1
|
Acevedo A, DuBois D, Almon RR, Jusko WJ, Androulakis IP. Modeling Pathway Dynamics of the Skeletal Muscle Response to Intravenous Methylprednisolone (MPL) Administration in Rats: Dosing and Tissue Effects. Front Bioeng Biotechnol 2020; 8:759. [PMID: 32760706 PMCID: PMC7371857 DOI: 10.3389/fbioe.2020.00759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
A model-based approach for the assessment of pathway dynamics is explored to characterize metabolic and signaling pathway activity changes characteristic of the dosing-dependent differences in response to methylprednisolone in muscle. To consistently compare dosing-induced changes we extend the principles of pharmacokinetics and pharmacodynamics and introduce a novel representation of pathway-level dynamic models of activity regulation. We hypothesize the emergence of dosing-dependent regulatory interactions is critical to understanding the mechanistic implications of MPL dosing in muscle. Our results indicate that key pathways, including amino acid and lipid metabolism, signal transduction, endocrine regulation, regulation of cellular functions including growth, death, motility, transport, protein degradation, and catabolism are dependent on dosing, exhibiting diverse dynamics depending on whether the drug is administered acutely of continuously. Therefore, the dynamics of drug presentation offer the possibility for the emergence of dosing-dependent models of regulation. Finally, we compared acute and chronic MPL response in muscle with liver. The comparison revealed systematic response differences between the two tissues, notably that muscle appears more prone to adapt to MPL.
Collapse
Affiliation(s)
- Alison Acevedo
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Debra DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States.,Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
2
|
Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Front Immunol 2019; 10:1693. [PMID: 31379877 PMCID: PMC6653659 DOI: 10.3389/fimmu.2019.01693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.
Collapse
Affiliation(s)
- Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Flynn JK, Dankers W, Morand EF. Could GILZ Be the Answer to Glucocorticoid Toxicity in Lupus? Front Immunol 2019; 10:1684. [PMID: 31379872 PMCID: PMC6652235 DOI: 10.3389/fimmu.2019.01684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GC) are used globally to treat autoimmune and inflammatory disorders. Their anti-inflammatory actions are mainly mediated via binding to the glucocorticoid receptor (GR), creating a GC/GR complex, which acts in both the cytoplasm and nucleus to regulate the transcription of a host of target genes. As a result, signaling pathways such as NF-κB and AP-1 are inhibited, and cell activation, differentiation and survival and cytokine and chemokine production are suppressed. However, the gene regulation by GC can also cause severe side effects in patients. Systemic lupus erythematosus (SLE or lupus) is a multisystem autoimmune disease, characterized by a poorly regulated immune response leading to chronic inflammation and dysfunction of multiple organs, for which GC is the major current therapy. Long-term GC use, however, can cause debilitating adverse consequences for patients including diabetes, cardiovascular disease and osteoporosis and contributes to irreversible organ damage. To date, there is no alternative treatment which can replicate the rapid effects of GC across multiple immune cell functions, effecting disease control during disease flares. Research efforts have focused on finding alternatives to GC, which display similar immunoregulatory actions, without the devastating adverse metabolic effects. One potential candidate is the glucocorticoid-induced leucine zipper (GILZ). GILZ is induced by low concentrations of GC and is shown to mimic the action of GC in several inflammatory processes, reducing immunity and inflammation in in vitro and in vivo studies. Additionally, GILZ has, similar to the GC-GR complex, the ability to bind to both NF-κB and AP-1 as well as DNA directly, to regulate immune cell function, while potentially lacking the GC-related side effects. Importantly, in SLE patients GILZ is under-expressed and correlates negatively with disease activity, suggesting an important regulatory role of GILZ in SLE. Here we provide an overview of the actions and use of GC in lupus, and discuss whether the regulatory mechanisms of GILZ could lead to the development of a novel therapeutic for lupus. Increased understanding of the mechanisms of action of GILZ, and its ability to regulate immune events leading to lupus disease activity has important clinical implications for the development of safer anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jacqueline K Flynn
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Wendy Dankers
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Eric F Morand
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Acevedo A, Berthel A, DuBois D, Almon RR, Jusko WJ, Androulakis IP. Pathway-Based Analysis of the Liver Response to Intravenous Methylprednisolone Administration in Rats: Acute Versus Chronic Dosing. GENE REGULATION AND SYSTEMS BIOLOGY 2019; 13:1177625019840282. [PMID: 31019365 PMCID: PMC6466473 DOI: 10.1177/1177625019840282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/05/2019] [Indexed: 12/25/2022]
Abstract
Pharmacological time-series data, from comparative dosing studies, are critical to characterizing drug effects. Reconciling the data from multiple studies is inevitably difficult; multiple in vivo high-throughput -omics studies are necessary to capture the global and temporal effects of the drug, but these experiments, though analogous, differ in (microarray or other) platforms, time-scales, and dosing regimens and thus cannot be directly combined or compared. This investigation addresses this reconciliation issue with a meta-analysis technique aimed at assessing the intrinsic activity at the pathway level. The purpose of this is to characterize the dosing effects of methylprednisolone (MPL), a widely used anti-inflammatory and immunosuppressive corticosteroid (CS), within the liver. A multivariate decomposition approach is applied to analyze acute and chronic MPL dosing in male adrenalectomized rats and characterize the dosing-dependent differences in the dynamic response of MPL-responsive signaling and metabolic pathways. We demonstrate how to deconstruct signaling and metabolic pathways into their constituent pathway activities, activities which are scored for intrinsic pathway activity. Dosing-induced changes in the dynamics of pathway activities are compared using a model-based assessment of pathway dynamics, extending the principles of pharmacokinetics/pharmacodynamics (PKPD) to describe pathway activities. The model-based approach enabled us to hypothesize on the likely emergence (or disappearance) of indirect dosing-dependent regulatory interactions, pointing to likely mechanistic implications of dosing of MPL transcriptional regulation. Both acute and chronic MPL administration induced a strong core of activity within pathway families including the following: lipid metabolism, amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, regulation of essential organelles, and xenobiotic metabolism pathway families. Pathway activities alter between acute and chronic dosing, indicating that MPL response is dosing dependent. Furthermore, because multiple pathway activities are dominant within a single pathway, we observe that pathways cannot be defined by a single response. Instead, pathways are defined by multiple, complex, and temporally related activities corresponding to different subgroups of genes within each pathway.
