional expression of 5-HT1A is associated with a multitude of psychiatric symptoms commonly seen in trauma-exposed individuals. Here, we synthesize the literature, including numerous preclinical studies, examining differences in alterations in 5-HT1A expression following trauma exposure. Collectively, these findings suggest that the impact of trauma exposure on 5-HT1A expression is dependent, in part, on trauma type and extent of exposure. Furthermore, preclinical and human studies suggest that this observation likely applies to additional molecular targets and may help explain variation in trauma-induced changes in behavior and treatment responsivity. In order to understand the neurobiological impact of trauma, including the impact on 5-HT1A expression, it is crucial to consider both trauma type and extent of exposure.
Collapse
|
11
|
Tan O, Martin LJ, Bowen MT. Divergent pathways mediate 5-HT 1A receptor agonist effects on close social interaction, grooming and aggressive behaviour in mice: Exploring the involvement of the oxytocin and vasopressin systems. J Psychopharmacol 2020; 34:795-805. [PMID: 32312154 DOI: 10.1177/0269881120913150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND 5-HT1A receptor (5-HT1AR) abnormalities are implicated in aggression, and there has been considerable interest in developing 5-HT1AR agonists for treating aggression. Endogenous oxytocin (OXT) released upon stimulation of 5-HT1ARs in the hypothalamus mediates at least some of the effects of 5-HT1AR agonists on social behaviour. AIMS Given 5-HT1AR, OXT receptor (OXTR) and vasopressin V1a receptor (V1aR) agonists can all reduce aggression, the current study aimed to determine whether the anti-aggressive effects of 5-HT1AR stimulation can also be explained by downstream actions at OXTRs and/or V1aRs in a mouse model of non-territorial, hyper-aggressive behaviour. METHODS Male Swiss mice (N=80) were socially isolated or group housed for six weeks prior to the start of testing. Testing involved placing two unfamiliar weight- and condition-matched mice together in a neutral context for 10 minutes. RESULTS Social isolation led to a pronounced increase in aggressive behaviour, which was dose-dependently inhibited by the 5-HT1AR agonist 8-OH-DPAT (0.1, 0.3 and 1 mg/kg intraperitoneally (i.p.)), with accompanying increases in close social contact (huddling) and grooming. The effects of 8-OH-DPAT on aggression, huddling and grooming were blocked by pretreatment with a selective 5-HT1AR antagonist (WAY-100635; 0.1 mg/kg i.p.). The anti-aggressive effects of 8-OH-DPAT were unaffected by an OXTR antagonist (L-368,899; 10 mg/kg i.p.), whereas the effects on huddling and grooming were inhibited. Pretreatment with a V1aR antagonist (SR49059; 20 mg/kg i.p.) had no effect. CONCLUSIONS Our study suggests that stimulation of endogenous oxytocin is involved in the effects of 5-HT1AR activation on close social contact and grooming but not aggression.
Collapse
Affiliation(s)
- Oliver Tan
- The University of Sydney, Brain and Mind Centre, Sydney, Australia.,The University of Sydney, Faculty of Science, School of Psychology, Sydney, Australia
| | - Lewis J Martin
- The University of Sydney, Brain and Mind Centre, Sydney, Australia.,The University of Sydney, Faculty of Science, School of Psychology, Sydney, Australia
| | - Michael T Bowen
- The University of Sydney, Brain and Mind Centre, Sydney, Australia.,The University of Sydney, Faculty of Science, School of Psychology, Sydney, Australia
| |
Collapse
|
12
|
Lagunes-Merino O, Rodríguez-Landa JF, Caba M, Carro-Juárez M, García-Orduña F, Saavedra-Vélez M, Puga-Olguín A, de Jesús Rovirosa-Hernández M. Acute effect of an infusion of Montanoa tomentosa on despair-like behavior and activation of oxytocin hypothalamic cells in Wistar rats. J Tradit Complement Med 2020; 10:45-51. [PMID: 31956557 PMCID: PMC6957806 DOI: 10.1016/j.jtcme.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/28/2018] [Accepted: 01/29/2019] [Indexed: 11/30/2022] Open
Abstract
Background and aim In Mexican traditional medicine, Montanoa tomentosa (Mt) has been used as a remedy for reproductive impairments and mood swings. In pre-clinical research, both the extract and some of its active metabolites have produced oxytocinergic-like effects on female reproductive organs; however, there are no detailed studies of its effects on mood swing and brain structures. The aim of this study, was to analyze the behavioral effects of acute administration of a Mt infusion on male rats, during the Open Field (OFT) and Forced Swim (FST) Tests, and their association with the activation of oxytocin (OXT) cells, indicated by Fos protein (Fos/OXT) in the paraventricular (PVN) and supraoptic nuclei (SON). Experimental procedure 52 adult male Wistar rats were assigned to two conditions; with FST (n = 8), or without (n = 5). Each integrated condition included four groups [Control, Vehicle, Fluoxetine (Flx; 10 mg/kg), and Mt (50 mg/kg), p.o.]. Results and conclusion Mt and Flx treatment produced an anti-despair-like effect on the FST, but no significant changes in locomotor activity. Also, the Mt infusion -but not Flx-significantly increased the number of Fos/OXT cells in the PVN and SON, regardless of the condition, compared to the control and vehicle groups. These results show that Mt, but not Flx, produces an anti-despair-like effect that could be associated with the activation of OXT cells in PVN and SON. This study thus contributes to our knowledge of the pharmacological activity of Mt infusions, which could be a natural antidepressant agent with future clinical relevance.
Collapse
Affiliation(s)
- Omar Lagunes-Merino
- Doctorado en Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, 91190, Mexico
| | | | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, 91190, Mexico
| | - Miguel Carro-Juárez
- Escuela de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, Tlaxcala, 90000, Mexico
| | | | | | - Abraham Puga-Olguín
- Doctorado en Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, 91190, Mexico
| | | |
Collapse
|
13
|
Swaab DF, Bao AM. Sex differences in stress-related disorders: Major depressive disorder, bipolar disorder, and posttraumatic stress disorder. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:335-358. [PMID: 33008536 DOI: 10.1016/b978-0-444-64123-6.00023-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress-related disorders, such as mood disorders and posttraumatic stress disorder (PTSD), are more common in women than in men. This sex difference is at least partly due to the organizing effect of sex steroids during intrauterine development, while activating or inhibiting effects of circulating sex hormones in the postnatal period and adulthood also play a role. Such effects result in structural and functional changes in neuronal networks, neurotransmitters, and neuropeptides, which make the arousal- and stress-related brain systems more vulnerable to environmental stressful events in women. Certain brainstem nuclei, the amygdala, habenula, prefrontal cortex, and hypothalamus are important hubs in the stress-related neuronal network. Various hypothalamic nuclei play a central role in this sexually dimorphic network. This concerns not only the hypothalamus-pituitary-adrenal axis (HPA-axis), which integrates the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of mood disorders, such as disordered day-night rhythm, lack of reward feelings, disturbed eating and sex, and disturbed cognitive functions. The present chapter focuses on the structural and functional sex differences that are present in the stress-related brain systems in mood disorders and PTSD, placing the HPA-axis in the center. The individual differences in the vulnerability of the discussed systems, caused by genetic and epigenetic developmental factors warrant further research to develop tailor-made therapeutic strategies.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Key Laboratory of Mental Disorder Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Bao AM, Swaab DF. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep 2018; 6:45-53. [PMID: 31211281 PMCID: PMC6562194 DOI: 10.1016/j.ibror.2018.11.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
There are no specific structural neuropathological hallmarks found in the brain of mood disorders. Instead, there are molecular, functional and structural alterations reported in many brain areas. The neurodevelopmental underpinning indicated the presence of various genetic and developmental risk factors. The effect of genetic polymorphisms and developmental sequalae, some of which may start in the womb, result in functional changes in a network mediated by neurotransmitters and neuropeptides, which make the emotion- and stress-related brain systems more vulnerable to stressful events. This network of stress-related neurocircuits consists of, for instance, brainstem nuclei, the amygdala, habenula, prefrontal cortex and hypothalamus. Various nuclei of the hypothalamus form indeed one of the crucial hubs in this network. This structure concerns not only the hypothalamo-pituitary-adrenal (HPA) axis that integrate the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of depression, such as disordered day-night rhythm, lack of reward feelings, disturbed eating, sex, and disturbed cognitive functions. The present review will focus on the changes in the human hypothalamus in depression, with the HPA axis in the center. We will discuss the inordinate network of neurotransmitters and neuropeptides involved, with the hope to find the most vulnerable neurobiological systems and the possible development of tailor-made treatments for mood disorders in the future.
