1
|
Braga J, Kuik EJY, Lepra M, Rusjan PM, Kish SJ, Vieira EL, Nasser Z, Verhoeff N, Vasdev N, Chao T, Bagby M, Boileau I, Kloiber S, Ishrat Husain M, Kolla N, Koshimori Y, Faiz K, Wang W, Meyer JH. Astrogliosis marker [11C]SL25.1188 After COVID-19 With Ongoing Depressive and Cognitive Symptoms. Biol Psychiatry 2024:S0006-3223(24)01656-1. [PMID: 39395470 DOI: 10.1016/j.biopsych.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND After acute COVID-19, five percent of people experience persistent depressive symptoms and reduced cognitive function (COVID-DC). Theoretical models propose that astrogliosis is important in long COVID but measures primarily indicative of astrogliosis have not been studied in the brain of long COVID or COVID-DC. The objective is to measure [11C]SL25.1188 total distribution volume ([11C]SL25.1188 VT), index of monoamine oxidase B (MAO-B) density and marker of astrogliosis with PET in COVID-DC and compare to healthy controls. METHODS In 21 COVID-DC cases and 21 healthy controls, [11C]SL25.1188 VT was measured in prefrontal cortex, anterior cingulate cortex, hippocampus, dorsal putamen, and ventral striatum. Depressive symptoms were measured with the Beck Depression Inventory-II and cognitive symptoms were measured with neuropsychological tests. RESULTS [11C]SL25.1188 VT was higher in COVID-DC in prefrontal cortex, anterior cingulate cortex, hippocampus, dorsal putamen, and ventral striatum compared to healthy controls. Depressive symptom severity correlated negatively with [11C]SL25.1188 VT across prioritized brain regions. More recent acute COVID-19 correlated positively with [11C]SL25.1188 VT, reflecting higher values since predominance of the omicron variant. Exploratory analyses found greater [11C]SL25.1188 VT in hippocampus, dorsal putamen, and ventral striatum compared to major depressive episode controls with no history of COVID-19; and no relationship to cognitive testing in prioritized regions. CONCLUSIONS Results strongly support the presence of MAO-B labelled astrogliosis in COVID-DC throughout the regions assessed although the association of greater astrogliosis with less symptoms raises the possibility of a protective role. Magnitude of astrogliosis in COVID-DC is greater since emergence of omicron variant.
Collapse
Affiliation(s)
- Joeffre Braga
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Emily J Y Kuik
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Mariel Lepra
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Pablo M Rusjan
- Douglas Research Centre and Department of Psychiatry, McGill University, QC, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Erica L Vieira
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Zahra Nasser
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Natasha Verhoeff
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas Chao
- Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Michael Bagby
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stefan Kloiber
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - M Ishrat Husain
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan Kolla
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada
| | - Yuko Koshimori
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Khunsa Faiz
- Department of Diagnostic Radiology, Hamilton Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Wei Wang
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Hemanth Babu A, Prasanth DSNBK, Yaraguppi DA, Panda SP, Ahmad SF, Al-Mazroua HA, Sai AR, Praveen Kumar P. Antiparkinson potential of khellin on rotenone-induced Parkinson's disease in a zebrafish model: targeting MAO, inflammatory, and oxidative stress markers with molecular docking, MD simulations, and histopathology evidence. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109997. [PMID: 39103133 DOI: 10.1016/j.cbpc.2024.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
In this study, the antiparkinson effect of khellin (KL) on rotenone-induced Parkinson's disease (PD) was examined in zebrafish. Initially, In silico evaluations, such as drug likeness and ADME/T analysis, confirmed the pharmacological viability of KL. Molecular docking and molecular dynamics (MD) analysis revealed stable binding interactions between KL and monamine oxidase B (MAO-B). Molecular docking results for KL and pioglitazone (CCl) revealed binding energies of -6.5 and -10.4 kcal/mol, respectively. Later, molecular dynamics (MD) studies were performed to assess the stability of these complexes, which yielded binding energies of -36.04 ± 55.21 and -56.2 ± 80.63 kJ/mol for KL and CCl, respectively. These results suggest that KL exhibits considerable binding affinity for MAO-B. In In vitro studies, according to the DPPH free radical scavenging assay, KL exhibited significant antioxidant effects, indicating that it can promote redox balance with an IC50 value of 22.68 ± 0.5 μg/ml. In vivo studies and evaluation of locomotor activity, social interaction, histopathology and biochemical parameters were conducted in KL-treated zebrafish to measure SOD and GSH antioxidant activity, the oxidative stress marker malondialdehyde (MDA), the inflammatory marker myeloperoxidase (MPO) and MAO-B. However, while the locomotor and social interaction abilities of the rotenone-treated zebrafish were significantly reduced, KL treatment significantly improved locomotor activity (p < 0.001) and social interaction (p < 0.001). KL alleviated PD symptoms, as indicated by significant increases in SOD (p < 0.01), GSH (p < 0.001), MDA (p < 0.001), MAO-B (p < 0.001) and MPO (p < 0.001) in rotenone-induced PD fish (p<0.001) significantly reduced activities. Histopathological studies revealed that rotenone-induced brain hyperintensity and abnormal cellularity of the periventricular gray matter in the optic tectum were significantly reduced by KL treatment. This study provides a strong basis for developing KL as a new candidate for the treatment of Parkinson's disease, with the prospect of improved safety profiles and efficacy.
Collapse
Affiliation(s)
- A Hemanth Babu
- Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu, Andhra Pradesh 515721, India
| | - D S N B K Prasanth
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad 509301, India
| | - Deepak A Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubli, Karnataka 580031, India
| | - Siva Prasad Panda
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttarpradesh, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Akula Ruchitha Sai
- Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu, Andhra Pradesh 515721, India
| | - P Praveen Kumar
- Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu, Andhra Pradesh 515721, India.
| |
Collapse
|
3
|
Hajimohammadi S, Soodi M, Hajimehdipoor H, Sefidbakht S, Mashhadi Sharif N. Ferulago Angulata methanolic extract ameliorates scopolamine-induced memory impairment through the inhibition of hippocampal monoamine oxidase activity. Metab Brain Dis 2024; 39:691-703. [PMID: 38722561 DOI: 10.1007/s11011-024-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Ferulago angulata is a medicinal herb from the Apiaceae family known for its antioxidant, anti-apoptotic, and neuroprotective properties. This study aimed to assess the effects of F. angulata extract on neurobehavioral and biochemical parameters in scopolamine-induced amnesic rats. Fifty-six male Wistar rats were divided into seven groups and orally treated with F. angulata extract (100, 200, 400 mg/kg) and Rivastigmine (1.5 mg/kg) for 10 days. Starting on the sixth day of treatment, the Morris water maze behavioral study was conducted to evaluate cognitive function, with scopolamine administered 30 min before training. Biochemical assays, including monoamine oxidase and oxidative stress measures, were performed on hippocampal tissue. Results showed that extract treatment significantly attenuated scopolamine-induced memory impairment in a dose-dependent manner. Following scopolamine administration, malondialdehyde levels and monoamine oxidase A/B activity increased, while total thiol content and catalase activity decreased compared to the control group. Pretreatment with F. angulata extracts ameliorated the scopolamine-induced impairment in all factors. Toxicological evaluation of liver, lung, heart, and kidney tissues did not indicate any side effects at high doses. The total extract of F. angulata prevents scopolamine-induced learning and memory impairment through antioxidant mechanisms and inhibition of monoamine oxidase. These results suggest that F. angulata extract is effective in the scopolamine model and could be a promising agent for preventing dementia, especially Alzheimer's disease.
