1
|
Wörmeyer L, Nortmann O, Hamacher A, Uhlemeyer C, Belgardt B, Eberhard D, Mayatepek E, Meissner T, Lammert E, Welters A. The N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan Improves Glucose Homeostasis and Preserves Pancreatic Islets in NOD Mice. Horm Metab Res 2024; 56:223-234. [PMID: 38168730 PMCID: PMC10901624 DOI: 10.1055/a-2236-8625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For treatment of type 1 diabetes mellitus, a combination of immune-based interventions and medication to promote beta-cell survival and proliferation has been proposed. Dextromethorphan (DXM) is an N-methyl-D-aspartate receptor antagonist with a good safety profile, and to date, preclinical and clinical evidence for blood glucose-lowering and islet-cell-protective effects of DXM have only been provided for animals and individuals with type 2 diabetes mellitus. Here, we assessed the potential anti-diabetic effects of DXM in the non-obese diabetic mouse model of type 1 diabetes. More specifically, we showed that DXM treatment led to five-fold higher numbers of pancreatic islets and more than two-fold larger alpha- and beta-cell areas compared to untreated mice. Further, DXM treatment improved glucose homeostasis and reduced diabetes incidence by 50%. Our data highlight DXM as a novel candidate for adjunct treatment of preclinical or recent-onset type 1 diabetes.
Collapse
Affiliation(s)
- Laura Wörmeyer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Nortmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Hamacher
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Bengt Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Alena Welters
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Pelligra A, Mrugala J, Griess K, Kirschner P, Nortmann O, Bartosinska B, Köster A, Krupenko NI, Gebel D, Westhoff P, Steckel B, Eberhard D, Herebian D, Belgardt BF, Schrader J, Weber APM, Krupenko SA, Lammert E. Pancreatic islet protection at the expense of secretory function involves serine-linked mitochondrial one-carbon metabolism. Cell Rep 2023; 42:112615. [PMID: 37294632 PMCID: PMC10592470 DOI: 10.1016/j.celrep.2023.112615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/11/2023] Open
Abstract
Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.
Collapse
Affiliation(s)
- Angela Pelligra
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jessica Mrugala
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kerstin Griess
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Philip Kirschner
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Oliver Nortmann
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andrea Köster
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Natalia I Krupenko
- University of North Carolina (UNC) Nutrition Research Institute, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Dominik Gebel
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sergey A Krupenko
- University of North Carolina (UNC) Nutrition Research Institute, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
3
|
Noguera Hurtado H, Gresch A, Düfer M. NMDA receptors - regulatory function and pathophysiological significance for pancreatic beta cells. Biol Chem 2023; 404:311-324. [PMID: 36626848 DOI: 10.1515/hsz-2022-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Due to its unique features amongst ionotropic glutamate receptors, the NMDA receptor is of special interest in the physiological context but even more as a drug target. In the pathophysiology of metabolic disorders, particularly type 2 diabetes mellitus, there is evidence that NMDA receptor activation contributes to disease progression by impairing beta cell function. Consequently, channel inhibitors are suggested for treatment, but up to now there are many unanswered questions about the signaling pathways NMDA receptors are interfering with in the islets of Langerhans. In this review we give an overview about channel structure and function with special regard to the pancreatic beta cells and the regulation of insulin secretion. We sum up which signaling pathways from brain research have already been transferred to the beta cell, and what still needs to be proven. The main focus is on the relationship between an over-stimulated NMDA receptor and the production of reactive oxygen species, the amount of which is crucial for beta cell function. Finally, pilot studies using NMDA receptor blockers to protect the islet from dysfunction are reviewed and future perspectives for the use of such compounds in the context of impaired glucose homeostasis are discussed.
Collapse
Affiliation(s)
- Héctor Noguera Hurtado
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Anne Gresch
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
4
|
Yang K, Yang Y, Fan S, Xia J, Zheng Q, Dong X, Liu J, Liu Q, Lei L, Zhang Y, Li B, Gao Z, Zhang R, Liu B, Wang Z, Zhou X. DRONet: effectiveness-driven drug repositioning framework using network embedding and ranking learning. Brief Bioinform 2023; 24:6958501. [PMID: 36562715 DOI: 10.1093/bib/bbac518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
As one of the most vital methods in drug development, drug repositioning emphasizes further analysis and research of approved drugs based on the existing large amount of clinical and experimental data to identify new indications of drugs. However, the existing drug repositioning methods didn't achieve enough prediction performance, and these methods do not consider the effectiveness information of drugs, which make it difficult to obtain reliable and valuable results. In this study, we proposed a drug repositioning framework termed DRONet, which make full use of effectiveness comparative relationships (ECR) among drugs as prior information by combining network embedding and ranking learning. We utilized network embedding methods to learn the deep features of drugs from a heterogeneous drug-disease network, and constructed a high-quality drug-indication data set including effectiveness-based drug contrast relationships. The embedding features and ECR of drugs are combined effectively through a designed ranking learning model to prioritize candidate drugs. Comprehensive experiments show that DRONet has higher prediction accuracy (improving 87.4% on Hit@1 and 37.9% on mean reciprocal rank) than state of the art. The case analysis also demonstrates high reliability of predicted results, which has potential to guide clinical drug development.