Collapse
Affiliation(s)
- Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dick F Swaab
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Witczak LR, Ferrer E, Bales KL. Effects of aggressive temperament on endogenous oxytocin levels in adult titi monkeys. Am J Primatol 2018; 80:e22907. [PMID: 30106168 PMCID: PMC6719780 DOI: 10.1002/ajp.22907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022]
Abstract
Coordination of oxytocin (OT) activity and partner interactions is important for the facilitation and maintenance of monogamous pair bonds. We used coppery titi monkeys (Callicebus cupreus) to identify the effects of male aggressive temperament on OT activity, affiliative partner-directed behaviors, aggressive partner-directed behaviors, anxiety-related behaviors, and hormone-behavior interactions. We used a mirror technique, simulating an intruder in the home territory of pairs to elicit behavioral responses, and quantified behaviors using an established ethogram. Plasma concentrations of OT (pg/ml) were quantified using enzyme immunoassay. We used general linear mixed models to predict 1) percent change in OT as a function of aggression score, and 2) percent change in behaviors as a function of aggression, OT, and OT by aggression interactions. High-aggressive males exhibited a significant drop in OT concentration relative to control when exposed to the front of the mirror (β = -0.22, SE = 0.10, t = -2.20, p = 0.04). High-aggressive males spent significantly less time in contact with their mates (β = -1.35, SE = 0.60, t = -2.26, p = 0.04) and lip-smacked less (β = -1.02, SE = 0.44, t = -2.32, p = 0.03) relative to control. We also saw a trend toward an interaction effect between OT and proximity such that High-aggressive males displaying a drop in OT exhibited a smaller percent increase in social proximity (β = 6.80, SE = 3.48, t = 1.96, p = 0.07). Males exhibiting a decrease in OT also trended toward back-arching and tail-lashing less in response to the mirror (β = 4.53, SE = 2.5, t = 1.82, p = 0.09). To our knowledge, this is the first empirical study to examine interactions between OT and temperament in adult monogamous primates. Future studies should incorporate measures of pair-mate interactions and early-life experience to further understand variation in responses to social stressors and their effects on pair bonding.
Collapse
Affiliation(s)
- Lynea R Witczak
- Department of Psychology, University of California, Davis, California
- California National Primate Research Center, Davis, California
| | - Emilio Ferrer
- Department of Psychology, University of California, Davis, California
| | - Karen L Bales
- Department of Psychology, University of California, Davis, California
- California National Primate Research Center, Davis, California
| |
Collapse
|
16
|
Petrunich-Rutherford ML, Garcia F, Battaglia G. 5-HT 1A receptor-mediated activation of neuroendocrine responses and multiple protein kinase pathways in the peripubertal rat hypothalamus. Neuropharmacology 2018; 139:173-181. [PMID: 30005975 DOI: 10.1016/j.neuropharm.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 01/08/2023]
Abstract
Increasing evidence suggests that multiple factors can produce effects on the immature brain that are distinct and more long-lasting than those produced in adults. The hypothalamic paraventricular nucleus (PVN) is a region integral to the hypothalamic-pituitary-adrenal axis and is affected by anxiety, depression, and drugs used to treat these disorders, yet receptor signaling mechanisms operative in hypothalamus prior to maturation remain to be elucidated. In peripubertal male rats, systemic injection of the selective serotonin 1A (5-HT1A) receptor agonist (+)8-OH-DPAT (0.2 mg/kg) markedly elevated plasma levels of oxytocin and adrenocorticotropic hormone (ACTH) at 5 and 15 min post-injection. The 5-HT1A receptor selectivity was demonstrated by the ability of the 5-HT1A receptor selective antagonist WAY100635 to completely block both oxytocin and ACTH responses at 5 min, with some recovery of the ACTH response at 15 min. At 15 min post-injection, (+)8-OH-DPAT also increased levels of phosphorylated extracellular signal-regulated kinase (pERK) and phosphorylated protein kinase B (pAkt) in the PVN. As previously observed in adults, (+)8-OH-DPAT reduced levels of pERK in hippocampus. WAY100635 also completely blocked (+)8-OH-DPAT-mediated elevations in hypothalamic pERK and pAkt and the reductions in hippocampal pERK, demonstrating 5-HT1A receptor selectivity of both kinase responses. This study provides the first demonstration of functional 5-HT1A receptor-mediated ERK and Akt signaling pathways in the immature hypothalamus, activated by a dose of (+)8-OH-DPAT that concomitantly stimulates neuroendocrine responses. This information is fundamental to identifying potential signaling pathways targeted by biased agonists in the development of safe and effective treatment strategies in children and adolescents.
Collapse
Affiliation(s)
| | - Francisca Garcia
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, United States
| | - George Battaglia
- Neuroscience Institute, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, United States; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, United States.
| |
Collapse
|
17
|
Mennigen JA, Volkoff H, Chang JP, Trudeau VL. The nonapeptide isotocin in goldfish: Evidence for serotonergic regulation and functional roles in the control of food intake and pituitary hormone release. Gen Comp Endocrinol 2017; 254:38-49. [PMID: 28927876 DOI: 10.1016/j.ygcen.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
Nonapeptides are a highly conserved family of peptides synthesized in the neuroendocrine brain and acting on central and peripheral receptors to regulate physiological functions in vertebrates. While the evolution of the two gene families of oxytocin-like and vasopressin-like nonapeptides and their receptors, as well as the neuroanatomy of their independent neuronal circuits have been well-characterized across vertebrate species, comparative studies on the physiological roles across vertebrates are lagging behind. In the current study, we focused on the comparative neuroendocrine functions and regulation of isotocin, the teleost homologue of mammalian oxytocin. Specifically, we address the hypothesis that isotocin exerts opposing effects on food intake and reproduction, which are well-established effects of its homologue oxytocin in mammalian species. Using goldfish, a well-characterized model of neuroendocrine regulation of both food intake and reproduction, we here showed that isotocin acts as an anorexigenic factor while exerting stimulatory effects on pituitary luteinizing hormone and growth hormone release. Given the dual inhibitory and stimulatory roles of serotonin on food intake and pituitary release of reproductive hormone in goldfish, we also investigated the potential crosstalk between both systems using immunohistochemistry and pharmacological approaches. Results provide neuroanatomical and pharmacological evidence for serotonergic regulation of magnocellular isotocinergic neurons in the preoptic area and pituitary. Together, these findings firstly provide the basis to investigate neuroendocrine cross-talk between serotonergic and nonapeptidergic systems in the regulation of both food intake and reproduction in goldfish, and secondly point to a conserved function of oxytocin-like peptides in the differential neuroendocrine control of both physiological processes in vertebrates.