Collapse
Affiliation(s)
- Samaneh Hajimohammadi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran.
| | - Homa Hajimehdipoor
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salma Sefidbakht
- Department of Pathology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Giovannuzzi S, Chavarria D, Provensi G, Leri M, Bucciantini M, Carradori S, Bonardi A, Gratteri P, Borges F, Nocentini A, Supuran CT. Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase-B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction. J Med Chem 2024; 67:4170-4193. [PMID: 38436571 DOI: 10.1021/acs.jmedchem.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer's disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1-90.0 nM) and MAO-B (IC50 in the range of 6.7-32.6 nM). Computational studies were conducted to elucidate the structure-activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Gustavo Provensi
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, via G. Pieraccini 6, 50139 Florence, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti and Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
5
|
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer's Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024; 29:490. [PMID: 38276568 PMCID: PMC10820890 DOI: 10.3390/molecules29020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saira Asghar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Ahsaan Ahmed
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Laila Anwar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Rabya Munawar
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| |
Collapse
|
6
|
Mathew B, Oh JM, Parambi DGT, Sudevan ST, Kumar S, Kim H. Enzyme Inhibition Assays for Monoamine Oxidase. Methods Mol Biol 2024; 2761:329-336. [PMID: 38427248 DOI: 10.1007/978-1-0716-3662-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines with two isoforms, namely, MAO-A and MAO-B, in mitochondrial outer membranes. These two types of MAO-A and MAO-B participate in changes in levels of neurotransmitter such as serotonin (5-hydroxytryptamine) and dopamine. Selective MAO-A inhibitors have been targeted for anti-depression treatment, while selective MAO-B inhibitors are targets of therapeutic agents for Alzheimer's disease and Parkinson's disease. For this reason, study on the development of MAO inhibitors has recently become important. Here, we describe methods of MAO activity assay, especially continuous spectrophotometric methods, which give relatively high accuracy. MAO-A and MAO-B can be assayed using kynuramine and benzylamine as substrates, respectively, at 316 nm and 250 nm, respectively, to measure their respective products, 4-hydroxyquinoline and benzaldehyde. Inhibition degree and pattern can be analyzed by using the Lineweaver-Burk and secondary plots in the presence of inhibitor, and reversibility of inhibitor can be determined by using the dialysis method.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | | | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea.
| |
Collapse
|
7
|
Kumar VP, Vishnu MS, Kumar S, Jaiswal S, Ayyannan SR. Exploration of a library of piperonylic acid-derived hydrazones possessing variable aryl functionalities as potent dual cholinesterase and monoamine oxidase inhibitors. Mol Divers 2023; 27:2465-2489. [PMID: 36355337 DOI: 10.1007/s11030-022-10564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
A library of piperonylic acid-derived hydrazones possessing variable aryl moiety was synthesized and investigated for their multifunctional properties against cholinesterases (ChEs) and monoamine oxidases (MAOs). The in vitro enzymatic assay results revealed that the tested hydrazones have exhibited excellent cholinesterase inhibition profile. Compound 4i, (E)-N'-(2,3-dichlorobenzylidene)benzo[d][1,3]dioxole-5-carbohydrazide showed promising dual inhibitory profile against AChE (0.048 ± 0.007 μM), BChE (0.89 ± 0.018 μM), and MAO-B (0.95 ± 0.12 μM) enzymes. SAR exploration revealed that the truncation of the linker connecting both the aryl binding sites of the semicarbazone scaffold, by one atom, has relatively suppressed the AChE inhibitory potential. Kinetic studies disclosed that the compound 4i reversibly inhibited AChE enzyme in a competitive manner (Ki = 8.0 ± 0.076 nM), while it displayed a non-competitive and reversible inhibition profile against MAO-B (Ki = 9.6 ± 0.021 µM). Moreover, molecular docking studies of synthesized compounds against ChEs and MAOs provided the crucial molecular features that enable their close association and interaction with the target enzymes. All atomistic simulation studies confirmed the stable association of compound 4i within the active sites of AChE and MAO-B. In addition, theoretical ADMET prediction studies demonstrated the acceptable pharmacokinetic profile of the dual inhibitors. In summary, the attempted lead simplification study afforded a potent dual ChE-MAO-B inhibitor compound that merits further investigation.
Collapse
Affiliation(s)
- V Pavan Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - M S Vishnu
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India.
| |
Collapse
|
8
|
Koshimori Y, Cusimano MD, Vieira EL, Rusjan PM, Kish SJ, Vasdev N, Moriguchi S, Boileau I, Chao T, Nasser Z, Ishrat Husain M, Faiz K, Braga J, Meyer JH. Astrogliosis marker 11C-SL25.1188 PET in traumatic brain injury with persistent symptoms. Brain 2023; 146:4469-4475. [PMID: 37602426 PMCID: PMC10629767 DOI: 10.1093/brain/awad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Traumatic brain injury (TBI) is common but little is known why up to a third of patients have persisting symptoms. Astrogliosis, a pathophysiological response to brain injury, may be a potential therapeutic target, but demonstration of astrogliosis in the brain of humans with TBI and persistent symptoms is lacking. Astroglial marker monoamine oxidase B (MAO-B) total distribution volume (11C-SL25.1188 VT), an index of MAO-B density, was measured in 29 TBI and 29 similarly aged healthy control cases with 11C-SL25.1188 PET, prioritizing prefrontal cortex (PFC) and cortex proximal to cortical convexity. Correlations of PFC 11C-SL25.1188 VT with psychomotor and processing speed; and serum blood measures implicated in astrogliosis were determined. 11C-SL25.1188 VT was greater in TBI in PFC (P = 0.00064) and cortex (P = 0.00038). PFC 11C-SL25.1188 VT inversely correlated with Comprehensive Trail Making Test psychomotor and processing speed (r = -0.48, P = 0.01). In participants scanned within 2 years of last TBI, PFC 11C-SL25.1188 VT correlated with serum glial fibrillary acid protein (r = 0.51, P = 0.037) and total tau (r = 0.74, P = 0.001). Elevated 11C-SL25.1188 VT argues strongly for astrogliosis and therapeutics modifying astrogliosis towards curative phenotypes should be tested in TBI with persistent symptoms. Given substantive effect size, astrogliosis PET markers should be applied to stratify cases and/or assess target engagement for putative therapeutics targeting astrogliosis.
Collapse
Affiliation(s)
- Yuko Koshimori
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Michael D Cusimano
- Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Erica L Vieira
- Molecular Neurobiology and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Pablo M Rusjan
- Douglas Research Centre and Department of Psychiatry, McGill University, Montreal, H3A 1A1, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Sho Moriguchi
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Thomas Chao
- Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Zahra Nasser
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - M Ishrat Husain
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Khunsa Faiz
- Department of Diagnostic Radiology, Hamilton Health Sciences, McMaster University, Hamilton, L8S 4K1, Canada
| | - Joeffre Braga
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
9
|
El-Damasy AK, Oh JM, Kim HJ, Mun SK, Al-Karmalawy AA, Alnajjar R, Choi YJ, Kim JJ, Nam G, Kim H, Keum G. Novel coumarin benzamides as potent and reversible monoamine oxidase-B inhibitors: Design, synthesis, and neuroprotective effects. Bioorg Chem 2023; 142:106939. [PMID: 39492365 DOI: 10.1016/j.bioorg.2023.106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
A series of new 6-amidocoumarin derivatives, 3a-j, was synthesized and evaluated for their inhibitory activity against monoamine oxidase (MAO) and cholinesterase. All compounds, except 3 g, showed higher inhibitory activity towards MAO-B than MAO-A. Compound 3i most potently inhibited MAO-B with an IC50 value of 0.095 μM, followed by 3j (0.150 μM), 3b (0.190 μM), and 3c (0.204 μM). Compound 3i demonstrated the highest selectivity index (>421.05) for MAO-B. The remarkable MAO-B inhibitory activity of compounds 3i, 3j, 3b, and 3c highlighted the substantial role of the substituents at the 3,4-position of the terminal phenyl group in achieving optimal MAO-B inhibition, especially 3-Cl (3i) > 3-CF3 (3b). In the kinetic study, the Ki value of 3i for MAO-B was 0.046 ± 0.010 μM with a competitive reversible mode. Moreover, compounds 3i and 3j were nontoxic to normal (MDCK), cancer (HL-60), and neuroblastoma (SH-SY5Y) cells and showed protective effects against damage induced by reactive oxygen species in SH-SY5Y neuroblastoma cells. Moreover, molecular docking and molecular dynamics simulations highlighted the tight interactions of 3i with Tyr398 at the binding site of MAO-B. These findings suggest that 3i is a potent, reversible, and selective MAO-B inhibitor that could potentially treat neurological disorders.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Ji Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya; PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya; Department of Chemistry, University of Cape Town, Rondebosch 7700, South Africa
| | - Yu-Jeong Choi
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Ghilsoo Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
10
|
Ayeni EA, Ma C, Hu Y, Bai X, Zhang Y, Liao X. Screening of Monoamine Oxidase Inhibitors from Seeds of Nigella glandulifera Freyn et Sint. by Ligand Fishing and Their Neuroprotective Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:882. [PMID: 36840231 PMCID: PMC9960078 DOI: 10.3390/plants12040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nigella glandulifera is a traditional medicinal plant used to treat seizures, insomnia, and mental disorders among the Tibetan and Xinjiang people of China. Recent pharmacological research indicates that the seeds of this plant have a neuroprotective effect; however, the chemical components responsible for this effect are unknown. Monoamine oxidase B (MAO-B) has been recognized as a target for developing anti-Parkinson's disease drugs. In this work, MAO-B functionalized magnetic nanoparticles were used to enrich the enzyme's ligands in extracts of N. glandulifera seeds for rapid screening of MAO-B inhibitors coupled with HPLC-MS. Tauroside E and thymoquinone were found to inhibit the enzyme with IC50 values of 35.85 μM and 25.54 μM, respectively. Both compounds exhibited neuroprotective effects on 6-OHDA-induced PC-12 cells by increasing the cell viability to 52% and 58%, respectively, compared to 50% of the injured cells. Finally, molecular docking indicated strong interactions of both inhibitors with the enzyme. This work shows that MAO-B functionalized magnetic nanoparticles are effective for rapid screening of anti-PD inhibitors from complex herbal mixtures and, at the same time, shows the promising potential of this plant's seeds in developing anti-PD drugs.