Collapse
Affiliation(s)
- Kuo Yang
- Institute of Medical Intelligence, Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | | | - Shuyue Fan
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | - Jianan Xia
- Institute of Medical Intelligence, Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | - Qiguang Zheng
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | - Xin Dong
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, China
| | - Lei Lei
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Chinese Medicine Cardiology, China
| | - Runshun Zhang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Baoyan Liu
- Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, China
| | - Xuezhong Zhou
- Institute of Medical Intelligence, Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, China
| |
Collapse
|
5
|
Scholz O, Otter S, Welters A, Wörmeyer L, Dolenšek J, Klemen MS, Pohorec V, Eberhard D, Mrugala J, Hamacher A, Koch A, Sanz M, Hoffmann T, Hogeback J, Herebian D, Klöcker N, Piechot A, Mayatepek E, Meissner T, Stožer A, Lammert E. Peripherally active dextromethorphan derivatives lower blood glucose levels by targeting pancreatic islets. Cell Chem Biol 2021; 28:1474-1488.e7. [PMID: 34118188 DOI: 10.1016/j.chembiol.2021.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Dextromethorphan (DXM) acts as cough suppressant via its central action. Cell-protective effects of this drug have been reported in peripheral tissues, making DXM potentially useful for treatment of several common human diseases, such as type 2 diabetes mellitus (T2DM). Pancreatic islets are among the peripheral tissues that positively respond to DXM, and anti-diabetic effects of DXM were observed in two placebo-controlled, randomized clinical trials in humans with T2DM. Since these effects were associated with central side effects, we here developed chemical derivatives of DXM that pass the blood-brain barrier to a significantly lower extent than the original drug. We show that basic nitrogen-containing residues block central adverse events of DXM without reducing its anti-diabetic effects, including the protection of human pancreatic islets from cell death. These results show how to chemically modify DXM, and possibly other morphinans, as to exclude central side effects, while targeting peripheral tissues, such as pancreatic islets.
Collapse
Affiliation(s)
- Okka Scholz
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Silke Otter
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany
| | - Alena Welters
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Laura Wörmeyer
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Viljem Pohorec
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Daniel Eberhard
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jessica Mrugala
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anna Hamacher
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Angela Koch
- Institute of Neuro- and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Miguel Sanz
- Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; Taros Chemicals GmbH & Co. KG, 44227 Dortmund, Germany
| | - Torsten Hoffmann
- Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; Taros Chemicals GmbH & Co. KG, 44227 Dortmund, Germany
| | - Jens Hogeback
- A&M Labor für Analytik und Metabolismusforschung Service GmbH, 50126 Bergheim, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neuro- and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alexander Piechot
- Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; Taros Chemicals GmbH & Co. KG, 44227 Dortmund, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Eckhard Lammert
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
6
|
Gresch A, Noguera Hurtado H, Wörmeyer L, De Luca V, Wiggers R, Seebohm G, Wünsch B, Düfer M. Selective Inhibition of NMDA receptors with GluN2B subunit protects beta cells against stress-induced apoptotic cell death. J Pharmacol Exp Ther 2021; 379:235-244. [PMID: 34593560 DOI: 10.1124/jpet.121.000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Participation of NMDA receptors (NMDARs) in the failure of pancreatic beta cells during development of type 2 diabetes mellitus is discussed. Our study investigates whether beta cell mass and function can be preserved by selectively addressing the GluN2B subunit of the NMDAR. NMDAR activation by NMDA and its co-agonist glycine moderately influenced electrical activity and Ca2+ handling in islet cells at a threshold glucose concentration (4-5 mM) without affecting glucose-mediated insulin secretion. Exposure of islet cells to NMDA/glycine or a glucolipotoxic milieu increased apoptosis by 5 and 8 %, respectively. The GluN2B-specific NMDAR antagonist WMS-1410 (0.1 and 1 µM) partly protected against this. In addition, WMS-1410 completely prevented the decrease in insulin secretion of about 32 % provoked by a 24-h-treatment with NMDA/glycine. WMS-1410 eliminated NMDA-induced changes in the oxidation status of the islet cells and elevated the sensitivity of intracellular calcium to 15 mM glucose. By contrast, WMS-1410 did not prevent the decline in glucose-stimulated insulin secretion occurring after glucolipotoxic culture. This lack of effect was due to a decrease in insulin content to 18 % that obviously could not be compensated by the preservation of cell mass or the higher percentage of insulin release in relation to insulin content. In conclusion, the negative effects of permanent NMDAR activation were effectively counteracted by WMS-1410 as well as the apoptotic cell death induced by high glucose and lipid concentrations. Modulation of NMDARs containing the GluN2B subunit is suggested to preserve beta cell mass during development of type 2 diabetes mellitus. Significance Statement Addressing NMDA receptors containing the GluN2B subunit in pancreatic islet cells has the potential to protect the beta cell mass that progressively declines during the development of type 2 diabetes. Furthermore, this study shows that harmful effects of permanent NMDAR activation can be effectively counteracted by the compound WMS-1410, a selective modulator for NMDARs containing the GluN2B subunit.
