1
|
Gockeln L, Wirsdörfer F, Jendrossek V. CD73/adenosine dynamics in treatment-induced pneumonitis: balancing efficacy with risks of adverse events in combined radio-immunotherapies. Front Cell Dev Biol 2025; 12:1471072. [PMID: 39872847 PMCID: PMC11769960 DOI: 10.3389/fcell.2024.1471072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Consolidation with PD-1/PD-L1-based immune checkpoint blockade after concurrent platinum-based chemo-radiotherapy has become the new standard of care for advanced stage III unresectable non-small cell lung cancer (NSCLC) patients. In order to further improve therapy outcomes, innovative combinatorial treatment strategies aim to target additional immunosuppressive barriers in the tumor microenvironment such as the CD73/adenosine pathway. CD73 and adenosine are known as crucial endogenous regulators of lung homeostasis and inflammation, but also contribute to an immunosuppressive tumor microenvironment. Furthermore, the CD73/adenosine pathway can also limit the immune-activating effects of cytotoxic therapies by degrading the pro-inflammatory danger molecule ATP, which is released into the tumor microenvironment and normal lung tissue upon therapy-induced cell damage. Thus, while targeting CD73 may enhance the efficacy of radio-immunotherapies in cancer treatment by mitigating tumor immune escape and improving immune-mediated tumor killing, it also raises concerns about increased immune-related adverse events (irAEs) in the normal tissue. In fact, combined radio-immunotherapies bear an increased risk of irAEs in the lungs, and additional pharmacologic inhibition of CD73 may further enhance the risk of overwhelming or overlapping pulmonary toxicity and thereby limit therapy outcome. This review explores how therapeutic interventions targeting CD73/adenosine dynamics could enhance radiation-induced immune activation in combined radio-immunotherapies, whilst potentially driving irAEs in the lung. We specifically investigate the interactions between radiotherapy and the CD73/adenosine pathway in radiation pneumonitis. Additionally, we compare the incidence of (radiation) pneumonitis reported in relevant trials to determine if there is an increased risk of irAEs in the clinical setting. By understanding these dynamics, we aim to inform future strategies for optimizing radio-immunotherapy regimens, ensuring effective cancer control while preserving pulmonary integrity and patient quality of life.
Collapse
Affiliation(s)
| | | | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Giraulo C, De Palma G, Plaitano P, Cicala C, Morello S. Insight into adenosine pathway in psoriasis: Elucidating its role and the potential therapeutical applications. Life Sci 2024; 357:123071. [PMID: 39307180 DOI: 10.1016/j.lfs.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Psoriasis is an inflammatory skin disease, that can manifest as different phenotypes, however its most common form is psoriasis vulgaris (plaque psoriasis), characterized by abnormal keratinocyte proliferation, leading to characteristic histopathological signs of acanthosis, hyperkeratosis and parakeratosis. For many years, there has been a debate regarding whether keratinocyte dysfunction leads to immune system dysregulation in psoriasis or vice versa. It is now understood that epidermal hyperplasia results from immune system activation. Besides epidermal hyperplasia, psoriatic skin shows leukocyte infiltration, evident angiogenesis in the papillary dermis, characterized by tortuous, dilated capillaries, as well as oedema. There is substantial early evidence that adenosine is a key mediator of the immune response; it derives from ATP hydrolysis and accumulates into tissue in response to systemic and local stress conditions, hypoxia, metabolic stress, inflammation. Adenosine controls several cell functions by signalling through its 4 receptor subtypes, A1, A2A, A2B and A3. Evidence suggests that adenosine may play a role in psoriasis pathogenesis by controlling several immune cell functions, keratinocyte proliferation, neo-angiogenesis. Expression of adenosine receptor varies in psoriatic skin, and this can significantly impact on tissue homeostasis. Indeed, an altered adenosine receptor profile may contribute to the dysregulation observed in psoriasis, affecting immune responses and inflammatory pathways. Here, we discuss the role of adenosine in regulating the functions of the main cell populations implied in the pathogenesis of psoriasis. Furthermore, we give evidence for adenosine signalling pathway as target for therapeutic intervention in psoriasis.
Collapse
Affiliation(s)
- Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Giacomo De Palma
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy; PhD Program in Nutraceuticals, Functional Foods and Human Health, University of Naples "Federico II", Napoli, NA, Italy
| | - Paola Plaitano
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy.
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
3
|
Bento CA, Arnaud-Sampaio VF, Glaser T, Adinolfi E, Coutinho-Silva R, Ulrich H, Lameu C. P2X7 receptor in macrophage polarization and its implications in neuroblastoma tumor behavior. Purinergic Signal 2024:10.1007/s11302-024-10051-w. [PMID: 39425818 DOI: 10.1007/s11302-024-10051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) exhibit antitumor or protumor responses related to inflammatory (or M1) and alternative (or M2) phenotypes, respectively. The P2X7 receptor plays a key role in macrophage polarization, influencing inflammation and immunosuppression. In this study, we investigated the role of the P2X7 receptor in TAMs. Using P2X7 receptor-deficient macrophages, we analyzed gene expression profiles and their implications for neuroblastoma invasion and chemoresistance. Our results showed that P2X7 receptor deficiency altered the expression of classical polarization markers, such as nitric oxide synthase 2 (Nos2) and tumor necrosis factor-α (Tnf), as well as alternative phenotype markers, including mannose receptor C-type 1 (Mrc1) and arginase 1 (Arg1). P2X7 deficiency also influenced the expression of the ectonucleotidases Entpd1 and Nt5e and other purinergic receptors, especially P2ry2, suggesting compensatory mechanisms involved in macrophage polarization. In particular, TAMs deficient in P2X7 showed a phenotype with characteristics intermideiate between resting macrophages (M0) and M1 polarization rather than the M2-type phenotype like and wild-type TAM macrophages. In addition, P2rx7-/- TAMs regulated the expression of P2X7 receptor isoforms in neuroblastoma cells, with downregulation of the P2X7 A and B isoforms leading to a decrease in chemotherapy-induced cell death. However, TAMs expressing P2X7 downregulated only the B isoform, suggesting that TAMs play a role in modulating tumor behavior through P2X7 receptor isoform regulation. Taken together, our data underscore the regulatory function of the P2X7 receptor in orchestrating alternative macrophage polarization and in the interplay between tumor cells and TAMs. These findings help to clarify the complex interplay of purinergic signaling in cancer progression and open up avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Carolina Adriane Bento
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa Fernandes Arnaud-Sampaio
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Talita Glaser
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Elena Adinolfi
- Section of General Pathology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudiana Lameu
- Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Gao ZG, Chen W, Gao RR, Li J, Tosh DK, Hanover JA, Jacobson KA. Genetic and functional modulation by agonist MRS5698 and allosteric enhancer LUF6000 at the native A 3 adenosine receptor in HL-60 cells. Purinergic Signal 2024; 20:559-570. [PMID: 38416332 PMCID: PMC11377395 DOI: 10.1007/s11302-024-09992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The A3 adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A3AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1β, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1β, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A3AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A3AR and in recombinant hA3AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A3AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA3AR.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA.
| | - Weiping Chen
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Ray R Gao
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Jonathan Li
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - John A Hanover
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Vuerich M, Nguyen DH, Ferrari D, Longhi MS. Adenosine-mediated immune responses in inflammatory bowel disease. Front Cell Dev Biol 2024; 12:1429736. [PMID: 39188525 PMCID: PMC11345147 DOI: 10.3389/fcell.2024.1429736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular ATP and its derivates mediate a signaling pathway that might be pharmacologically targeted to treat inflammatory conditions. Extracellular adenosine, the product of ATP hydrolysis by ectonucleotidase enzymes, plays a key role in halting inflammation while promoting immune tolerance. The rate-limiting ectoenzyme ENTPD1/CD39 and the ecto-5'-nucleotidase/CD73 are the prototype members of the ectonucleotidase family, being responsible for ATP degradation into immunosuppressive adenosine. The biological effects of adenosine are mediated via adenosine receptors, a family of G protein-coupled receptors largely expressed on immune cells where they modulate innate and adaptive immune responses. Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract, associated with substantial morbidity and often refractory to currently available medications. IBD is linked to altered interactions between the gut microbiota and the immune system in genetically predisposed individuals. A wealth of studies conducted in patients and animal models highlighted the role of various adenosine receptors in the modulation of chronic inflammatory diseases like IBD. In this review, we will discuss the most recent findings on adenosine-mediated immune responses in different cell types, with a focus on IBD and its most common manifestations, Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Marta Vuerich
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Du Hanh Nguyen
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Ehlen QT, Mirsky NA, Slavin BV, Parra M, Nayak VV, Cronstein B, Witek L, Coelho PG. Translational Experimental Basis of Indirect Adenosine Receptor Agonist Stimulation for Bone Regeneration: A Review. Int J Mol Sci 2024; 25:6104. [PMID: 38892291 PMCID: PMC11172580 DOI: 10.3390/ijms25116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Bone regeneration remains a significant clinical challenge, often necessitating surgical approaches when healing bone defects and fracture nonunions. Within this context, the modulation of adenosine signaling pathways has emerged as a promising therapeutic option, encouraging osteoblast activation and tempering osteoclast differentiation. A literature review of the PubMed database with relevant keywords was conducted. The search criteria involved in vitro or in vivo models, with clear methodological descriptions. Only studies that included the use of indirect adenosine agonists, looking at the effects of bone regeneration, were considered relevant according to the eligibility criteria. A total of 29 articles were identified which met the inclusion and exclusion criteria, and they were reviewed to highlight the preclinical translation of adenosine agonists. While preclinical studies demonstrate the therapeutic potential of adenosine signaling in bone regeneration, its clinical application remains unrealized, underscoring the need for further clinical trials. To date, only large, preclinical animal models using indirect adenosine agonists have been successful in stimulating bone regeneration. The adenosine receptors (A1, A2A, A2B, and A3) stimulate various pathways, inducing different cellular responses. Specifically, indirect adenosine agonists act to increase the extracellular concentration of adenosine, subsequently agonizing the respective adenosine receptors. The agonism of each receptor is dependent on its expression on the cell surface, the extracellular concentration of adenosine, and its affinity for adenosine. This comprehensive review analyzed the multitude of indirect agonists currently being studied preclinically for bone regeneration, discussing the mechanisms of each agonist, their cellular responses in vitro, and their effects on bone formation in vivo.