Collapse
Affiliation(s)
- Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Ma
- Phytochemistry Laboratory, Tibet Plateau Institute of Biology, Lhasa 850001, China
| | - Yikao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongmei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
11
|
Mathew A, Balaji E V, Pai SRK, Kishore A, Pai V, Pemmireddy R, K S C. Current Drug Targets in Alzheimer's Associated Memory Impairment: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:255-275. [PMID: 35366787 DOI: 10.2174/1871527321666220401124719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia among geriatrics. It is a progressive, degenerative neurologic disorder that causes memory and cognition loss. The accumulation of amyloid fibrils and neurofibrillary tangles in the brain of AD patients is a distinguishing feature of the disease. Therefore, most of the current therapeutic goals are targeting inhibition of beta-amyloid synthesis and aggregation as well as tau phosphorylation and aggregation. There is also a loss of the cholinergic neurons in the basal forebrain, and first-generation therapeutic agents were primarily focused on compensating for this loss of neurons. However, cholinesterase inhibitors can only alleviate cognitive symptoms of AD and cannot reduce the progression of the disease. Understanding the molecular and cellular changes associated with AD pathology has advanced significantly in recent decades. The etiology of AD is complex, with a substantial portion of sporadic AD emerging from unknown reasons and a lesser proportion of early-onset familial AD (FAD) caused by a mutation in several genes, such as the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) genes. Hence, efforts are being made to discover novel strategies for these targets for AD therapy. A new generation of AChE and BChE inhibitors is currently being explored and evaluated in human clinical trials for AD symptomatic treatment. Other approaches for slowing the progression of AD include serotonergic modulation, H3 receptor antagonism, phosphodiesterase, COX-2, and MAO-B inhibition. The present review provides an insight into the possible therapeutic strategies and their molecular mechanisms, enlightening the perception of classical and future treatment approaches.
Collapse
Affiliation(s)
- Anna Mathew
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vasudev Pai
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Ramadevi Pemmireddy
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandrashekar K S
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
12
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
13
|
Guglielmi P, Carradori S, D'Agostino I, Campestre C, Petzer JP. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin Ther Pat 2022; 32:849-883. [PMID: 35638744 DOI: 10.1080/13543776.2022.2083501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism. AREAS COVERED MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Hong SW, Teesdale-Spittle P, Page R, Ellenbroek B, Truman P. Biologically Active Compounds Present in Tobacco Smoke: Potential Interactions Between Smoking and Mental Health. Front Neurosci 2022; 16:885489. [PMID: 35557609 PMCID: PMC9087043 DOI: 10.3389/fnins.2022.885489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022] Open
Abstract
Tobacco dependence remains one of the major preventable causes of premature morbidity and mortality worldwide. There are well over 8,000 compounds present in tobacco and tobacco smoke, but we do not know what effect, if any, many of them have on smokers. Major interest has been on nicotine, as well as on toxic and carcinogenic effects and several major and minor components of tobacco smoke responsible for the negative health effects of smoking have been elucidated. Smokers themselves report a variety of positive effects from smoking, including effects on depression, anxiety and mental acuity. Smoking has also been shown to have protective effects in Parkinson’s Disease. Are the subjective reports of a positive effect of smoking due to nicotine, of some other components of tobacco smoke, or are they a manifestation of the relief from nicotine withdrawal symptoms that smoking provides? This mini-review summarises what is currently known about the components of tobacco smoke with potential to have positive effects on smokers.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Bart Ellenbroek
- Department of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
15
|
Dudal S, Bissantz C, Caruso A, David-Pierson P, Driessen W, Koller E, Krippendorff BF, Lechmann M, Olivares-Morales A, Paehler A, Rynn C, Türck D, Van De Vyver A, Wang K, Winther L. Translating pharmacology models effectively to predict therapeutic benefit. Drug Discov Today 2022; 27:1604-1621. [PMID: 35304340 DOI: 10.1016/j.drudis.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Many in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing the disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy of a drug, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Here, we review selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience. Each area has specific challenges around translatability and determination of an efficacious dose: new patient-specific dosing methods could help overcome these limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ken Wang
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
16
|
Grychowska K, Olejarz-Maciej A, Blicharz K, Pietruś W, Karcz T, Kurczab R, Koczurkiewicz P, Doroz-Płonka A, Latacz G, Keeri AR, Piska K, Satała G, Pęgiel J, Trybała W, Jastrzębska-Więsek M, Bojarski AJ, Lamaty F, Partyka A, Walczak M, Krawczyk M, Malikowska-Racia N, Popik P, Zajdel P. Overcoming undesirable hERG affinity by incorporating fluorine atoms: A case of MAO-B inhibitors derived from 1 H-pyrrolo-[3,2-c]quinolines. Eur J Med Chem 2022; 236:114329. [DOI: 10.1016/j.ejmech.2022.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
|
17
|
Minamisawa M, Sato Y, Ishiguro E, Taniai T, Sakamoto T, Kawai G, Saito T, Saido TC. Amelioration of Alzheimer's Disease by Gut-Pancreas-Liver-Brain Interaction in an App Knock-In Mouse Model. Life (Basel) 2021; 12:34. [PMID: 35054427 PMCID: PMC8778338 DOI: 10.3390/life12010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, we observed disease progression, changes in the gut microbiota, and interactions among the brain, liver, pancreas, and intestine in a mouse model of Alzheimer's disease (AD), in addition to attempting to inhibit disease progression through the dietary supplementation of L-arginine and limonoids. Wild-type mice (WC) and AD mice were fed a normal diet (AC), a diet supplemented with L-arginine and limonoids (ALA), or a diet containing only limonoids (AL) for 12-64 weeks. The normal diet-fed WC and AC mice showed a decrease in the diversity of the gut microbiota, with an increase in the Firmicutes/Bacteroidetes ratio, and bacterial translocation. Considerable bacterial translocation to the pancreas and intense inflammation of the pancreas, liver, brain, and intestinal tissues were observed in the AC mice from alterations in the gut microbiota. The ALA diet or AL diet-fed mice showed increased diversity of the bacterial flora and suppressed oxidative stress and inflammatory responses in hepatocytes and pancreatic cells, bacterial translocation, and neurodegeneration of the brain. These findings suggest that L-arginine and limonoids help in maintaining the homeostasis of the gut microbiota, pancreas, liver, brain, and gut in AD mice.
Collapse
Affiliation(s)
- Mayumi Minamisawa
- Department of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan; (Y.S.); (T.S.); (G.K.)
- Education Center, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba 275-0023, Japan;
| | - Yuma Sato
- Department of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan; (Y.S.); (T.S.); (G.K.)
| | | | - Tetsuyuki Taniai
- Education Center, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba 275-0023, Japan;
| | - Taiichi Sakamoto
- Department of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan; (Y.S.); (T.S.); (G.K.)
| | - Gota Kawai
- Department of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan; (Y.S.); (T.S.); (G.K.)
| | - Takashi Saito
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takaomi C. Saido
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
| |
Collapse
|
18
|
Khokar R, Hachani K, Hasan M, Othmani F, Essam M, Al Mamari A, UM D, Khan SA. Anti-Alzheimer potential of a waste by-product (peel) of Omani pomegranate fruits: Quantification of phenolic compounds, in-vitro antioxidant, anti-cholinesterase and in-silico studies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Zhang Q, Guo X, Xie C, Cao Z, Wang X, Liu L, Yang P. Unraveling the metabolic pathway of choline-TMA-TMAO: Effects of gypenosides and implications for the therapy of TMAO related diseases. Pharmacol Res 2021; 173:105884. [PMID: 34530121 DOI: 10.1016/j.phrs.2021.105884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
Trimethylamine-N-oxide (TMAO) has emerged as a promising new therapeutic target for the treatment of central nervous system diseases, atherosclerosis and other diseases. However, its origin in the brain is unclear. Gynostemma pentaphyllum (Thunb.) Makino can reduce the increase of TMAO level caused by a high fat diet. But its effective chemical composition and specific mechanism have not been reported. The study confirmed that TMA was more easily to penetrate blood brain barrier than TMAO, the MAO enzyme was partly involved in the transformation of the TMA in brain, which further supplemented the choline-TMA-TMAO pathway. Based on the above metabolic pathway, using multi-omics approaches, such as microbiodiversity, metagenomics and lipidomics, it was demonstrated that the reduction of plasma TMAO levels by gypenosides did not act on FMO3 and MAO in the pathway, but remodeled the microbiota and affected the trimethylamine lyase needed in the conversion of choline to TMA in intestinal flora. At the same time, gypenosides interfered with enzymes associated with TCA and lipid metabolism, thus affecting TMAO and lipid metabolism. Considering the bidirectional transformation of phosphatidycholine and choline, lipid metabolism and TMAO metabolism could affected each other to some extent. In conclusion, our study revealed the intrinsic correlation between long-term application of gypenosides to lipid reduction and nervous system protection, and explained why gypenosides were used to treat brain diseases, even though they had a poor ability to enter the brain. Besides, it provided a theoretical basis for clinical application of gypenosides and the development of new drugs.