Collapse
Affiliation(s)
- Alison Acevedo
- Department of Biomedical Engineering,
Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey,
Piscataway, NJ, USA
| | - Ana Berthel
- Department of Biochemistry, Mount
Holyoke College, South Hadley, MA, USA
| | - Debra DuBois
- Department of Pharmaceutical Sciences,
School of Pharmacy and Pharmaceutical Sciences, The State University of New York at
Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, The
State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Pharmaceutical Sciences,
School of Pharmacy and Pharmaceutical Sciences, The State University of New York at
Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, The
State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences,
School of Pharmacy and Pharmaceutical Sciences, The State University of New York at
Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, The
State University of New York at Buffalo, Buffalo, NY, USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering,
Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey,
Piscataway, NJ, USA
- Department of Chemical and Biochemical
Engineering, Robert Wood Johnson Medical School, Rutgers, The State University of
New Jersey, Piscataway, NJ, USA
- Department of Surgery, Robert Wood
Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ,
USA
| |
Collapse
|
5
|
Ayyar VS, Sukumaran S, DuBois DC, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacogenomics and Proteomics in Rat Liver. J Pharmacol Exp Ther 2018; 367:168-183. [PMID: 30087156 DOI: 10.1124/jpet.118.251959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
Corticosteroids (CS) regulate the expression of numerous genes at the mRNA and protein levels. The time course of CS pharmacogenomics and proteomics were examined in livers obtained from adrenalectomized rats given a 50-mg/kg bolus dose of methylprednisolone. Microarrays and mass spectrometry-based proteomics were employed to quantify hepatic transcript and protein dynamics. One-hundred, sixty-three differentially expressed mRNA and their corresponding proteins (163 genes) were clustered into two dominant groups. The temporal profiles of most proteins were delayed compared with their mRNA, attributable to synthesis delays and slower degradation kinetics. On the basis of our fifth-generation model of CS, mathematical models were developed to simultaneously describe the emergent time patterns for an array of steroid-responsive mRNA and proteins. The majority of genes showed time-dependent increases in mRNA and protein expression before returning to baseline. A model assuming direct, steroid-mediated stimulation of mRNA synthesis was applied. Some mRNAs and their proteins displayed down-regulation following CS. A model assuming receptor-mediated inhibition of mRNA synthesis was used. More complex patterns were observed for other genes (e.g., biphasic behaviors and opposite directionality in mRNA and protein). Models assuming either stimulation or inhibition of mRNA synthesis coupled with dual secondarily induced regulatory mechanisms affecting mRNA or protein turnover were derived. These findings indicate that CS-regulated gene expression manifested at the mRNA and protein levels are controlled via mechanisms affecting key turnover processes. Our quantitative models of CS pharmacogenomics were expanded from mRNA to proteins and provide extended hypotheses for understanding the direct, secondary, and downstream mechanisms of CS actions.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
6
|
Ayyar VS, Sukumaran S, DuBois DC, Almon RR, Qu J, Jusko WJ. Receptor/gene/protein-mediated signaling connects methylprednisolone exposure to metabolic and immune-related pharmacodynamic actions in liver. J Pharmacokinet Pharmacodyn 2018; 45:557-575. [PMID: 29704219 DOI: 10.1007/s10928-018-9585-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
A multiscale pharmacodynamic model was developed to characterize the receptor-mediated, transcriptomic, and proteomic determinants of corticosteroid (CS) effects on clinically relevant hepatic processes following a single dose of methylprednisolone (MPL) given to adrenalectomized (ADX) rats. The enhancement of tyrosine aminotransferase (TAT) mRNA, protein, and enzyme activity were simultaneously described. Mechanisms related to the effects of MPL on glucose homeostasis, including the regulation of CCAAT-enhancer binding protein-beta (C/EBPβ) and phosphoenolpyruvate carboxykinase (PEPCK) as well as insulin dynamics were evaluated. The MPL-induced suppression of circulating lymphocytes was modeled by coupling its effect on cell trafficking with pharmacogenomic effects on cell apoptosis via the hepatic (STAT3-regulated) acute phase response. Transcriptomic and proteomic time-course profiles measured in steroid-treated rat liver were utilized to model the dynamics of mechanistically relevant gene products, which were linked to associated systemic end-points. While time-courses of TAT mRNA, protein, and activity were well described by transcription-mediated changes, additional post-transcriptional processes were included to explain the lack of correlation between PEPCK mRNA and protein. The immune response model quantitatively discerned the relative roles of cell trafficking versus gene-mediated lymphocyte apoptosis by MPL. This systems pharmacodynamic model provides insights into the contributions of selected molecular events occurring in liver and explores mechanistic hypotheses for the multi-factorial control of clinically relevant pharmacodynamic outcomes.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
7
|