Collapse
Affiliation(s)
- Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bruce Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
da Silva GB, de Carvalho Braga G, Simões JLB, Kempka AP, Bagatini MD. Cytokine storm in human monkeypox: A possible involvement of purinergic signaling. Cytokine 2024; 177:156560. [PMID: 38447385 DOI: 10.1016/j.cyto.2024.156560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Some evidence has indicated that monkeypox can induce a cytokine storm. Purinergic signaling is a cell pathway related to the cytokine storm. However, the precise mechanisms that lead to cytokine storms in monkeypox infections and the possible involvement of purinergic signaling in the immune response to this virus remain unknown. In this review article, we aimed to highlight a body of scientific evidence that consolidates the role of the cytokine storm in monkeypox infection and proposes a new hypothesis regarding the roles of purinergic signaling in this immune-mediated mechanism. We further suggested some purinergic signaling modulators to mitigate the deleterious and aggravating effects of immune dysregulation in human monkeypox virus infection by inhibiting P2X3, P2X7, P2Y2, and P2Y12, reducing inflammation, and activating A1 and A2A receptors to promote an anti-inflammatory response.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil.
| | | | | | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil; Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
8
|
Naaldijk Y, Sherman LS, Turrini N, Kenfack Y, Ratajczak MZ, Souayah N, Rameshwar P, Ulrich H. Mesenchymal Stem Cell-Macrophage Crosstalk Provides Specific Exosomal Cargo to Direct Immune Response Licensing of Macrophages during Inflammatory Responses. Stem Cell Rev Rep 2024; 20:218-236. [PMID: 37851277 DOI: 10.1007/s12015-023-10612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 10/19/2023]
Abstract
Neurodegenerative diseases (NDDs) continue to be a significant healthcare problem. The economic and social implications of NDDs increase with longevity. NDDs are linked to neuroinflammation and activated microglia and astrocytes play a central role. There is a growing interest for stem cell-based therapy to deliver genes, and for tissue regeneration. The promise of mesenchymal stem cells (MSC) is based on their availability as off-the-shelf source, and ease of expanding from discarded tissues. We tested the hypothesis that MSC have a major role of resetting activated microglial cells. We modeled microglial cell lines by using U937 cell-derived M1 and M2 macrophages. We studied macrophage types, alone, or in a non-contact culture with MSCs. MSCs induced significant release of exosomes from both types of macrophages, but significantly more of the M1 type. RNA sequencing showed enhanced gene expression within the exosomes with the major changes linked to the inflammatory response, including cytokines and the purinergic receptors. Computational analyses of the transcripts supported the expected effect of MSCs in suppressing the inflammatory response of M1 macrophages. The inflammatory cargo of M1 macrophage-derived exosomes revealed involvement of cytokines and purinergic receptors. At the same time, the exosomes from MSC-M2 macrophages were able to reset the classical M2 macrophages to more balanced inflammation. Interestingly, we excluded transfer of purinergic receptor transcripts from the co-cultured MSCs by analyzing these cells for the identified purinergic receptors. Since exosomes are intercellular communicators, these findings provide insights into how MSCs may modulate tissue regeneration and neuroinflammation.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Lauren S Sherman
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA
- Rutgers School of Graduate Studies at NHMS, Newark, NJ, USA
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | | | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Nizar Souayah
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Neuroscience and Physiology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
9
|
Calderón-García AÁ, Valencia-Nieto L, Valencia-Sandonis C, López-de la Rosa A, Blanco-Vazquez M, Fernández I, García-Vázquez C, Arroyo-Del Arroyo C, González-García MJ, Enríquez-de-Salamanca A. Gene expression changes in conjunctival cells associated with contact lens wear and discomfort. Ocul Surf 2024; 31:31-42. [PMID: 38128761 DOI: 10.1016/j.jtos.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE This study aimed to analyze the differences in the expression of pain-related genes in conjunctival epithelial cells among symptomatic contact lens (CL) wearers (SCLWs), asymptomatic CL wearers (ACLWs), and non-CL wearers (non-CLWs). METHODS For this study, 60 participants (20 non-CLWs, 40 CLWs) were enrolled. The CLW group comprised 20 ACLWs and 20 SCLWs according to the Contact Lens Dry Eye Questionnaire short form©. Conjunctival cells were collected using impression cytology, and RNA was isolated and used to determine the expression levels of 85 human genes involved in neuropathic and inflammatory pain. The effects of CL wear and discomfort were evaluated using mixed-effects ANOVA with partially nested fixed-effects model. Gene set enrichment analysis was performed to assign biological meaning to sets of differentially expressed genes. RESULTS Six genes (CD200, EDN1, GRIN1, PTGS1, P2RX7, and TNF) were significantly upregulated in CLWs compared to non-CLWs. Eleven genes (ADORA1, BDKRB1, CACNA1B, DBH, GRIN1, GRM1, HTR1A, PDYN, PTGS1, P2RX3, and TNF) were downregulated in SCLWs compared to ACLWs. These genes were mainly related to pain, synaptic transmission and signaling, ion transport, calcium transport and concentration, and cell-cell signaling. CONCLUSIONS CL wear modified the expression of pain- and inflammation-related genes in conjunctival epithelial cells. These changes may be in part, along with other mechanisms, responsible for CL discomfort in SCLWs.
Collapse
Affiliation(s)
- Andrés Ángel Calderón-García
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - Laura Valencia-Nieto
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - Cristina Valencia-Sandonis
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - Alberto López-de la Rosa
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - Marta Blanco-Vazquez
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Itziar Fernández
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain; Department of Statistics and Operations Research, Universidad de Valladolid, Valladolid, Spain
| | - Carmen García-Vázquez
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Cristina Arroyo-Del Arroyo
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain
| | - María J González-García
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Department of Theoretical Physics, Atomic and Optics, Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain.
| | - Amalia Enríquez-de-Salamanca
- Institute of Applied Ophthalmobiology (IOBA), Universidad de Valladolid, Valladolid, Spain; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| |
Collapse
|
10
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2023:10.1007/s11302-023-09976-5. [PMID: 37966629 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
11
|
Massold T, Ibrahim F, Niemann V, Steckel B, Becker K, Schrader J, Stegbauer J, Temme S, Grandoch M, Flögel U, Bouvain P. CD73 deficiency does not aggravate angiotensin II-induced aortic inflammation in mice. Sci Rep 2023; 13:17125. [PMID: 37816827 PMCID: PMC10564884 DOI: 10.1038/s41598-023-44361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Vascular inflammation plays a key role in the development of aortic diseases. A potential novel target for treatment might be CD73, an ecto-5'-nucleotidase that generates anti-inflammatory adenosine in the extracellular space. Here, we investigated whether a lack of CD73 results in enhanced aortic inflammation. To this end, angiotensin II was infused into wildtype and CD73-/- mice over 10 days. Before and after infusion, mice were analyzed using magnetic resonance imaging, ultrasound, flow cytometry, and histology. The impact of age and gender was investigated using female and male mice of three and six months of age, respectively. Angiotensin II infusion led to increased immune cell infiltration in both genotypes' aortae, but depletion of CD73 had no impact on immune cell recruitment. These findings were not modified by age or sex. No substantial difference in morphological or functional characteristics could be detected between wildtype and CD73-/- mice. Interestingly, the expression of CD73 on neutrophils decreased significantly in wildtype mice during treatment. In summary, we have found no evidence that CD73 deficiency affects the onset of aortic inflammation. However, as CD73 expression decreased during disease induction, an increase in CD73 by pharmaceutical intervention might result in lower vascular inflammation and less vascular disease.
Collapse
Affiliation(s)
- Timo Massold
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fady Ibrahim
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Viola Niemann
- Institute for Translational Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Becker
- Department of Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute for Cardiovascular Sciences, Endothelial Signaling and Metabolism, University Hospital Bonn, Bonn, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany.