Collapse
Affiliation(s)
- Qiao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China; Center for Pharmacological Evaluation and Research of SIPI, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China
| | - Xiaomin Guo
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Cao Xie
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Zhonglian Cao
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xin Wang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Li Liu
- Center for Pharmacological Evaluation and Research of SIPI, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, PR China.
| | - Ping Yang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
20
|
Mannan A, Singh TG, Singh V, Garg N, Kaur A, Singh M. Insights into the Mechanism of the Therapeutic Potential of Herbal Monoamine Oxidase Inhibitors in Neurological Diseases. Curr Drug Targets 2021; 23:286-310. [PMID: 34238153 DOI: 10.2174/1389450122666210707120256] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme that catalyzes the deamination of monoamines and other proteins. MAO's hyperactivation results in the massive generation of reactive oxygen species, which leads to a variety of neurological diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and depression-like disorders. Although synthetic MAO inhibitors are clinically available, they are associated with side effects such as hepatotoxicity, cheese reaction, hypertensive crisis, and so on, necessitating the investigation of alternative MAO inhibitors from a natural source with a safe profile. Herbal medications have a significant impact on the prevention of many diseases; additionally, they have fewer side effects and serve as a precursor for drug development. This review discusses the potential of herbal MAO inhibitors as well as their associated mechanism of action, with an aim to foster future research on herbal MAO inhibitors as potential treatment for neurological diseases.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
21
|
Al Mamun A, Uddin MS. KDS2010: A Potent Highly Selective and Reversible MAO-B Inhibitor for Alzheimer's Disease. Comb Chem High Throughput Screen 2021; 23:836-841. [PMID: 31957612 DOI: 10.2174/1386207323666200117103144] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/12/2019] [Accepted: 12/07/2019] [Indexed: 11/22/2022]
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| |
Collapse
|
22
|
Godyń J, Zaręba P, Łażewska D, Stary D, Reiner-Link D, Frank A, Latacz G, Mogilski S, Kaleta M, Doroz-Płonka A, Lubelska A, Honkisz-Orzechowska E, Olejarz-Maciej A, Handzlik J, Stark H, Kieć-Kononowicz K, Malawska B, Bajda M. Cyanobiphenyls: Novel H 3 receptor ligands with cholinesterase and MAO B inhibitory activity as multitarget compounds for potential treatment of Alzheimer's disease. Bioorg Chem 2021; 114:105129. [PMID: 34217977 DOI: 10.1016/j.bioorg.2021.105129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex and incurable illness that requires the urgent approval of new effective drugs. However, since 2003, no new molecules have shown successful results in clinical trials, thereby making the common "one compound - one target" paradigm questionable. Recently, the multitarget-directed ligand (MTDL) approach has gained popularity, as compounds targeting at least two biological targets may be potentially more effective in treating AD. On the basis of these findings, we designed, synthesized, and evaluated through biological assays a series of derivatives of alicyclic amines linked by an alkoxy bridge to an aromatic lipophilic moiety of [1,1'-biphenyl]-4-carbonitrile. The research results revealed promising biological activity of the obtained compounds toward the chosen targets involved in AD pathophysiology; the compounds showed high affinity (mostly low nanomolar range of Ki values) for human histamine H3 receptors (hH3R) and good nonselective inhibitory potency (micromolar range of IC50 values) against acetylcholinesterase from electric eel (eeAChE) and equine serum butyrylcholinesterase (eqBuChE). Moreover, micromolar/submicromolar potency against human monoamine oxidase B (hMAO B) was detected for some compounds. The study identified compound 5 as a multiple hH3R/eeAChE/eqBuChE/hMAO B ligand (5: hH3R Ki = 9.2 nM; eeAChE IC50 = 2.63 µM; eqBuChE IC50 = 1.30 µM; hMAO B IC50 = 0.60 µM). Further in vitro studies revealed that compound 5 exhibits a mixed type of eeAChE and eqBuChE inhibition, good metabolic stability, and moderate hepatotoxicity effect on HepG2 cells. Finally, compound 5 showed a beneficial effect on scopolamine-induced memory impairments, as assessed by the passive avoidance test, thus revealing the potential of this compound as a promising agent for further optimization for AD treatment.
Collapse
Affiliation(s)
- Justyna Godyń
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Dorota Stary
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
23
|
Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM, Bungau S, Bumbu AG. Role of Monoamine Oxidase Activity in Alzheimer's Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules 2021; 26:molecules26123724. [PMID: 34207264 PMCID: PMC8234097 DOI: 10.3390/molecules26123724] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/03/2023] Open
Abstract
Despite not being utilized as considerably as other antidepressants in the therapy of depression, the monoamine oxidase inhibitors (MAOIs) proceed to hold a place in neurodegeneration and to have a somewhat broad spectrum in respect of the treatment of neurological and psychiatric conditions. Preclinical and clinical studies on MAOIs have been developing in recent times, especially on account of rousing discoveries manifesting that these drugs possess neuroprotective activities. The altered brain levels of monoamine neurotransmitters due to monoamine oxidase (MAO) are directly associated with various neuropsychiatric conditions like Alzheimer’s disease (AD). Activated MAO induces the amyloid-beta (Aβ) deposition via abnormal cleavage of the amyloid precursor protein (APP). Additionally, activated MAO contributes to the generation of neurofibrillary tangles and cognitive impairment due to neuronal loss. No matter the attention of researchers on the participation of MAOIs in neuroprotection has been on monoamine oxidase-B (MAO-B) inhibitors, there is a developing frame of proof indicating that monoamine oxidase-A (MAO-A) inhibitors may also play a role in neuroprotection. The therapeutic potential of MAOIs alongside the complete understanding of the enzyme’s physiology may lead to the future advancement of these drugs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
- Correspondence: (T.B.); (S.B.)
| | - Dapinder Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (D.K.); (A.S.); (S.S.); (N.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Correspondence: (T.B.); (S.B.)
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
24
|
Carraro Junior LR, Alves AG, Rech TDST, Campos Júnior JC, Siqueira GM, Cunico W, Brüning CA, Bortolatto CF. Three -(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-one as a novel inhibitor of cerebral MAO-B activity with antioxidant properties and low toxicity potential. J Biochem Mol Toxicol 2021; 35:e22833. [PMID: 34047428 DOI: 10.1002/jbt.22833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Some brain diseases are associated with oxidative stress and altered monoamine oxidase (MAO) activity. The objective of this study was to evaluate the antioxidant and neuroprotective actions through MAO inhibition of 3-(pyridin-2-yl)-2-(pyridine-2-ylimino) thiazolidin-4-one (PPIT, a synthetic molecule containing a thiazolidinone nucleus), as well as its effects on toxicity parameters in Swiss female mice. Five in vitro assays were carried out to verify the PPIT antioxidant capacity: protein carbonylation (PC), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picryl-hydrazil (DPPH), ferric ion (Fe3+ ) reducing antioxidant power (FRAP), and superoxide dismutase (SOD)-like activity. The results showed that PPIT reduced the level of PC in the homogenate of the brain. This compound did not demonstrate SOD mimetic activity, but it acted as a free radical scavenger (ABTS and DPPH) and exhibited reducing activity in the FRAP assay. In addition, the effects of PPIT on cerebral MAO activity (MAO-A and B isoforms) were investigated in vitro. Our data revealed inhibition of the MAO-B activity by PPIT with no effects on MAO-A. Lastly, an acute oral toxicity test was conducted in mice. No changes in food intake, body weight, and biochemical markers of kidney and liver damage were detected in mice treated with a high dose of PPIT (300 mg/kg). In conclusion, the present study demonstrated that PPIT exhibits antioxidant activity and selectively inhibits the MAO-B isoform without causing apparent toxicity. These findings suggest PPIT as a potential therapeutic candidate to be tested in preclinical models of brain diseases involving perturbations of MAO-B activity and redox status.
