1
|
Khorrami S, Dogani M, Mahani SE, Moghaddam MM, Taheri RA. Neuroprotective activity of green synthesized silver nanoparticles against methamphetamine-induced cell death in human neuroblastoma SH-SY5Y cells. Sci Rep 2023; 13:11867. [PMID: 37481580 PMCID: PMC10363122 DOI: 10.1038/s41598-023-37917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023] Open
Abstract
The present study aimed to investigate the neuroprotective activity of the black peel pomegranate extract, and silver nanoparticles (AgNPs) biosynthesized using the extract. We pretreated the human neuroblastoma SH-SY5 cells with the extract and AgNPs and evaluated the neuroprotective activity of these agents against methamphetamine (Meth) cytotoxicity. The NPs were spherical with 19 ± 8 nm size, - 28 mV surface charge, and 0.20 PDI. Meth killed the cells by increasing proapoptotic (Bax, PTEN, AKT, PI3K, NF-κB, P53, TNF-α, Cyt C, and Cas 3) and decreasing the antiapoptotic genes (Bcl-2) expression. Exposure to Meth caused DNA fragmentation and increased the intercellular ROS and malondialdehyde (MDA) levels while reducing the mitochondrial membrane potential (MMP). A 4-h pretreatment of the cells with the extract and AgNPs could retain the viability of the cells above 80% by increasing the Bcl-2 expression up to fourfold and inhibiting the cell death pathways. ROS, MDA, and MMP levels in the pretreated cells were close to the control group. The percentage of necrosis in cells pretreated with the extract and AgNPs declined to 32% and 8%, respectively. Our promising findings indicated that AgNPs could reduce Meth-induced oxidative stress and prevent necrotic and apoptotic cell death by regulating related genes' expression.
Collapse
Affiliation(s)
- Sadegh Khorrami
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Manijeh Dogani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Watling SE, Jagasar S, McCluskey T, Warsh J, Rhind SG, Truong P, Chavez S, Houle S, Tong J, Kish SJ, Boileau I. Imaging oxidative stress in brains of chronic methamphetamine users: A combined 1H-magnetic resonance spectroscopy and peripheral blood biomarker study. Front Psychiatry 2023; 13:1070456. [PMID: 36704729 PMCID: PMC9871559 DOI: 10.3389/fpsyt.2022.1070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Preclinical data suggest methamphetamine (MA), a widely used stimulant drug, can harm the brain by causing oxidative stress and inflammation, but only limited information is available in humans. We tested the hypothesis that levels of glutathione (GSH), a major antioxidant, would be lower in the brains of chronic human MA preferring polysubstance users. We also explored if concentrations of peripheral immunoinflammatory blood biomarkers were related with brain GSH concentrations. Methods 20 healthy controls (HC) (33 years; 11 M) and 14 MA users (40 years; 9 M) completed a magnetic resonance spectroscopy (MRS) scan, with GSH spectra obtained by the interleaved J-difference editing MEGA-PRESS method in anterior cingulate cortex (ACC) and left dorsolateral prefrontal cortex (DLPFC). Peripheral blood samples were drawn for measurements of immunoinflammatory biomarkers. Independent samples t-tests evaluated MA vs. HC differences in GSH. Results GSH levels did not differ between HC and MA users (ACC p = 0.30; DLPFC p = 0.85). A total of 17 of 25 immunoinflammatory biomarkers were significantly elevated in MA users and matrix metalloproteinase (MMP)-2 (r = 0.577, p = 0.039), myeloperoxidase (MPO) (r = -0.556, p = 0.049), and MMP-9 (r = 0.660, p = 0.038) were correlated with brain levels of GSH. Conclusion Normal brain GSH in living brain of chronic MA users is consistent with our previous postmortem brain finding and suggests that any oxidative stress caused by MA, at the doses used by our participants, might not be sufficient to cause either a compensatory increase in, or substantial overutilization of, this antioxidant. Additionally, more research is required to understand how oxidative stress and inflammatory processes are related and potentially dysregulated in MA use.
Collapse
Affiliation(s)
- Sarah E. Watling
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Samantha Jagasar
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tina McCluskey
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jerry Warsh
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Peter Truong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen J. Kish
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Al-Hakeim HK, Altufaili MF, Almulla AF, Moustafa SR, Maes M. Increased Lipid Peroxidation and Lowered Antioxidant Defenses Predict Methamphetamine Induced Psychosis. Cells 2022; 11:3694. [PMID: 36429122 PMCID: PMC9688750 DOI: 10.3390/cells11223694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND a significant percentage of methamphetamine (MA) dependent patients develop psychosis. The associations between oxidative pathways and MA-induced psychosis (MIP) are not well delineated. OBJECTIVE the aim of this study is to delineate whether acute MA intoxication in MA dependent patients is accompanied by increased nitro-oxidative stress and whether the latter is associated with MIP. METHOD we recruited 30 healthy younger males and 60 acutely intoxicated males with MA dependence and assessed severity of MA use and dependence and psychotic symptoms during intoxication, and serum oxidative toxicity (OSTOX) biomarkers including oxidized high (oxHDL) and low (oxLDL)-density lipoprotein, myeloperoxidase (MPO), malondialdehyde (MDA), and nitric oxide (NO), and antioxidant defenses (ANTIOX) including HDL-cholesterol, zinc, glutathione peroxidase (GPx), total antioxidant capacity (TAC), and catalase-1. RESULTS a large part (50%, n = 30) of patients with MA dependence could be allocated to a cluster characterized by high psychosis ratings including delusions, suspiciousness, conceptual disorganization and difficulties abstract thinking and an increased OSTOX/ANTIOX ratio. Partial Least Squares analysis showed that 29.9% of the variance in MIP severity (a first factor extracted from psychosis, hostility, excitation, mannerism, and formal thought disorder scores) was explained by HDL, TAC and zinc (all inversely) and oxLDL (positively). MA dependence and dosing explained together 44.7% of the variance in the OSTOX/ANTIOX ratio. CONCLUSIONS MA dependence and intoxication are associated with increased oxidative stress and lowered antioxidant defenses, both of which increase risk of MIP during acute intoxication. MA dependence is accompanied by increased atherogenicity due to lowered HDL and increased oxLDL and oxHDL.
Collapse
Affiliation(s)
| | | | - Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- School of Medicine, Barwon Health, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong VIC 3216, Australia
| |
Collapse
|
4
|
Miller AE, Daiwile AP, Cadet JL. Sex-Dependent Alterations in the mRNA Expression of Enzymes Involved in Dopamine Synthesis and Breakdown After Methamphetamine Self-Administration. Neurotox Res 2022; 40:1464-1478. [PMID: 35834057 DOI: 10.1007/s12640-022-00545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Sex differences have been reported in methamphetamine (METH) use disorder in humans and in animal models of METH exposure. Specifically, animals that self-administer METH show sex-related dissimilarities in dopamine (DA) metabolism. To better understand the molecular bases for the differences in DA metabolism, we measured the levels of mRNAs of enzymes that catalyze DA synthesis and breakdown in the prefrontal cortex (PFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and hippocampus (HIP) of rats that had self-administered METH. There were significant sex differences in control rats, with males having higher basal levels of Th in the PFC and dSTR, Ddc in the NAc, and MaoB in the HIP. In contrast, female controls showed higher basal levels of Comt in the HIP. Male and female METH SA rats also showed some distinct responses to the drug. Specifically, female METH rats exhibited increased expression of Ddc and MaoB, whereas male METH animals showed higher levels of Comt mRNA in the PFC compared to their respective controls. In the NAc, male METH rats displayed decreased Th and Ddc mRNA levels. Together, our results identified sex-dependent and region-specific changes in the mRNA expression of several enzymes involved in DA synthesis and breakdown in response to METH SA, with the majority of differences being observed in the mesocorticolimbic dopaminergic system. These findings are of significant translational importance providing further support for the inclusion of sex as an important variable when planning and evaluating therapeutic interventions against METH use disorder in human clinical studies.
Collapse
Affiliation(s)
- Aaron E Miller
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
5
|
Davis DL, Metzger DB, Vann PH, Wong JM, Subasinghe KH, Garlotte IK, Phillips NR, Shetty RA, Forster MJ, Sumien N. Sex differences in neurobehavioral consequences of methamphetamine exposure in adult mice. Psychopharmacology (Berl) 2022; 239:2331-2349. [PMID: 35347365 PMCID: PMC9232998 DOI: 10.1007/s00213-022-06122-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Recreational and medical use of stimulants is increasing, and their use may increase susceptibility to aging and promote neurobehavioral impairments. The long-term consequences of these psychostimulants and how they interact with age have not been fully studied. OBJECTIVES Our study investigated whether chronic exposure to the prototypical psychostimulant, methamphetamine (METH), at doses designed to emulate human therapeutic dosing, would confer a pro-oxidizing redox shift promoting long-lasting neurobehavioral impairments. METHODS Groups of 4-month-old male and female C57BL/6 J mice were administered non-contingent intraperitoneal injections of either saline or METH (1.4 mg/kg) twice a day for 4 weeks. Mice were randomly assigned to one experimental group: (i) short-term cognitive assessments (at 5 months), (ii) long-term cognitive assessments (at 9.5 months), and (ii) longitudinal motor assessments (at 5, 7, and 9 months). Brain regions were assessed for oxidative stress and markers of neurotoxicity after behavior testing. RESULTS Chronic METH exposure induced short-term effects on associative memory, gait speed, dopamine (DA) signaling, astrogliosis in females, and spatial learning and memory, balance, DA signaling, and excitotoxicity in males. There were no long-term effects of chronic METH on cognition; however, it decreased markers of excitotoxicity in the striatum and exacerbated age-associated motor impairments in males. CONCLUSION In conclusion, cognitive and motor functions were differentially and sex-dependently affected by METH exposure, and oxidative stress did not seem to play a role in the observed behavioral outcomes. Future studies are necessary to continue exploring the long-term neurobehavioral consequences of drug use in both sexes and the relationship between aging and drugs.