Collapse
Affiliation(s)
- Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada; Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada
| | - John P Chang
- CW405 Biological Sciences Building, Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
18
|
Semionatto IF, Raminelli AO, Alves AC, Capitelli CS, Chriguer RS. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats. Arq Bras Cardiol 2017; 108:154-160. [PMID: 28099586 PMCID: PMC5344661 DOI: 10.5935/abc.20160205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/28/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND: Isotonic blood volume expansion (BVE) induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. OBJECTIVE: To evaluate the effect of saline or serotonergic agonist (DOI) administration in the hypothalamic paraventricular nucleus (PVN) on cardiovascular responses after BVE. METHODS: We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP), systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and the sympathetic-vagal ratio (LF/HF) of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. RESULTS: No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17); SBP (147.23±14.31 vs 129.39±10.70); DBP (98.01 ±4.91 vs 87.31±8.61); HR (421.02±43.32 vs 356.35±41.99); and LF/HF ratio (2.32±0.80 vs 0.27±0.32). DISCUSSION: The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. CONCLUSION: These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats. FUNDAMENTO: Expansão de volume extracelular (EVEC) promove alterações da atividade simpática e parassimpática no coração e vasos sanguíneos, os quais podem ser moduladas por vias serotoninérgicas. OBJETIVO: Avaliar o efeito da administração de salina ou agonista serotoninérgico (DOI) nos núcleos paraventriculares hipotalâmico (NPV) sobre respostas cardiovasculares após EVEC. MÉTODOS: Foram obtidos registros da pressão arterial pulsátil, por meio da artéria femoral, para obtenção dos valores da pressão arterial média (PAM), sistólica (PAS), diastólica (PAD), frequência cardíaca (FC) e razão simpático-vagal (LF/HF) de ratos Wistar antes e após receberem microinjeções bilaterais no NPV de salina ou DOI seguida de EVEC. RESULTADOS: Não foram observadas diferenças significativas dos valores das variáveis estudadas nos diferentes tratamentos do grupo controle. Entretanto, quando os animais são tratados com DOI seguida de EVEC ocorre aumento significativo em relação ao grupo controle com EVEC em todas as variáveis estudadas: PAM (114,42±7,85 vs 101,34±9,17), PAS (147,23±14,31 vs 129,39±10,70), PAD (98,01 ±4,91 vs 87,31±8,61), FC (421,02±43,32 vs 356,35±41,99) e LF/HF (2,32±0,80 vs 0,27±0,32). DISCUSSÃO: O presente estudo mostrou que a indução de EVEC isotônica não promoveu alterações na PAM, PAD, PAS, FC e LF/HF. Por outro lado, os animais que receberam microinjeção de DOI no NPV seguida de EVEC apresentaram aumento significativo de todas as variáveis. CONCLUSÃO: Esses resultados sugerem que a serotonina exerce uma neuromodulação em nivel do NPV, e essa promove uma inibição da resposta barorreflexa frente à EVEC. Assim, o presente trabalho sugere o envolvimento serotoninérgico na neuromodulação no nivel do NPV na resposta reflexa vagal em ratos normotensos.
Collapse
|
19
|
Larke RH, Maninger N, Ragen BJ, Mendoza SP, Bales KL. Serotonin 1A agonism decreases affiliative behavior in pair-bonded titi monkeys. Horm Behav 2016; 86:71-77. [PMID: 27712925 PMCID: PMC5159202 DOI: 10.1016/j.yhbeh.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/20/2016] [Accepted: 10/02/2016] [Indexed: 01/08/2023]
Abstract
Relatively little is known about serotonergic involvement in pair-bonding despite its putative role in regulating social behavior. Here we sought to determine if pharmacological elevation of serotonin 1A (5-HT1A) receptor activity would lead to changes in social behavior in pair-bonded male titi monkeys (Callicebus cupreus). Adult males in established heterosexual pairs were injected daily with the selective 5-HT1A agonist 8-OH-DPAT or saline for 15days using a within-subjects design. Social behavior with the female pair-mate was quantified, and plasma concentrations of oxytocin, vasopressin, and cortisol were measured. When treated with saline, subjects showed reduced plasma oxytocin concentrations, while 8-OH-DPAT treatment buffered this decrease. Treatment with 8-OH-DPAT also led to decreased plasma cortisol 15minutes post-injection and decreased social behavior directed toward the pair-mate including approaching, initiating contact, lipsmacking, and grooming. The reduction in affiliative behavior seen with increased activity at 5-HT1A receptors indicates a substantial role of serotonin activity in the expression of social behavior. In addition, results indicate that the effects of 5-HT1A agonism on social behavior in adulthood differ between rodents and primates.
Collapse
Affiliation(s)
- Rebecca H Larke
- University of California, Davis, Department of Psychology, Davis, CA, USA; California National Primate Research Center, University of California, Davis, Davis, CA, USA.
| | - Nicole Maninger
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Benjamin J Ragen
- University of California, Davis, Department of Psychology, Davis, CA, USA; California National Primate Research Center, University of California, Davis, Davis, CA, USA; New York University, Department of Anthropology, New York, NY, USA
| | - Sally P Mendoza
- University of California, Davis, Department of Psychology, Davis, CA, USA; California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Karen L Bales
- University of California, Davis, Department of Psychology, Davis, CA, USA; California National Primate Research Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
20
|
Oosterhof CA, El Mansari M, Merali Z, Blier P. Altered monoamine system activities after prenatal and adult stress: A role for stress resilience? Brain Res 2016; 1642:409-418. [PMID: 27086968 DOI: 10.1016/j.brainres.2016.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Prenatal stress (PNS) and stress in adulthood are risk factors for development of major depressive disorder. The present study aimed to 1) confirm previous neuroendocrine and behavioral changes induced by PNS, and 2) to characterize the effect of early- and late life stress on the in vivo activity of monoamine systems. METHODS Gestational dams were restrained thrice daily under bright illumination from gestational day (GD)11-20. Behavior and neuroendocrine responses to the forced swim test (FST) were determined in adult (50-80 days) offspring, and electrophysiological single unit recordings of dorsal raphe nucleus serotonin (5-HT), ventral tegmental area dopamine (DA) and locus coeruleus norepinephrine (NE) neurons were obtained at baseline and 24h after the FST. RESULTS Gestational dams did not habituate to chronic restraint stress, and PNS reduced the birth weight of offspring. In adulthood, swim stress elevated CORT levels longer in PNS animals, while it had no effect on swim behaviors. Baseline firing activity of 5-HT neurons was decreased in PNS animals, while the firing activity of NE and DA neurons was increased. Swim stress had no effect on the firing on 5-HT neurons, but normalized the firing activity of catecholamine neurons in PNS animals. CONCLUSION The present data confirm previously established effects on neuroendocrine and physiological measures, and demonstrate an altering effect of PNS and stress on monoamine system activities in adulthood. Since PNS did not result in a depressive-like phenotype, these central changes following PNS might play reflect adaptive changes contributing to stress resilience in adulthood.
Collapse
Affiliation(s)
- Chris A Oosterhof
- University of Ottawa, Institute of Mental Health Research, Ontario, Canada; Department of Cellular and Molecular medicine, University of Ottawa, Ontario, Canada.
| | - Mostafa El Mansari
- University of Ottawa, Institute of Mental Health Research, Ontario, Canada
| | - Zul Merali
- University of Ottawa, Institute of Mental Health Research, Ontario, Canada; Department of Cellular and Molecular medicine, University of Ottawa, Ontario, Canada
| | - Pierre Blier
- University of Ottawa, Institute of Mental Health Research, Ontario, Canada; Department of Cellular and Molecular medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Krishnamoorthy T, Knighton J, Merton L. The role of electroencephalography in the diagnosis of serotonin syndrome. J Intensive Care Soc 2016; 17:258-261. [PMID: 28979500 DOI: 10.1177/1751143715626732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Serotonin syndrome is a potentially life-threatening side-effect of agents that enhance synaptic serotonin levels. With the increasing use of serotoninergic agents greater awareness of serotonin syndrome is necessary, including the potential for drug interactions with serotoninergic agents to produce serotonin syndrome. Clinical presentation ranges from mild reactions to a severe toxic state involving generalized tonic-clonic seizures, fevers exceeding 40℃ or coma. This case highlights the necessity of considering serotonin syndrome alongside other differential diagnoses: neuroleptic malignant syndrome, infectious cause, atypical seizures and delirium tremens, in the setting of altered mental state with abnormal neurology. It highlights the potential diagnostic use of electroencephalography in supporting a diagnosis of serotonin syndrome.