Ayyar VS, DuBois DC, Almon RR, Jusko WJ. Mechanistic Multi-Tissue Modeling of Glucocorticoid-Induced Leucine Zipper Regulation: Integrating Circadian Gene Expression with Receptor-Mediated Corticosteroid Pharmacodynamics. J Pharmacol Exp Ther 2017; 363:45-57. [PMID: 28729456 DOI: 10.1124/jpet.117.242990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (GILZ) is an important mediator of anti-inflammatory corticosteroid action. The pharmacokinetic/pharmacodynamic/pharmacogenomic effects of acute and chronic methylprednisolone (MPL) dosing on the tissue-specific dynamics of GILZ expression were examined in rats. A mechanism-based model was developed to investigate and integrate the role of MPL and circadian rhythms on the transcriptional enhancement of GILZ in multiple tissues. Animals received a single 50-mg/kg intramuscular bolus or a 7-day 0.3-mg/kg/h subcutaneous infusion of MPL and were euthanized at several time points. An additional group of rats were euthanized at several times and served as 24-hour light/dark (circadian) controls. Plasma MPL and corticosterone concentrations were measured by high-performance liquid chromatography. The expression of GILZ and glucocorticoid receptor (GR) mRNA was quantified in tissues using quantitative real-time reverse-transcription polymerase chain reaction. The pharmacokinetics of MPL were described using a two-compartment model. Mild-to-robust circadian oscillations in GR and GILZ mRNA expression were characterized in muscle, lung, and adipose tissues and modeled using Fourier harmonic functions. Acute MPL dosing caused significant down-regulation (40%-80%) in GR mRNA and enhancement of GILZ mRNA expression (500%-1080%) in the tissues examined. While GILZ returned to its rhythmic baseline following acute dosing, a new steady-state was observed upon enhancement by chronic dosing. The model captured the complex dynamics in all tissues for both dosing regimens. The model quantitatively integrates physiologic mechanisms, such as circadian processes and GR tolerance phenomena, which control the tissue-specific regulation of GILZ by corticosteroids. These studies characterize GILZ as a pharmacodynamic marker of corticosteroid actions in several tissues.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Nguyen TT, Almon RR, DuBois DC, Sukumaran S, Jusko WJ, Androulakis IP. Tissue-specific gene expression and regulation in liver and muscle following chronic corticosteroid administration. GENE REGULATION AND SYSTEMS BIOLOGY 2014; 8:75-87. [PMID: 24653645 PMCID: PMC3956809 DOI: 10.4137/grsb.s13134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022]
Abstract
Although corticosteroids (CSs) affect gene expression in multiple tissues, the array of genes that are regulated by these catabolic steroids is diverse, highly tissue specific, and depends on their functions in the tissue. Liver has many important functions in performing and regulating diverse metabolic processes. Muscle, in addition to its mechanical role, is critical in maintaining systemic energy homeostasis and accounts for about 80% of insulin-directed glucose disposal. Consequently, a better understanding of CS pharmacogenomic effects in these tissues would provide valuable information regarding the tissue-specificity of transcriptional dynamics, and would provide insights into the underlying molecular mechanisms of action for both beneficial and detrimental effects. We performed an integrated analysis of transcriptional data from liver and muscle in response to methylprednisolone (MPL) infusion, which included clustering and functional annotation of clustered gene groups, promoter extraction and putative transcription factor (TF) identification, and finally, regulatory closeness (RC) identification. This analysis allowed the identification of critical transcriptional responses and CS-responsive functions in liver and muscle during chronic MPL administration, the prediction of putative transcriptional regulators relevant to transcriptional responses of CS-affected genes which are also potential secondary bio-signals altering expression levels of target-genes, and the exploration of the tissue-specificity and biological significance of gene expression patterns, CS-responsive functions, and transcriptional regulation. The analysis provided an integrated description of the genomic and functional effects of chronic MPL infusion in liver and muscle.
Collapse
Affiliation(s)
- Tung T Nguyen
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ, USA
| | - Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Ioannis P Androulakis
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ, USA
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
9
|
Fang J, Sukumaran S, DuBois DC, Almon RR, Jusko WJ. Meta-modeling of methylprednisolone effects on glucose regulation in rats. PLoS One 2013; 8:e81679. [PMID: 24312573 PMCID: PMC3847111 DOI: 10.1371/journal.pone.0081679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023] Open
Abstract
A retrospective meta-modeling analysis was performed to integrate previously reported data of glucocorticoid (GC) effects on glucose regulation following a single intramuscular dose (50 mg/kg), single intravenous doses (10, 50 mg/kg), and intravenous infusions (0.1, 0.2, 0.3 and 0.4 mg/kg/h) of methylprednisolone (MPL) in normal and adrenalectomized (ADX) male Wistar rats. A mechanistic pharmacodynamic (PD) model was developed based on the receptor/gene/protein-mediated GC effects on glucose regulation. Three major target organs (liver, white adipose tissue and skeletal muscle) together with some selected intermediate controlling factors were designated as important regulators involved in the pathogenesis of GC-induced glucose dysregulation. Assessed were dynamic changes of food intake and systemic factors (plasma glucose, insulin, free fatty acids (FFA) and leptin) and tissue-specific biomarkers (cAMP, phosphoenolpyruvate carboxykinase (PEPCK) mRNA and enzyme activity, leptin mRNA, interleukin 6 receptor type 1 (IL6R1) mRNA and Insulin receptor substrate-1 (IRS-1) mRNA) after acute and chronic dosing with MPL along with the GC receptor (GR) dynamics in each target organ. Upon binding to GR in liver, MPL dosing caused increased glucose production by stimulating hepatic cAMP and PEPCK activity. In adipose tissue, the rise in leptin mRNA and plasma leptin caused reduction of food intake, the exogenous source of glucose input. Down-regulation of IRS-1 mRNA expression in skeletal muscle inhibited the stimulatory effect of insulin on glucose utilization further contributing to hyperglycemia. The nuclear drug-receptor complex served as the driving force for stimulation or inhibition of downstream target gene expression within different tissues. Incorporating information such as receptor dynamics, as well as the gene and protein induction, allowed us to describe the receptor-mediated effects of MPL on glucose regulation in each important tissue. This advanced mechanistic model provides unique insights into the contributions of major tissues and quantitative hypotheses for the multi-factor control of a complex metabolic system.