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
12
|
Gao ZG, Auchampach JA, Jacobson KA. Species dependence of A 3 adenosine receptor pharmacology and function. Purinergic Signal 2023; 19:523-550. [PMID: 36538251 PMCID: PMC9763816 DOI: 10.1007/s11302-022-09910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Efforts to fully understand pharmacological differences between G protein-coupled receptor (GPCR) species homologues are generally not pursued in detail during the drug development process. To date, many GPCRs that have been successfully targeted are relatively well-conserved across species in amino acid sequence and display minimal variability of biological effects. However, the A3 adenosine receptor (AR), an exciting drug target for a multitude of diseases associated with tissue injury, ischemia, and inflammation, displays as little as 70% sequence identity among mammalian species (e.g., rodent vs. primate) commonly used in drug development. Consequently, the pharmacological properties of synthetic A3AR ligands vary widely, not only in binding affinity, selectivity, and signaling efficacy, but to the extent that some function as agonists in some species and antagonists in others. Numerous heterocyclic antagonists that have nM affinity at the human A3AR are inactive or weakly active at the rat and mouse A3ARs. Positive allosteric modulators, including the imidazo [4,5-c]quinolin-4-amine derivative LUF6000, are only active at human and some larger animal species that have been evaluated (rabbit and dog), but not rodents. A3AR agonists evoke systemic degranulation of rodent, but not human mast cells. The rat A3AR undergoes desensitization faster than the human A3AR, but the human homologue can be completely re-sensitized and recycled back to the cell surface. Thus, comprehensive pharmacological evaluation and awareness of potential A3AR species differences are critical in studies to further understand the basic biological functions of this unique AR subtype. Recombinant A3ARs from eight different species have been pharmacologically characterized thus far. In this review, we describe in detail current knowledge of species differences in genetic identity, G protein-coupling, receptor regulation, and both orthosteric and allosteric A3AR pharmacology.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0810, USA.
| | - John A Auchampach
- Department of Pharmacology and Toxicology, and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0810, USA.
| |
Collapse
|
13
|
Diniz SQ, Figueiredo MM, Costa PAC, Martins-Filho OA, Teixeira-Carvalho A, Pereira DB, Shugiro Tada M, Crocco Afonso LC, Kohlhoff M, Zani CL, Gazzinelli RT, Oliveira F, Antonelli LR. Adenosine pathway regulates inflammation during Plasmodium vivax infection. Front Immunol 2023; 14:1193256. [PMID: 37545509 PMCID: PMC10402272 DOI: 10.3389/fimmu.2023.1193256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Background Plasmodium spp. infection triggers the production of inflammatory cytokines that are essential for parasite control, and conversely responsible for symptoms of malaria. Monocytes play a role in host defense against Plasmodium vivax infection and represent the main source of inflammatory cytokines and reactive oxygen species. The anti-inflammatory cytokine IL-10 is a key regulator preventing exacerbated inflammatory responses. Studies suggested that different clinical presentations of malaria are strongly associated with an imbalance in the production of inflammatory and anti-inflammatory cytokines. Methods A convenience sampling of peripheral blood mononuclear cells from Plasmodium vivax-infected patients and healthy donors were tested for the characterization of cytokine and adenosine production and the expression of ectonucleotidases and purinergic receptors. Results Here we show that despite a strong inflammatory response, monocytes also bear a modulatory role during malaria. High levels of IL-10 are produced during P. vivax infection and its production can be triggered in monocytes by P. vivax-infected reticulocytes. Monocytes express high levels of ectonucleotidases, indicating their important role in extracellular ATP modulation and consequently in adenosine production. Plasmatic levels of adenosine are not altered in patients experiencing acute malaria; however, their monocyte subsets displayed an increased expression of P1 purinergic receptors. In addition, adenosine decreases Tumor Necrosis Factor production by monocytes, which was partially abolished with the blockage of the A2a receptor. Conclusion Monocytes have a dual role, attempting to control both the P. vivax infection and the inflammatory response. Purinergic receptor modulators emerge as an untapped approach to ameliorate clinical malaria.
Collapse
Affiliation(s)
- Suelen Queiroz Diniz
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Marta Figueiredo
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Pedro Augusto Carvalho Costa
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Andrea Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Mauro Shugiro Tada
- Centro de Pesquisas em Medicina Tropical de Rondônia, Porto Velho, Brazil
| | - Luis Carlos Crocco Afonso
- Instituto de Ciências Exatas e Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Markus Kohlhoff
- Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Carlos Leomar Zani
- Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Ricardo Tostes Gazzinelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Lis Ribeiro Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
H3K27 tri-demethylase JMJD3 inhibits macrophage apoptosis by promoting ADORA2A in lipopolysaccharide-induced acute lung injury. Cell Death Dis 2022; 8:475. [PMID: 36456564 PMCID: PMC9715944 DOI: 10.1038/s41420-022-01268-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Acute lung injury (ALI) is a common critical disease, which is characterized by an uncontrolled, acute inflammatory response, diffuse lung damage and ultimately directly deteriorates into acute respiratory distress syndrome. The number of pro-inflammatory macrophages is related to the severity of ALI. Up-regulation of lipopolysaccharide (LPS)-activated macrophage apoptosis can reduce the pro-inflammatory reactions. Jumonji domain-containing protein D3 (JMJD3)-mediated histone 3 lysine 27 trimethylation (H3K27me3) demethylation may promote the pro-inflammatory response of macrophages under LPS stimulation. However, the mechanism of JMJD3 affecting macrophage apoptosis is still not clear. To explore this gap in knowledge, the ALI mice model with intratracheal administration of LPS and RAW264.7 cells with LPS stimulation were used as in vivo and in vitro experiments. The expression of JMJD3 and H3K27me3 and their cellular localization were analysed in lung tissue. Apoptosis was evaluated using TUNEL staining and flow cytometry. Expression of H3K27me3, ADORA2A and C/EBPβ were compared among different treatments and chromatin immunoprecipitation was performed to investigate the regulatory relationship. Our study showed that JMJD3 expression was upregulated in LPS-induced ALI mice and RAW264.7 cells. JMJD3-indued H3K27me3 demethylation inhibited caspase-3 cleavage by upregulating ADORA2A to decrease LPS-stimulated macrophage apoptosis and promoted the inflammatory reaction. This H3K27me3 demethylation also increased C/EBPβ expression, which may enhance ADORA2A expression further. Besides, inhibiting ADORA2A can also promote LPS-limited macrophage apoptosis. Moreover, the inhibition of JMJD3 in vivo and in vitro relieved the inhibition of macrophage apoptosis thus leading to the resolution of the inflammation. JMJD3 might inhibit macrophage apoptosis by promoting ADORA2A expression in LPS-induced ALI.
Collapse
|
15
|
Fisher C, Fallot LB, Wan TC, Keyes RF, Suresh RR, Rothwell AC, Gao ZG, McCorvy JD, Smith BC, Jacobson KA, Auchampach JA. Characterization of Dual-Acting A 3 Adenosine Receptor Positive Allosteric Modulators That Preferentially Enhance Adenosine-Induced Gα i3 and Gα oA Isoprotein Activation. ACS Pharmacol Transl Sci 2022; 5:625-641. [PMID: 35983277 PMCID: PMC9380209 DOI: 10.1021/acsptsci.2c00076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/19/2022]
Abstract
The A3 adenosine receptor (A3AR) is a promising therapeutic target for inflammatory diseases, cancer, and chronic neuropathic pain, with agonists already in advanced clinical trials. Here we report an in-depth comparison of the pharmacological properties and structure-activity relationships of existing and expanded compound libraries of 2-substituted 1H-imidazo[4,5-c]quinolin-4-amine and 4-amino-substituted quinoline derivatives that function as A3AR positive allosteric modulators (PAMs). We also show that our lead compound from each series enhances adenosine-induced A3AR signaling preferentially toward activation of Gαi3 and GαoA isoproteins, which are coexpressed with the A3AR in immune cells and spinal cord neurons. Finally, utilizing an extracellular/intracellular chimeric A3AR approach composed of sequences from a responding (human) and a nonresponding (mouse) species, we provide evidence in support of the idea that the imidazoquinolin-4-amine class of PAMs variably interacts dually with the orthosteric ligand binding site as well as with a separate allosteric site located within the inner/intracellular regions of the receptor. This study has advanced both structural and pharmacological understanding of these two classes of A3AR PAMs, which includes leads for future pharmaceutical development.
Collapse
Affiliation(s)
- Courtney
L. Fisher
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Lucas B. Fallot
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
- Department
of Biochemistry & Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814, United States
- Department
of Chemistry & Life Science, United
States Military Academy, 646 Swift Road, West Point, New York 10996, United
States
| | - Tina C. Wan
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Robert F. Keyes
- Department
of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - R. Rama Suresh
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Amy C. Rothwell
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - John D. McCorvy
- Department
of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Brian C. Smith
- Department
of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - John A. Auchampach
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
16
|
Zhang T, Yu-Jing L, Ma T. The immunomodulatory function of adenosine in sepsis. Front Immunol 2022; 13:936547. [PMID: 35958599 PMCID: PMC9357910 DOI: 10.3389/fimmu.2022.936547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Sepsis is an unsolved clinical condition with a substantial mortality rate in the hospital. Despite decades of research, no effective treatments for sepsis exists. The role of adenosine in the pathogenesis of sepsis is discussed in this paper. Adenosine is an essential endogenous molecule that activates the A1, A2a, A2b, and A3 adenosine receptors to regulate tissue function. These receptors are found on a wide range of immune cells and bind adenosine, which helps to control the immune response to inflammation. The adenosine receptors have many regulatory activities that determine the onset and progression of the disease, which have been discovered via the use of animal models. A greater understanding of the role of adenosine in modulating the immune system has sparked hope that an adenosine receptor-targeted treatment may be used one day to treat sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
17
|
Zhao N, Xia GQ, Cai JN, Li ZX, Lv XW. Adenosine receptor A2B mediates alcoholic hepatitis by regulating cAMP levels and the NF-KB pathway. Toxicol Lett 2022; 359:84-95. [DOI: 10.1016/j.toxlet.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
|
18
|
Kurago Z, Loveless J. Microbial Colonization and Inflammation as Potential Contributors to the Lack of Therapeutic Success in Oral Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:739499. [PMID: 35048056 PMCID: PMC8757816 DOI: 10.3389/froh.2021.739499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
This review discusses the microenvironment of evolving and established conventional oral squamous cell carcinoma, by far the most common oral cancer. The focus of this paper is mainly on the more recent data that describe the role of microorganisms, host-microbial interactions, and in particular, the contributions of cell-surface toll-like receptors on immune system cells and on normal and malignant epithelial cells to their functions that support carcinogenesis. Because carcinomas arising at various host surfaces share much in common, additional information available from studies of other carcinomas is included in the discussion. Accumulating evidence reveals the complex toll-like receptor-mediated tumor-supporting input into many aspects of carcinogenesis via malignant cells, stromal immune cells and non-immune cells, complicating the search for effective treatments.