Collapse
Affiliation(s)
- Luiz Roberto Carraro Junior
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Taís da Silva Teixeira Rech
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - José Coan Campos Júnior
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Geonir Machado Siqueira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| |
Collapse
|
25
|
Behl T, Kaur G, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bungau SG, Munteanu MA, Brisc MC, Andronie-Cioara FL, Brisc C. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4045. [PMID: 33919895 PMCID: PMC8070907 DOI: 10.3390/ijms22084045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying multifactorial diseases are always complex and challenging. Neurodegenerative disorders (NDs) are common around the globe, posing a critical healthcare issue and financial burden to the country. However, integrative evidence implies some common shared mechanisms and pathways in NDs, which include mitochondrial dysfunction, neuroinflammation, oxidative stress, intracellular calcium overload, protein aggregates, oxidative stress (OS), and neuronal destruction in specific regions of the brain, owing to multifaceted pathologies. The co-existence of these multiple pathways often limits the advantages of available therapies. The nutraceutical-based approach has opened the doors to target these common multifaceted pathways in a slow and more physiological manner to starve the NDs. Peer-reviewed articles were searched via MEDLINE and PubMed published to date for in-depth research and database collection. Considered to be complementary therapy with current clinical management and common drug therapy, the intake of nutraceuticals is considered safe to target multiple mechanisms of action in NDs. The current review summarizes the popular nutraceuticals showing different effects (anti-inflammatory, antioxidant, neuro-protectant, mitochondrial homeostasis, neurogenesis promotion, and autophagy regulation) on vital molecular mechanisms involved in NDs, which can be considered as complementary therapy to first-line treatment. Moreover, owing to its natural source, lower toxicity, therapeutic interventions, biocompatibility, potential nutritional effects, and presence of various anti-oxidative and neuroprotective constituents, the nutraceuticals serve as an attractive option to tackle NDs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| |
Collapse
|
26
|
Elkamhawy A, Paik S, Kim HJ, Park JH, Londhe AM, Lee K, Pae AN, Park KD, Roh EJ. Discovery of N-(1-(3-fluorobenzoyl)-1 H-indol-5-yl)pyrazine-2-carboxamide: a novel, selective, and competitive indole-based lead inhibitor for human monoamine oxidase B. J Enzyme Inhib Med Chem 2021; 35:1568-1580. [PMID: 32752896 PMCID: PMC7470070 DOI: 10.1080/14756366.2020.1800666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herein, two new series of N-substituted indole-based analogues were rationally designed, synthesized via microwave heating technology, and evaluated as noteworthy MAO-B potential inhibitors. Compared to the reported indazole-based hits VI and VII, compounds 4b and 4e exhibited higher inhibitory activities over MAO-B with IC50 values of 1.65 and 0.78 µM, respectively. When compared to the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), both 4b and 4e also showed better selectivity indices (SI > 60 and 120, respectively). A further kinetic evaluation of the most potent derivative (4e) displayed a competitive mode of inhibition (inhibition constant (Ki)/MAO-B = 94.52 nM). Reasonable explanations of the elicited biological activities were presented via SAR study and molecular docking simulation. Accordingly, the remarkable MAO-B inhibitory activity of 4e (N-(1-(3-fluorobenzoyl)-1H-indol-5-yl)pyrazine-2-carboxamide), with its selectivity and competitive inhibition, advocates its potential role as a promising lead worthy of further optimization.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ashwini M Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
27
|
Furlan V, Bren U. Insight into Inhibitory Mechanism of PDE4D by Dietary Polyphenols Using Molecular Dynamics Simulations and Free Energy Calculations. Biomolecules 2021; 11:479. [PMID: 33806914 PMCID: PMC8004924 DOI: 10.3390/biom11030479] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphodiesterase 4 (PDE4), mainly present in immune, epithelial, and brain cells, represents a family of key enzymes for the degradation of cyclic adenosine monophosphate (cAMP), which modulates inflammatory response. In recent years, the inhibition of PDE4 has been proven to be an effective therapeutic strategy for the treatment of neurological disorders. PDE4D constitutes a high-interest therapeutic target primarily for the treatment of Alzheimer's disease, as it is highly involved in neuroinflammation, learning ability, and memory dysfunctions. In the present study, a thorough computational investigation consisting of molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations based on the linear response approximation (LRA) method was performed to study dietary polyphenols as potential PDE4D inhibitors. The obtained results revealed that curcumin, 6-gingerol, capsaicin, and resveratrol represent potential PDE4D inhibitors; however, the predicted binding free energies of 6-gingerol, capsaicin, and resveratrol were less negative than in the case of curcumin, which exhibited the highest inhibitory potency in comparison with a positive control rolipram. Our results also revealed that the electrostatic component through hydrogen bonding represents the main driving force for the binding and inhibitory activity of curcumin, 6-gingerol, and resveratrol, while the van der Waals component through shape complementarity plays the most important role in capsaicin's inhibitory activity. All investigated compounds form hydrophobic interactions with residues Gln376 and Asn602 as well as hydrogen bonds with nearby residues Asp438, Met439, and Ser440. The binding mode of the studied natural compounds is consequently very similar; however, it significantly differs from the binding of known PDE4 inhibitors. The uncovered molecular inhibitory mechanisms of four investigated natural polyphenols, curcumin, 6-gingerol, capsaicin, and resveratrol, form the basis for the design of novel PDE4D inhibitors for the treatment of Alzheimer's disease with a potentially wider therapeutic window and fewer adverse side effects.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
28
|
Shukur KT, Ercetin T, Luise C, Sippl W, Sirkecioglu O, Ulgen M, Coskun GP, Yarim M, Gazi M, Gulcan HO. Design, synthesis, and biological evaluation of new urolithin amides as multitarget agents against Alzheimer's disease. Arch Pharm (Weinheim) 2021; 354:e2000467. [PMID: 33511649 DOI: 10.1002/ardp.202000467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
A series of urolithin amide (i.e., URO-4-URO-10 and THU-4-THU-10) derivatives was designed and synthesized, and their chemical structures were confirmed with spectroscopic techniques and elemental analysis. The title compounds and synthesis intermediates (THU-1-THU-10 and URO-1-URO-10) were evaluated for their potential to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase B (MAO-B). Compounds THU-4 and THU-8 were found to be the most potent inhibitors for the cholinesterases and MAO-B, respectively. The docking studies were also employed to evaluate the binding modes of the most active compounds with AChE, BuChE, and MAO-B. Furthermore, the moderate-to-strong activities of the compounds were also displayed in amyloid-beta inhibition and antioxidant assay systems. The results pointed out that the urolithin scaffold can be employed in drug design studies for the development of multitarget ligands acting on various cascades shown to be important within the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Karar T Shukur
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR North Cyprus, Turkey
| | - Tugba Ercetin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR North Cyprus, Turkey
| | - Chiara Luise
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Okan Sirkecioglu
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Mert Ulgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Goknil P Coskun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Mine Yarim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Mustafa Gazi
- Faculty of Arts and Science, Eastern Mediterranean University, Famagusta, TR North Cyprus, Turkey
| | - Hayrettin O Gulcan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, TR North Cyprus, Turkey
| |
Collapse
|
29
|
Duarte P, Cuadrado A, León R. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. Handb Exp Pharmacol 2021; 264:229-259. [PMID: 32852645 DOI: 10.1007/164_2020_384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoamine oxidases (MAOs) are involved in the oxidative deamination of different amines and neurotransmitters. This pointed them as potential targets for several disorders and along the last 70 years a wide variety of MAO inhibitors have been developed as successful drugs for the treatment of complex diseases, being the first drugs approved for depression in the late 1950s. The discovery of two MAO isozymes (MAO-A and B) with different substrate selectivity and tissue expression patterns led to novel therapeutic approaches and to the development of new classes of inhibitors, such as selective irreversible and reversible MAO-B inhibitors and reversible MAO-A inhibitors. Significantly, MAO-B inhibitors constitute a widely studied group of compounds, some of them approved for the treatment of Parkinson's disease. Further applications are under development for the treatment of Alzheimer's disease, amyotrophic lateral sclerosis, and cardiovascular diseases, among others. This review summarizes the most important aspects regarding the development and clinical use of MAO inhibitors, going through mechanistic and structural details, new indications, and future perspectives. Monoamine oxidases (MAOs) catalyze the oxidative deamination of different amines and neurotransmitters. The two different isozymes, MAO-A and MAO-B, are located at the outer mitochondrial membrane in different tissues. The enzymatic reaction involves formation of the corresponding aldehyde and releasing hydrogen peroxide (H2O2) and ammonia or a substituted amine depending on the substrate. MAO's role in neurotransmitter metabolism made them targets for major depression and Parkinson's disease, among other neurodegenerative diseases. Currently, these compounds are being studied for other diseases such as cardiovascular ones.