Collapse
Affiliation(s)
- Jing Fang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
10
|
Bertarelli D, Balbo A, Carletti M, Cannizzo T, Girolami F, Nebbia C. Hepatic tyrosine aminotransferase and glucocorticoid abuse in meat cattle. J Vet Pharmacol Ther 2012; 35:596-603. [PMID: 22376142 DOI: 10.1111/j.1365-2885.2012.01378.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Besides being extensively applied as therapeutical remedies, glucocorticoids (GCs) - most notably dexamethasone or prednisolone - are also illegally used in livestock for growth-promoting purposes. This study was designed to assess the suitability of liver tyrosine aminotransferase (TAT), a gluconeogenic enzyme known to be induced by GCs, to act as a reliable candidate biomarker to screen for GC abuse in cattle. Enzyme activity was measured spectrophotometrically in liver cytosols or in cell extracts, and TAT gene expression was determined by real-time PCR. Compared with untreated veal calves, a notable scatter (20-fold) and much higher median values (3-fold) characterized TAT specific activity in liver samples from commercially farmed veal calves. A time-related increase in both enzyme activity and gene expression was detected in rat hepatoma cell lines treated with dexamethasone concentrations (10(-8) or 10(-9) m) in the range of those recorded in noncompliant samples from EU official controls. In experimental studies in which finishing bulls were administered GCs at growth-promoting dosages, however, no such changes were recorded in dexamethasone-treated animals; a statistically significant rise in liver TAT activity (+95%) only occurred in prednisolone-treated bulls. Although further research is needed to characterize the GC-mediated response in cattle liver, TAT does not appear to be a specific and sensitive biomarker of GC abuse in the bovine species.
Collapse
Affiliation(s)
- D Bertarelli
- Dipartimento di Patologia Animale, Università degli Studi di Torino, Grugliasco, Italia
| | | | | | | | | | | |
Collapse
|
11
|
Nguyen TT, Almon RR, Dubois DC, Jusko WJ, Androulakis IP. Comparative analysis of acute and chronic corticosteroid pharmacogenomic effects in rat liver: transcriptional dynamics and regulatory structures. BMC Bioinformatics 2010; 11:515. [PMID: 20946642 PMCID: PMC2973961 DOI: 10.1186/1471-2105-11-515] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 10/14/2010] [Indexed: 12/11/2022] Open
Abstract
Background Comprehensively understanding corticosteroid pharmacogenomic effects is an essential step towards an insight into the underlying molecular mechanisms for both beneficial and detrimental clinical effects. Nevertheless, even in a single tissue different methods of corticosteroid administration can induce different patterns of expression and regulatory control structures. Therefore, rich in vivo datasets of pharmacological time-series with two dosing regimens sampled from rat liver are examined for temporal patterns of changes in gene expression and their regulatory commonalities. Results The study addresses two issues, including (1) identifying significant transcriptional modules coupled with dynamic expression patterns and (2) predicting relevant common transcriptional controls to better understand the underlying mechanisms of corticosteroid adverse effects. Following the orientation of meta-analysis, an extended computational approach that explores the concept of agreement matrix from consensus clustering has been proposed with the aims of identifying gene clusters that share common expression patterns across multiple dosing regimens as well as handling challenges in the analysis of microarray data from heterogeneous sources, e.g. different platforms and time-grids in this study. Six significant transcriptional modules coupled with typical patterns of expression have been identified. Functional analysis reveals that virtually all enriched functions (gene ontologies, pathways) in these modules are shown to be related to metabolic processes, implying the importance of these modules in adverse effects under the administration of corticosteroids. Relevant putative transcriptional regulators (e.g. RXRF, FKHD, SP1F) are also predicted to provide another source of information towards better understanding the complexities of expression patterns and the underlying regulatory mechanisms of those modules. Conclusions We have proposed a framework to identify significant coexpressed clusters of genes across multiple conditions experimented from different microarray platforms, time-grids, and also tissues if applicable. Analysis on rich in vivo datasets of corticosteroid time-series yielded significant insights into the pharmacogenomic effects of corticosteroids, especially the relevance to metabolic side-effects. This has been illustrated through enriched metabolic functions in those transcriptional modules and the presence of GRE binding motifs in those enriched pathways, providing significant modules for further analysis on pharmacogenomic corticosteroid effects.
Collapse
Affiliation(s)
- Tung T Nguyen
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
12
|
Lerapetritou MG, Georgopoulos PG, Roth CM, Androulakis LP. Tissue-level modeling of xenobiotic metabolism in liver: An emerging tool for enabling clinical translational research. Clin Transl Sci 2010; 2:228-37. [PMID: 20443896 DOI: 10.1111/j.1752-8062.2009.00092.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review summarizes some of the recent developments and identifies critical challenges associated with in vitro and in silico representations of the liver and assesses the translational potential of these models in the quest of rationalizing the process of evaluating drug efficacy and toxicity. It discusses a wide range of research efforts that have produced, during recent years, quantitative descriptions and conceptual as well as computational models of hepatic processes such as biotransport and biotransformation, intra- and intercellular signal transduction, detoxification, etc. The above mentioned research efforts cover multiple scales of biological organization, from molecule-molecule interactions to reaction network and cellular and histological dynamics, and have resulted in a rapidly evolving knowledge base for a "systems biology of the liver." Virtual organ/organism formulations represent integrative implementations of particular elements of this knowledge base, usually oriented toward the study of specific biological endpoints, and provide frameworks for translating the systems biology concepts into computational tools for quantitative prediction of responses to stressors and hypothesis generation for experimental design.