Collapse
Affiliation(s)
- Anne Gresch
- Pharmacology, Institute for Pharmaceutical and Medical Chemistry, Germany
| | | | - Laura Wörmeyer
- Pharmaceutical and Medicinal Chemistry, University of Münster, Germany
| | - Vivien De Luca
- Pharmaceutical and Medicinal Chemistry, University of Münster, Germany
| | - Rebekka Wiggers
- Pharmaceutical and Medicinal Chemistry, University of Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases, University Hospital Münster, Germany
| | - Bernhard Wünsch
- Fachbereich Chemie und Pharmazie, Institut für Pharmazeutische und Medizinische Chemie, Germany
| | - Martina Düfer
- Pharmaceutical and Medicinal Chemistry, University of Münster, Germany
| |
Collapse
|
7
|
Šterk M, Križančić Bombek L, Skelin Klemen M, Slak Rupnik M, Marhl M, Stožer A, Gosak M. NMDA receptor inhibition increases, synchronizes, and stabilizes the collective pancreatic beta cell activity: Insights through multilayer network analysis. PLoS Comput Biol 2021; 17:e1009002. [PMID: 33974632 PMCID: PMC8139480 DOI: 10.1371/journal.pcbi.1009002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
NMDA receptors promote repolarization in pancreatic beta cells and thereby reduce glucose-stimulated insulin secretion. Therefore, NMDA receptors are a potential therapeutic target for diabetes. While the mechanism of NMDA receptor inhibition in beta cells is rather well understood at the molecular level, its possible effects on the collective cellular activity have not been addressed to date, even though proper insulin secretion patterns result from well-synchronized beta cell behavior. The latter is enabled by strong intercellular connectivity, which governs propagating calcium waves across the islets and makes the heterogeneous beta cell population work in synchrony. Since a disrupted collective activity is an important and possibly early contributor to impaired insulin secretion and glucose intolerance, it is of utmost importance to understand possible effects of NMDA receptor inhibition on beta cell functional connectivity. To address this issue, we combined confocal functional multicellular calcium imaging in mouse tissue slices with network science approaches. Our results revealed that NMDA receptor inhibition increases, synchronizes, and stabilizes beta cell activity without affecting the velocity or size of calcium waves. To explore intercellular interactions more precisely, we made use of the multilayer network formalism by regarding each calcium wave as an individual network layer, with weighted directed connections portraying the intercellular propagation. NMDA receptor inhibition stabilized both the role of wave initiators and the course of waves. The findings obtained with the experimental antagonist of NMDA receptors, MK-801, were additionally validated with dextrorphan, the active metabolite of the approved drug dextromethorphan, as well as with experiments on NMDA receptor KO mice. In sum, our results provide additional and new evidence for a possible role of NMDA receptor inhibition in treatment of type 2 diabetes and introduce the multilayer network paradigm as a general strategy to examine effects of drugs on connectivity in multicellular systems.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | | | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea–ECM, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Lockridge A, Gustafson E, Wong A, Miller RF, Alejandro EU. Acute D-Serine Co-Agonism of β-Cell NMDA Receptors Potentiates Glucose-Stimulated Insulin Secretion and Excitatory β-Cell Membrane Activity. Cells 2021; 10:E93. [PMID: 33430405 PMCID: PMC7826616 DOI: 10.3390/cells10010093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-secreting pancreatic β-cells express proteins characteristic of D-serine regulated synapses, but the acute effect of D-serine co-agonism on its presumptive β-cell target, N-methyl D-aspartate receptors (NMDARs), is unclear. We used multiple models to evaluate glucose homeostasis and insulin secretion in mice with a systemic increase in D-serine (intraperitoneal injection or DAAO mutants without D-serine catabolism) or tissue-specific loss of Grin1-encoded GluN1, the D-serine binding NMDAR subunit. We also investigated the effects of D-serine ± NMDA on glucose-stimulated insulin secretion (GSIS) and β-cell depolarizing membrane oscillations, using perforated patch electrophysiology, in β-cell-containing primary isolated mouse islets. In vivo models of elevated D-serine correlated to improved blood glucose and insulin levels. In vitro, D-serine potentiated GSIS and β-cell membrane excitation, dependent on NMDAR activating conditions including GluN1 expression (co-agonist target), simultaneous NMDA (agonist), and elevated glucose (depolarization). Pancreatic GluN1-loss females were glucose intolerant and GSIS was depressed in islets from younger, but not older, βGrin1 KO mice. Thus, D-serine is capable of acute antidiabetic effects in mice and potentiates insulin secretion through excitatory β-cell NMDAR co-agonism but strain-dependent shifts in potency and age/sex-specific Grin1-loss phenotypes suggest that context is critical to the interpretation of data on the role of D-serine and NMDARs in β-cell function.