Collapse
|
22
|
Zaretsky DV, Zaretskaia MV, DiMicco JA, Rusyniak DE. Yohimbine is a 5-HT1A agonist in rats in doses exceeding 1 mg/kg. Neurosci Lett 2015; 606:215-9. [PMID: 26366943 DOI: 10.1016/j.neulet.2015.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/30/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
Yohimbine is a prototypical alpha2-adrenergic receptor antagonist. Due to its relatively high selectivity, yohimbine is often used in experiments whose purpose is to examine the role of these receptors. For example, yohimbine has been employed at doses of 1-5 mg/kg to reinstate drug-seeking behavior after extinction or to antagonize general anesthesia, an effects presumably being a consequence of blocking alpha2-adrenergic receptors. In this report we characterized dose-dependent autonomic and behavioral effects of yohimbine and its interaction with an antagonist of 5-HT1A receptors, WAY 100,635. In low doses (0.5-2 mg/kg i.p.) yohimbine induced locomotor activation which was accompanied by a tachycardia and mild hypertension. Increasing the dose to 3-4.5 mg/kg reversed the hypertension and locomotor activation and induced profound hypothermia. The hypothermia as well as the suppression of the locomotion and the hypertension could be reversed by the blockade of 5-HT1A receptors with WAY 100635. Our data confirm that yohimbine possesses 5-HT1A properties, and demonstrated that in doses above 1mg/kg significantly activate these receptors.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA.
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Joseph A DiMicco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
de Jong TR, Neumann ID. Moderate Role of Oxytocin in the Pro-Ejaculatory Effect of the 5-HT1A Receptor Agonist 8-OH-DPAT. J Sex Med 2015; 12:17-28. [DOI: 10.1111/jsm.12742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Snoeren EM, Veening JG, Olivier B, Oosting RS. Serotonin 1A receptors and sexual behavior in male rats: A review. Pharmacol Biochem Behav 2014; 121:102-14. [DOI: 10.1016/j.pbb.2013.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/08/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
|
25
|
Buchborn T, Schröder H, Höllt V, Grecksch G. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling. J Psychopharmacol 2014; 28:545-52. [PMID: 24785760 DOI: 10.1177/0269881114531666] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A re-balance of postsynaptic serotonin (5-HT) receptor signalling, with an increase in 5-HT1A and a decrease in 5-HT2A signalling, is a final common pathway multiple antidepressants share. Given that the 5-HT1A/2A agonist lysergic acid diethylamide (LSD), when repeatedly applied, selectively downregulates 5-HT2A, but not 5-HT1A receptors, one might expect LSD to similarly re-balance the postsynaptic 5-HT signalling. Challenging this idea, we use an animal model of depression specifically responding to repeated antidepressant treatment (olfactory bulbectomy), and test the antidepressant-like properties of repeated LSD treatment (0.13 mg/kg/d, 11 d). In line with former findings, we observe that bulbectomised rats show marked deficits in active avoidance learning. These deficits, similarly as we earlier noted with imipramine, are largely reversed by repeated LSD administration. Additionally, bulbectomised rats exhibit distinct anomalies of monoamine receptor signalling in hippocampus and/or frontal cortex; from these, only the hippocampal decrease in 5-HT2 related [(35)S]-GTP-gamma-S binding is normalised by LSD. Importantly, the sham-operated rats do not profit from LSD, and exhibit reduced hippocampal 5-HT2 signalling. As behavioural deficits after bulbectomy respond to agents classified as antidepressants only, we conclude that the effect of LSD in this model can be considered antidepressant-like, and discuss it in terms of a re-balance of hippocampal 5-HT2/5-HT1A signalling.
Collapse
Affiliation(s)
- Tobias Buchborn
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Helmut Schröder
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Volker Höllt
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Gisela Grecksch
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
26
|
McAllister CE, Mi Z, Mure M, Li Q, Muma NA. GPER1 stimulation alters posttranslational modification of RGSz1 and induces desensitization of 5-HT1A receptor signaling in the rat hypothalamus. Neuroendocrinology 2014; 100:228-39. [PMID: 25402859 PMCID: PMC4305009 DOI: 10.1159/000369467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/18/2014] [Indexed: 12/28/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of depression, and response normalization coincides with clinical responsiveness to antidepressant medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic paraventricular nucleus of the hypothalamus (PVN) follows selective serotonin reuptake inhibitor (SSRI) antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a partial desensitization of 5-HT1AR signaling and synergizes with SSRIs to result in a complete and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin and adrenocorticotrophic hormone (ACTH) responses to 5-HT1AR stimulation. G protein-coupled estrogen receptor 1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR signaling, although the underlying mechanisms are still unclear. We now find that stimulation of GPER1 with the selective agonist G-1 and nonselective stimulation of estrogen receptors dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, RGSz1, a GTPase-activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and phosphorylated, and differentially distributed in subcellular organelles. High-molecular-weight RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1 could reduce Gαz activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced a partial reduction in oxytocin and ACTH responses to 5-HT1AR stimulation similar to direct injections into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the treatment of depression.
Collapse
Affiliation(s)
| | - Zhen Mi
- Department of Pharmacology and Toxicology, University of Kansas
| | - Minae Mure
- Department of Chemistry, University of Kansas
| | - Qian Li
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine
| | - Nancy A Muma
- Department of Pharmacology and Toxicology, University of Kansas
- Corresponding Author: Nancy A. Muma, Malott Hall Rm 5064, 1251 Wescoe Hall Dr., Lawrence, KS 66045-7572, , Telephone: +1 785 864 4002, Fax: +1 785 864 5219
| |
Collapse
|
27
|
Makani V, Sultana R, Sie KS, Orjiako D, Tatangelo M, Dowling A, Cai J, Pierce W, Butterfield DA, Hill J, Park J. Annexin A1 complex mediates oxytocin vesicle transport. J Neuroendocrinol 2013; 25:1241-1254. [PMID: 24118254 PMCID: PMC3975805 DOI: 10.1111/jne.12112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/24/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Oxytocin is a major neuropeptide that modulates the brain functions involved in social behaviour and interaction. Despite of the importance of oxytocin for the neural control of social behaviour, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesised in the cell bodies of hypothalamic neurones in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighbouring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behaviour. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150) and microtubule motor that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localisation with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localisation of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localisation of oxytocin vesicles. The result of the present study suggest that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body.
Collapse
Affiliation(s)
- Vishruti Makani
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
| | - Khin Sander Sie
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Doris Orjiako
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Marco Tatangelo
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Abigail Dowling
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Jian Cai
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | - William Pierce
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | | | - Jennifer Hill
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Joshua Park
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
- To whom correspondence should be addressed. Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, , Phone: (419) 383-4085, Fax: (419) 383-3008
| |
Collapse
|
28
|
Lim JE, Porteus CS, Bernier NJ. Serotonin directly stimulates cortisol secretion from the interrenals in goldfish. Gen Comp Endocrinol 2013; 192:246-55. [PMID: 24013027 DOI: 10.1016/j.ygcen.2013.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/16/2022]
Abstract
While serotonin (5-HT) can stimulate the hypothalamic-pituitary-interrenal stress axis in fish, the specific site(s) of 5-HT action are poorly understood. In this study, goldfish (Carassius auratus) were injected intraperitoneally with either saline or the 5-HT1A/7 receptor agonist 8-OH-DPAT at a dose of 100 or 400 μg/kg body weight and sampled 1.5 and 8 h post-injection. Relative to unhandled controls, the saline and 100 μg/kg 8-OH-DPAT treatments elicited similar transient 5- to 7-fold increases in plasma cortisol and the 400 μg/kg 8-OH-DPAT dosage resulted in a sustained 16-fold increase in cortisol levels. Although the 5-HT1A receptor is expressed in the brain preoptic area (POA), the pituitary and the head kidney, neither the saline nor the 8-OH-DPAT treatments affected the mRNA abundance of POA corticotropin-releasing factor and pituitary pro-opiomelanocortin or plasma adrenocorticotropic hormone (ACTH) levels. To assess the direct actions of 5-HT on cortisol secretion relative to those of ACTH, head kidney tissue were superfused with 10(-7)M 5-HT, ACTH or a combined 5-HT/ACTH treatment. Overall, the ACTH and 5-HT/ACTH treatments resulted in higher peak cortisol and total cortisol release than in the 5-HT treatment but the response time to peak cortisol release was shorter in the combined treatment than in either the 5-HT or ACTH alone treatments. Both 8-OH-DPAT and cisapride, a 5-HT4 receptor agonist, also stimulated cortisol release in vitro and their actions were reversed by selective 5-HT1A and 5-HT4 receptor antagonists, respectively. Finally, double-labeling with anti-tyrosine hydroxylase and anti-5-HT revealed that the chromaffin cells of the head kidney contain 5-HT. Thus, in goldfish, 5-HT can directly stimulate cortisol secretion from the interrenals via multiple 5-HT receptor subtypes and the chromaffin cells may be involved in the paracrine regulation of cortisol secretion via 5-HT.