Collapse
Affiliation(s)
- Delaney L Davis
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Daniel B Metzger
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Jessica M Wong
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Kumudu H Subasinghe
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Isabelle K Garlotte
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, UNT HSC, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Michael J Forster
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, UNT HSC, Fort Worth, TX, USA.
| |
Collapse
|
6
|
Dalrymple A, McEwan M, Brandt M, Bielfeldt S, Bean E, Moga A, Coburn S, Hardie G. A novel clinical method to measure skin staining reveals activation of skin damage pathways by cigarette smoke. Skin Res Technol 2022; 28:162-170. [PMID: 34758171 PMCID: PMC9299119 DOI: 10.1111/srt.13108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Long-term use of cigarettes can result in localised staining and aging of smokers' skin. The use of tobacco heating products (THPs) and electronic cigarettes (ECs) has grown on a global scale; however, the long-term effect of these products' aerosols on consumers' skin is unknown. This pilot clinical study aimed to determine whether THP or EC aerosol exposure results in skin staining or activation of biomarkers associated with oxidative stress. MATERIALS AND METHODS Eight areas were identified on the backs of 10 subjects. Two areas were used for air control, and two areas exposed to 32-puffs of cigarette smoke (CS), THP or EC aerosols, which were delivered to the skin using a 3-cm diameter exposure chamber and smoke engine. Skin colour was measured using a Chromameter. Squalene (SQ), SQ monohydroperoxide (SQOOH) and malondialdehyde (MDA) levels were measured in sebum samples by mass spectrometry and catalase colorimetry. RESULTS CS exposure significantly increased skin staining, SQOOH and MDA levels and SQOOH/SQ ratio. THP and EC values were significantly lower than CS; EC values being comparable to air control. THP values were comparable to EC and air control at all endpoints, apart from skin staining. SQ and catalase levels did not change with exposure. CONCLUSIONS CS stained skin and activated pathways known to be associated with skin damage. THPs and ECs produced significantly lower values, suggesting they could offer hygiene and cosmetic benefits for consumers who switch exclusively from smoking cigarettes. Further studies are required to assess longer-term effects of ECs and THPs on skin function.
Collapse
Affiliation(s)
| | | | - Marianne Brandt
- proDERMInstitut für Angewandte Dermatologische ForschungHamburgGermany
| | - Stephan Bielfeldt
- proDERMInstitut für Angewandte Dermatologische ForschungHamburgGermany
| | | | | | | | | |
Collapse
|
7
|
Léger D, Gauriau C, Etzi C, Ralambondrainy S, Heusèle C, Schnebert S, Dubois A, Gomez-Merino D, Dumas M. "You look sleepy…" The impact of sleep restriction on skin parameters and facial appearance of 24 women. Sleep Med 2021; 89:97-103. [PMID: 34971928 DOI: 10.1016/j.sleep.2021.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Total sleep deprivation has a visible impact on subjective facial appearance. However, there is a lack of knowledge on how moderate sleep restriction objectively impairs skin quality and facial aspect. METHODS Twenty-four healthy good-sleeping women, aged 30-55, volunteered for this study on the impact of sleep restriction (SR) on their facial skin. SR was limited to 3 h per night for 2 consecutive nights. We assessed the following parameters at the same time of day, before and after SR: sebumetry (Sebumeter SM 815), hydration (Corneometer CM 825), trans-epidermal water loss (Tewameter TM 210), biomechanical properties (Cutometer MPA 580), pH (PH-meter 900), desquamation quantification (D-Squameter and microscopy), and image analysis (ColorFace - Newtone Technologies). We also obtained skin samples (swab) for malondialdehyde quantification (MDA). RESULTS We observed that some skin parameters are significantly associated with SR in both the morning and afternoon, including: lower hydration (p < 0.001), increased trans-epidermal water loss (PIE) (p < 0.001), and decreased extensibility (Uf; p = 0.015) and viscosity (Uv; p < 0.001) of the skin. The average pH increased from 4.8 (±0.2) to 4.9 ± 0.4; p < 0.001. For face photography, brightness and saturation also significantly decreased with SR in mornings and afternoons (p < 0.001 for all tests). Finally, we observed a significant decrease in isolated corneocytes after desquamation associated with SR (p < 0.001 for all tests). SR was also associated with significantly increased MDA levels (p < 0.001 for all tests). CONCLUSIONS Two nights of SR significantly altered the skin and facial appearances in our test group of typically good-sleeping women.
Collapse
Affiliation(s)
- Damien Léger
- Université de Paris, EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Paris, France; APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Consultation de pathologie professionnelle Sommeil Vigilance et Travail, Paris, France.
| | - Caroline Gauriau
- APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Consultation de pathologie professionnelle Sommeil Vigilance et Travail, Paris, France
| | - Cécile Etzi
- APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Consultation de pathologie professionnelle Sommeil Vigilance et Travail, Paris, France
| | | | | | | | - Alexandre Dubois
- APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Consultation de pathologie professionnelle Sommeil Vigilance et Travail, Paris, France; European Sleep Center, Paris, France
| | - Danielle Gomez-Merino
- Université de Paris, EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Paris, France; IRBA (Institut de recherche biomédicale des armées), Unité Fatigue et Vigilance, Bretigny-sur-Orge, France
| | - Marc Dumas
- LVMH RECHERCHE, Sciences du Vivant, Saint Jean De Braye, France
| |
Collapse
|
8
|
Jayanthi S, Daiwile AP, Cadet JL. Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp Neurol 2021; 344:113795. [PMID: 34186102 PMCID: PMC8338805 DOI: 10.1016/j.expneurol.2021.113795] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is abused throughout the world. METH addiction is also a major public health concern and the abuse of large doses of the drug is often associated with serious neuropsychiatric consequences that may include agitation, anxiety, hallucinations, paranoia, and psychosis. Some human methamphetamine users can also suffer from attention, memory, and executive deficits. METH-associated neurological and psychiatric complications might be related, in part, to METH-induced neurotoxic effects. Those include altered dopaminergic and serotonergic functions, neuronal apoptosis, astrocytosis, and microgliosis. Here we have endeavored to discuss some of the main effects of the drug and have presented the evidence supporting certain of the molecular and cellular bases of METH neurotoxicity. The accumulated evidence suggests the involvement of transcription factors, activation of dealth pathways that emanate from mitochondria and endoplasmic reticulum (ER), and a role for neuroinflammatory mechanisms. Understanding the molecular processes involved in METH induced neurotoxicity should help in developing better therapeutic approaches that might also serve to attenuate or block the biological consequences of use of large doses of the drug by some humans who meet criteria for METH use disorder.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America
| | - Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America.
| |
Collapse
|
9
|
A Simple HPLC/DAD Method Validation for the Quantification of Malondialdehyde in Rodent's Brain. Molecules 2021; 26:molecules26165066. [PMID: 34443656 PMCID: PMC8400166 DOI: 10.3390/molecules26165066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/31/2023] Open
Abstract
In the present study, a HPLC/DAD method was set up to allow for the determination and quantification of malondialdehyde (MDA) in the brain of rodents (rats). Chromatographic separation was achieved on Supelcosil LC-18 (3 μm) SUPELCO Column 3.3 cm × 4.6 mm and Supelco Column Saver 0.5 μm filter by using a mobile phase acetonitrile (A) and phosphate buffer (20 mM, pH = 6) (B). Isocratic elution was 14% for (A) and 86% for (B). The injection volume (loop mode) was 100 μL with an analysis time of 1.5 min. Flow rate was set at 1 mL/min. The eluted compound was detected at 532 nm by a DAD detector by keeping the column oven at room temperature. The results indicated that the method has good linearity in the range of 0.2-20 μg/g. Both intra- and inter-day precision, expressed as RSD, were ≤15% and the accuracies ranged between ±15%. The lower limit of quantification (LLOQ), stability, and robustness were evaluated and satisfied the validation criteria. The method was successfully applied in a study of chronic toxicology following different treatment regimens with haloperidol and metformin.