Collapse
Affiliation(s)
- Zoya Kurago
- Augusta University Dental College of Georgia, Augusta, GA, United States.,Medical College of Georgia, Augusta, GA, United States.,Georgia Cancer Center, Augusta, GA, United States
| | - Jenni Loveless
- Augusta University Dental College of Georgia, Augusta, GA, United States
| |
Collapse
|
19
|
Cersosimo F, Barbarino M, Lonardi S, Vermi W, Giordano A, Bellan C, Giurisato E. Mesothelioma Malignancy and the Microenvironment: Molecular Mechanisms. Cancers (Basel) 2021; 13:cancers13225664. [PMID: 34830817 PMCID: PMC8616064 DOI: 10.3390/cancers13225664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that cellular and soluble components of the tumor microenvironment (TME) play a key role in cancer-initiation and progression. Considering the relevance and the complexity of TME in cancer biology, recent research has focused on the investigation of the TME content, in terms of players and informational exchange. Understanding the crosstalk between tumor and non-tumor cells is crucial to design more beneficial anti-cancer therapeutic strategies. Malignant pleural mesothelioma (MPM) is a complex and heterogenous tumor mainly caused by asbestos exposure with few treatment options and low life expectancy after standard therapy. MPM leukocyte infiltration is rich in macrophages. Given the failure of macrophages to eliminate asbestos fibers, these immune cells accumulate in pleural cavity leading to the establishment of a unique inflammatory environment and to the malignant transformation of mesothelial cells. In this inflammatory landscape, stromal and immune cells play a driven role to support tumor development and progression via a bidirectional communication with tumor cells. Characterization of the MPM microenvironment (MPM-ME) may be useful to understand the complexity of mesothelioma biology, such as to identify new molecular druggable targets, with the aim to improve the outcome of the disease. In this review, we summarize the known evidence about the MPM-ME network, including its prognostic and therapeutic relevance.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy; (S.L.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.); (C.B.)
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +39-057-723-2125
| |
Collapse
|
20
|
Pharmacological characterization of DPTN and other selective A 3 adenosine receptor antagonists. Purinergic Signal 2021; 17:737-746. [PMID: 34713378 DOI: 10.1007/s11302-021-09823-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022] Open
Abstract
The A3 adenosine receptor (AR) is emerging as an attractive drug target. Antagonists are proposed for the potential treatment of glaucoma and asthma. However, currently available A3AR antagonists are potent in human and some large animals, but weak or inactive in mouse and rat. In this study, we re-synthesized a previously reported A3AR antagonist, DPTN, and evaluated its affinity and selectivity at human, mouse, and rat ARs. We showed that DPTN, indeed, is a potent A3AR antagonist for all three species tested, albeit a little less selective for mouse and rat A3AR in comparison to the human A3AR. DPTN's Ki values at respective A1, A2A, A2B, and A3 receptors were (nM) 162, 121, 230, and 1.65 (human); 411, 830, 189, and 9.61 (mouse); and 333, 1147, 163, and 8.53 (rat). Its antagonist activity at both human and mouse A3ARs was confirmed in a cyclic AMP functional assay. Considering controversial use of currently commercially available A3AR antagonists in rats and mice, we also re-examined other commonly used and selective A3AR antagonists under the same experimental conditions. The Ki values of MRS1523 were shown to be 43.9, 349, and 216 nM at human, mouse, and rat A3ARs, respectively. MRS1191 and MRS1334 showed incomplete inhibition of [125I]I-AB-MECA binding to mouse and rat A3ARs, while potent human A3AR antagonists, MRS1220, MRE3008F20, PSB10, PSB-11, and VUF5574 were largely inactive. Thus, we demonstrated that DPTN and MRS1523 are among the only validated A3AR antagonists that can be possibly used (at an appropriate concentration) in mouse or rat to confirm an A3AR-related mechanism or function.
Collapse
|
21
|
Modeling codelivery of CD73 inhibitor and dendritic cell-based vaccines in cancer immunotherapy. Comput Biol Chem 2021; 95:107585. [PMID: 34610532 DOI: 10.1016/j.compbiolchem.2021.107585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
Dendritic cells (DCs) are the dominant class of antigen-presenting cells in humans; therefore, a range of DC-based approaches have been established to promote an immune response against cancer cells. The efficacy of DC-based immunotherapeutic approaches is markedly affected by the immunosuppressive factors related to the tumor microenvironment, such as adenosine. In this paper, based on immunological theories and experimental data, a hybrid model is designed that offers some insights into the effects of DC-based immunotherapy combined with adenosine inhibition. The model combines an individual-based model for describing tumor-immune system interactions with a set of ordinary differential equations for adenosine modeling. Computational simulations of the proposed model clarify the conditions for the onset of a successful immune response against cancer cells. Global and local sensitivity analysis of the model highlights the importance of adenosine blockage for strengthening effector cells. The model is used to determine the most effective suppressive mechanism caused by adenosine, proper vaccination time, and the appropriate time interval between injections.
Collapse
|
22
|
Welihinda A, Ravikumar P, Kaur M, Mechanic J, Yadav S, Kang GJ, Amento E. Positive Allosteric Modulation of A 2AR Alters Immune Cell Responses and Ameliorates Psoriasis-Like Dermatitis in Mice. J Invest Dermatol 2021; 142:624-632.e6. [PMID: 34536482 DOI: 10.1016/j.jid.2021.07.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Psoriasis is an immune cell‒mediated inflammatory disease of the skin with a mixed T helper type 1/T helper type17 cytokine environment combined with an innate immune response engaging toll-like receptors. Inflammatory diseases are characterized by dysregulated immune cell responses and elevated levels of adenosine at disease sites. Adenosine, acting through the A2AR, regulates inflammation, immune response, T-cell homeostasis, and tissue repair. We have identified a unique means to enhance A2AR function using a positive allosteric modulator. We show that oral administration of the A2AR-positive allosteric modulator AEA061 reduced ear swelling, skin thickness, erythema, scale formation, and inflammatory cytokine expression in A2Ar+/+ but not in A2Ar-/- mice with imiquimod-induced psoriasis-like dermatitis. Similar clinical and mRNA improvements were observed with topical administration. AEA061 also reduced clinical scores and cytokine expression in a mouse model of IL-23‒induced psoriasis-like dermatitis. In addition, AEA061 attenuated imiquimod-induced expression of IFN-α in plasmacytoid dendritic cells in vivo and IL-23 and IL-36α in conventional dendritic cells. TCR-mediated IL-17 expression in γδT cells in vivo and IL-17 production by CD4+ T cells enriched for γδT cells in vitro were also inhibited. Thus, the enhancement of A2AR responsiveness to the endogenous agonist adenosine through positive allosteric modulation is sufficient to enhance intrinsic homeostatic mechanisms attenuating disease progression.
Collapse
Affiliation(s)
- Ajith Welihinda
- Molecular Medicine Research Institute, Sunnyvale, California, USA.
| | - Puja Ravikumar
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Manmeet Kaur
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Jordan Mechanic
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Shruti Yadav
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Gyeong Jin Kang
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Edward Amento
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| |
Collapse
|
23
|
Riff R, Naamani O, Mazar J, Haviv YS, Chaimovitz C, Douvdevani A. A 1 and A 2A adenosine receptors play a protective role to reduce prevalence of autoimmunity following tissue damage. Clin Exp Immunol 2021; 205:278-287. [PMID: 33894002 PMCID: PMC8374218 DOI: 10.1111/cei.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a potent modulator that has a tremendous effect on the immune system. Adenosine affects T cell activity, and is necessary in maintaining the T helper/regulatory T cell (Treg ) ratio. Adenosine signalling is also involved in activating neutrophils and the formation of neutrophil extracellular traps (NETs), which has been linked to autoimmune disorders. Therefore, adenosine, through its receptors, is extremely important in maintaining homeostasis and involved in the development of autoimmune diseases. In this study, we aim to evaluate the role of adenosine A1 and A2A receptors in involvement of autoimmune diseases. We studied adenosine regulation by NETosis in vitro, and used two murine models of autoimmune diseases: type I diabetes mellitus (T1DM) induced by low-dose streptozotocin and pristane-induced systemic lupus erythematosus (SLE). We have found that A1 R enhances and A2A R suppresses NETosis. In addition, in both models, A1 R-knock-out (KO) mice were predisposed to the development of autoimmunity. In the SLE model in wild-type (WT) mice we observed a decline of A1 R mRNA levels 6 h after pristane injection that was parallel to lymphocyte reduction. Following pristane, 43% of A1 R-KO mice suffered from lupus-like disease while WT mice remained without any sign of disease at 36 weeks. In WT mice, at 10 days A2A R mRNA levels were significantly higher compared to A1R-KO mice. Similar to SLE, in the T1DM model the presence of A1 R and A2A R was protective. Our data suggest that, in autoimmune diseases, the acute elimination of lymphocytes and reduction of DNA release due to NETosis depends upon A1 R desensitization and long-term suppression of A2A R.