Collapse
Affiliation(s)
- Jan E Lim
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
29
|
Haberzettl R, Bert B, Fink H, Fox MA. Animal models of the serotonin syndrome: a systematic review. Behav Brain Res 2013; 256:328-45. [PMID: 24004848 DOI: 10.1016/j.bbr.2013.08.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 11/16/2022]
Abstract
The serotonin syndrome (SS) is a potentially life-threatening disorder in humans which is induced by ingestion of an overdose or by combination of two or more serotonin (5-HT)-enhancing drugs. In animals, acute administration of direct and indirect 5-HT agonists also leads to a set of behavioral and autonomic responses. In the current review, we provide an overview of the existing versions of the animal model of the SS. With a focus on studies in rats and mice, we analyze the frequency of behavioral and autonomic responses following administration of 5-HT-enhancing drugs and direct 5-HT agonists administered alone or in combination, and we briefly discuss the receptor mediation of these responses. Considering species differences, we identify a distinct set of behavioral and autonomic responses that are consistently observed following administration of direct and indirect 5-HT agonists. Finally, we discuss the importance of a standardized assessment of SS responses in rodents and the utility of animal models of the SS in translational studies, and provide suggestions for future research.
Collapse
Affiliation(s)
- Robert Haberzettl
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Zaretsky DV, Zaretskaia MV, Dimicco JA, Durant PJ, Ross CT, Rusyniak DE. Independent of 5-HT1A receptors, neurons in the paraventricular hypothalamus mediate ACTH responses from MDMA. Neurosci Lett 2013; 555:42-6. [PMID: 23933156 DOI: 10.1016/j.neulet.2013.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 12/12/2022]
Abstract
Acute and chronic complications from the substituted amphetamine 3,4-methylenedioxymethamphetamine (MDMA) are linked to activation of the hypothalamic-pituitary-adrenal (HPA) axis. How MDMA activates the HPA axis is not known. HPA responses to stress are known to be mediated through the paraventricular (PVH) hypothalamus and to involve serotonin-1a (5-HT1A) receptors. We sought to determine if the PVH and 5-HT1A receptors were also involved in mediating HPA responses to MDMA. Rats were pretreated with either saline or a 5-HT1A antagonist, WAY-100635 (WAY), followed by a systemic dose of MDMA (7.5mg/kg i.v.). Animals pretreated with WAY had significantly lower plasma ACTH concentrations after MDMA. To determine if neurons in the PVH were involved, and if their involvement was mediated by 5-HT1A receptors, rats implanted with guide cannulas targeting the PVH were microinjected with the GABAA receptor agonist muscimol, aCSF, or WAY followed by MDMA. Compared to aCSF, microinjections of muscimol significantly attenuated the MDMA-induced rise in plasma ACTH (126 vs. 588pg/ml, P=<0.01). WAY had no effect. Our data demonstrates that neurons in the PVH, independent of 5-HT1A receptors, mediate ACTH responses to MDMA.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | | | | | | | | | |
Collapse
|
31
|
Li Q, Sullivan NR, McAllister CE, Van de Kar LD, Muma NA. Estradiol accelerates the effects of fluoxetine on serotonin 1A receptor signaling. Psychoneuroendocrinology 2013; 38:1145-57. [PMID: 23219224 PMCID: PMC3610798 DOI: 10.1016/j.psyneuen.2012.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 11/17/2022]
Abstract
A major problem with current anti-depressant therapy is that it takes on average 6-7 weeks for remission. Since desensitization of serotonin (5-HT)1A receptor signaling contributes to the anti-depressive response, acceleration of the desensitization may reduce this delay in response to antidepressants. The purpose of the present study was to test the hypothesis that estradiol accelerates fluoxetine-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus (PVN) of rats, via alterations in components of the 5-HT1A receptor signaling pathway. Ovariectomized rats were injected with estradiol and/or fluoxetine, then adrenocorticotropic hormone (ACTH) and oxytocin responses to a 5-HT1A receptor agonist (+)-8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT) were examined to assess the function of 5-HT1A receptors in the PVN. Treatment with estradiol for either 2 or 7 days or fluoxetine for 2 days produced at most a partial desensitization of 5-HT1A receptor signaling, whereas 7 days of fluoxetine produced full desensitization. Combined treatment with estradiol and fluoxetine for 2 days produced nearly a full desensitization, demonstrating an accelerated response compared to either treatment alone. With two days of combined treatments, estradiol prevented the fluoxetine-induced increase in 5-HT1A receptor protein, which could contribute to the more rapid desensitization. Furthermore, EB treatment for 2 days decreased the abundance of the 35 kD Gαz protein which could contribute to the desensitization response. We found two isoforms of Gαz proteins with molecular mass of 35 and 33 kD, which differentially distributed in the detergent resistant microdomain (DRM) and in Triton X-100 soluble membrane region, respectively. The 35 kD Gαz proteins in the DRM can be sumoylated by SUMO1. Stimulation of 5-HT1A receptors with 8-OH-DPAT increases the sumoylation of Gαz proteins and reduces the 33 kD Gαz proteins, suggesting that these responses may be related to the desensitization of 5-HT1A receptors. Treatment with estradiol for 2 days also reduced the levels of the G-protein coupled estrogen receptor GPR30, possibly limiting to the ability of estradiol to produce only a partial desensitization response. These data provide evidence that estradiol may be effective as a short-term adjuvant to SSRIs to accelerate the onset of therapeutic effects.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Nicole R. Sullivan
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Carrie E. McAllister
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Louis D Van de Kar
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS,Corresponding author: Nancy A. Muma, Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 5064 Malott Hall, Lawrence, Kansas 66045, , Phone: 785-864-4002, Fax: 785-864-5219
| |
Collapse
|
32
|
Aubert Y, Bohl MA, Lange JR, Diol NR, Allers KA, Sommer B, Datson NA, Abbott DH. Chronic systemic administration of serotonergic ligands flibanserin and 8-OH-DPAT enhance HPA axis responses to restraint in female marmosets. Psychoneuroendocrinology 2013; 38:145-54. [PMID: 22727480 DOI: 10.1016/j.psyneuen.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/20/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Flibanserin, a novel serotonin (5-HT)(1A) agonist and 5-HT(2A) antagonist, has been shown to increase sexual desire and reduce distress in women with Hypoactive Sexual Desire Disorder (HSDD). In marmoset monkeys, flibanserin has demonstrated pro-social effects on male-female pairmates, while the classic 5-HT(1A) agonist 8-OH-DPAT suppresses female sexual behavior and increases aggressive interactions between pairmates. Activation of 5-HT(1A) and 5-HT(2A) receptors is known to stimulate the hypothalamic-pituitary-adrenal (HPA) axis. This study aims to characterize the effects of repeated flibanserin and 8-OH-DPAT administration on the marmoset HPA axis and to elucidate endocrine correlates of altered marmoset pair behavior. METHODS Adrenocorticotropic hormone (ACTH) and cortisol were examined at baseline and during 5-HT(1A) agonist and restraint challenges in 8 female marmoset monkeys receiving daily flibanserin (15mg/kg) and an additional 8 female marmosets receiving 8-OH-DPAT (0.1mg/kg) for 15-16weeks. Corresponding vehicle treatments were administered in a counterbalanced, within-subject design. All females were housed in stable male-female pairs. Treatment-induced changes in ACTH and cortisol levels were correlated with previously assessed marmoset pair behavior. RESULTS While morning basal cortisol levels and HPA responses to a 5-HT(1A) agonist challenge were not altered by chronic flibanserin or 8-OH-DPAT, both treatments increased the responsiveness of the marmoset HPA axis to restraint. Enhanced ACTH responses to restraint correlated with reduced sexual receptivity and increased aggression in 8-OH-DPAT-, but not in flibanserin-treated female marmosets. CONCLUSIONS Unaltered HPA responses to a 5-HT(1A) agonist challenge after chronic flibanserin and 8-OH-DPAT treatments indicate little or no de-sensitization of the HPA axis to repeated 5-HT(1A) manipulation. Chronic 8-OH-DPAT, but not flibanserin, leads to aggravated ACTH responses to stress that may contribute to anti-sexual and anti-social behavior between 8-OH-DPAT-treated females and their male pairmates. Despite similar flibanserin and 8-OH-DPAT induced ACTH responses to restraint stress, flibanserin-treated females show unchanged cortisol profiles. This is possibly due to flibanserin's regional selectivity in 5-HT(1A) activation and concurrent 5-HT(2A) inhibition. The contrasting restraint-related cortisol responses emulate contrasting behavioral phenotypes of diminished pair-bond of 8-OH-DPAT-treated females compared to the more affiliative pair-bond of flibanserin-treated females.