Collapse
|
10
|
Jîtcă G, Ősz BE, Tero-Vescan A, Vari CE. Psychoactive Drugs-From Chemical Structure to Oxidative Stress Related to Dopaminergic Neurotransmission. A Review. Antioxidants (Basel) 2021; 10:381. [PMID: 33806320 PMCID: PMC8000782 DOI: 10.3390/antiox10030381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Nowadays, more and more young people want to experience illegal, psychoactive substances, without knowing the risks of exposure. Besides affecting social life, psychoactive substances also have an important effect on consumer health. We summarized and analyzed the published literature data with reference to the mechanism of free radical generation and the link between chemical structure and oxidative stress related to dopaminergic neurotransmission. This review presents data on the physicochemical properties, on the ability to cross the blood brain barrier, the chemical structure activity relationship (SAR), and possible mechanisms by which neuronal injuries occur due to oxidative stress as a result of drug abuse such as "bath salts", amphetamines, or cocaine. The mechanisms of action of ingested compounds or their metabolites involve intermediate steps in which free radicals are generated. The brain is strongly affected by the consumption of such substances, facilitating the induction of neurodegenerative diseases. It can be concluded that neurotoxicity is associated with drug abuse. Dependence and oxidative stress are linked to inhibition of neurogenesis and the onset of neuronal death. Understanding the pathological mechanisms following oxidative attack can be a starting point in the development of new therapeutic targets.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
11
|
Rathitharan G, Truong J, Tong J, McCluskey T, Meyer JH, Mizrahi R, Warsh J, Rusjan P, Kennedy JL, Houle S, Kish SJ, Boileau I. Microglia imaging in methamphetamine use disorder: a positron emission tomography study with the 18 kDa translocator protein radioligand [F-18]FEPPA. Addict Biol 2021; 26:e12876. [PMID: 32017280 DOI: 10.1111/adb.12876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/19/2023]
Abstract
Activation of brain microglial cells, microgliosis, has been linked to methamphetamine (MA)-seeking behavior, suggesting that microglia could be a new therapeutic target for MA use disorder. Animal data show marked brain microglial activation following acute high-dose MA, but microglial status in human MA users is uncertain, with one positron emission tomography (PET) investigation reporting massively and globally increased translocator protein 18 kDa (TSPO; [C-11](R)-PK11195) binding, a biomarker for microgliosis, in MA users. Our aim was to measure binding of a second-generation TSPO radioligand, [F-18]FEPPA, in brain of human chronic MA users. Regional total volume of distribution (VT ) of [F-18]FEPPA was estimated with a two-tissue compartment model with arterial plasma input function for 10 regions of interest in 11 actively using MA users and 26 controls. A RM-ANOVA corrected for TSPO rs6971 polymorphism was employed to test significance. There was no main effect of group on [F-18]FEPPA VT (P = .81). No significant correlations between [F-18]FEPPA VT and MA use duration, weekly dosage, blood MA concentrations, regional brain volumes, and self-reported craving were observed. Our preliminary findings, consistent with our earlier postmortem data, do not suggest substantial brain microgliosis in MA use disorder but do not rule out microglia as a therapeutic target in MA addiction. Absence of increased [F-18]FEPPA TSPO binding might be related to insufficient MA dose or blunting of microglial response following repeated MA exposure, as suggested by some animal data.
Collapse
Affiliation(s)
- Gausiha Rathitharan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Jennifer Truong
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Junchao Tong
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| | - Tina McCluskey
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Romina Mizrahi
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Jerry Warsh
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Pablo Rusjan
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - James L. Kennedy
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Sylvain Houle
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| | - Stephen J. Kish
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Department of Pharmacology and Toxicology University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| | - Isabelle Boileau
- Research Imaging Centre Centre for Addiction and Mental Health Toronto Ontario Canada
- Campbell Mental Health Research Institute Centre for Addiction and Mental Health Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
- Institute of Medical Sciences University of Toronto Toronto Ontario Canada
| |
Collapse
|
12
|
TBHQ Attenuates Neurotoxicity Induced by Methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8787156. [PMID: 32351675 PMCID: PMC7174937 DOI: 10.1155/2020/8787156] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
Abstract
Methamphetamine (METH) leads to nervous system toxicity. Long-term exposure to METH results in damage to dopamine neurons in the ventral tegmental area (VTA), and depression-like behavior is a clinical symptom of this toxicity. The current study was designed to investigate whether the antioxidant tertiary butylhydroquinone (TBHQ) can alleviate neurotoxicity through both antioxidative stress and antiapoptotic signaling pathways in the VTA. Rats were randomly divided into a control group, a METH-treated group (METH group), and a METH+TBHQ-treated group (METH+TBHQ group). Intraperitoneal injections of METH at a dose of 10 mg/kg were administered to the rats in the METH and METH+TBHQ groups for one week, and METH was then administered at a dose that increased by 1 mg/kg per week until the sixth week, when the daily dosage reached 15 mg/kg. The rats in the METH+TBHQ group received 12.5 mg/kg TBHQ intragastrically. Chronic exposure to METH resulted in increased immobility times in the forced swimming test (FST) and tail suspension test (TST) and led to depression-like behavior. The production of reactive oxygen species (ROS) and apoptosis levels were increased in the VTA of animals in the METH-treated group. METH downregulated Nrf2, HO-1, PI3K, and AKT, key factors of oxidative stress, and the apoptosis signaling pathway. Moreover, METH increased the caspase-3 immunocontent. These changes were reversed by treatment with the antioxidant TBHQ. The results indicate that TBHQ can enhance Nrf2-induced antioxidative stress and PI3K-induced antiapoptotic effects, which can alleviate METH-induced ROS and apoptosis, and that the crosstalk between Nrf2 and PI3K/AKT is likely the key factor involved in the protective effect of TBHQ against METH-induced chronic nervous system toxicity.
Collapse
|
13
|
Kohno M, Link J, Dennis LE, McCready H, Huckans M, Hoffman WF, Loftis JM. Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav 2019; 179:34-42. [PMID: 30695700 DOI: 10.1016/j.pbb.2019.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Addiction is a worldwide public health problem and this article reviews scientific advances in identifying the role of neuroinflammation in the genesis, maintenance, and treatment of substance use disorders. With an emphasis on neuroimaging techniques, this review examines human studies of addiction using positron emission tomography to identify binding of translocator protein (TSPO), which is upregulated in reactive glial cells and activated microglia during pathological states. High TSPO levels have been shown in methamphetamine use but exhibits variable patterns in cocaine use. Alcohol and nicotine use, however, are associated with lower TSPO levels. We discuss how mechanistic differences at the neurotransmitter and circuit level in the neural effects of these agents and subsequent immune response may explain these observations. Finally, we review the potential of anti-inflammatory drugs, including ibudilast, minocycline, and pioglitazone, to ameliorate the behavioral and cognitive consequences of addiction.
Collapse
Affiliation(s)
- Milky Kohno
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Jeanne Link
- Center for Radiochemistry Research, Knight Cardiovascular Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA
| | - Laura E Dennis
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Holly McCready
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Marilyn Huckans
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - William F Hoffman
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, 3710 SW US Veterans Hospital Road, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA; Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
14
|
mTOR Modulates Methamphetamine-Induced Toxicity through Cell Clearing Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6124745. [PMID: 30647813 PMCID: PMC6311854 DOI: 10.1155/2018/6124745] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/31/2018] [Indexed: 11/17/2022]
Abstract
Methamphetamine (METH) is abused worldwide, and it represents a threat for public health. METH exposure induces a variety of detrimental effects. In fact, METH produces a number of oxidative species, which lead to lipid peroxidation, protein misfolding, and nuclear damage. Cell clearing pathways such as ubiquitin-proteasome (UP) and autophagy (ATG) are involved in METH-induced oxidative damage. Although these pathways were traditionally considered to operate as separate metabolic systems, recent studies demonstrate their interconnection at the functional and biochemical level. Very recently, the convergence between UP and ATG was evidenced within a single organelle named autophagoproteasome (APP), which is suppressed by mTOR activation. In the present research study, the occurrence of APP during METH toxicity was analyzed. In fact, coimmunoprecipitation indicates a binding between LC3 and P20S particles, which also recruit p62 and alpha-synuclein. The amount of METH-induced toxicity correlates with APP levels. Specific markers for ATG and UP, such as LC3 and P20S in the cytosol, and within METH-induced vacuoles, were measured at different doses and time intervals following METH administration either alone or combined with mTOR modulators. Western blotting, coimmunoprecipitation, light microscopy, confocal microscopy, plain transmission electron microscopy, and immunogold staining were used to document the effects of mTOR modulation on METH toxicity and the merging of UP with ATG markers within APPs. METH-induced cell death is prevented by mTOR inhibition, while it is worsened by mTOR activation, which correlates with the amount of autophagoproteasomes. The present data, which apply to METH toxicity, are also relevant to provide a novel insight into cell clearing pathways to counteract several kinds of oxidative damage.
Collapse
|
15
|
Zhang K, Zhang Q, Jiang H, Du J, Zhou C, Yu S, Hashimoto K, Zhao M. Impact of aerobic exercise on cognitive impairment and oxidative stress markers in methamphetamine-dependent patients. Psychiatry Res 2018; 266:328-333. [PMID: 29588062 DOI: 10.1016/j.psychres.2018.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 01/18/2023]
Abstract
This study aimed to investigate whether 12-week moderate-intensity aerobic exercise has beneficial effects on oxidative stress markers in blood and on cognitive functions in patients who have methamphetamine dependence. Serum levels of oxidative stress markers, including total anti-oxidation capability, super oxide dismutase (SOD), catalase (CAT), and methane dicarboxylic aldehyde (MDA), were measured at baseline (all participants) and the 12-week follow-up (methamphetamine-dependent patients). Serum levels of CAT and MDA in methamphetamine-dependent patients (n = 68) were higher than those in healthy controls (n = 35) at baseline. Furthermore, the international shopping list (ISL) task scores of methamphetamine-dependent patients were significantly lower than those of the controls, indicating verbal memory deficits in methamphetamine-dependent patients. Although there were no significant interactions for all cognitive function scores, aerobic exercise improved the processing speed in methamphetamine-dependent patients. Of interest, aerobic exercise significantly attenuated a spontaneous increase in serum MDA levels in methamphetamine-dependent patients after 12-weeks of abstinence. In conclusion, this study showed that methamphetamine-dependent patients with verbal learning and memory deficits have higher serum levels of MDA, and that a 12-week aerobic exercise program may have beneficial effects on the processing speed as well as blood lipid peroxidation in methamphetamine-dependent patients.