Collapse
Affiliation(s)
- Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain.
- Instituto de Química Médica, Consejo Superior de Investigaciones CientÚficas (IQM-CSIC), Madrid, Spain.
| |
Collapse
|
30
|
Kumar S, Tyagi YK, Kumar M, Kumar S. Synthesis of novel 4-methylthiocoumarin and comparison with conventional coumarin derivative as a multi-target-directed ligand in Alzheimer's disease. 3 Biotech 2020; 10:509. [PMID: 33184595 PMCID: PMC7644673 DOI: 10.1007/s13205-020-02481-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive deficit and memory loss. The pathological feature of the disease involves β-amyloid senile plaques, reduced levels of acetylcholine neurotransmitter, oxidative stress and neurofibrillary tangles formation within the brain of AD patients. The present study aims to screen the inhibitory activity of newly synthesized and existing novel 4-methylthiocoumarin derivative against acetylcholinesterase, butyrylcholinesterase, BACE1, β-amyloid aggregation and oxidative stress involved in the AD pathogenesis. The in vitro assays used in this study were Ellman's assay, FRET assays, Thioflavin T, transmission electron microscopy, circular dichroism, FRAP, and TEAC. Molecular docking and dynamics studies were performed to correlate the results. C3 and C7 (thiocoumarin derivatives) were found to be the most potent inhibitors of acetylcholinesterase (IC50-5.63 µM) and butyrylcholinesterase (IC50-3.40 µM) using Ellman's assays. Enzyme kinetic studies showed that C3 and C7 compounds followed by the mixed mode of inhibition using LB plot. C3 also moderately inhibited the BACE1 using FRET assay. C3 inhibited the fibrillization of β-amyloid peptides in a concentration-dependent manner as observed by Thioflavin T, TEM studies and Circular dichroism data. Molecular modeling studies were performed to understand the probable mode of binding of C3 and C7 in the binding pocket of acetylcholinesterase, butyrylcholinesterase, BACE1 and amyloid β peptides. This indicates the important role of hydrophobic interactions between C3 and acetylcholinesterase. C3 also exhibited significant antioxidant potential by FRAP and TEAC assays. Hence, C3 might serve as a promising lead for developing novel multi target-directed ligand for the treatment of AD.
Collapse
Affiliation(s)
- Shivani Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, 110078 India
| | - Yogesh Kumar Tyagi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, 110078 India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Suresh Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, 110078 India
| |
Collapse
|
31
|
Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer's disease via H 2O 2- production. Nat Neurosci 2020; 23:1555-1566. [PMID: 33199896 DOI: 10.1038/s41593-020-00735-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
Although the pathological contributions of reactive astrocytes have been implicated in Alzheimer's disease (AD), their in vivo functions remain elusive due to the lack of appropriate experimental models and precise molecular mechanisms. Here, we show the importance of astrocytic reactivity on the pathogenesis of AD using GiD, a newly developed animal model of reactive astrocytes, where the reactivity of astrocytes can be manipulated as mild (GiDm) or severe (GiDs). Mechanistically, excessive hydrogen peroxide (H2O2) originated from monoamine oxidase B in severe reactive astrocytes causes glial activation, tauopathy, neuronal death, brain atrophy, cognitive impairment and eventual death, which are significantly prevented by AAD-2004, a potent H2O2 scavenger. These H2O2--induced pathological features of AD in GiDs are consistently recapitulated in a three-dimensional culture AD model, virus-infected APP/PS1 mice and the brains of patients with AD. Our study identifies H2O2 from severe but not mild reactive astrocytes as a key determinant of neurodegeneration in AD.
Collapse
|
32
|
Dicaffeoylquinic acids alleviate memory loss via reduction of oxidative stress in stress-hormone-induced depressive mice. Pharmacol Res 2020; 161:105252. [DOI: 10.1016/j.phrs.2020.105252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
|
33
|
Olasehinde TA, Oyeleye SI, Ibeji CU, Oboh G. Beetroot supplemented diet exhibit anti-amnesic effect via modulation of cholinesterases, purinergic enzymes, monoamine oxidase and attenuation of redox imbalance in the brain of scopolamine treated male rats. Nutr Neurosci 2020; 25:1011-1025. [DOI: 10.1080/1028415x.2020.1831260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tosin A. Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Lagos, Nigeria
- Department of Biochemistry and Microbiology, University of Fort Hare Alice South Africa
| | - Sunday I. Oyeleye
- Department of Biomedical Technology, Federal University of Technology, Akure
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure
| | - Collins U. Ibeji
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure
| |
Collapse
|
34
|
Yu L, Shi J, Cheng X, Wang K, Liu S, Liu W, Sang Z. Development of Phthalimide-Donepezil Hybrids as Potent Multitarget- Directed Ligands for the Treatment of Alzheimer’s Disease. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200420120519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Due to the complex etiology of AD, multi-target-directed ligands
(MTDLs), combining two or more distinct pharmacological moieties, have been developed in both
symptomatic and disease-modifying efficiencies and are considered as an effective way for the
treatment of AD.
Methods:
To test their biological activities, including AChE/BChE inhibitory activity and MAOA/
MAO-B inhibitory activity. In addition, molecular modeling studies were performed to afford
insight into the binding mode.
Results:
The results displayed that compound 4c showed the best AChE inhibitory
activity with an IC50 value of 4.2 μM, which was supported by the kinetic study and docking study.
Compound 4c was also a selective MAO-B inhibitor (IC50 = 8.2 μM). Moreover, compound 4c
could cross the blood-brain barrier in vitro.
Conclusion:
Compound 4c deserved to further study as a potential multifunctional agent for the
treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Lintao Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jian Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuang Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenmin Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
35
|
Embryonic proteoglycans regulate monoamines in the rat frontal cortex and hippocampus in Alzheimer's disease-like pathology. Neurochem Int 2020; 140:104838. [PMID: 32853753 DOI: 10.1016/j.neuint.2020.104838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 11/20/2022]
Abstract
Using the rat Alzheimer's disease (AD)-like model we have analyzed the hippocampal short-term potentiation, levels of monoamines, and morphological changes in the hippocampal and cortical neurons after the administration of proteoglycans of embryonic origin (PEG). Results showed that the levels of monoamines and especially norepinephrine in the target AD brain structures were found elevated, except serotonin, which was unaffected in the hippocampus, but decreased in the frontal cortex. These changes were accompanied by the substantial structural damage of cortical and hippocampal neurons. PEG was able to reverse most of these changes. In addition, PEG administration had regime-dependent effects on a short-term potentiation pattern of hippocampal neurons. The elevated levels of key elements of brain monoaminergic system in the model of AD support the hypothesis of the important role of monoamines in the excessive synaptic excitation resulting in cognitive dysfunction in AD brain. The neuroprotective effect of PEG, as manifested by the recovery of the monoaminergic system, suggests this bioactive substance as a perspective therapeutic agent for the treatment of AD.
Collapse
|
36
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|
37
|
Ano Y, Nakayama H. Novel lacto-peptides improve cognitive decline. Aging (Albany NY) 2020; 11:1615-1616. [PMID: 30923261 PMCID: PMC6461184 DOI: 10.18632/aging.101893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/23/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science and Food Technologies, Kirin Company Ltd, Yokohama, Kanagawa, Japan.,Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Nakayama
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
38
|
Sang Z, Wang K, Bai P, Wu A, Shi J, Liu W, Zhu G, Wang Y, Lan Y, Chen Z, Zhao Y, Qiao Z, Wang C, Tan Z. Design, synthesis and biological evaluation of novel O-carbamoyl ferulamide derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur J Med Chem 2020; 194:112265. [DOI: 10.1016/j.ejmech.2020.112265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
39
|
Aksoz BE, Aksoz E. Vital Role of Monoamine Oxidases and Cholinesterases in Central Nervous System Drug Research: A Sharp Dissection of the Pathophysiology. Comb Chem High Throughput Screen 2020; 23:877-886. [PMID: 32077819 DOI: 10.2174/1386207323666200220115154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoamine oxidase and cholinesterase enzymes are very critical enzymes that regulate the level of neurotransmitters such as acetylcholine and monoamines. Monoamine neurotransmitters and acetylcholine play a very important role in many physiological events. An increase or decrease in the amount of these neurotransmitters is observed in a wide range of central nervous system pathologies. Balancing the amount of these neurotransmitters is important in improving the progression of these diseases. Inhibitors of monoamine oxidase and cholinesterase enzymes are important in symptomatic therapy and delaying progression of a group of central nervous system disease manifested with memory loss, cognitive decline and psychiatric disturbances like depression. OBJECTIVE In this article, the relationship between central nervous system diseases and the vital role of the enzymes, monoamine oxidase and cholinesterase, is discussed on the pathophysiologic basis, focusing on drug research. CONCLUSION Monoamine oxidase and cholinesterase enzymes are still a good target for the development of novel drug active substances with optimized pharmacokinetic and pharmacodynamic properties, which can maximize the benefits of current therapy modalities.