Collapse
Affiliation(s)
- Yves Aubert
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus. Psychoneuroendocrinology 2012; 37:1248-60. [PMID: 22265196 PMCID: PMC3342396 DOI: 10.1016/j.psyneuen.2011.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/12/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022]
Abstract
Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT(1A)) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT(1A) receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT(1A) receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT(1A) receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT(1A) receptor as measured by hormonal responses to the selective 5-HT(1A) receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT(1A) receptor signaling components including 5-HT(1A) receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT(1A) receptor protein but increased 5-HT(1A) mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT(1A) receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT(1A) receptor signaling pathway and desensitization of 5-HT(1A) receptor signaling.
Collapse
|
34
|
Borrow AP, Cameron NM. The role of oxytocin in mating and pregnancy. Horm Behav 2012; 61:266-76. [PMID: 22107910 DOI: 10.1016/j.yhbeh.2011.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/10/2011] [Accepted: 11/01/2011] [Indexed: 12/23/2022]
Abstract
The hormone oxytocin (OT) is released both centrally and peripherally during and after mating. Although research in humans suggests a central role in sexuality, the most reliable findings to date involve peripheral activation. This review will discuss these results and will particularly focus on understanding the most recent findings from fMRI data and the effects of exogenous peripheral OT administration. We will then consider hypotheses of the roles played by central and systemic OT release as well as their control and modulation in the female, summarizing recent findings from animal research. Finally, we will discuss the contribution of OT to the initiation of pregnancy in rodents. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Amanda P Borrow
- Center for Development and Behavioral Neuroscience, Psychology Department, Binghamton University-SUNY, Binghamton, NY 13902-6000, USA
| | | |
Collapse
|
35
|
Creech RD, Li Q, Carrasco GA, Van de Kar LD, Muma NA. Estradiol induces partial desensitization of serotonin 1A receptor signaling in the paraventricular nucleus of the hypothalamus and alters expression and interaction of RGSZ1 and Gαz. Neuropharmacology 2012; 62:2040-9. [PMID: 22251927 DOI: 10.1016/j.neuropharm.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/16/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Hyperactivity of hypothalamic-pituitary mediated hormone responses, such as to stimulation with a serotonin 1A (5-HT(1A)) receptor agonist, are a feature of depression which are normalized with clinical improvement during drug therapy. We previously reported that SSRIs induce desensitization of 5-HT(1A) receptor signaling in the paraventricular nucleus of the hypothalamus (PVN) while estradiol benzoate (EB) produces a more rapid, partial desensitization. In the current study, time course and dose-response experiments demonstrated that two once daily doses of EB is the minimum needed to induce the desensitization response as indicated by 5-HT(1A) receptor-stimulated release of oxytocin and that 10 μg/kg/day EB produces the maximal response, a partial desensitization of approximately 40%. The effects of two once daily injections of 10 μg/kg/day EB on Gαz and RGSZ1 proteins were examined as components of the 5-HT(1A) receptor signaling system, which mediates the release of oxytocin and adrenocorticotropic hormone. RGSZ1 appears to be a major target for EB-mediated responses in the 5-HT(1A) receptor signaling system. A 55 kD membrane-associate RGSZ1 protein was greatly increased in the PVN and rest of the hypothalamus and moderately increased in the dorsal hippocampus and amygdala after EB treatment as well as after an acute dose of a 5-HT(1A) receptor agonist. These results suggest that EB is a candidate for adjuvant therapy with SSRIs to hasten the therapeutic response and that RGSZ1 is a major target of EB therapy which could be explored as a target for novel therapeutic approaches for the treatment of depression.
Collapse
Affiliation(s)
- R D Creech
- Department of Pharmacology and Toxicology, University of Kansas, School of Pharmacy, 1251 Wescoe Hall Dr, 5064 Malott Hall, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
36
|
Hall IC, Sell GL, Chester EM, Hurley LM. Stress-evoked increases in serotonin in the auditory midbrain do not directly result from elevations in serum corticosterone. Behav Brain Res 2012; 226:41-9. [DOI: 10.1016/j.bbr.2011.08.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/26/2011] [Accepted: 08/27/2011] [Indexed: 11/26/2022]
|
37
|
Bao AM, Ruhé HG, Gao SF, Swaab DF. Neurotransmitters and neuropeptides in depression. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:107-36. [PMID: 22608619 DOI: 10.1016/b978-0-444-52002-9.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
38
|
Morrison KE, Swallows CL, Cooper MA. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors. Physiol Behav 2011; 104:283-90. [PMID: 21362435 PMCID: PMC3118936 DOI: 10.1016/j.physbeh.2011.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/22/2010] [Accepted: 02/22/2011] [Indexed: 12/26/2022]
Abstract
Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Psychology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
39
|
MDMA-induced c-Fos expression in oxytocin-containing neurons is blocked by pretreatment with the 5-HT-1A receptor antagonist WAY 100635. Brain Res Bull 2011; 86:65-73. [PMID: 21745546 DOI: 10.1016/j.brainresbull.2011.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 11/23/2022]
Abstract
The popular party drug MDMA (3,4-methylenedioxymethamphetamine, "Ecstasy") increases sociability in both humans and laboratory animals. Recent research suggests that these prosocial effects may involve serotonin (5-HT)-stimulated hypothalamic release of the neuropeptide oxytocin. WAY 100635, a 5-HT(1A) receptor antagonist, prevents MDMA-induced increases in plasma oxytocin and also reduces MDMA-mediated increases in social interaction in rats. The present study used c-Fos immunohistochemistry to determine the possible role of 5-HT(1A) receptors in MDMA-mediated activation of oxytocin synthesizing neurons. Male Wistar rats (n=8/group) were administered MDMA (10 mg/kg, i.p.) with or without WAY 100635 (1 mg/kg, i.p.) pre-treatment and c-Fos expression was then assessed throughout the brain. MDMA significantly increased locomotor activity and this effect was partly prevented by WAY 100635, in agreement with previous studies. WAY 100635 significantly reduced MDMA-induced c-Fos expression in a subset of brain regions examined. A particularly prominent reduction was seen in the oxytocin-positive neurons of the supraoptic nucleus and paraventricular hypothalamus, with more modest reductions in the Islands of Calleja, median preoptic nucleus, somatosensory cortex and nucleus of the solitary tract. WAY 100635 did not alter MDMA-induced c-Fos expression in the striatum, thalamus, or central amygdala. These results indicate that MDMA's action on oxytocin producing cells in the hypothalamus is mediated through 5-HT(1A) receptors and that certain specific cortical, limbic and brainstem sites are also activated by MDMA via these receptors.