Collapse
Affiliation(s)
- Kai Zhang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Qiaoyang Zhang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Changzhou No. 2 People's hospital, Nanjing Medical University, Changzhou, China
| | - Haifeng Jiang
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglin Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shunying Yu
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Min Zhao
- Collaborative Innovation Center for Brain Science, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| |
Collapse
|
16
|
Untargeted Metabolomic Analysis of Rat Neuroblastoma Cells as a Model System to Study the Biochemical Effects of the Acute Administration of Methamphetamine. Metabolites 2018; 8:metabo8020038. [PMID: 29880740 PMCID: PMC6027511 DOI: 10.3390/metabo8020038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography–mass spectrometry. Principal component analysis of the data identified 35 metabolites that contributed most to the difference in metabolite profiles. Of these metabolites, the most notable changes were in amino acids, with significant increases observed in glutamate, aspartate and methionine, and decreases in phenylalanine and serine. The data demonstrated that glutamate release and, subsequently, excitotoxicity and oxidative stress were important in the response of the neuronal cell to methamphetamine. Following this, the cells appeared to engage amino acid-based mechanisms to reduce glutamate levels. The potential of untargeted metabolomic analysis has been highlighted, as it has generated biochemically relevant data and identified pathways significantly affected by methamphetamine. This combination of technologies has clear uses as a model for the study of neuronal toxicology.
Collapse
|
17
|
Nazari A, Zahmatkesh M, Mortaz E, Hosseinzadeh S. Effect of methamphetamine exposure on the plasma levels of endothelial-derived microparticles. Drug Alcohol Depend 2018; 186:219-225. [PMID: 29609134 DOI: 10.1016/j.drugalcdep.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Methamphetamine (Meth), a neurotoxin, induces inflammation, oxidative stress, and triggers endothelial dysfunction and cardiovascular disease which is the second cause of death among individuals with Meth-use disorder. Oxidative stress and inflammation trigger the microparticle (MP) release. These are extracellular vesicles extracted from cell surface and identified in biological fluids. MP levels alter during pathological conditions, suggesting its potential biomarker role. In this respect, we designed the present experiment to investigate the effects of Meth on the plasma level of the endothelial-derived microparticle (EMP). METHODS Animals received Meth (4 mg/kg i.p.) for 1, 7 and 14 days and then, the plasma level of EMPs was evaluated, using cell surface markers, including AnnexinV, CD144, CD31, CD41a antigens with the flow cytometry method. The biochemical indices and locomotor activity were also assessed in a rat model. RESULTS Meth increased locomotor activity (Meth-1, 277.12 ± 20.17; Meth-7, 262.25 ± 11.95; Meth-14, 265.75 ± 14.75), inflammatory and oxidative indices as evidenced by rising of the C-reactive protein (Meth-7, 39.4 ± 1.24; Meth-14, 38.58 ± 2.19, vs 8.65 ± 0.45, mg/L) and malondialdehyde (Meth-7, 9.74 ± 1.38; Meth-14, 14.6 ± 1.45, vs 4.43 ± 0.32 nmol/L) plasma levels. We also found that Meth triggered endothelial injury, as demonstrated by elevated levels of EMP (Meth-7, 4.77 ± 0.22; Meth-14, 5.91 ± 0.34, % total events/mL) compared with control group. CONCLUSION Our data showed that Meth exposure stimulates inflammatory and oxidative pathways and facilitates the EMPs shedding. Measuring the level of EMPs might be applied as a potential diagnostic index to monitor the endothelial dysfunction in substance-use disorders.
Collapse
Affiliation(s)
- Azadeh Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Esmaeil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran- Iran
| | - Soheila Hosseinzadeh
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
18
|
Jang EY, Yang CH, Hedges DM, Kim SP, Lee JY, Ekins TG, Garcia BT, Kim HY, Nelson AC, Kim NJ, Steffensen SC. The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens. Addict Biol 2017; 22:1304-1315. [PMID: 27417190 DOI: 10.1111/adb.12419] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
Methamphetamine (METH) markedly increases dopamine (DA) release in the mesolimbic DA system, which plays an important role in mediating the reinforcing effects of METH. METH-induced DA release results in the formation of reactive oxygen species (ROS), leading to oxidative damage. We have recently reported that ROS are implicated in behavior changes and DA release in the nucleus accumbens (NAc) following cocaine administration. The aim of this study was to evaluate the involvement of ROS in METH-induced locomotor activity, self-administration and enhancement of DA release in the NAc. Systemic administration of a non-specific ROS scavenger, N-tert-butyl-α-phenylnitrone (PBN; 0, 50 and 75 mg/kg, IP) or a superoxide-selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; 0, 50 and 100 mg/kg, IP), attenuated METH-induced locomotor activity without affecting generalized behavior in METH-naïve rats. PBN and TEMPOL significantly attenuated METH self-administration without affecting food intake. Increased oxidative stress was found in neurons, but not astrocytes, microglia or oligodendrocytes, in the NAc of METH self-administering rats. In addition, TEMPOL significantly decreased METH enhancement of DA release in the NAc. Taken together, these results suggest that enhancement of ROS in the NAc contributes to the reinforcing effect of METH.
Collapse
Affiliation(s)
- Eun Young Jang
- Department of Psychology and Center for Neuroscience; Brigham Young University; Provo UT USA
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Chae Ha Yang
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - David M. Hedges
- Department of Psychology and Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Soo Phil Kim
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Jun Yeon Lee
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Tyler G. Ekins
- Department of Psychology and Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Brandon T. Garcia
- Department of Psychology and Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Hee Young Kim
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Ashley C. Nelson
- Department of Psychology and Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Nam Jun Kim
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Scott C. Steffensen
- Department of Psychology and Center for Neuroscience; Brigham Young University; Provo UT USA
| |
Collapse
|
19
|
Moszczynska A, Callan SP. Molecular, Behavioral, and Physiological Consequences of Methamphetamine Neurotoxicity: Implications for Treatment. J Pharmacol Exp Ther 2017; 362:474-488. [PMID: 28630283 PMCID: PMC11047030 DOI: 10.1124/jpet.116.238501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/09/2017] [Indexed: 04/28/2024] Open
Abstract
Understanding the relationship between the molecular mechanisms underlying neurotoxicity of high-dose methamphetamine (METH) and related clinical manifestations is imperative for providing more effective treatments for human METH users. This article provides an overview of clinical manifestations of METH neurotoxicity to the central nervous system and neurobiology underlying the consequences of administration of neurotoxic METH doses, and discusses implications of METH neurotoxicity for treatment of human abusers of the drug.
Collapse
Affiliation(s)
- Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Sean Patrick Callan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
20
|
Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review. Neurochem Res 2017; 43:66-78. [PMID: 28589520 DOI: 10.1007/s11064-017-2318-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Phuong-Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
21
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
22
|
Tung CS, Chang ST, Huang CL, Huang NK. The neurotoxic mechanisms of amphetamine: Step by step for striatal dopamine depletion. Neurosci Lett 2017; 639:185-191. [PMID: 28065841 DOI: 10.1016/j.neulet.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 11/29/2022]
Abstract
Amphetamine (AMPH) is a commonly abused psychostimulant that induces neuronal cell death/degeneration in humans and experimental animals. Although multiple neurotoxic mechanisms of AMPH have been intensively investigated, the interplay between these mechanisms has remained elusive. In this study, we used a rat model of AMPH-induced long-lasting striatal dopamine (DA) depletion and identified mechanisms of neurotoxicity, energy failure, excitotoxicity, and oxidative stress. Pretreatment with nicotinamide (NAM, a co-factor for the electron transport chain) blocked AMPH-induced free radical formation, energy failure, and striatal DA decrease. Also, MK-801 (a NMDA receptor antagonist) blocked AMPH-induced free radical formation and striatal DA but not energy failure decrease, indicating excitotoxicity may occur before free radical formation and after energy failure. Thus, these results show that during AMPH intoxication, energy failure, excitotoxicity, and free radical formation are orchestrated consecutively to mediate the depletion of striatal DA.