Collapse
Affiliation(s)
- Marianthi G Lerapetritou
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
13
|
Importance of replication in analyzing time-series gene expression data: corticosteroid dynamics and circadian patterns in rat liver. BMC Bioinformatics 2010; 11:279. [PMID: 20500897 PMCID: PMC2889936 DOI: 10.1186/1471-2105-11-279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 05/26/2010] [Indexed: 11/14/2022] Open
Abstract
Background Microarray technology is a powerful and widely accepted experimental technique in molecular biology that allows studying genome wide transcriptional responses. However, experimental data usually contain potential sources of uncertainty and thus many experiments are now designed with repeated measurements to better assess such inherent variability. Many computational methods have been proposed to account for the variability in replicates. As yet, there is no model to output expression profiles accounting for replicate information so that a variety of computational models that take the expression profiles as the input data can explore this information without any modification. Results We propose a methodology which integrates replicate variability into expression profiles, to generate so-called 'true' expression profiles. The study addresses two issues: (i) develop a statistical model that can estimate 'true' expression profiles which are more robust than the average profile, and (ii) extend our previous micro-clustering which was designed specifically for clustering time-series expression data. The model utilizes a previously proposed error model and the concept of 'relative difference'. The clustering effectiveness is demonstrated through synthetic data where several methods are compared. We subsequently analyze in vivo rat data to elucidate circadian transcriptional dynamics as well as liver-specific corticosteroid induced changes in gene expression. Conclusions We have proposed a model which integrates the error information from repeated measurements into the expression profiles. Through numerous synthetic and real time-series data, we demonstrated the ability of the approach to improve the clustering performance and assist in the identification and selection of informative expression motifs.
Collapse
|
14
|
Yang EH, Almon RR, DuBois DC, Jusko WJ, Androulakis IP. Identification of global transcriptional dynamics. PLoS One 2009; 4:e5992. [PMID: 19593450 PMCID: PMC2705787 DOI: 10.1371/journal.pone.0005992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/06/2009] [Indexed: 12/02/2022] Open
Abstract
Background One of the challenges in exploiting high throughput measurement techniques such as microarrays is the conversion of the vast amounts of data obtained into relevant knowledge. Of particular importance is the identification of the intrinsic response of a transcriptional experiment and the characterization of the underlying dynamics. Methodology and Findings The proposed algorithm seeks to provide the researcher a summary as to various aspects relating to the dynamic progression of a biological system, rather than that of individual genes. The approach is based on the identification of smaller number of expression motifs that define the transcriptional state of the system which quantifies the deviation of the cellular response from a control state in the presence of an external perturbation. The approach is demonstrated with a number of data sets including a synthetic base case and four animal studies. The synthetic dataset will be used to establish the response of the algorithm on a “null” dataset, whereas the four different experimental datasets represent a spectrum of possible time course experiments in terms of the degree of perturbation associated with the experiment as well as representing a wide range of temporal sampling strategies. This wide range of experimental datasets will thus allow us to explore the performance of the proposed algorithm and determine its ability identify relevant information. Conclusions and Significance In this work, we present a computational approach which operates on high throughput temporal gene expression data to assess the information content of the experiment, identify dynamic markers of important processes associated with the experimental perturbation, and summarize in a concise manner the evolution of the system over time with respect to the experimental perturbation.
Collapse
Affiliation(s)
- Eric H. Yang
- Biomedical Engineering Department, Rutgers University, New Jersey, United States of America
| | - Richard R. Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Willian J. Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Ioannis P. Androulakis
- Biomedical Engineering Department, Rutgers University, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
15
|
High-dose corticosteroids after spinal cord injury reduce neural progenitor cell proliferation. Neuroscience 2009; 161:753-63. [DOI: 10.1016/j.neuroscience.2009.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/19/2022]
|
16
|
Jin JY, Jusko WJ. Pharmacodynamics of glucose regulation by methylprednisolone. II. normal rats. Biopharm Drug Dispos 2009; 30:35-48. [PMID: 19156669 DOI: 10.1002/bdd.642] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A physiologic pharmacodynamic model was developed to jointly describe the effects of methylprednisolone (MPL) on adrenal suppression and glycemic control in normal rats. Six groups of animals were given MPL intravenously at 0, 10 and 50 mg/kg, or by subcutaneous 7 day infusion at rates of 0, 0.1 and 0.3 mg/kg/h. Plasma concentrations of MPL, corticosterone (CST), glucose and insulin were determined at various times up to 72 h after injection and 336 h after infusion. The pharmacokinetics of MPL was described by a two-compartment model. A circadian rhythm for CST was found in untreated rats with a stress-altered baseline caused by handling, which was captured by a circadian harmonic secretion rate with an increasing mesor. All drug treatments caused CST suppression. Injection of MPL caused temporary increases in glucose over 4 h. Insulin secretion was thereby stimulated yielding a later peak around 6 h. In turn, insulin can normalize glucose. However, long-term dosing caused continuous hyperglycemia during and after infusion. Hyperinsulinemia was achieved during infusion, but diminished immediately after dosing despite the high glucose concentration. The effects of CST and MPL on glucose production were described with a competitive stimulation function. A disease progression model incorporating reduced endogenous glucose uptake/utilization was used to describe glucose metabolism under different treatments. The results exemplify the roles of endogenous and exogenous hormones in mediating glucose dynamics. The pharmacokinetic/pharmacodynamic model is valuable for quantitating diabetogenic effects of corticosteroid treatments and provides mechanistic insights into the hormonal control of the metabolic system.
Collapse
Affiliation(s)
- Jin Y Jin
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
17
|
Jin JY, Jusko WJ. Pharmacodynamics of glucose regulation by methylprednisolone. I. Adrenalectomized rats. Biopharm Drug Dispos 2009; 30:21-34. [PMID: 19156931 DOI: 10.1002/bdd.643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanisms related to the adverse effects of corticosteroids on glucose homeostasis were studied. Five groups of adrenalectomized (ADX) rats were given methylprednisolone (MPL) intravenously at 10 and 50 mg/kg, or a continuous 7 day infusion at rates of 0, 0.1, 0.3 mg/kg/h via subcutaneously implanted Alzet mini-pumps. Plasma concentrations of MPL, glucose and insulin were determined at various time points up to 72 h after injection or 336 h after infusion. The pharmacokinetics of MPL was captured with a two-compartment model. The Adapt II software was used in modeling. Injection of MPL caused a temporary glucose increase over 6 h by stimulating gluconeogenesis. The glucose changes stimulated pancreatic beta-cell secretion yielding a later insulin peak at around 10 h. In turn, insulin can stimulate glucose disposition. However, long-term MPL treatment caused continuous hyperglycemia during and after infusion. Insulin was increased during infusion, and immediately returned to baseline after the infusion was terminated, despite the almost doubled glucose concentration. A disease progression model incorporating the reduced endogenous glucose disposition was included to capture glucose homeostasis under different treatments. The results exemplify the importance of the steroid dosing regimen in mediating pharmacological and adverse metabolic effects. This mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model quantitatively describes the induction of hyperglycemia and provides additional insights into metabolic disorders such as diabetes.