Collapse
MESH Headings
- Adenosine/metabolism
- Animals
- Autoimmunity/immunology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Disease Models, Animal
- Extracellular Traps/immunology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lymphopenia/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Activation/immunology
- Neutrophils/immunology
- RNA, Messenger/genetics
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Signal Transduction/immunology
- Streptozocin
- Terpenes
Collapse
Affiliation(s)
- Reut Riff
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Present address:
Weizmann Institute of ScienceWolfson Building 158, 234 Herzl StreetFehovot7610001Israel
| | - Oshri Naamani
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Department of ScienceHemdat HadaromCollege of EducationNetivotIsrael
| | - Julia Mazar
- Laboratory of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Yosef S. Haviv
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| | - Cidio Chaimovitz
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| | - Amos Douvdevani
- Departments of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
- Department of Nephrology HematologyFaculty of Health SciencesBen‐Gurion University of the Negev and Soroka University Medical CenterBeer‐ShevaIsrael
| |
Collapse
|
24
|
Hallaj S, Mirza-Aghazadeh-Attari M, Arasteh A, Ghorbani A, Lee D, Jadidi-Niaragh F. Adenosine: The common target between cancer immunotherapy and glaucoma in the eye. Life Sci 2021; 282:119796. [PMID: 34245774 DOI: 10.1016/j.lfs.2021.119796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Adenosine, an endogenous purine nucleoside, is a well-known actor of the immune system and the inflammatory response both in physiologic and pathologic conditions. By acting upon particular, G-protein coupled adenosine receptors, i.e., A1, A2- a & b, and A3 receptors mediate a variety of intracellular and immunomodulatory actions. Several studies have elucidated Adenosine's effect and its up-and downstream molecules and enzymes on the anti-tumor response against several types of cancers. We have also targeted a couple of molecules to manipulate this pathway and get the immune system's desired response in our previous experiences. Besides, the outgrowth of the studies on ocular Adenosine in recent years has significantly enhanced the knowledge about Adenosine and its role in ocular immunology and the inflammatory response of the eye. Glaucoma is the second leading cause of blindness globally, and the recent application of Adenosine and its derivatives has shown the critical role of the adenosine pathway in its pathophysiology. However, despite a very promising background, the phase III clinical trial of Trabodenoson failed to achieve the non-inferiority goals of the study. In this review, we discuss different aspects of the abovementioned pathway in ophthalmology and ocular immunology; following a brief evaluation of the current immunotherapeutic strategies, we try to elucidate the links between cancer immunotherapy and glaucoma in order to introduce novel therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Shahin Hallaj
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA
| | | | - Amin Arasteh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Ghorbani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel Lee
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Dal-Fabbro R, Cosme-Silva L, Capalbo LC, Chaves-Neto AH, Ervolino E, Cintra LTA, Gomes-Filho JE. Excessive caffeine intake increases bone resorption associated with periapical periodontitis in rats. Int Endod J 2021; 54:1861-1870. [PMID: 34037986 DOI: 10.1111/iej.13578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022]
Abstract
AIM To evaluate the effect of excessive caffeine intake on the inflammation/resorption processes associated with periapical periodontitis (PP) in rats. METHODOLOGY Sixteen Wistar rats were used. Periapical periodontitis was induced in the four first molars in each animal. The animals were arranged into two groups: control (C)-rats with periapical periodontitis; and caffeine (CAF)-rats with periapical periodontitis under caffeine administration protocol. The CAF animals received 10 mg/100 g of body weight/day of caffeine via gavage starting fifteen days before PP induction and continuing for thirty more days until euthanasia. On the 30th day, the animals were euthanized and the jaws removed for microcomputed tomography, histological and immunohistochemical analysis for RANKL, OPG, TRAP, IL-10, TNF-⍺ and IL-1β. The Mann-Whitney test was performed for nonparametric data, and Student's t test was performed for parametric data, using p < .05. RESULTS There was no significant difference in the weight change between the groups. The median score of the inflammatory process was significantly greater in the CAF group (3) compared with the C group (2), p = .0256. Bone resorption was greater in the group consuming caffeine (1.08 ± 0.15 mm3 ) compared with the C group (0.88 ± 0.10 mm3 ), p = .0346. The immunolabelling for RANKL, TRAP and IL-1β was significantly higher in the CAF group when compared to the control, p < .05. No differences were found for the OPG, IL-10 and TNF-⍺ immunolabelling. CONCLUSION Excessive caffeine exposure via gavage in rats was able to exacerbate the volume of periapical bone destruction, and the inflammatory pattern deriving from periapical periodontitis altering the expression of RANKL, IL-1β and TRAP.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Preventive and Restorative Dentistry, Araçatuba, Brazil
| | - Leopoldo Cosme-Silva
- Department of Restorative Dentistry and Endodontics, School of Dentistry, Federal University of Alagoas (UFAL), Alagoas, Brazil
| | | | | | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | | | | |
Collapse
|
26
|
Patritti-Cram J, Coover RA, Jankowski MP, Ratner N. Purinergic signaling in peripheral nervous system glial cells. Glia 2021; 69:1837-1851. [PMID: 33507559 PMCID: PMC8192487 DOI: 10.1002/glia.23969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2‐driven β‐arrestin‐mediated AKT signaling is aberrant. SC‐released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium‐independent and calcium‐dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Basic Pharmaceutical Sciences, High Point University, High Point, North Carolina, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
Stoddart LA, Kindon ND, Otun O, Harwood CR, Patera F, Veprintsev DB, Woolard J, Briddon SJ, Franks HA, Hill SJ, Kellam B. Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells. Commun Biol 2020; 3:722. [PMID: 33247190 PMCID: PMC7695831 DOI: 10.1038/s42003-020-01451-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
To study the localisation of G protein-coupled receptors (GPCR) in their native cellular environment requires their visualisation through fluorescent labelling. To overcome the requirement for genetic modification of the receptor or the limitations of dissociable fluorescent ligands, here we describe rational design of a compound that covalently and selectively labels a GPCR in living cells with a fluorescent moiety. We designed a fluorescent antagonist, in which the linker incorporated between pharmacophore (ZM241385) and fluorophore (sulfo-cyanine5) is able to facilitate covalent linking of the fluorophore to the adenosine A2A receptor. We pharmacologically and biochemically demonstrate irreversible fluorescent labelling without impeding access to the orthosteric binding site and demonstrate its use in endogenously expressing systems. This offers a non-invasive and selective approach to study function and localisation of native GPCRs.
Collapse
Affiliation(s)
- Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Nicholas D Kindon
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Omolade Otun
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Clare R Harwood
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Foteini Patera
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Dmitry B Veprintsev
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Jeanette Woolard
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
| | - Hester A Franks
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK.
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Nottingham, Midlands, NG7 2RD, UK.
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
28
|
Pallio G, Bitto A, Ieni A, Irrera N, Mannino F, Pallio S, Altavilla D, Squadrito F, Scarpignato C, Minutoli L. Combined Treatment with Polynucleotides and Hyaluronic Acid Improves Tissue Repair in Experimental Colitis. Biomedicines 2020; 8:biomedicines8100438. [PMID: 33092298 PMCID: PMC7589719 DOI: 10.3390/biomedicines8100438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic conditions that can benefit from the combined treatment of adenosine receptor agonists and hyaluronic acid (HA), which, binding the CD44, has pro-survival effects. Therefore, this study investigated the effects of a mixture of polynucleotides and HA in an experimental model of dinitrobenzenesulfonic acid (DNBS)-induced colitis. A group of 40 rats received a single intra-colonic instillation of DNBS, and after 6 h, animals were randomized to receive daily: (i) saline solution; (ii) polynucleotides (Poly; 8 mg/kg); (iii) polynucleotides (8 mg/kg) plus hyaluronic acid (HA; 15 mg/kg); and (iv) hyaluronic acid (HA; 15 mg/kg). Rats in the control group (n = 10) received saline solution only. Seven days after induction, animals receiving Poly plus HA showed reduced clinical signs, weight loss and colon shortening, ameliorated macroscopic and histological damage, and apoptosis. Moreover, the combined treatment reduced the positivity in the colonic infiltrate of CD3 positive T cells, CD20 positive B cells and CD44. Furthermore, Poly plus HA reduced colonic myeloperoxidase activity and malondialdehyde, indicating a dampening of the inflammatory infiltrate and oxidation products. Our research demonstrated that a combined treatment of polynucleotides with hyaluronic acid had a protective effect in a model of ulcerative colitis, suggesting that this association deserves further attention for the treatment of IBDs.
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.B.); (N.I.); (F.M.); (S.P.); (F.S.); (L.M.)
- Correspondence:
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.B.); (N.I.); (F.M.); (S.P.); (F.S.); (L.M.)
| | - Antonio Ieni
- Department of Human Pathology and Evolutive Age “Gaetano Barresi”, University of Messina, Via C. Valeria, 98125 Messina, Italy;
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.B.); (N.I.); (F.M.); (S.P.); (F.S.); (L.M.)