Collapse
Affiliation(s)
- Che-Se Tung
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan, ROC
| | - Shang-Tang Chang
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei City, Taiwan, ROC
| | - Chuen-Lin Huang
- Medical Research Center, Cardinal Tien Hospital, Hsintien, New Taipei City, Taiwan, ROC; Graduate Institute of Physiology & Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Nai-Kuei Huang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC.
| |
Collapse
|
23
|
Valian N, Ahmadiani A, Dargahi L. Escalating Methamphetamine Regimen Induces Compensatory Mechanisms, Mitochondrial Biogenesis, and GDNF Expression, in Substantia Nigra. J Cell Biochem 2017; 118:1369-1378. [PMID: 27862224 DOI: 10.1002/jcb.25795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
Abstract
Methamphetamine (MA) produces long-lasting deficits in dopaminergic neurons in the long-term use via several neurotoxic mechanisms. The effects of MA on mitochondrial biogenesis is less studied currently. So, we evaluated the effects of repeated escalating MA regimen on transcriptional factors involved in mitochondrial biogenesis and glial-derived neurotrophic factor (GDNF) expression in substantia nigra (SN) and striatum of rat. In male Wistar rats, increasing doses of MA (1-14 mg/kg) were administrated twice a day for 14 days. At the 1st, 14th, 28th, and 60th days after MA discontinuation, we measured the PGC1α, TFAM and NRF1 mRNA levels, indicator of mitochondrial biogenesis, and GDNF expression in SN and striatum. Furthermore, we evaluated the glial fibrillary acidic protein (GFAP) and Iba1 mRNA levels, and the levels of tyrosine hydroxylase (TH) and α-synuclein (α-syn) using immunohistochemistry and real-time polymerase chain reaction (PCR). We detected increments in PGC1α and TFAM mRNA levels in SN, but not striatum, and elevations in GDNF levels in SN immediately after MA discontinuation. We also observed increases in GFAP and Iba1 mRNA levels in SN on day 1 and increases in Iba1 mRNA on days 1 and 14 in striatum. Data analysis revealed that the number of TH+ cells in the SN did not reduce in any time points, though TH mRNA levels was increased on day 1 after MA discontinuation in SN. These data show that repeated escalating MA induces several compensatory mechanisms, such as mitochondrial biogenesis and elevation in GDNF in SN. These mechanisms can reverse MA-induced neuroinflammation and prevent TH-immunoreactivity reduction in nigrostriatal pathway. J. Cell. Biochem. 118: 1369-1378, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Effect of Methamphetamine Exposure on Expression of Calcium Binding Proteins in Rat Frontal Cortex and Hippocampus. Neurotox Res 2016; 30:427-33. [DOI: 10.1007/s12640-016-9628-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 11/26/2022]
|
25
|
Jourdain R, Moga A, Vingler P, El Rawadi C, Pouradier F, Souverain L, Bastien P, Amalric N, Breton L. Exploration of scalp surface lipids reveals squalene peroxide as a potential actor in dandruff condition. Arch Dermatol Res 2016; 308:153-63. [PMID: 26842231 PMCID: PMC4796319 DOI: 10.1007/s00403-016-1623-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 01/17/2023]
Abstract
Dandruff is a common but complex disorder with three major contributing factors: (1) individual predisposition, (2) scalp sebum and (3) Malassezia yeast colonization. To obtain further insights into the role of sebum in dandruff biogenesis, we analyzed scalp lipid species in a cohort of ten dandruff-free (control) and ten dandruff-afflicted volunteers by gas chromatography coupled to mass spectrometry. Lipid peroxidation levels and biochemical markers of oxidative stress were also assessed. Squalene, a major sebum component, was significantly more peroxidized in dandruff-affected scalps, resulting in significantly higher ratios of squalene monohydroperoxide (SQOOH)/squalene. This was observed when comparing dandruff-affected zones of dandruff subjects to both their non-affected zones and control subjects. In addition, other biomarkers such as malondialdehyde indicated that oxidative stress levels were raised on dandruff scalps. Surprisingly, differences regarding either free or bound fatty acids were fairly rare and minor. Certain novel findings, especially squalene peroxidation levels, were then confirmed in a validation cohort of 24 dandruff-affected subjects, by comparing dandruff-affected and non-dandruff zones from the same individuals. As SQOOH can induce both keratinocyte inflammatory responses and hyperproliferation in vitro, we hypothesized that increased SQOOH could be considered as a new etiological dandruff factor via its ability to impair scalp barrier function. Our results also indicated that Malassezia could be a major source of squalene peroxidation on the scalp.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc Souverain
- L'OREAL Research and Innovation, Aulnay-sous-Bois, France
| | | | | | - Lionel Breton
- L'OREAL Research and Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
26
|
Shokrzadeh M, Zamani E, Mehrzad M, Norian Y, Shaki F. Protective Effects of Propofol Against Methamphetamine-induced Neurotoxicity. Toxicol Int 2015; 22:92-9. [PMID: 26862267 PMCID: PMC4721183 DOI: 10.4103/0971-6580.172250] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CONTEXT Methamphetamine (METH) is widely abused in worldwide. METH use could damage the dopaminergic system and induce neurotoxicity via oxidative stress and mitochondrial dysfunction. Propofol, a sedative-hypnotic agent, is known for its antioxidant properties. In this study, we used propofol for attenuating of METH-induced neurotoxicity in rats. SUBJECTS AND METHODS We used Wistar rats that the groups (six rats each group) were as follows: Control, METH (5 mg/kg IP), and propofol (5, 10 and 20 mg/kg, IP) was administered 30 min before METH. After 24 h, animals were killed, brain tissue was separated and the mitochondrial fraction was isolated, and oxidative stress markers were measured. RESULTS Our results showed that METH significantly increased oxidative stress markers such as lipid peroxidation, reactive oxygen species formation and glutathione oxidation in the brain, and isolated mitochondria. Propofol significantly inhibited METH-induced oxidative stress in the brain and isolated mitochondria. Mitochondrial function decreased dramatically after METH administration that propofol pretreatment significantly improved mitochondrial function. Mitochondrial swelling and catalase activity also increased after METH exposure but was significantly decreased with propofol pretreatment. CONCLUSIONS These results suggest that propofol prevented METH-induced oxidative stress and mitochondrial dysfunction and subsequently METH-induced neurotoxicity. Therefore, the effectiveness of this antioxidant should be evaluated for the treatment of METH toxicity and neurodegenerative disease.
Collapse
Affiliation(s)
- Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| | - Ehsan Zamani
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| | - Mona Mehrzad
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| | - Yazdan Norian
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| |
Collapse
|
27
|
Earla R, Kumar S, Wang L, Bosinger S, Li J, Shah A, Gangwani M, Nookala A, Liu X, Cao L, Jackson A, Silverstein PS, Fox HS, Li W, Kumar A. Enhanced methamphetamine metabolism in rhesus macaque as compared with human: an analysis using a novel method of liquid chromatography with tandem mass spectrometry, kinetic study, and substrate docking. Drug Metab Dispos 2014; 42:2097-108. [PMID: 25301936 DOI: 10.1124/dmd.114.059378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Methamphetamine (MA), which remains one of the widely used drugs of abuse, is metabolized by the cytochrome P450 (P450) family of enzymes in humans. However, metabolism of methamphetamine in macaques is poorly understood. Therefore, we first developed and validated a very sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) method using solid phase extraction of rhesus plasma with a lower limit of quantitation at 1.09 ng/ml for MA and its metabolites, 4-hydroxy methamphetamine (4-OH MA), amphetamine (AM), 4-OH amphetamine (4-OH AM), and norephedrine. We then analyzed plasma samples of MA-treated rhesus, which showed >10-fold higher concentrations of AM (∼29 ng/ml) and 4-OH AM (∼28 ng/ml) than MA (∼2 ng/ml). Because the plasma levels of MA metabolites in rhesus were much higher than in human samples, we examined MA metabolism in human and rhesus microsomes. Interestingly, the results showed that AM and 4-OH AM were formed more rapidly and that the catalytic efficiency (Vmax/Km) for the formation of AM was ∼8-fold higher in rhesus than in human microsomes. We further examined the differences in these kinetic characteristics using three selective inhibitors of each human CYP2D6 and CYP3A4 enzymes. The results showed that each of these inhibitors inhibited both d- and l-MA metabolism by 20%-60% in human microsomes but not in rhesus microsomes. The differences between human and rhesus CYP2D6 and CYP3A4 enzymes were further assessed by docking studies for both d and l-MA. In conclusion, our results demonstrated an enhanced MA metabolism in rhesus compared with humans, which is likely to be caused by differences in MA-metabolizing P450 enzymes between these species.
Collapse
Affiliation(s)
- Ravinder Earla
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Santosh Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Lei Wang
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Steven Bosinger
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Junhao Li
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Ankit Shah
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Mohitkumar Gangwani
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Anantha Nookala
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Xun Liu
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Lu Cao
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Austin Jackson
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Peter S Silverstein
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Howard S Fox
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Weihua Li
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri (R.E., A.S., M.K.G., A.N., X.L., L.C., A.J., P.S.S., A.K.); Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences, Memphis, Tennessee (S.K.); Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China (L.W., J.L., W.L.); Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (S.B.); University of Nebraska Medical Center, Omaha, Nebraska (H.S.F.)
| |
Collapse
|
28
|
Liu P, Kerr BJ, Chen C, Weber TE, Johnston LJ, Shurson GC. Methods to create thermally oxidized lipids and comparison of analytical procedures to characterize peroxidation. J Anim Sci 2014; 92:2950-9. [PMID: 24802041 DOI: 10.2527/jas.2012-5708] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to evaluate peroxidation in 4 lipids, each with 3 levels of peroxidation. Lipid sources were corn oil (CN), canola oil (CA), poultry fat, and tallow. Peroxidation levels were original lipids (OL), slow-oxidized lipids (SO), and rapid-oxidized lipids (RO). To produce peroxidized lipids, OL were either heated at 95°C for 72 h to produce SO or heated at 185°C for 7 h to produce RO. Five indicative measurements (peroxide value [PV], p-anisidine value [AnV], thiobarbituric acid reactive substances [TBARS] concentration, hexanal concentration, 4-hydroxynonenal [HNE] concentration, and 2,4-decadienal [DDE]) and 2 predictive tests (active oxygen method [AOM] stability and oxidative stability index [OSI]) were performed to quantify the level of oxidation of the subsequent 12 lipids with varying levels of peroxidation. Analysis showed that a high PV accurately indicated the high level of lipid peroxidation, but a moderate or low PV may be misleading due to the unstable characteristics of hydroperoxides as indicated by the unchanged PV of rapidly oxidized CN and CA compared to their original state (OL). However, additional tests, which measure secondary peroxidation products such as AnV, TBARS, hexanal, HNE, and DDE, may provide a better indication of lipid peroxidation than PV for lipids subjected to a high level of peroxidation. Similar to PV analysis, these tests may also not provide irrefutable information regarding the extent of peroxidation because of the volatile characteristics of secondary peroxidation products and the changing stage of lipid peroxidation. For the predictive tests, AOM accurately reflected the increased lipid peroxidation caused by SO and RO as indicated by the increased AOM value in CN and CA but not in poultry fat and tallow, which indicated a potential disadvantage of the AOM test. Oxidative stability index successfully showed the increased lipid peroxidation caused by SO and RO in all lipids, but it too may have disadvantages similar to AnV, TBARS, hexanal, DDE, and HNE because OSI directly depends on quantification of the volatile secondary peroxidation products. To accurately analyze the peroxidation damage in lipids, measurements should be determined at appropriate time intervals by more than 1 test and include different levels of peroxidation products simultaneously.