Collapse
Affiliation(s)
- Jin Y Jin
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
18
|
Yang E, Androulakis IP. Assessing and selecting gene expression signals based upon the quality of the measured dynamics. BMC Bioinformatics 2009; 10:55. [PMID: 19208252 PMCID: PMC2653486 DOI: 10.1186/1471-2105-10-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 02/10/2009] [Indexed: 11/22/2022] Open
Abstract
Background One of the challenges with modeling the temporal progression of biological signals is dealing with the effect of noise and the limited number of replicates at each time point. Given the rising interest in utilizing predictive mathematical models to describe the biological response of an organism or analysis such as clustering and gene ontology enrichment, it is important to determine whether the dynamic progression of the data has been accurately captured despite the limited number of replicates, such that one can have confidence that the results of the analysis are capturing important salient dynamic features. Results By pre-selecting genes based upon quality before the identification of differential expression via algorithm such as EDGE, it was found that the percentage of statistically enriched ontologies (p < .05) was improved. Furthermore, it was found that a majority of the genes found via the proposed technique were also selected via an EDGE selection though the reverse was not necessarily true. It was also found that improvements offered by the proposed algorithm are anti-correlated with improvements in the various microarray platforms and the number of replicates. This is illustrated by the fact that newer arrays and experiments with more replicates show less improvement when the filtering for quality is first run before the selection of differentially expressed genes. This suggests that the increase in the number of replicates as well as improvements in array technologies are increase the confidence one has in the dynamics obtained from the experiment. Conclusion We have developed an algorithm that quantifies the quality of temporal biological signal rather than whether the signal illustrates a significant change over the experimental time course. Because the use of these temporal signals, whether it is in mathematical modeling or clustering, focuses upon the entire time series, it is necessary to develop a method to quantify and select for signals which conform to this ideal. By doing this, we have demonstrated a marked and consistent improvement in the results of a clustering exercise over multiple experiments, microarray platforms, and experimental designs.
Collapse
Affiliation(s)
- Eric Yang
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ, USA.
| | | |
Collapse
|
19
|
Almon RR, Yang E, Lai W, Androulakis IP, Ghimbovschi S, Hoffman EP, Jusko WJ, Dubois DC. Relationships between circadian rhythms and modulation of gene expression by glucocorticoids in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1031-47. [PMID: 18667713 DOI: 10.1152/ajpregu.90399.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence and maintenance of biological rhythms linked to the 24-h light-dark cycle are essential to the health and functioning of an organism. Although much is known concerning central clock mechanisms, much less is known about control in peripheral tissues. In this study, circadian regulation of gene expression was examined in rat skeletal muscle. A rich time series involving 54 animals euthanized at 18 distinct time points within the 24-h cycle was performed, and mRNA expression in gastrocnemius muscles was examined using Affymetrix gene arrays. Data mining identified 109 genes that were expressed rhythmically, which could be grouped into eight distinct temporal clusters within the 24-h cycle. These genes were placed into 11 functional categories, which were examined within the context of temporal expression. Transcription factors involved in the regulation of central rhythms were examined, and eight were found to be rhythmically expressed in muscle. Because endogenous glucocorticoids are a major effector of circadian rhythms, genes identified here were compared with those identified in previous studies as glucocorticoid regulated. Of the 109 genes identified here as circadian rhythm regulated, only 55 were also glucocorticoid regulated. Examination of transcription factors involved in circadian control suggests that corticosterone may be the initiator of their rhythmic expression patterns in skeletal muscle.
Collapse
Affiliation(s)
- Richard R Almon
- Dept. of Biological Sciences, State Univ. of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yao Z, Hoffman EP, Ghimbovschi S, DuBois DC, Almon RR, Jusko WJ. Pharmacodynamic/pharmacogenomic modeling of insulin resistance genes in rat muscle after methylprednisolone treatment: exploring regulatory signaling cascades. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:141-61. [PMID: 19787081 PMCID: PMC2733097 DOI: 10.4137/grsb.s613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Corticosteroids (CS) effects on insulin resistance related genes in rat skeletal muscle were studied. In our acute study, adrenalectomized (ADX) rats were given single doses of 50 mg/kg methylprednisolone (MPL) intravenously. In our chronic study, ADX rats were implanted with Alzet mini-pumps giving zero-order release rates of 0.3 mg/kg/h MPL and sacrificed at various times up to 7 days. Total RNA was extracted from gastrocnemius muscles and hybridized to Affymetrix GeneChips. Data mining and literature searches identified 6 insulin resistance related genes which exhibited complex regulatory pathways. Insulin receptor substrate-1 (IRS-1), uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), fatty acid translocase (FAT) and glycerol-3-phosphate acyltransferase (GPAT) dynamic profiles were modeled with mutual effects by calculated nuclear drug-receptor complex (DR(N)) and transcription factors. The oscillatory feature of endothelin-1 (ET-1) expression was depicted by a negative feedback loop. These integrated models provide testable quantitative hypotheses for these regulatory cascades.