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.B.); (N.I.); (F.M.); (S.P.); (F.S.); (L.M.)
| | - Socrate Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.B.); (N.I.); (F.M.); (S.P.); (F.S.); (L.M.)
| | - Domenica Altavilla
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy;
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.B.); (N.I.); (F.M.); (S.P.); (F.S.); (L.M.)
| | - Carmelo Scarpignato
- Department of Health Sciences, United Campus of Malta, Msida MSD 2080, Malta;
- Faculty of Medicine, Chinese University of Hong Kong, ShaTin, Hong Kong
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.B.); (N.I.); (F.M.); (S.P.); (F.S.); (L.M.)
| |
Collapse
|
29
|
Doyle TM, Largent-Milnes TM, Chen Z, Staikopoulos V, Esposito E, Dalgarno R, Fan C, Tosh DK, Cuzzocrea S, Jacobson KA, Trang T, Hutchinson MR, Bennett GJ, Vanderah TW, Salvemini D. Chronic Morphine-Induced Changes in Signaling at the A 3 Adenosine Receptor Contribute to Morphine-Induced Hyperalgesia, Tolerance, and Withdrawal. J Pharmacol Exp Ther 2020; 374:331-341. [PMID: 32434943 PMCID: PMC7372916 DOI: 10.1124/jpet.120.000004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Treating chronic pain by using opioids, such as morphine, is hampered by the development of opioid-induced hyperalgesia (OIH; increased pain sensitivity), antinociceptive tolerance, and withdrawal, which can contribute to dependence and abuse. In the central nervous system, the purine nucleoside adenosine has been implicated in beneficial and detrimental actions of morphine, but the extent of their interaction remains poorly understood. Here, we demonstrate that morphine-induced OIH and antinociceptive tolerance in rats is associated with a twofold increase in adenosine kinase (ADK) expression in the dorsal horn of the spinal cord. Blocking ADK activity in the spinal cord provided greater than 90% attenuation of OIH and antinociceptive tolerance through A3 adenosine receptor (A3AR) signaling. Supplementing adenosine signaling with selective A3AR agonists blocked OIH and antinociceptive tolerance in rodents of both sexes. Engagement of A3AR in the spinal cord with an ADK inhibitor or A3AR agonist was associated with reduced dorsal horn of the spinal cord expression of the NOD-like receptor pyrin domain-containing 3 (60%-75%), cleaved caspase 1 (40%-60%), interleukin (IL)-1β (76%-80%), and tumor necrosis factor (50%-60%). In contrast, the neuroinhibitory and anti-inflammatory cytokine IL-10 increased twofold. In mice, A3AR agonists prevented the development of tolerance in a model of neuropathic pain and reduced naloxone-dependent withdrawal behaviors by greater than 50%. These findings suggest A3AR-dependent adenosine signaling is compromised during sustained morphine to allow the development of morphine-induced adverse effects. These findings raise the intriguing possibility that A3AR agonists may be useful adjunct to opioids to manage their unwanted effects. SIGNIFICANCE STATEMENT: The development of hyperalgesia and antinociceptive tolerance during prolonged opioid use are noteworthy opioid-induced adverse effects that reduce opioid efficacy for treating chronic pain and increase the risk of dependence and abuse. We report that in rodents, these adverse effects are due to reduced adenosine signaling at the A3AR, resulting in NOD-like receptor pyrin domain-containing 3-interleukin-1β neuroinflammation in spinal cord. These effects are attenuated by A3AR agonists, suggesting that A3AR may be a target for therapeutic intervention with selective A3AR agonist as opioid adjuncts.
Collapse
Affiliation(s)
- Timothy M Doyle
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Tally M Largent-Milnes
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Zhoumou Chen
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Vasiliki Staikopoulos
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Emanuela Esposito
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Rebecca Dalgarno
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Churmy Fan
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Dilip K Tosh
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Salvatore Cuzzocrea
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Kenneth A Jacobson
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Tuan Trang
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Mark R Hutchinson
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Gary J Bennett
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Todd W Vanderah
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, Missouri (T.M.D., Z.C., D.S.); Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona (T.M.L.-M., T.W.V.); Discipline of Physiology, Institute for Photonics and Advanced Sensing, ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia (V.S., M.R.H.); Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy (E.E., S.C.); Departments of Comparative Biology and Experimental Medicine and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada (R.D., C.F., T.T.); Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (D.K.T., K.A.J.); and Department of Anesthesiology, University of California San Diego, La Jolla, California (G.J.B.)
| |
Collapse
|
30
|
Purinergic Signaling in the Hallmarks of Cancer. Cells 2020; 9:cells9071612. [PMID: 32635260 PMCID: PMC7407645 DOI: 10.3390/cells9071612] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex expression of an altered state of cellular differentiation associated with severe clinical repercussions. The effort to characterize this pathological entity to understand its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis, failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it has been demonstrated that various physiological systems misfunction in well-characterized ways upon the onset and establishment of the carcinogenic process. This is the case with the purinergic system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP), adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been recognized as a potential therapeutic target in cancerous and tumoral ailments.
Collapse
|
31
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
32
|
Zhang Y, Zhu H, Layritz F, Luo H, Wohlfahrt T, Chen CW, Soare A, Bergmann C, Ramming A, Groeber F, Reuter C, Fornasini G, Soukhareva N, Schreiber B, Ramamurthy S, Amann K, Schett G, Distler JHW. Recombinant Adenosine Deaminase Ameliorates Inflammation, Vascular Disease, and Fibrosis in Preclinical Models of Systemic Sclerosis. Arthritis Rheumatol 2020; 72:1385-1395. [PMID: 32182396 DOI: 10.1002/art.41259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by fibrosis, vascular disease, and inflammation. Adenosine signaling plays a central role in fibroblast activation. We undertook this study to evaluate the therapeutic effects of adenosine depletion with PEGylated adenosine deaminase (PEG-ADA) in preclinical models of SSc. METHODS The effects of PEG-ADA on inflammation, vascular remodeling, and tissue fibrosis were analyzed in Fra-2 mice and in a B10.D2→BALB/c (H-2d ) model of sclerodermatous chronic graft-versus-host disease (GVHD). The effects of PEG-ADA were confirmed in vitro in a human full-thickness skin model. RESULTS PEG-ADA effectively inhibited myofibroblast differentiation and reduced pulmonary fibrosis by 34.3% (with decreased collagen expression) (P = 0.0079; n = 6), dermal fibrosis by 51.8% (P = 0.0006; n = 6), and intestinal fibrosis by 17.7% (P = 0.0228; n = 6) in Fra-2 mice. Antifibrotic effects of PEG-ADA were also demonstrated in sclerodermatous chronic GVHD (reduced by 38.4%) (P = 0.0063; n = 8), and in a human full-thickness skin model. PEG-ADA treatment decreased inflammation and corrected the M2/Th2/group 2 innate lymphoid cell 2 bias. Moreover, PEG-ADA inhibited proliferation of pulmonary vascular smooth muscle cells (reduced by 40.5%) (P < 0.0001; n = 6), and prevented thickening of the vessel walls (reduced by 39.6%) (P = 0.0028; n = 6) and occlusions of pulmonary arteries (reduced by 63.9%) (P = 0.0147; n = 6). Treatment with PEG-ADA inhibited apoptosis of microvascular endothelial cells (reduced by 65.4%) (P = 0.0001; n = 6) and blunted the capillary rarefication (reduced by 32.5%) (P = 0.0199; n = 6). RNA sequencing demonstrated that treatment with PEG-ADA normalized multiple pathways related to fibrosis, vasculopathy, and inflammation in Fra-2 mice. CONCLUSION Treatment with PEG-ADA ameliorates the 3 cardinal features of SSc in pharmacologically relevant and well-tolerated doses. These findings may have direct translational implications, as PEG-ADA has already been approved by the Food and Drug Administration for the treatment of patients with ADA-deficient severe combined immunodeficiency disease.
Collapse
Affiliation(s)
- Yun Zhang
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Honglin Zhu
- University of Erlangen-Nuremberg, Erlangen, Germany, and Xiangya Hospital and Central South University, Changsha, China
| | | | - Hui Luo
- Xiangya Hospital and Central South University, Changsha, China
| | | | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Florian Groeber
- Universitätsklinikum Würzburg and Fraunhofer Institute for Interfacial Engineering and Biotechnology, Würzburg, Germany
| | - Christian Reuter
- Universitätsklinikum Würzburg and Fraunhofer Institute for Interfacial Engineering and Biotechnology, Würzburg, Germany
| | | | | | | | | | | | - Georg Schett
- University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
33
|
Beyond urate lowering: Analgesic and anti-inflammatory properties of allopurinol. Semin Arthritis Rheum 2020; 50:444-450. [DOI: 10.1016/j.semarthrit.2019.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
|
34
|
Basu M, Gupta P, Dutta A, Jana K, Ukil A. Increased host ATP efflux and its conversion to extracellular adenosine is crucial for establishing Leishmania infection. J Cell Sci 2020; 133:jcs239939. [PMID: 32079656 DOI: 10.1242/jcs.239939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Intracellular survival of Leishmania donovani demands rapid production of host ATP for its sustenance. However, a gradual decrease in intracellular ATP in spite of increased glycolysis suggests ATP efflux during infection. Accordingly, upon infection, we show here that ATP is exported and the major exporter was pannexin-1, leading to raised extracellular ATP levels. Extracellular ATP shows a gradual decrease after the initial increase, and analysis of cell surface ATP-degrading enzymes revealed induction of the ectonucleotidases CD39 and CD73. Ectonucleotidase-mediated ATP degradation leads to increased extracellular adenosine (eADO), and inhibition of CD39 and CD73 in infected cells decreased adenosine concentration and parasite survival, documenting the importance of adenosine in infection. Inhibiting adenosine uptake by cells did not affect parasite survival, suggesting that eADO exerts its effect through receptor-mediated signalling. We also show that Leishmania induces the expression of adenosine receptors A2AR and A2BR, both of which are important for anti-inflammatory responses. Treating infected BALB/c mice with CD39 and CD73 inhibitors resulted in decreased parasite burden and increased host-favourable cytokine production. Collectively, these observations indicate that infection-induced ATP is exported, and after conversion into adenosine, propagates infection via receptor-mediated signalling.