Collapse
Affiliation(s)
- P Liu
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | - B J Kerr
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011
| | - C Chen
- Department of Animal Science, University of Minnesota, St. Paul 55108
| | - T E Weber
- USDA-ARS-National Laboratory for Agriculture and the Environment, Ames, IA 50011
| | - L J Johnston
- West Central Research and Outreach Center, University of Minnesota, Morris 56267
| | - G C Shurson
- Department of Animal Science, University of Minnesota, St. Paul 55108
| |
Collapse
|
29
|
Tong J, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang LC, Sherwin A, McCluskey T, Boileau I, Kish SJ. Is brain gliosis a characteristic of chronic methamphetamine use in the human? Neurobiol Dis 2014; 67:107-18. [PMID: 24704312 DOI: 10.1016/j.nbd.2014.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 01/22/2023] Open
Abstract
Animal data show that high doses of the stimulant drug methamphetamine can damage brain dopamine neurones; however, it is still uncertain whether methamphetamine, at any dose, is neurotoxic to human brain. Since gliosis is typically associated with brain damage and is observed in animal models of methamphetamine exposure, we measured protein levels (intact protein and fragments, if any) of markers of microgliosis (glucose transporter-5, human leukocyte antigens HLA-DRα [TAL.1B5] and HLA-DR/DQ/DPβ [CR3/43]) and astrogliosis (glial fibrillary acidic protein, vimentin, and heat shock protein-27) in homogenates of autopsied brain of chronic methamphetamine users (n=20) and matched controls (n=23). Intact protein levels of all markers were, as expected, elevated (+28%-1270%, P<0.05) in putamen of patients with the neurodegenerative disorder multiple system atrophy (as a positive control) as were concentrations of fragments of glial fibrillary acidic protein, vimentin and heat shock protein-27 (+170%-4700%, P<0.005). In contrast, intact protein concentrations of the markers were normal in dopamine-rich striatum (caudate, putamen) and in the frontal cortex of the drug users. However, striatal levels of cleaved vimentin and heat shock protein-27 were increased (by 98%-211%, P<0.05), with positive correlations (r=0.41-0.60) observed between concentrations of truncated heat shock protein-27 and extent of dopamine loss (P=0.006) and levels of lipid peroxidation products 4-hydroxynonenal (P=0.046) and malondialdehyde (P=0.11). Our failure to detect increased intact protein levels of commonly used markers of microgliosis and astrogliosis could be explained by exposure to methamphetamine insufficient to cause a toxic process associated with overt gliosis; however, about half of the subjects had died of drug intoxication suggesting that "high" drug doses might have been used. Alternatively, drug tolerance to toxic effects might have occurred in the subjects, who were all chronic methamphetamine users. Nevertheless, the finding of above-normal levels of striatal vimentin and heat shock protein-27 fragments (which constituted 10-28% of the intact protein), for which changes in the latter correlated with those of several markers possibly suggestive of damage, does suggest that some astrocytic "disturbance" had occurred, which might in principle be related to methamphetamine neurotoxicity or to a neuroplastic remodeling process. Taken together, our neurochemical findings do not provide strong evidence for either marked microgliosis or astrogliosis in at least a subgroup of human recreational methamphetamine users who used the drug chronically and shortly before death. However, a logistically more difficult quantitative histopathological study is needed to confirm whether glial changes occur or do not occur in brain of human methamphetamine (and amphetamine) users.
Collapse
Affiliation(s)
- Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Paul Fitzmaurice
- ESR Institute of Environmental Science & Research, Auckland, New Zealand
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University & Postgraduate University of Juntendo, Tokyo, Japan
| | | | | | - Lee-Cyn Ang
- Division of Neuropathology, London Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Allan Sherwin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tina McCluskey
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Shin EJ, Shin SW, Nguyen TTL, Park DH, Wie MB, Jang CG, Nah SY, Yang BW, Ko SK, Nabeshima T, Kim HC. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol Neurobiol 2014; 49:1400-21. [PMID: 24430743 DOI: 10.1007/s12035-013-8617-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/09/2013] [Indexed: 11/26/2022]
Abstract
Ginsenoside Re, one of the main constituents of Panax ginseng, possesses novel antioxidant and anti-inflammatory properties. However, the pharmacological mechanism of ginsenoside Re in dopaminergic degeneration remains elusive. We suggested that protein kinase C (PKC) δ mediates methamphetamine (MA)-induced dopaminergic toxicity. Treatment with ginsenoside Re significantly attenuated methamphetamine-induced dopaminergic degeneration in vivo by inhibiting impaired enzymatic antioxidant systems, mitochondrial oxidative stress, mitochondrial translocation of protein kinase Cδ, mitochondrial dysfunction, pro-inflammatory microglial activation, and apoptosis. These protective effects were comparable to those observed with genetic inhibition of PKCδ in PKCδ knockout (-/-) mice and with PKCδ antisense oligonucleotides, and ginsenoside Re did not provide any additional protective effects in the presence of PKCδ inhibition. Our results suggest that PKCδ is a critical target for ginsenoside Re-mediated protective activity in response to dopaminergic degeneration induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gonçalves J, Baptista S, Silva AP. Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 2014; 87:135-49. [PMID: 24440369 DOI: 10.1016/j.neuropharm.2014.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022]
Abstract
Psychostimulants abuse is a major public concern because is associated with serious health complications, including devastating consequences on the central nervous system (CNS). The neurotoxic effects of these drugs have been extensively studied. Nevertheless, numerous questions and uncertainties remain in our understanding of these toxic events. Thus, the purpose of the present manuscript is to review cellular and molecular mechanisms that might be responsible for brain dysfunction induced by psychostimulants. Topics reviewed include some classical aspects of neurotoxicity, such as monoaminergic system and mitochondrial dysfunction, oxidative stress, excitotoxicity and hyperthermia. Moreover, recent literature has suggested new phenomena regarding the toxic effects of psychostimulants. Thus, we also reviewed the impact of these drugs on neuroinflammatory response, blood-brain barrier (BBB) function and neurogenesis. Assessing the relative importance of these mechanisms on psychostimulants-induced brain dysfunction presents an exciting challenge for future research efforts. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Joana Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Sofia Baptista
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal.
| |
Collapse
|
32
|
Perfeito R, Cunha-Oliveira T, Rego AC. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2013; 62:186-201. [PMID: 23743292 DOI: 10.1016/j.freeradbiomed.2013.05.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
Collapse
Affiliation(s)
- Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
33
|
Toborek M, Seelbach MJ, Rashid CS, András IE, Chen L, Park M, Esser KA. Voluntary exercise protects against methamphetamine-induced oxidative stress in brain microvasculature and disruption of the blood-brain barrier. Mol Neurodegener 2013; 8:22. [PMID: 23799892 PMCID: PMC3698182 DOI: 10.1186/1750-1326-8-22] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is no effective therapeutic intervention developed targeting cerebrovascular toxicity of drugs of abuse, including methamphetamine (METH). We hypothesize that exercise protects against METH-induced disruption of the blood-brain barrier (BBB) by enhancing the antioxidant capacity of cerebral microvessels and modulating caveolae-associated signaling. Mice were subjected to voluntary wheel running for 5 weeks resembling the voluntary pattern of human exercise, followed by injection with METH (10 mg/kg). The frequency, duration, and intensity of each running session were monitored for each mouse via a direct data link to a computer and the running data are analyzed by Clock lab™ Analysis software. Controls included mice sedentary that did not have access to running wheels and/or injections with saline. RESULTS METH induced oxidative stress in brain microvessels, resulting in up regulation of caveolae-associated NAD(P)H oxidase subunits, and phosphorylation of mitochondrial protein 66Shc. Treatment with METH disrupted also the expression and colocalization of tight junction proteins. Importantly, exercise markedly attenuated these effects and protected against METH-induced disruption of the BBB integrity. CONCLUSIONS The obtained results indicate that exercise is an important modifiable behavioral factor that can protect against METH-induced cerebrovascular toxicity. These findings may provide new strategies in preventing the toxicity of drug of abuse.
Collapse
|
34
|
Tanaka R, Sugiura Y, Matsushita T. SIMULTANEOUS IDENTIFICATION OF 4-HYDROXY-2-HEXENAL AND 4-HYDROXY-2-NONENAL IN FOODS BY PRE-COLUMN FLUORIGENIC LABELING WITH 1,3-CYCLOHEXANEDIONE AND REVERSED-PHASE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH FLUORESCENCE DETECTION. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.678454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ryusuke Tanaka
- a Department of Food Science and Technology , National University of Fisheries , Shimonoseki , Yamaguchi , Japan
| | - Yoshimasa Sugiura
- a Department of Food Science and Technology , National University of Fisheries , Shimonoseki , Yamaguchi , Japan
| | - Teruo Matsushita
- a Department of Food Science and Technology , National University of Fisheries , Shimonoseki , Yamaguchi , Japan
| |
Collapse
|
35
|
Methamphetamine and Parkinson's disease. PARKINSONS DISEASE 2013; 2013:308052. [PMID: 23476887 PMCID: PMC3582059 DOI: 10.1155/2013/308052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/22/2012] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles.