Collapse
Affiliation(s)
- Begum E Aksoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Erkan Aksoz
- Department of Pharmacology, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
40
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
41
|
Kamauchi H, Oda T, Horiuchi K, Takao K, Sugita Y. Synthesis of natural product-like polyprenylated phenols and quinones: Evaluation of their neuroprotective activities. Bioorg Med Chem 2019; 28:115156. [PMID: 31740200 DOI: 10.1016/j.bmc.2019.115156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 11/26/2022]
Abstract
Twenty-seven natural product-like polyprenylated phenols and quinones were synthesized and their neuroprotective activity was tested using human monoamine oxidase B (MAO-B) and SH-SY5Y cells. Eight compounds inhibited MAO-B (IC50 values < 25 μM) and the inhibition mode and molecular docking of two (8c and 16c) were investigated. Compounds inhibiting MAO-B activity were additionally tested for their ability to protect SH-SY5Y cells from peroxide injury. Three derivatives (3c, 8c and 16c) exhibited both MAO-B inhibitory and neuroprotective activity. A structure activity-relationship study showed that a phenolic hydroxyl group and a longer side chain are important for both activities.
Collapse
Affiliation(s)
- Hitoshi Kamauchi
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan.
| | - Takumi Oda
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Kanayo Horiuchi
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Koichi Takao
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Yoshiaki Sugita
- Laboratory of Bioorganic Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
42
|
Tzvetkov NT, Stammler HG, Georgieva MG, Russo D, Faraone I, Balacheva AA, Hristova S, Atanasov AG, Milella L, Antonov L, Gastreich M. Carboxamides vs. methanimines: Crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors. Eur J Med Chem 2019; 179:404-422. [DOI: 10.1016/j.ejmech.2019.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022]
|
43
|
Multifunctional indanone–chalcone hybrid compounds with anti-β-amyloid (Aβ) aggregation, monoamine oxidase B (MAO-B) inhibition and neuroprotective properties against Alzheimer’s disease. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02423-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Bae HJ, Sowndhararajan K, Park HB, Kim SY, Kim S, Kim DH, Choi JW, Jang DS, Ryu JH, Park SJ. Danshensu attenuates scopolamine and amyloid-β-induced cognitive impairments through the activation of PKA-CREB signaling in mice. Neurochem Int 2019; 131:104537. [PMID: 31425745 DOI: 10.1016/j.neuint.2019.104537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an important chronic neurodegenerative disorder and is mainly associated with cognitive dysfunction. At present, bioactive compounds from traditional medicinal plants have received much attention for the enhancement of cognitive function. Danshensu, a phenolic acid isolated from herbal medicines, has various pharmacological activities in the central nervous system, including anxiolytic-like and neuroprotective properties. The present study aimed to investigate the ameliorating effects of danshensu on scopolamine- and amyloid-β (Aβ) protein-induced cognitive impairments in mice. Danshensu (3 and 10 mg/kg, p.o.) effectively ameliorated scopolamine-induced cognitive dysfunction in mice, as measured in passive avoidance and Y-maze tasks. In a mechanistic study, danshensu inhibited monoamine oxidase A (MAO-A) activity but not MAO-B. Additionally, danshensu treatment increased the dopamine level and the phosphorylation levels of protein kinase A (PKA) and cAMP response element binding protein (CREB), in the cortex of the brain. Furthermore, the ameliorating effect of danshensu against scopolamine-induced cognitive impairment was fully blocked by H89, a PKA inhibitor. Finally, danshensu also ameliorated Aβ-induced cognitive impairments in an animal model of AD. The results revealed that danshensu treatment significantly improved scopolamine and Aβ-induced cognitive impairments in mice by facilitation of dopamine signaling cascade such as PKA and CREB due to MAO-A inhibition. Thus, danshensu could be used as a promising therapeutic agent for preventing and treating AD.
Collapse
Affiliation(s)
- Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.
| | - Kandhasamy Sowndhararajan
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea; Department of Botany, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India.
| | - Hyeon-Bae Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - So-Yeon Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Songmun Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences and Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea.
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
45
|
Oboh G, Adebayo AA, Ademosun AO, Olowokere OG. Rutin alleviates cadmium-induced neurotoxicity in Wistar rats: involvement of modulation of nucleotide-degrading enzymes and monoamine oxidase. Metab Brain Dis 2019; 34:1181-1190. [PMID: 30972687 DOI: 10.1007/s11011-019-00413-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
Rutin is a flavonoid commonly found in many vegetables, fruits and other plant species. Thus, this study investigated the protective role of rutin on cognitive function and impairment of ectonucleotidase, monoamine oxidase (MAO) and antioxidant enzymes activities in the cortex and hippocampus of cadmium-induced rats. Cognitive impairment was induced by an oral administration of 5 mg/kg Cadmium chloride for 14 consecutive days. Rutin was dissolved in 2% dimethyl sulfoxide (DMSO) and administered orally at the doses of 25 and 50 mg/kg for 14 days. Thereafter, animals were divided into six groups (n = 6) as follows: control, rutin 25 mg/kg, rutin 50 mg/kg, cadmium, cadmium plus rutin 25 mg/kg, cadmium plus rutin 50 mg/kg. After treatment period of 14 days, animals were sacrificed and the brain was dissected into cortex and hippocampus. Results showed that cadmium caused a significant increase in ectonucleotidases, adenosine deaminase (ADA) and MAO activities, with a concomitant decrease in thiol levels and antioxidant enzymes activities. However, treatment with rutin decreased ectonucleotidase, ADA and MAO activities in cadmium-induced rats. In addition, rutin reduced residual level of cadmium ion in the brain of cadmium-induced rats. Conclusively, present findings revealed that rutin could prevent/restored the impairment of the enzymes that regulate the purinergic and monoaminergic extracellular signaling and restore antioxidant status in cognitive impairment caused by prolonged cadmium exposure.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Adeniyi A Adebayo
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria.