Collapse
Affiliation(s)
- Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (E.G.); (A.W.)
| | - Eric Gustafson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (E.G.); (A.W.)
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Alicia Wong
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (E.G.); (A.W.)
| | - Robert F. Miller
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA; (A.L.); (E.G.); (A.W.)
| |
Collapse
|
9
|
Sikimic J, Hoffmeister T, Gresch A, Kaiser J, Barthlen W, Wolke C, Wieland I, Lendeckel U, Krippeit-Drews P, Düfer M, Drews G. Possible New Strategies for the Treatment of Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2020; 11:545638. [PMID: 33193079 PMCID: PMC7653201 DOI: 10.3389/fendo.2020.545638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Congenital hyperinsulinism (CHI) is a rare disease characterized by persistent hypoglycemia as a result of inappropriate insulin secretion, which can lead to irreversible neurological defects in infants. Poor efficacy and strong adverse effects of the current medications impede successful treatment. The aim of the study was to investigate new approaches to silence β-cells and thus attenuate insulin secretion. RESEARCH DESIGN AND METHODS In the scope of our research, we tested substances more selective and more potent than the gold standard diazoxide that also interact with neuroendocrine ATP-sensitive K+ (KATP) channels. Additionally, KATP channel-independent targets as Ca2+-activated K+ channels of intermediate conductance (KCa3.1) and L-type Ca2+ channels were investigated. Experiments were performed using human islet cell clusters isolated from tissue of CHI patients (histologically classified as pathological) and islet cell clusters obtained from C57BL/6N (WT) or SUR1 knockout (SUR1-/-) mice. The cytosolic Ca2+ concentration ([Ca2+]c) was used as a parameter for the pathway regulated by electrical activity and was determined by fura-2 fluorescence. The mitochondrial membrane potential (ΔΨ) was determined by rhodamine 123 fluorescence and single channel currents were measured by the patch-clamp technique. RESULTS The selective KATP channel opener NN414 (5 µM) diminished [Ca2+]c in isolated human CHI islet cell clusters and WT mouse islet cell clusters stimulated with 10 mM glucose. In islet cell clusters lacking functional KATP channels (SUR1-/-) the drug was without effect. VU0071063 (30 µM), another KATP channel opener considered to be selective, lowered [Ca2+]c in human CHI islet cell clusters. The compound was also effective in islet cell clusters from SUR1-/- mice, showing that [Ca2+]c is influenced by additional effects besides KATP channels. Contrasting to NN414, the drug depolarized ΔΨ in murine islet cell clusters pointing to severe interference with mitochondrial metabolism. An opener of KCa3.1 channels, DCEBIO (100 µM), significantly decreased [Ca2+]c in SUR1-/- and human CHI islet cell clusters. To target L-type Ca2+ channels we tested two already approved drugs, dextromethorphan (DXM) and simvastatin. DXM (100 µM) efficiently diminished [Ca2+]c in stimulated human CHI islet cell clusters as well as in stimulated SUR1-/- islet cell clusters. Similar effects on [Ca2+]c were observed in experiments with simvastatin (7.2 µM). CONCLUSIONS NN414 seems to provide a good alternative to the currently used KATP channel opener diazoxide. Targeting KCa3.1 channels by channel openers or L-type Ca2+ channels by DXM or simvastatin might be valuable approaches for treatment of CHI caused by mutations of KATP channels not sensitive to KATP channel openers.
Collapse
Affiliation(s)
- Jelena Sikimic
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Theresa Hoffmeister
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Anne Gresch
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Julia Kaiser
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Winfried Barthlen
- Department of Pediatric Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Peter Krippeit-Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
- *Correspondence: Peter Krippeit-Drews,
| | - Martina Düfer
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Gisela Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| |
Collapse
|