Collapse
|
36
|
Huang MC, Lin SK, Chen CH, Pan CH, Lee CH, Liu HC. Oxidative stress status in recently abstinent methamphetamine abusers. Psychiatry Clin Neurosci 2013; 67:92-100. [PMID: 23438161 DOI: 10.1111/pcn.12025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/28/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
AIM Methamphetamine (METH) administration is associated with excessive oxidative stress. It is not known whether the systemic oxidative stress indices would alter during early abstinence in METH abusers with positive urine testing for recent METH exposure. METHODS Sixty-four non-treatment-seeking METH abusers enrolled from a controlled environment and 60 healthy controls participated in the study. Fasting serum malondialdehyde (MDA) levels and anti-oxidant indices, including superoxide dismutase (SOD) and catalase (CAT) activity, and glutathione (GSH) levels, were measured at baseline and 2 weeks after the first measurement. We compared the differences of these oxidative stress indices between METH abusers and controls and examined the changes of the indices 2 weeks after baseline in the METH group. RESULTS At baseline, the recently abstinent METH abusers had significantly higher MDA levels, lower SOD activity, and higher CAT activity and GSH levels compared to healthy controls. CAT and GSH values were positively correlated with MDA but negatively correlated with SOD. These oxidative stress indices did not significantly correlate with age, smoking amount, Alcohol Use Disorder Identification Test scores, or METH use variables. After 2 more weeks of abstinence, the indices did not alter nor normalize. CONCLUSION Compared to controls, we found that METH abusers have persistently higher systemic oxidative stress throughout early abstinence. The compromised SOD as well as elevated CAT activity and GSH levels may act together as a compensatory mechanism to counteract excessive oxidative stress induced by METH. Whether the oxidative stress could improve after a longer period of abstinence needs to be examined in future studies.
Collapse
Affiliation(s)
- Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Perfeito R, Cunha-Oliveira T, Rego AC. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease--resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2012; 53:1791-806. [PMID: 22967820 DOI: 10.1016/j.freeradbiomed.2012.08.569] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
Collapse
Affiliation(s)
- Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
38
|
N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells. PARKINSONS DISEASE 2012; 2012:424285. [PMID: 23056996 PMCID: PMC3465903 DOI: 10.1155/2012/424285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/27/2012] [Indexed: 01/12/2023]
Abstract
Methamphetamine- (MA-) induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells). The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC). Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO) enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE). Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.
Collapse
|
39
|
Baptista S, Bento AR, Gonçalves J, Bernardino L, Summavielle T, Lobo A, Fontes-Ribeiro C, Malva JO, Agasse F, Silva AP. Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology 2012; 62:2413-23. [DOI: 10.1016/j.neuropharm.2012.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|
40
|
Shin EJ, Bach JH, Nguyen TTL, Nguyen XKT, Jung BD, Oh KW, Kim MJ, Ko SK, Jang CG, Ali SF, Kim HC. Gastrodia elata bl attenuates methamphetamine-induced dopaminergic toxicity via inhibiting oxidative burdens. Curr Neuropharmacol 2011; 9:118-21. [PMID: 21886575 PMCID: PMC3137164 DOI: 10.2174/157015911795016967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
It has been recognized that Gastrodia elata Bl (GE), an oriental herb medicine, ameliorates various neurological disorders, that GE modulates the monoaminergic and GABAergic systems, and that GE possess antioxidant activities. We examined whether GE affects methamphetamine (MA)-induced striatal dopaminergic toxicity in mice. Treatment with MA (7.5 mg/kg, i.p. × 4) resulted in significant decreases in behavioural activity (as shown by locomotor activity and rota rod performance), dopamine level, tyrosine hydroxylase (TH) activity, and TH protein expression (as evaluated by immunocytochemistry and western blot analysis). In addition, MA treatment showed significant increases in lipid peroxidation [as evaluated by 4-hydroxy-2-nonenal (4-HNE) expression and malondialdehyde formation], protein oxidation (as shown by protein carbonyl expression and its formation), and reactive oxygen species (ROS) formation. Treatment with GE significantly attenuates MA-induced behavioural and dopaminergic impairments, and oxidative stresses in a dose-dependent manner. Our results suggest that GE treatment shows anti-dopaminergic effects in response to MA insult via, at least in part, inhibiting oxidative stresses in the striatum of the mice.
Collapse
Affiliation(s)
- E-J Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shiba T, Yamato M, Kudo W, Watanabe T, Utsumi H, Yamada KI. In vivo imaging of mitochondrial function in methamphetamine-treated rats. Neuroimage 2011; 57:866-72. [PMID: 21624473 DOI: 10.1016/j.neuroimage.2011.05.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/10/2011] [Accepted: 05/14/2011] [Indexed: 10/18/2022] Open
Abstract
Abuse of the powerfully addictive psychostimulant, methamphetamine, occurs worldwide. Recent studies have suggested that methamphetamine-induced dopaminergic neurotoxicity is related to oxidative stress. In response to nerve activation, the mitochondrial respiratory chain is rapidly activated. The enhancement of mitochondrial respiratory chain activation may induce oxidative stress in the brain. However, there is little experimental evidence regarding the mitochondrial function after methamphetamine administration in vivo. Here, we evaluated whether a single administration of methamphetamine induces ATP consumption and overactivation of mitochondria. We measured mitochondrial function in two different ways: by monitoring oxygen partial pressure using an oxygen-selective electrode, and by imaging of redox reactions using a nitroxyl radical (i.e., nitroxide) coupled with Overhauser-enhanced magnetic resonance imaging (OMRI). A single administration of methamphetamine to Wistar rats induced dopaminergic nerve activation, ATP consumption and an increase in mitochondrial respiratory chain function in both the striatum and cortex. Furthermore, antioxidant TEMPOL prevented the increase in mitochondrial oxidative damage and methamphetamine-induced sensitization. These findings suggest that energy-supplying reactions after dopaminergic nerve activation are associated with oxidative stress in both the striatum and cortex, leading to abnormal behavior.
Collapse
Affiliation(s)
- Takeshi Shiba
- Department of REDOX Medicinal Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Horner KA, Gilbert YE, Cline SD. Widespread increases in malondialdehyde immunoreactivity in dopamine-rich and dopamine-poor regions of rat brain following multiple, high doses of methamphetamine. Front Syst Neurosci 2011; 5:27. [PMID: 21602916 PMCID: PMC3093137 DOI: 10.3389/fnsys.2011.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/27/2011] [Indexed: 11/13/2022] Open
Abstract
Treatment with multiple high doses of methamphetamine (METH) can induce oxidative damage, including dopamine (DA)-mediated reactive oxygen species (ROS) formation, which may contribute to the neurotoxic damage of monoamine neurons and long-term depletion of DA in the caudate putamen (CPu) and substantia nigra pars compacta (SNpc). Malondialdehyde (MDA), a product of lipid peroxidation by ROS, is commonly used as a marker of oxidative damage and treatment with multiple high doses of METH increases MDA reactivity in the CPu of humans and experimental animals. Recent data indicate that MDA itself may contribute to the destruction of DA neurons, as MDA causes the accumulation of toxic intermediates of DA metabolism via its chemical modification of the enzymes necessary for the breakdown of DA. However, it has been shown that in human METH abusers there is also increased MDA reactivity in the frontal cortex, which receives relatively fewer DA afferents than the CPu. These data suggest that METH may induce neuronal damage regardless of the regional density of DA or origin of DA input. The goal of the current study was to examine the modification of proteins by MDA in the DA-rich nigrostriatal and mesoaccumbal systems, as well as the less DA-dense cortex and hippocampus following a neurotoxic regimen of METH treatment. Animals were treated with METH (10 mg/kg) every 2 h for 6 h, sacrificed 1 week later, and examined using immunocytochemistry for changes in MDA-adducted proteins. Multiple, high doses of METH significantly increased MDA immunoreactivity (MDA-ir) in the CPu, SNpc, cortex, and hippocampus. Multiple METH administration also increased MDA-ir in the ventral tegmental area and nucleus accumbens. Our data indicate that multiple METH treatment can induce persistent and widespread neuronal damage that may not necessarily be limited to the nigrostriatal DA system.