| | - Ayokunle O Ademosun
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| | - Olanike G Olowokere
- Functional Foods and Nutraceutical Research Laboratory, Biochemistry Department, Federal University of Technology, P.M.B. 704, Akure, 340001, Nigeria
| |
Collapse
|
46
|
Ano Y, Kutsukake T, Sasaki T, Uchida S, Yamada K, Kondo K. Identification of a Novel Peptide from β-Casein That Enhances Spatial and Object Recognition Memory in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8160-8167. [PMID: 31241932 DOI: 10.1021/acs.jafc.9b02495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An increase in the aging population has spurred recent efforts to identify diet and lifestyle changes that help prevent cognitive decline. Several epidemiological investigations and clinical studies have indicated that consuming fermented dairy products prevents cognitive decline. Some peptides from whey including β-lactolin improve memory impairment; the intake of Camembert cheese has been shown to prevent Alzheimer's in mouse models. To elucidate the molecular mechanisms underlying these preventive effects, we screened peptides from digested casein protein for their ability to improve spatial memory in a scopolamine-induced amnesia mouse model. Administration of KEMPFPKYPVEP peptide from β-casein at 0.5 mg/kg (54.8 ± 2.5) and 2 mg/kg (57.9 ± 3.7) improved memory impairment in the amnesia mice in comparison with control (44.9 ± 3.4; p = 0.031 and p = 0.042, respectively) and increased dopamine (5.9 ± 3.8 [control] and 12.4 ± 6.2 [KEMPFPKYPVEP peptide]) and norepinephrine (7.7 ± 0.8 [control] and 9.9 ± 2.0 [KEMPFPKYPVEP peptide]) levels in the frontal cortex (p = 0.039 and p = 0.031, respectively). Collectively, our findings suggest that peptides in fermented dairy products prevent cognitive decline and support previously reported observations.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Co. Ltd. , Yokohama , Japan
| | - Toshiko Kutsukake
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Co. Ltd. , Yokohama , Japan
| | - Toshinori Sasaki
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Co. Ltd. , Yokohama , Japan
| | - Shinichi Uchida
- Central Nervous System Research Laboratories, CNS R&D Unit, R&D Division , Kyowa Hakko Kirin Co. Ltd. , Shizuoka , Japan
| | - Koji Yamada
- Central Nervous System Research Laboratories, CNS R&D Unit, R&D Division , Kyowa Hakko Kirin Co. Ltd. , Shizuoka , Japan
| | - Keiji Kondo
- Research Laboratories for Health Science & Food Technologies , Kirin Holdings Co. Ltd. , Yokohama , Japan
| |
Collapse
|
47
|
Yeung AWK, Georgieva MG, Atanasov AG, Tzvetkov NT. Monoamine Oxidases (MAOs) as Privileged Molecular Targets in Neuroscience: Research Literature Analysis. Front Mol Neurosci 2019; 12:143. [PMID: 31191248 PMCID: PMC6549493 DOI: 10.3389/fnmol.2019.00143] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/16/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Monoamine oxidases (MAOs) were discovered nearly a century ago. This article aims to analyze the research literature landscape associated with MAOs as privileged class of neuronal enzymes (neuroenzymes) with key functions in the processes of neurodegeneration, serving as important biological targets in neuroscience. With the accumulating publications on this topic, we aimed to evaluate the publication and citation performance of the contributors, reveal the popular research themes, and identify its historical roots. Methods: The electronic database of Web of Science (WoS) Core Collection was searched to identify publications related to MAOs, which were analyzed according to their publication year, authorship, institutions, countries/regions, journal title, WoS category, total citation count, and publication type. VOSviewer was utilized to visualize the citation patterns of the words appearing in the titles and abstracts, and author keywords. CRExplorer was utilized to identify seminal references cited by the MAO publications. Results: The literature analysis was based on 19,854 publications. Most of them were original articles (n = 15,148, 76.3%) and reviews (n = 2,039, 10.3%). The top five WoS categories of the analyzed MAO publications were Pharmacology/Pharmacy (n = 4,664, 23.5%), Neurosciences (n = 4,416, 22.2%), Psychiatry (n = 2,906, 14.6%), Biochemistry/Molecular Biology (n = 2,691, 13.6%), and Clinical Neurology (n = 1,754, 8.8%). The top 10 institutions are scattered in the United States, UK, France, Sweden, Canada, Israel, and Russia, while the top 10 countries/regions with the most intensive research on the field of MAOs are the United States, followed by European and Asian countries. More highly cited publications generally involved neurotransmitters, such as dopamine (DA), serotonin, and norepinephrine (NE), as well as the MAO-A inhibitors moclobemide and clorgyline, and the irreversible MAO-B inhibitors selegiline and rasagiline. Conclusion: Through decades of research, the literature has accumulated many publications investigating the therapeutic effects of MAO inhibitors (MAOIs) on various neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), and depression. We envision that MAO literature will continue to grow steadily, with more new therapeutic candidates being tested for better management of neurological conditions, in particular, with the development of multi-target acting drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
48
|
da S. Hage-Melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190327100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDDs) are characterized by a progressive deterioration of the motor and/or cognitive function, that are often accompanied by psychiatric disorders, caused by a selective loss of neurons in the central nervous system. Among the NDDs we can mention Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia 3 (SCA3), spinal and bulbar muscular atrophy (SBMA) and Creutzfeldt-Jakob disease (CJD). AD and HD are characterized mainly by massive neuronal loss. PD, ALS, SCA3 and SBMA are agerelated diseases which have characteristic motor symptoms. CJD is an NDD caused by prion proteins. With increasing life expectancy, elderly populations tend to have more health problems, such as chronic diseases related to age and disability. Therefore, the development of therapeutic strategies to treat or prevent multiple pathophysiological conditions in the elderly can improve the expectation and quality of life. The attention of researchers has been focused on bioactive natural compounds that represent important resources in the discovery and development of drug candidates against NDDs. In this review, we discuss the pathogenesis, symptoms, potential targets, treatment and natural compounds effective in the treatment of AD, PD, HD, ALS, SCA3, SBMA and CJD.
Collapse
Affiliation(s)
- Lorane I. da S. Hage-Melim
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Jaderson V. Ferreira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Nayana K.S. de Oliveira
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Lenir C. Correia
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - Marcos R.S. Almeida
- Laboratorio de Quimica Farmaceutica e Medicinal (PharMedChem), Universidade Federal do Amapa, Macapa, Brazil
| | - João G.C. Poiani
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Carlton A. Taft
- Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos H.T. de Paula da Silva
- Laboratorio Computacional de Química Farmaceutica, Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
49
|
Chaurasiya ND, Zhao J, Pandey P, Doerksen RJ, Muhammad I, Tekwani BL. Selective Inhibition of Human Monoamine Oxidase B by Acacetin 7-Methyl Ether Isolated from Turnera diffusa (Damiana). Molecules 2019; 24:molecules24040810. [PMID: 30813423 PMCID: PMC6412401 DOI: 10.3390/molecules24040810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
The investigation of the constituents that were isolated from Turnera diffusa (damiana) for their inhibitory activities against recombinant human monoamine oxidases (MAO-A and MAO-B) in vitro identified acacetin 7-methyl ether as a potent selective inhibitor of MAO-B (IC50 = 198 nM). Acacetin 7-methyl ether (also known as 5-hydroxy-4′, 7-dimethoxyflavone) is a naturally occurring flavone that is present in many plants and vegetables. Acacetin 7-methyl ether was four-fold less potent as an inhibitor of MAO-B when compared to acacetin (IC50 = 50 nM). However, acacetin 7-methyl ether was >500-fold selective against MAO-B over MAO-A as compared to only two-fold selectivity shown by acacetin. Even though the IC50 for inhibition of MAO-B by acacetin 7-methyl ether was ~four-fold higher than that of the standard drug deprenyl (i.e., SelegilineTM or ZelaparTM, a selective MAO-B inhibitor), acacetin 7-methyl ether’s selectivity for MAO-B over MAO-A inhibition was greater than that of deprenyl (>500- vs. 450-fold). The binding of acacetin 7-methyl ether to MAO-B was reversible and time-independent, as revealed by enzyme-inhibitor complex equilibrium dialysis assays. The investigation on the enzyme inhibition-kinetics analysis with varying concentrations of acacetin 7-methyl ether and the substrate (kynuramine) suggested a competitive mechanism of inhibition of MAO-B by acacetin 7-methyl ether with Ki value of 45 nM. The docking scores and binding-free energies of acacetin 7-methyl ether to the X-ray crystal structures of MAO-A and MAO-B confirmed the selectivity of binding of this molecule to MAO-B over MAO-A. In addition, molecular dynamics results also revealed that acacetin 7-methyl ether formed a stable and strong complex with MAO-B. The selective inhibition of MAO-B suggests further investigations on acacetin 7-methyl as a potential new drug lead for the treatment of neurodegenerative disorders, including Parkinson’s disease.
Collapse
Affiliation(s)
- Narayan D Chaurasiya
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Jianping Zhao
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Robert J Doerksen
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
- Department of BioMolecular Sciences, Division of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Ilias Muhammad
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Babu L Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
- Department of BioMolecular Sciences, Division of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
50
|
Tryptophan-Tyrosine Dipeptide, the Core Sequence of β-Lactolin, Improves Memory by Modulating the Dopamine System. Nutrients 2019; 11:nu11020348. [PMID: 30736353 PMCID: PMC6412195 DOI: 10.3390/nu11020348] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
Tryptophan-tyrosine (WY)-related peptides including the β-lactopeptide of the glycine-threonine-tryptophan-tyrosine peptide, β-lactolin, improve spatial memory. However, whether and how the WY dipeptide as the core sequence in WY-related peptides improves memory functions has not been investigated. This study assessed the pharmacological effects of the WY dipeptide on memory impairment to elucidate the mechanisms. Here, we showed that oral administration of dipeptides of WY, tryptophan-methionine (WM), tryptophan-valine, tryptophan-leucine, and tryptophan-phenylalanine improved spontaneous alternation of the Y-maze test in scopolamine-induced amnesic mice. In contrast, tyrosine-tryptophan, methionine-tryptophan, tryptophan, tyrosine, and methionine had no effect. These results indicated that the conformation of dipeptides with N-terminal tryptophan is required for their memory improving effects. WY dipeptide inhibited the monoamine oxidase B activity in vitro and increased dopamine levels in the hippocampus and frontal cortex, whereas tryptophan did not cause these effects. In addition, the treatment with SCH-23390, a dopamine D1-like receptor antagonist, and the knockdown of the hippocampal dopamine D1 receptor partially attenuated the memory improvement induced by the WY dipeptide. Importantly, WY dipeptide improved the spontaneous alternations of the Y-maze test in aged mice. These results suggest that the WY dipeptide restores memory impairments by augmenting dopaminergic activity. The development of supplements rich in these peptides might help to prevent age-related cognitive decline.
Collapse
|