Collapse
Affiliation(s)
- Moumita Basu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Purnima Gupta
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 69372, Lyon Cedex 08, France
| | - Ananya Dutta
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme, VIIM, Kolkata, 700054, West Bengal, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, West Bengal, India
| |
Collapse
|
35
|
Polydeoxyribonucleotide Exerts Therapeutic Effect by Increasing VEGF and Inhibiting Inflammatory Cytokines in Ischemic Colitis Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2169083. [PMID: 32149087 PMCID: PMC7056995 DOI: 10.1155/2020/2169083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Abstract
Ischemic colitis is resulted from an inadequate blood supply to a segment or entire colon. Polydeoxyribonucleotide (PDRN), extracted from salmon sperm, has been reported to exert anti-inflammatory and anti-ischemic effects through the adenosine A2A receptor (A2AR). We investigated whether PDRN possesses therapeutic effectiveness on ischemic colitis rats. Ischemic colitis was induced by selective devascularization. The skin temperature on the ischemic colitis-induced region was determined. To assess the colonic damage score and collagen deposition, colonic tissue sections were stained with hematoxylin and eosin (H&E), and Masson trichrome staining was performed. Western blot analysis for A2AR, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, Bax, Bcl-2, and extracellular signal-regulated kinase 1/2 (ERK1/2) was performed. Skin temperature was increased and mucosal damage and collagen deposition were observed in the affected colonic tissues in the ischemic colitis rats. Expressions of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and inflammatory mediator (COX-2) were upregulated in the ischemic colitis rats. Apoptosis was increased by decreasing the ratio of Bcl-2 to Bax and by suppressing the phosphorylated form of ERK1/2 expression in the ischemic colitis rats. Treatment with PDRN alleviated mucosal damage reduced the expressions of inflammatory cytokines and COX-2 and inhibited apoptosis in the ischemic colitis rats. PDRN treatment more enhanced the expressions of A2AR and VEGF in the ischemic colitis rats. PDRN showed therapeutic effectiveness on ischemic colitis by increasing VEGF expression and inhibiting inflammatory cytokines and COX-2 through enhancing A2AR expression.
Collapse
|
36
|
Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Int J Mol Sci 2019; 20:ijms20225698. [PMID: 31739402 PMCID: PMC6888217 DOI: 10.3390/ijms20225698] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The adenosine pathway plays a key role in modulating immune responses in physiological and pathological conditions. Physiologically, anti-inflammatory effects of adenosine balance pro-inflammatory adenosine 5'-triphosphate (ATP), protecting tissues from damage caused by activated immune cells. Pathologically, increased adenosine monophosphatase (AMPase) activity in tumors leads to increased adenosine production, generating a deeply immunosuppressed microenvironment and promoting cancer progression. Adenosine emerges as a promising target for cancer therapy. It mediates protumor activities by inducing tumor cell proliferation, angiogenesis, chemoresistance, and migration/invasion by tumor cells. It also inhibits the functions of immune cells, promoting the formation of a tumor-permissive immune microenvironment and favoriting tumor escape from the host immune system. Pharmacologic inhibitors, siRNA or antibodies specific for the components of the adenosine pathway, or antagonists of adenosine receptors have shown efficacy in pre-clinical studies in various in vitro and in vivo tumor models and are entering the clinical arena. Inhibition of the adenosine pathway alone or in combination with classic immunotherapies offers a potentially effective therapeutic strategy in cancer.
Collapse
|
37
|
Pal Y, Bandyopadhyay N, Pal RS, Ahmed S, Bandopadhyay S. Perspective and Potential of A2A and A3 Adenosine Receptors as Therapeutic Targets for the Treatment of Rheumatoid Arthritis. Curr Pharm Des 2019; 25:2859-2874. [DOI: 10.2174/1381612825666190710111658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023]
Abstract
Adenosine is a purine nucleoside which is an effective controller of inflammation. The inflammatory effect of adenosine is expressed via its four receptor subtypes viz. A1, A2A, A2B and A3. The various inflammatory conditions including rheumatoid arthritis (RA) are initiated by adenosine receptors of which A2A and A3 play a vital role. RA primarily is an auto-immune disorder which is manifested as chronic inflammation in the synovial lining of joints. In order to develop an effective treatment, the role of cytokines, IL–1, TNF-α and IL–6 is crucial. Besides, the knowledge of PI3K-PKB/Akt and NF-kB signaling pathway is also important to understand the antiinflammatory targets. Methotrexate along with various other molecules like, NSAIDs and DMARDs are presently used as treatment lines for controlling RA. The enhanced knowledge of the preclinical stages and pathogenesis along with recent potent therapeutics raises the hopes that RA can be prevented in the near future.
Collapse
Affiliation(s)
- Yogendra Pal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Nabamita Bandyopadhyay
- Molecular Biology Division, National Institute of Malarial Research (NIMR), Dwarka, New Delhi, Delhi 110077, India
| | - Rashmi S. Pal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Sarfaraz Ahmed
- Global Institute of Pharmaceutical Education and Research, Kashipur, Udham Singh Nagar, Uttarakhand 244713, India
| | - Shantanu Bandopadhyay
- Faculty of Pharmacy, Naraina Vidya Peeth Group of Institutions, Panki, Kanpur, Uttar Pradesh 208020, India
| |
Collapse
|
38
|
Stamatis D, Lagarias P, Barkan K, Vrontaki E, Ladds G, Kolocouris A. Structural Characterization of Agonist Binding to an A 3 Adenosine Receptor through Biomolecular Simulations and Mutagenesis Experiments. J Med Chem 2019; 62:8831-8846. [PMID: 31502843 DOI: 10.1021/acs.jmedchem.9b01164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adenosine A3 receptor (A3R) binds adenosine and is a drug target against cancer cell proliferation. Currently, there is no experimental structure of A3R. Here, we have generated a molecular model of A3R in complex with two agonists, the nonselective 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-β-d-ribofuranuronamide (NECA) and the selective 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA). Molecular dynamics simulations of the wild-type A3R in complex with both agonists, combined with in vitro mutagenic studies revealed important residues for binding. Further, molecular mechanics-generalized Born surface area calculations were able to distinguish mutations that reduce or negate agonistic activity from those that maintained or increased the activity. Our studies reveal that selectivity of IB-MECA toward A3R requires not only direct interactions with residues within the orthosteric binding area but also with remote residues. Although V1695.30 is considered to be a selectivity filter for A3R binders, when it was mutated to glutamic acid or alanine, the activity of IB-MECA increased by making new van der Waals contacts with TM5. This result may have implications in the design of new A3R agonists.
Collapse
Affiliation(s)
- Dimitrios Stamatis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| | - Panagiotis Lagarias
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| | - Kerry Barkan
- Department of Pharmacology , University of Cambridge , Tennis Court Road , CB2 1PD Cambridge U.K
| | - Eleni Vrontaki
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| | - Graham Ladds
- Department of Pharmacology , University of Cambridge , Tennis Court Road , CB2 1PD Cambridge U.K
| | - Antonios Kolocouris
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| |
Collapse
|
39
|
Arab S, Hadjati J. Adenosine Blockage in Tumor Microenvironment and Improvement of Cancer Immunotherapy. Immune Netw 2019; 19:e23. [PMID: 31501711 PMCID: PMC6722273 DOI: 10.4110/in.2019.19.e23] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/30/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been introduced into cancer treatment methods, but different problems have restricted the efficacy of these protocols in clinical trials such as the presence of various immunomodulatory factors in the tumor microenvironment. Adenosine is an immunosuppressive metabolite produced by the tumor to promote growth, invasion, metastasis, and immune evasion. Many studies about adenosine and its metabolism in cancer have heightened interest in pursuing this treatment approach. It seems that targeting the adenosine pathway in combination with immunotherapy may lead to efficient antitumor response. In this review, we provide information on the roles of both adenosine and CD73 in the immune system and tumor development. We also describe recent studies about combination therapy with both purinergic inhibitors and other immunotherapeutic methods.
Collapse
Affiliation(s)
- Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
N4-acetylcytidine is required for sustained NLRP3 inflammasome activation via HMGB1 pathway in microglia. Cell Signal 2019; 58:44-52. [PMID: 30853521 DOI: 10.1016/j.cellsig.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 01/12/2023]
|
41
|
Wan TC, Tampo A, Kwok WM, Auchampach JA. Ability of CP-532,903 to protect mouse hearts from ischemia/reperfusion injury is dependent on expression of A 3 adenosine receptors in cardiomyoyctes. Biochem Pharmacol 2019; 163:21-31. [PMID: 30710517 DOI: 10.1016/j.bcp.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
A3 adenosine receptor (A3AR) agonists are effective at limiting injury caused by ischemia/reperfusion injury of the heart in experimental animal models. However, understanding of their mechanism of action, which is likely multifactorial, remains incomplete. In prior studies, it has been demonstrated that A3AR-mediated ischemic protection is blocked by glibenclamide and is absent in Kir6.2 gene ablated mice that lack the pore-forming subunit of the ATP-sensitive potassium (KATP) channel, suggesting one contributing mechanism may involve accelerated activation of KATP channels. However, presence of A3ARs in the myocardium has yet to be established. Utilizing a whole-cell recording technique, in this study we confirm functional expression of the A3AR in adult mouse ventricular cardiomyocytes, coupled to activation of ATP-dependent potassium (KATP) channels via Gi inhibitory proteins. We further show that ischemic protection provided by the selective A3AR agonist CP-532,903 in an isolated, buffer-perfused heart model is lost completely in Adora3LoxP/LoxP;Myh6-Cre mice, which is a newly developed model developed and comprehensively described herein whereby the A3AR gene (Adora3) is deleted exclusively in cardiomyocytes. Our findings, taken together with previously published work, are consistent with the hypothesis that A3AR agonists provide ischemic tolerance, at least in part, by facilitating opening of myocardial KATP channels.