Collapse
Affiliation(s)
- Kristen A. Horner
- Division of Basic Medical Sciences, Mercer University School of MedicineMacon, GA, USA
| | - Yamiece E. Gilbert
- Division of Basic Medical Sciences, Mercer University School of MedicineMacon, GA, USA
- Master of Public Health Program, Department of Community Medicine, Mercer University School of MedicineMacon, GA, USA
| | - Susan D. Cline
- Division of Basic Medical Sciences, Mercer University School of MedicineMacon, GA, USA
| |
Collapse
|
43
|
Onyango AN, Baba N. New hypotheses on the pathways of formation of malondialdehyde and isofurans. Free Radic Biol Med 2010; 49:1594-600. [PMID: 20723600 DOI: 10.1016/j.freeradbiomed.2010.08.012] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/13/2010] [Accepted: 08/10/2010] [Indexed: 11/30/2022]
Abstract
Malondialdehyde (MDA) is a mutagenic compound that has been widely used as a biomarker of oxidative stress. However, the nonenzymatic mechanisms of its formation are not well understood. Some lipid oxidation products were previously suggested to be MDA precursors and found to afford MDA heterolytically under acidic conditions. We predict that some of these compounds are not important MDA sources under the autoxidative conditions under which the bulk of MDA should be formed in vivo and that others require further oxidative modifications to generate MDA homolytically. Thus, we outline the likely important pathways of MDA formation in vivo. All these pathways are intense aldehyde producers, generating two other aldehydic products for every MDA molecule formed. Some of the predicted aldehydes are new and may merit further analytical and biological studies. Peracids derived from the aldehydes are proposed to participate in the formation of isofurans (which at high oxygen tensions are excellent markers of oxidative stress) as well as important bioactive epoxides such as leukotoxins. This generates interest in the biological relevance of lipid aldehyde-derived peracids. The suitability of tissue MDA determination methods is discussed based on their likelihood of involving acid-catalyzed artifactual MDA formation.
Collapse
Affiliation(s)
- Arnold N Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | | |
Collapse
|
44
|
Bradley MA, Xiong-Fister S, Markesbery WR, Lovell MA. Elevated 4-hydroxyhexenal in Alzheimer's disease (AD) progression. Neurobiol Aging 2010; 33:1034-44. [PMID: 20965613 DOI: 10.1016/j.neurobiolaging.2010.08.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/16/2010] [Accepted: 08/31/2010] [Indexed: 11/29/2022]
Abstract
Multiple studies have demonstrated elevations of α, β-unsaturated aldehydes including 4-hydroxynonenal (HNE) and acrolein, in vulnerable regions of mild cognitive impairment (MCI), preclinical Alzheimer's disease (PCAD), and late stage Alzheimer's disease (LAD) brain. However, there has been limited study of a third member, 4-hydroxyhexenal (HHE), a diffusible lipid peroxidation product of the ω-3 polyunstataturated fatty acids (PUFAs). In the present study levels of extractable and protein-bound HHE were quantified in the hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyri (SMTG), and cerebellum (CER) of MCI, PCAD, LAD, and normal control (NC) subjects. Levels of extractable and protein-bound HHE were increased in multiple regions in the progression of Alzheimer's disease (AD). Extractable HHE was significantly elevated in the hippocampus/parahippocampal gyrus (HPG) of PCAD and LAD subjects and protein-bound HHE was significantly higher in MCI, PCAD, and LAD HPG. A time- and concentration-dependent decrease in survival and a concentration-dependent decrease in glucose uptake were observed in primary cortical cultures treated with HHE. Together these data support a role for lipid peroxidation in the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa A Bradley
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
45
|
Seger D. Cocaine, metamfetamine, and MDMA abuse: the role and clinical importance of neuroadaptation. Clin Toxicol (Phila) 2010; 48:695-708. [DOI: 10.3109/15563650.2010.516263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Bradley MA, Markesbery WR, Lovell MA. Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 2010; 48:1570-6. [PMID: 20171275 PMCID: PMC2881698 DOI: 10.1016/j.freeradbiomed.2010.02.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 11/24/2022]
Abstract
Previous studies demonstrate increased levels of 4-hydroxynonenal (HNE) and acrolein in vulnerable brain regions of subjects with mild cognitive impairment and late-stage Alzheimer disease (LAD). Recently preclinical AD (PCAD) subjects, who demonstrate normal antemortem neuropsychological test scores but abundant AD pathology at autopsy, have become the focus of increased study. Levels of extractable HNE and acrolein were quantified by gas chromatography-mass spectrometry with negative chemical ionization, and protein-bound HNE and acrolein were quantified by dot-blot immunohistochemistry in the hippocampus/parahippocampal gyrus (HPG), superior and middle temporal gyri (SMTG), and cerebellum (CER) of 10 PCAD and 10 age-matched normal control (NC) subjects. Results of the analyses show a significant (P<0.05) increase in levels of extractable acrolein in the HPG of PCAD subjects compared to age-matched NC subjects and a significant decrease in extractable acrolein in PCAD CER. Significant increases in protein-bound HNE in HPG and a significant decrease in CER of PCAD subjects compared to NC subjects were observed. No significant alterations were observed in either extractable or protein-bound HNE or acrolein in the SMTG of PCAD subjects. Additionally, no significant differences in levels of protein carbonyls were observed in the HPG, SMTG, or CER of PCAD subjects compared to NC subjects.
Collapse
Affiliation(s)
- M A Bradley
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
47
|
Yamamoto BK, Moszczynska A, Gudelsky GA. Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 2010; 1187:101-21. [PMID: 20201848 DOI: 10.1111/j.1749-6632.2009.05141.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The drugs of abuse, methamphetamine and MDMA, produce long-term decreases in markers of biogenic amine neurotransmission. These decreases have been traditionally linked to nerve terminals and are evident in a variety of species, including rodents, nonhuman primates, and humans. Recent studies indicate that the damage produced by these drugs may be more widespread than originally believed. Changes indicative of damage to cell bodies of biogenic and nonbiogenic amine-containing neurons in several brain areas and endothelial cells that make up the blood-brain barrier have been reported. The processes that mediate this damage involve not only oxidative stress but also include excitotoxic mechanisms, neuroinflammation, the ubiquitin proteasome system, as well as mitochondrial and neurotrophic factor dysfunction. These mechanisms also underlie the toxicity associated with chronic stress and human immunodeficiency virus (HIV) infection, both of which have been shown to augment the toxicity to methamphetamine. Overall, multiple mechanisms are involved and interact to promote neurotoxicity to methamphetamine and MDMA. Moreover, the high coincidence of substituted amphetamine abuse by humans with HIV and/or chronic stress exposure suggests a potential enhanced vulnerability of these individuals to the neurotoxic actions of the amphetamines.
Collapse
Affiliation(s)
- Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | |
Collapse
|
48
|
Jung BD, Shin EJ, Nguyen XKT, Jin CH, Bach JH, Park SJ, Nah SY, Wie MB, Bing G, Kim HC. Potentiation of methamphetamine neurotoxicity by intrastriatal lipopolysaccharide administration. Neurochem Int 2010; 56:229-44. [DOI: 10.1016/j.neuint.2009.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/29/2009] [Accepted: 10/05/2009] [Indexed: 12/21/2022]
|
49
|
Govitrapong P, Boontem P, Kooncumchoo P, Pinweha S, Namyen J, Sanvarinda Y, Vatanatunyakum S. Increased blood oxidative stress in amphetamine users. Addict Biol 2010; 15:100-2. [PMID: 19799584 DOI: 10.1111/j.1369-1600.2009.00176.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Amphetamine derivatives have been shown to be a potential brain neurotoxin based on the production of free radicals that occurs after administration. The purpose of this study was to examine the lipid peroxidation and antioxidant enzymes in the blood of amphetamine users. The plasma lipid peroxidation was determined and reported as thiobarbituric acid reactive substance and was significantly increased (+21%), whereas the activities of the erythrocyte antioxidant enzymes glutathione peroxidase, catalase, and superoxide dismutase were significantly decreased (-32%, -14% and -31%, respectively) in amphetamine users. These results implicated the potential role of oxidative stress in amphetamine-induced neurotoxicity.
Collapse
|
50
|
Melo P, Zanon-Moreno V, Alves CJ, Magalhães A, Tavares MA, Pinazo-Duran MD, Moradas-Ferreira P. Oxidative stress response in the adult rat retina and plasma after repeated administration of methamphetamine. Neurochem Int 2009; 56:431-6. [PMID: 19948197 DOI: 10.1016/j.neuint.2009.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/10/2009] [Accepted: 11/23/2009] [Indexed: 11/16/2022]
Abstract
Methamphetamine (MA) is a psychostimulant that target the sensory systems, with the neurosensory retina having been shown to be affected. In the brain, MA-related toxicity can be linked to oxidative stress; the same relationship has yet to be established for the retina. The aim of this study, therefore, was to evaluate the effects of repeated exposure to MA on oxidative stress parameters in the rat retina. Oxidative stress parameters in the blood plasma were also assessed. Male Wistar rats were given 5mg/kg MA every 2h for a period of 6h (i.e., 4 injections) daily between postnatal day (PND) 91 and 100. Evolution of body weight was registered. Rats were sacrificed at PND 110. Blood plasma was collected and immediately frozen for storage at -70 degrees C. The eyes were enucleated, and the retina and choroids rapidly dissected on ice under dim light also to be stored at -70 degrees C. Lipid peroxidation activity was measured by the thiobarbituric acid (TBA) test. Total antioxidant status, superoxide dismutase (SOD) activity, catalase (Cat) activity, and nitrogen oxides contents were also determined. Lipid peroxidation was significantly higher in the retina and blood plasma of the MA-treated rats. Total antioxidant levels were significantly lower in both retina and blood plasma of the MA-treated rats. The activity of SOD was significantly increased in the retina and blood plasma of MA-treated rats. Catalase activity did not differ between groups in either the retina or the blood plasma. Nitric oxide production was significantly higher in both the retina and blood plasma in the MA-treated animals. The overall findings show that the oxidative stress defence mechanisms in the retina are compromised by MA toxicity. The results are similar to those found in the brain, and, moreover, showed some correlation with the blood plasma.
Collapse
Affiliation(s)
- Pedro Melo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|