Collapse
|
40
|
Eaton JL, Roache L, Nguyen KN, Cushing BS, Troyer E, Papademetriou E, Raghanti MA. Organizational effects of oxytocin on serotonin innervation. Dev Psychobiol 2011; 54:92-7. [DOI: 10.1002/dev.20566] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/25/2011] [Indexed: 01/08/2023]
|
41
|
Lam DD, Garfield AS, Marston OJ, Shaw J, Heisler LK. Brain serotonin system in the coordination of food intake and body weight. Pharmacol Biochem Behav 2010; 97:84-91. [PMID: 20837046 DOI: 10.1016/j.pbb.2010.09.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 08/02/2010] [Accepted: 09/06/2010] [Indexed: 11/30/2022]
Abstract
An inverse relationship between brain serotonin and food intake and body weight has been known for more than 30 years. Specifically, augmentation of brain serotonin inhibits food intake, while depletion of brain serotonin promotes hyperphagia and weight gain. Through the decades, serotonin receptors have been identified and their function in the serotonergic regulation of food intake clarified. Recent refined genetic studies now indicate that a primary mechanism through which serotonin influences appetite and body weight is via serotonin 2C receptor (5-HT(2C)R) and serotonin 1B receptor (5-HT(1B)R) influencing the activity of endogenous melanocortin receptor agonists and antagonists at the melanocortin 4 receptor (MC4R). However, other mechanisms are also possible and the challenge of future research is to delineate them in the complete elucidation of the complex neurocircuitry underlying the serotonergic control of appetite and body weight.
Collapse
Affiliation(s)
- Daniel D Lam
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
42
|
Rossi DV, Dai Y, Thomas P, Carrasco GA, DonCarlos LL, Muma NA, Li Q. Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta. Psychoneuroendocrinology 2010; 35:1023-33. [PMID: 20138435 PMCID: PMC2891004 DOI: 10.1016/j.psyneuen.2010.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/24/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Estradiol regulates serotonin 1A (5-HT(1A)) receptor signaling. Since desensitization of 5-HT(1A) receptors may be an underlying mechanism by which selective serotonin reuptake inhibitors (SSRIs) mediate their therapeutic effects and combining estradiol with SSRIs enhances the efficacy of the SSRIs, it is important to determine which estrogen receptors are capable of desensitizating 5-HT(1A) receptor function. We previously demonstrated that selective activation of the estrogen receptor, GPR30, desensitizes 5-HT(1A) receptor signaling in rat hypothalamic paraventricular nucleus (PVN). However, since estrogen receptor-beta (ERbeta), is highly expressed in the PVN, we investigated the role of ERbeta in estradiol-induced desensitization of 5-HT(1A) receptor signaling. We first showed that a selective ERbeta agonist, diarylpropionitrile (DPN) has a 100-fold lower binding affinity than estradiol for GPR30. Administration of DPN did not desensitize 5-HT(1A) receptor signaling in rat PVN as demonstrated by agonist-stimulated hormone release. Second, we used a recombinant adenovirus containing ERbeta siRNAs to decrease ERbeta expression in the PVN. Reductions in ERbeta did not alter the estradiol-induced desensitization of 5-HT(1A) receptor signaling in oxytocin cells. In contrast, in animals with reduced ERbeta, estradiol administration, instead of producing desensitization, augmented the ACTH response to a 5-HT(1A) agonist. Combined with the results from the DPN treatment experiments, desensitization of 5-HT(1A) receptor signaling does not appear to be mediated by ERbeta in oxytocin cells, but that ERbeta, together with GPR30, may play a complex role in central regulation of 5-HT(1A)-mediated ACTH release. Determining the mechanisms by which estrogens induce desensitization may aid in the development of better treatments for mood disorders.
Collapse
Affiliation(s)
- Dania V Rossi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Morphology and distribution of neurons expressing serotonin 5-HT1A receptors in the rat hypothalamus and the surrounding diencephalic and telencephalic areas. J Chem Neuroanat 2010; 39:235-41. [PMID: 20080175 DOI: 10.1016/j.jchemneu.2010.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/09/2010] [Accepted: 01/09/2010] [Indexed: 11/23/2022]
Abstract
Disorders of serotonergic neurotransmission are involved in disturbances of numerous hypothalamic functions including circadian rhythm, mood, neuroendocrine functions, sleep and feeding. Among the serotonin receptors currently recognized, 5-HT(1A) receptors have received considerable attention due to their importance in the etiology of mood disorders. While previous studies have shown the presence of 5-HT(1A) receptors in several regions of the rat brain, there is no detailed map of the cellular distribution of 5-HT(1A) receptors in the rat diencephalon. In order to characterize the distribution and morphology of the neurons containing 5-HT(1A) receptors in the diencephalon and the adjacent telencephalic areas, single label immunohistochemistry was utilized. Large, multipolar, 5-HT(1A)-immunoreactive (IR) neurons were mainly detected in the magnocellular preoptic nucleus and in the nucleus of diagonal band of Broca, while the supraoptic nucleus contained mainly fusiform neurons. Medium-sized 5-HT(1A)-IR neurons with triangular or round-shaped somata were widely distributed in the diencephalon, populating the zona incerta, lateral hypothalamic area, anterior hypothalamic nucleus, substantia innominata, dorsomedial and premamillary nuclei, paraventricular nucleus and bed nucleus of stria terminalis. The present study provides schematic mapping of 5-HT(1A)-IR neurons in the rat diencephalon. In addition, the morphology of the detected 5-HT(1A)-IR neural elements is also described. Since rat is a widely used laboratory animal in pharmacological models of altered serotoninergic neurotransmission, detailed mapping of 5-HT(1A)-IR structures is pivotal for the neurochemical characterization of the neurons containing 5-HT(1A) receptors.
Collapse
|
44
|
Sierksma AS, van den Hove DL, Steinbusch HW, Prickaerts J. Major depression, cognitive dysfunction and Alzheimer's disease: Is there a link? Eur J Pharmacol 2010; 626:72-82. [DOI: 10.1016/j.ejphar.2009.10.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/29/2009] [Accepted: 10/06/2009] [Indexed: 11/30/2022]
|
45
|
Grzegorzewska M, Maćkowiak M, Wedzony K, Hess G. 5-HT1A receptors mediate detrimental effects of cocaine on long-term potentiation and expression of polysialylated neural cell adhesion molecule protein in rat dentate gyrus. Neuroscience 2009; 166:122-31. [PMID: 20006974 DOI: 10.1016/j.neuroscience.2009.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/19/2009] [Accepted: 12/05/2009] [Indexed: 01/11/2023]
Abstract
The present study investigated the involvement of 5-HT(1A) receptors in the inhibitory effect of single administration of cocaine (COC, 15 mg/kg i.p.) on the induction of long-term potentiation (LTP) in slices of rat dentate gyrus (DG), prepared 30 min and 2 days after COC administration. These effects of COC were blocked by an antagonist of 5-HT(1A) receptors, WAY 100635 (0.4 mg/kg i.p.), which had been administered 20 min before COC. The detrimental effect of COC on LTP in slices prepared 30 min after COC administration could be prevented by blocking glucocorticoid receptors (GRs) using mifepristone (RU 38486, 10 mg/kg s.c. given 1 h before COC), similar as in slices obtained 2 days after COC as reported previously [Maćkowiak et al. (2008) Eur J Neurosci 27:2928-2937]. After a single administration of an agonist of 5-HT(1A) receptors, 8-OH-DPAT, (0.5 mg/kg i.p.), the level of LTP in slices prepared 2 days later was significantly decreased resembling the effect of COC. This effect of 8-OH-DPAT was antagonized by WAY 100635 (0.4 mg/kg i.p.), administered 20 min before 8-OH-DPAT and by RU 38486, given 1 h before 8-OH-DPAT. COC-induced inhibition of LTP could be blocked by the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), SL 327 (50 mg/kg i.p.), administered 1 h before COC, but not by the inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), LY 294002 (80 mg/kg i.p.). COC-induced reduction in the number of polysialylated neural cell adhesion molecule (PSA-NCAM)-positive neurons in rat dentate gyrus could also be prevented by WAY 100635, given 20 min before COC. These data indicate that the indirect 5-HT(1A) receptor activation by a single COC administration and subsequent stimulation of extracellular signal-regulated kinases (ERK 1/2) signaling pathway result in a decrease of the potential for long-term increase in synaptic efficacy in rat DG lasting at least two but less than 7 days, most likely via activation of the hypothalamic-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- M Grzegorzewska
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | | | | | | |
Collapse
|
46
|
Extra-nuclear estrogen receptor GPR30 regulates serotonin function in rat hypothalamus. Neuroscience 2008; 158:1599-607. [PMID: 19095043 DOI: 10.1016/j.neuroscience.2008.11.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 01/12/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), such as Prozac, are used to treat mood disorders. SSRIs attenuate (i.e. desensitize) serotonin 1A (5-HT(1A)) receptor signaling, as demonstrated in rats through decreased release of oxytocin and adrenocorticotropin hormone (ACTH) following 5-HT(1A) receptor stimulation. Maximal therapeutic effects of SSRIs for treatment of mood disorders, as well as effects on hypothalamic 5-HT(1A) receptor signaling in animals, take 1 to 2 weeks to develop. Estradiol also attenuates 5-HT(1A) receptor signaling, but, in rats, these effects occur within 2 days; thus, estrogens or selective estrogen receptor modulators may serve as useful short-term tools to accelerate desensitization of 5-HT(1A) receptors in response to SSRIs if candidate estrogen receptor targets in the hypothalamus are identified. We found high levels of GPR30, which has been identified recently as a pertussis-toxin (PTX) sensitive G-protein-coupled estrogen receptor, in the hypothalamic paraventricular nucleus (PVN) of rats. Double-label immunohistochemistry revealed that GPR30 co-localizes with 5-HT(1A) receptors, corticotrophin releasing factor (CRF) and oxytocin in neurons in the PVN. Pretreatment with PTX to the PVN before peripheral injections of 17-beta-estradiol 3-benzoate completely prevented the reduction of the oxytocin response to the 5-HT(1A) receptor agonist, (+)-8-hydroxy-2-dipropylaminotetralin (DPAT). Treatment with the selective GRP30 agonist, G-1, attenuated 5-HT(1A) receptor signaling in the PVN as measured by an attenuated oxytocin (by 29%) and ACTH (by 31%) response to DPAT. This study indicates that a putative extra-nuclear estrogen receptor, GPR30, may play a role in estradiol-mediated attenuation of 5-HT(1A) receptor signaling, and potentially in accelerating the effects of SSRIs in treatment of mood disorders.