Collapse
Affiliation(s)
- Tina C Wan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Akihito Tampo
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - John A Auchampach
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
42
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
43
|
Zhang M, Zeng X, Yang Q, Xu J, Liu Z, Zhou Y, Cao Y, Zhang X, An X, Xu Y, Huang L, Han Z, Wang T, Wu C, Fulton DJ, Weintraub NL, Hong M, Huo Y. Ablation of Myeloid ADK (Adenosine Kinase) Epigenetically Suppresses Atherosclerosis in ApoE -/- (Apolipoprotein E Deficient) Mice. Arterioscler Thromb Vasc Biol 2018; 38:2780-2792. [PMID: 30571174 PMCID: PMC6309817 DOI: 10.1161/atvbaha.118.311806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
Objective- Monocyte-derived foam cells are one of the key players in the formation of atherosclerotic plaques. Adenosine receptors and extracellular adenosine have been demonstrated to modulate foam cell formation. ADK (adenosine kinase) is a major enzyme regulating intracellular adenosine levels, but its functional role in myeloid cells remains poorly understood. To enhance intracellular adenosine levels in myeloid cells, ADK was selectively deleted in novel transgenic mice using Cre-LoxP technology, and foam cell formation and the development of atherosclerotic lesions were determined. Approach and Results- ADK was upregulated in macrophages on ox-LDL (oxidized low-density lipoprotein) treatment in vitro and was highly expressed in foam cells in atherosclerotic plaques. Atherosclerotic mice deficient in ADK in myeloid cells were generated by breeding floxed ADK (ADKF/F) mice with LysM-Cre (myeloid-specific Cre recombinase expressing) mice and ApoE-/- (apolipoprotein E deficient) mice. Mice absent ADK in myeloid cells exhibited much smaller atherosclerotic plaques compared with controls. In vitro assays showed that ADK deletion or inhibition resulted in increased intracellular adenosine and reduced DNA methylation of the ABCG1 (ATP-binding cassette transporter G1) gene. Loss of methylation was associated with ABCG1 upregulation, enhanced cholesterol efflux, and eventually decreased foam cell formation. Conclusions- Augmentation of intracellular adenosine levels through ADK knockout in myeloid cells protects ApoE-/- mice against atherosclerosis by reducing foam cell formation via the epigenetic regulation of cholesterol trafficking. ADK inhibition is a promising approach for the treatment of atherosclerotic diseases.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Adenosine Kinase/deficiency
- Adenosine Kinase/genetics
- Animals
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cells, Cultured
- Cholesterol/metabolism
- DNA Methylation
- Disease Models, Animal
- Epigenesis, Genetic
- Female
- Foam Cells/enzymology
- Foam Cells/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic
- Signal Transduction
Collapse
Affiliation(s)
- Min Zhang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xianqiu Zeng
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qiuhua Yang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiean Xu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhiping Liu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yaqi Zhou
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yapeng Cao
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoyu Zhang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaofei An
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yiming Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77840, USA
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mei Hong
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
44
|
Carlin JL, Jain S, Duroux R, Suresh RR, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML. Activation of adenosine A 2A or A 2B receptors causes hypothermia in mice. Neuropharmacology 2018; 139:268-278. [PMID: 29548686 PMCID: PMC6067974 DOI: 10.1016/j.neuropharm.2018.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
Extracellular adenosine is a danger/injury signal that initiates protective physiology, such as hypothermia. Adenosine has been shown to trigger hypothermia via agonism at A1 and A3 adenosine receptors (A1AR, A3AR). Here, we find that adenosine continues to elicit hypothermia in mice null for A1AR and A3AR and investigated the effect of agonism at A2AAR or A2BAR. The poorly brain penetrant A2AAR agonists CGS-21680 and PSB-0777 caused hypothermia, which was not seen in mice lacking A2AAR. MRS7352, a likely non-brain penetrant A2AAR antagonist, inhibited PSB-0777 hypothermia. While vasodilation is probably a contributory mechanism, A2AAR agonism also caused hypometabolism, indicating that vasodilation is not the sole mechanism. The A2BAR agonist BAY60-6583 elicited hypothermia, which was lost in mice null for A2BAR. Low intracerebroventricular doses of BAY60-6583 also caused hypothermia, indicating a brain site of action, with neuronal activation in the preoptic area and paraventricular nucleus of the hypothalamus. Thus, agonism at any one of the canonical adenosine receptors, A1AR, A2AAR, A2BAR, or A3AR, can cause hypothermia. This four-fold redundancy in adenosine-mediated initiation of hypothermia may reflect the centrality of hypothermia as a protective response.
Collapse
Affiliation(s)
- Jesse Lea Carlin
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Romain Duroux
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Ankylosing spondylitis monocyte-derived macrophages express increased level of A2A adenosine receptor and decreased level of ectonucleoside triphosphate diphosphohydrolase-1 (CD39), A1 and A2B adenosine receptors. Clin Rheumatol 2018. [DOI: 10.1007/s10067-018-4055-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Bowser JL, Phan LH, Eltzschig HK. The Hypoxia-Adenosine Link during Intestinal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:897-907. [PMID: 29358413 PMCID: PMC5784778 DOI: 10.4049/jimmunol.1701414] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Luan H Phan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
47
|
Du L, Gao ZG, Paoletta S, Wan TC, Gizewski ET, Barbour S, van Veldhoven JPD, IJzerman AP, Jacobson KA, Auchampach JA. Species differences and mechanism of action of A 3 adenosine receptor allosteric modulators. Purinergic Signal 2017; 14:59-71. [PMID: 29170977 DOI: 10.1007/s11302-017-9592-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/01/2017] [Indexed: 02/01/2023] Open
Abstract
Activity of the A3 adenosine receptor (AR) allosteric modulators LUF6000 (2-cyclohexyl-N-(3,4-dichlorophenyl)-1H-imidazo [4,5-c]quinolin-4-amine) and LUF6096 (N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarbox-amide) was compared at four A3AR species homologs used in preclinical drug development. In guanosine 5'-[γ-[35S]thio]triphosphate ([35S]GTPγS) binding assays with cell membranes isolated from human embryonic kidney cells stably expressing recombinant A3ARs, both modulators substantially enhanced agonist efficacy at human, dog, and rabbit A3ARs but provided only weak activity at mouse A3ARs. For human, dog, and rabbit, both modulators increased the maximal efficacy of the A3AR agonist 2-chloro-N 6-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide as well as adenosine > 2-fold, while slightly reducing potency in human and dog. Based on results from N 6-(4-amino-3-[125I]iodobenzyl)adenosine-5'-N-methylcarboxamide ([125I]I-AB-MECA) binding assays, we hypothesize that potency reduction is explained by an allosterically induced slowing in orthosteric ligand binding kinetics that reduces the rate of formation of ligand-receptor complexes. Mutation of four amino acid residues of the human A3AR to the murine sequence identified the extracellular loop 1 (EL1) region as being important in selectively controlling the allosteric actions of LUF6096 on [125I]I-AB-MECA binding kinetics. Homology modeling suggested interaction between species-variable EL1 and agonist-contacting EL2. These results indicate that A3AR allostery is species-dependent and provide mechanistic insights into this therapeutically promising class of agents.
Collapse
Affiliation(s)
- Lili Du
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 200892-0810, USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 200892-0810, USA
| | - Tina C Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Elizabeth T Gizewski
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Samantha Barbour
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacobus P D van Veldhoven
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 200892-0810, USA
| | - John A Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
48
|
Bowser JL, Lee JW, Yuan X, Eltzschig HK. The hypoxia-adenosine link during inflammation. J Appl Physiol (1985) 2017; 123:1303-1320. [PMID: 28798196 DOI: 10.1152/japplphysiol.00101.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/18/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
Hypoxic tissue conditions occur during a number of inflammatory diseases and are associated with the breakdown of barriers and induction of proinflammatory responses. At the same time, hypoxia is also known to induce several adaptive and tissue-protective pathways that dampen inflammation and protect tissue integrity. Hypoxia-inducible factors (HIFs) that are stabilized during inflammatory or hypoxic conditions are at the center of mediating these responses. In the past decade, several genes regulating extracellular adenosine metabolism and signaling have been identified as being direct targets of HIFs. Here, we discuss the relationship between inflammation, hypoxia, and adenosine and that HIF-driven adenosine metabolism and signaling is essential in providing tissue protection during inflammatory conditions, including myocardial injury, inflammatory bowel disease, and acute lung injury. We also discuss how the hypoxia-adenosine link can be targeted therapeutically in patients as a future treatment approach for inflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Jae W Lee
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|
49
|
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
50
|
Carlin JL, Jain S, Gizewski E, Wan TC, Tosh DK, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML. Hypothermia in mouse is caused by adenosine A 1 and A 3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology 2017; 114:101-113. [PMID: 27914963 PMCID: PMC5183552 DOI: 10.1016/j.neuropharm.2016.11.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/02/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1-/-, Adora3-/-) mice. Confirming prior data, stimulation of the A3 adenosine receptor (AR) induced hypothermia via peripheral mast cell degranulation, histamine release, and activation of central histamine H1 receptors. In contrast, A1AR agonists and AMP both acted centrally to cause hypothermia. Commonly used, selective A1AR agonists, including N6-cyclopentyladenosine (CPA), N6-cyclohexyladenosine (CHA), and MRS5474, caused hypothermia via both A1AR and A3AR when given intraperitoneally. Intracerebroventricular dosing, low peripheral doses of Cl-ENBA [(±)-5'-chloro-5'-deoxy-N6-endo-norbornyladenosine], or using Adora3-/- mice allowed selective stimulation of A1AR. AMP-stimulated hypothermia can occur independently of A1AR, A3AR, and mast cells. A1AR and A3AR agonists and AMP cause regulated hypothermia that was characterized by a drop in total energy expenditure, physical inactivity, and preference for cooler environmental temperatures, indicating a reduced body temperature set point. Neither A1AR nor A3AR was required for fasting-induced torpor. A1AR and A3AR agonists and AMP trigger regulated hypothermia via three distinct mechanisms.
Collapse
Affiliation(s)
- Jesse Lea Carlin
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Elizabeth Gizewski
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Tina C Wan
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|