Collapse
|
47
|
Zhu H, Huang Q, Xu H, Niu L, Zhou JN. Antidepressant-like effects of sodium butyrate in combination with estrogen in rat forced swimming test: involvement of 5-HT(1A) receptors. Behav Brain Res 2008; 196:200-6. [PMID: 18817816 DOI: 10.1016/j.bbr.2008.08.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 12/22/2022]
Abstract
Sodium butyrate (NaB), a histone deacetylase inhibitor, has been implicated in the antidepressant-like effects either injected as a single drug or in combination with selective serotonin reuptake inhibitor (SSRI), such as fluoxetine. Estrogen is also demonstrated to have antidepressant effect especially together with fluoxetine. We investigated whether NaB administered in combination with estradiol benzoate (EB) exerted antidepressant-like effect in forced swimming test (FST) in ovariectomized female rats. Furthermore, we detected the mRNA expressions of serotonin receptors and neuropeptides in hypothalamus, both of which participate in the mood disorder. Ovariectomized female SD rats were treated with vehicle, NaB, EB or NaB combined with EB for 7 days and then subjected to FST. The expressions of serotonin receptors (5-hydroxytryptamine receptor), corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA in the hypothalamus were detected by real time PCR. We found that co-treated with NaB and EB resulted in a significant decrease in immobility behavior in FST, a measure for depression-like behavioral. 5-HT(1A) antagonist, WAY 100635, significantly block the antidepressant-like effects induced by NaB plus EB. The mRNA expression of the serotonin-1A [5-hydroxytryptamine 1A (5-HT(1A))] receptor was increased in the co-treated group in hypothalamus, while there was no difference in the mRNA expression of 5-HT(2A) or 5-HT(2C). The mRNA expression of CRH or AVP was not significantly altered either. In conclusion, NaB may exert antidepressant-like effects in combination with EB in ovariectomized female rats through 5-HT(1A) receptor, via altering the expression of 5-HT(1A) in the hypothalamus.
Collapse
Affiliation(s)
- Hong Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Neurobiology, School of Life Science, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
48
|
Lee KS, Han TH, Jo JY, Kang G, Lee SY, Ryu PD, Im JH, Jeon BH, Park JB. Serotonin inhibits GABA synaptic transmission in presympathetic paraventricular nucleus neurons. Neurosci Lett 2008; 439:138-42. [PMID: 18524490 DOI: 10.1016/j.neulet.2008.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 04/19/2008] [Accepted: 05/05/2008] [Indexed: 11/16/2022]
Abstract
Activation of serotonin (5-hydroxytryptamine, 5-HT) receptors produces various autonomic and neuroendocrine responses in the hypothalamic paraventricular nucleus (PVN), including increased blood pressure and heart rate. However, the role(s) of 5-HT on the local GABA synaptic circuit have not been well understood in the PVN, where the inhibitory neurotransmitter GABA plays a key role in the modulation of sympathoexcitatory outflow. In the present study, we examined the effects of 5-HT on GABA synaptic transmission in presympathetic PVN neurons projecting to spinal cord using patch-clamp electrophysiology combined with tract-tracing techniques. Bath application of 5-HT (0.01-100 microM) reversibly decreased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (sIPSC) in a concentration dependent manner (IC50, 0.07 microM), with no significant changes in the amplitudes and decay kinetics of sIPSC. The sIPSC inhibition of 5-HT was mimicked by 5-HT1A agonist, 8-OH-DPAT (8-hydroxy-2(di-n-propylamino)tetralin, 10 microM), and blocked by 5-HT1A antagonist WAY-100635 but not by 5-HT1B antagonist SB224289. 5-HT also reduced the frequency of miniature IPSC (mIPSC) (2.59+/-0.51 Hz, control vs. 1.25+/-0.31 Hz, 5-HT, n=16) in similar extent with 5-HT induced reduction of sIPSC frequency (sIPSCs, 55.8+/-6.2%, n=11 vs. mIPSCs, 52.30+/-5.85%, n=16; p>0.5). All together, our results indicate that 5-HT can inhibit presynaptic GABA release via presynaptic 5-HT1A receptors in presympathetic PVN neurons projecting to spinal cord.
Collapse
Affiliation(s)
- Kyu Seung Lee
- Research Institute of Medical Sciences, Department of Physiology, College of Medicine, Chungnam National University, 6 Munhwa-dong, Joong-gu, Daejeon, 301-131, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev 2008; 32:1174-84. [PMID: 18534678 DOI: 10.1016/j.neubiorev.2008.04.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Among psychiatric disorders, depression and generalized anxiety are probably the most common stress-related illnesses. These diseases are underlain, at least partly, by dysfunctions of neurotransmitters and neurohormones, especially within the serotoninergic (5-HT) system and the hypothalamo-pituitary-adrenal (HPA) axis, which are also the targets of drugs used for their treatment. This review focuses on the nature of the interactions between central 5-HT and corticotrope systems in animal models, in particular those allowing the assessment of serotoninergic function following experimental manipulation of the HPA axis. The review provides an overview of the HPA axis and the 5-HT system organization, focusing on the 5-HT(1A) receptors, which play a pivotal role in the 5-HT system regulation and its response to stress. Both molecular and functional aspects of 5-HT/HPA interactions are then analyzed in the frame of psychoaffective disorders. The review finally examines the hippocampal neurogenesis response to experimental paradigms of stress and antidepressant treatment, in which neurotrophic factors are considered to play key roles according to the current views on the pathophysiology of depressive disorders.
Collapse
|
50
|
Perspectives on genetic animal models of serotonin toxicity. Neurochem Int 2008; 52:649-58. [DOI: 10.1016/j.neuint.2007.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 12/28/2022]
|