Collapse
Affiliation(s)
- Zhenling Yao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | |
Collapse
|
21
|
Yao Z, Hoffman EP, Ghimbovschi S, Dubois DC, Almon RR, Jusko WJ. Mathematical modeling of corticosteroid pharmacogenomics in rat muscle following acute and chronic methylprednisolone dosing. Mol Pharm 2008; 5:328-39. [PMID: 18271548 DOI: 10.1021/mp700094s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pharmacogenomic effects of a corticosteroid (CS) were assessed in rat skeletal muscle using microarrays. Adrenalectomized (ADX) rats were treated with methylprednisolone (MPL) by either 50 mg/kg intravenous injection or 7-day 0.3 mg/kg/h infusion through subcutaneously implanted pumps. RNAs extracted from individual rat muscles were hybridized to Affymetrix Rat Genome Genechips. Data mining yielded 653 and 2316 CS-responsive probe sets following MPL bolus and infusion treatments. Of these, 196 genes were controlled by MPL under both dosing conditions. Cluster analysis revealed that 124 probe sets exhibited three typical expression dynamic profiles following acute dosing. Cluster A consisted of up-regulated probe sets which were grouped into five subclusters each exhibiting unique temporal patterns during the infusion. Cluster B comprised down-regulated probe sets which were divided into two subclusters with distinct dynamics during the infusion. Cluster C probe sets exhibited delayed down-regulation under both bolus and infusion conditions. Among those, 104 probe sets were further grouped into subclusters based on their profiles following chronic MPL dosing. Several mathematical models were proposed and adequately captured the temporal patterns for each subcluster. Multiple types of dosing regimens are needed to resolve common determinants of gene regulation as chronic exposure results in unexpected differences in gene expression compared to acute dosing. Pharmacokinetic/pharmacodynamic (PK/PD) modeling provides a quantitative tool for elucidating the complexities of CS pharmacogenomics in skeletal muscle.
Collapse
Affiliation(s)
- Zhenling Yao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hazra A, DuBois DC, Almon RR, Snyder GH, Jusko WJ. Pharmacodynamic Modeling of Acute and Chronic Effects of Methylprednisolone on Hepatic Urea Cycle Genes in Rats. GENE REGULATION AND SYSTEMS BIOLOGY 2008. [DOI: 10.1177/117762500800200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Corticosteroids (CS) regulate many enzymes at both mRNA and protein levels. This study used microarrays to broadly assess regulation of various genes related to the greater urea cycle and employs pharmacokinetic/pharmacodynamic (PK/PD) modeling to quantitatively analyze and compare the temporal profiles of these genes during acute and chronic exposure to methylprednisolone (MPL). One group of adrenalectomized male Wistar rats received an intravenous bolus dose (50 mg/kg) of MPL, whereas a second group received MPL by a subcutaneous infusion (Alzet osmotic pumps) at a rate of 0.3 mg/kg/hr for seven days. The rats were sacrificed at various time points over 72 hours (acute) or 168 hours (chronic) and livers were harvested. Total RNA was extracted and Affymetrix® gene chips (RGU34A for acute and RAE 230A for chronic) were used to identify genes regulated by CS. Besides five primary urea cycle enzymes, many other genes related to the urea cycle showed substantial changes in mRNA expression. Some genes that were simply up- or down-regulated after acute MPL showed complex biphasic patterns upon chronic infusion indicating involvement of secondary regulation. For the simplest patterns, indirect response models were used to describe the nuclear steroid-bound receptor mediated increase or decrease in gene transcription (e.g. tyrosine aminotransferase, glucocorticoid receptor). For the biphasic profiles, involvement of a secondary biosignal was assumed (e.g. ornithine decarboxylase, CCAAT/enhancer binding protein) and more complex models were derived. Microarrays were used successfully to explore CS effects on various urea cycle enzyme genes. PD models presented in this report describe testable hypotheses regarding molecular mechanisms and quantitatively characterize the direct or indirect regulation of various genes by CS.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences
- Clinical Pharmacology (Infectious Diseases), Pfizer Inc, New London, CT 06380, U.S.A
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences
- Department of Biological Sciences, University at Buffalo, NY 14260
| | - Richard R. Almon
- Department of Pharmaceutical Sciences
- Department of Biological Sciences, University at Buffalo, NY 14260
| | | | | |
Collapse
|
23
|
Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetics of methylprednisolone after intravenous and intramuscular administration in rats. Biopharm Drug Dispos 2007; 28:263-73. [PMID: 17569107 PMCID: PMC4181331 DOI: 10.1002/bdd.551] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Methylprednisolone (MPL) pharmacokinetics was examined in adrenalectomized (ADX) and normal rats to assess the feasibility of intramuscular (i.m.) dosing for use in pharmacodynamic studies. Several study phases were pursued. Parallel group studies were performed in normal and ADX rats given 50 mg/kg MPL (i.v. or i.m.) and blood samples were collected up to 6 h. Data from studies where normal rats were dosed with 50 mg/kg MPL i.m. and killed over either 6 or 96 h were combined to determine muscle site and plasma MPL concentrations. Lastly, ADX rats were dosed with 50 mg/kg MPL i.m. and killed over 18 h to assess hepatic tyrosine aminotransferase (TAT) dynamics. MPL exhibited bi-exponential kinetics after i.v. dosing with a terminal slope of 2.1 h(-1). The i.m. drug was absorbed slowly with two first-order absorption rate constants, 1.26 and 0.219 h(-1) indicating flip-flop kinetics with overall 50% bioavailability. The kinetics of MPL at the injection site exhibited slow, dual absorption rates. Although i.m. MPL showed lower bioavailability compared with other corticosteroids in rats, TAT dynamics revealed similar i.m. and i.v. response profiles. The more convenient intramuscular dosing can replace the i.v. route without causing marked differences in pharmacodynamics.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Nancy Pyszczynski
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Correspondence to: 565 Hochstetter Hall, Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
24
|
Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ. Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids. J Pharmacokinet Pharmacodyn 2007; 34:643-67. [PMID: 17593325 PMCID: PMC4180077 DOI: 10.1007/s10928-007-9063-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase (TAT) were evaluated in normal rats. A group of normal male Wistar rats were injected with 50 mg/kg methylprednisolone (MPL) intramuscularly at the nadir of their plasma corticosterone (CST) rhythm (early light cycle) and sacrificed at various time points up to 96 h post-treatment. Blood and livers were collected to measure plasma MPL, CST, hepatic glucocorticoid receptor (GR) mRNA, cytosolic GR density, TAT mRNA, and TAT activity. The pharmacokinetics of MPL showed bi-exponential disposition with two first-order absorption components from the injection site and bioavailability was 21%. Plasma CST was reduced after MPL dosing, but resumed its daily circadian pattern within 36 h. Cytosolic receptor density was significantly suppressed (90%) and returned to baseline by 72 h resuming its biphasic pattern. Hepatic GR mRNA follows a circadian pattern which was disrupted by MPL and did not return during the study. MPL caused significant down-regulation (50%) in GR mRNA which was followed by a delayed rebound phase (60-70 h). Hepatic TAT mRNA and activity showed up-regulation as a consequence of MPL, and returned to their circadian baseline within 72 and 24 h of treatment. A mechanistic receptor/gene-mediated pharmacokinetic/pharmacodynamic model was able to satisfactorily describe the complex interplay of exogenous and endogenous corticosteroid effects on hepatic GR mRNA, cytosolic free GR, TAT mRNA, and TAT activity in normal rats.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Clinical Pharmacology, Pfizer Inc., Groton, CT 06340, USA
| | - Nancy Pyszczynski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| |
Collapse
|
25
|
Hazra A, DuBois DC, Almon RR, Jusko WJ. Assessing the dynamics of nuclear glucocorticoid-receptor complex: adding flexibility to gene expression modeling. J Pharmacokinet Pharmacodyn 2007; 34:333-54. [PMID: 17285360 PMCID: PMC4184272 DOI: 10.1007/s10928-007-9049-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
A retrospective analysis was performed to modify our fourth-generation pharmacodynamic model for glucocorticoid receptor (GR) dynamics with incorporation of more physiological features. This modified model was developed by integrating previously reported free cytosolic GR and GR mRNA data following single (10, 50 mg/kg) and dual (50 mg/kg at 0 and 24 hr) intravenous doses of methylprednisolone (MPL) in adrenalectomized (ADX) male Wistar rats with several in vitro studies describing real-time kinetics of the transfer of rat steroid-receptor complex from the cell cytosol to the nucleus. Additionally, free hepatic cytosolic GR and its mRNA data from a chronic infusion dosing study of MPL (0.1 and 0.3 mg/kg/hr) in male ADX Wistar rats were used to verify the predictability of the model. Incorporation of information regarding in vitro receptor kinetics allowed us to describe the receptor-mediated pharmacogenomic effects of MPL for a larger variety of genes in rat liver from microarray studies. These included early responsive gene like CCAAT/enhancer binding protein-beta (CEBP-beta), a transcription factor, as well as the later responsive gene for tyrosine aminotransferase (TAT), a classical biomarker of glucocorticoid (GC) genomic effects. This more mechanistic model of GR dynamics can be applied to characterize profiles for a greater number of genes in liver.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| |
Collapse
|
26
|
Almon RR, DuBois DC, Yao Z, Hoffman EP, Ghimbovschi S, Jusko WJ. Microarray analysis of the temporal response of skeletal muscle to methylprednisolone: comparative analysis of two dosing regimens. Physiol Genomics 2007; 30:282-99. [PMID: 17473217 PMCID: PMC4186702 DOI: 10.1152/physiolgenomics.00242.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transcriptional response of skeletal muscle to chronic corticosteroid exposure was examined over 168 h and compared with the response profiles observed following a single dose of corticosteroid. Male adrenalectomized Wistar rats were given a constant-rate infusion of 0.3 mg x kg(-1) x h(-1) methylprednisolone for up to 7 days via subcutaneously implanted minipumps. Four control and forty drug-treated animals were killed at ten different time points during infusion. Liver total RNAs were hybridized to 44 individual Affymetrix REA230A gene chips. Previously, we described a filtration approach for identifying genes of interest in microarray data sets developed from tissues of rats treated with methylprednisolone (MPL) following acute dosing. Here, a similar approach involving a series of three filters was applied sequentially to identify genes of interest. These filters were designed to eliminate probe sets that were not expressed in the tissue, not regulated by the drug, or did not meet defined quality control standards. Filtering eliminated 86% of probe sets, leaving a remainder of 2,316 for further consideration. In a previous study, 653 probe sets were identified as MPL regulated following administration of a single (acute) dose of the drug. Comparison of the two data sets yielded 196 genes identified as regulated by MPL in both dosing regimens. Because of receptor downregulation, it was predicted that genes regulated by receptor-glucocorticoid response element interactions would exhibit tolerance in chronic profiles. However, many genes did not exhibit steroid tolerance, indicating that present perspectives on the mechanism of glucocorticoid action cannot entirely explain all temporal profiles.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Pharmaceutical Sciences State University of New York at Buffalo, Buffalo, New York 14260, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Almon RR, DuBois DC, Jusko WJ. A microarray analysis of the temporal response of liver to methylprednisolone: a comparative analysis of two dosing regimens. Endocrinology 2007; 148:2209-25. [PMID: 17303664 PMCID: PMC4183266 DOI: 10.1210/en.2006-0790] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microarray analyses were performed on livers from adrenalectomized male Wistar rats chronically infused with methylprednisolone (MPL) (0.3 mg/kg.h) using Alzet mini-osmotic pumps for periods ranging from 6 h to 7 d. Four control and 40 drug-treated animals were killed at 10 different times during drug infusion. Total RNA preparations from the livers of these animals were hybridized to 44 individual Affymetrix REA230A gene chips, generating data for 15,967 different probe sets for each chip. A series of three filters were applied sequentially. These filters were designed to eliminate probe sets that were not expressed in the tissue, were not regulated by the drug, or did not meet defined quality control standards. These filters eliminated 13,978 probe sets (87.5%) leaving a remainder of 1989 probe sets for further consideration. We previously described a similar dataset obtained from animals after administration of a single dose of MPL (50 mg/kg given iv). That study involved 16 time points over a 72-h period. A similar filtering schema applied to the single-bolus-dose dataset identified 1519 probe sets as being regulated by MPL. A comparison of datasets from the two different dosing regimens identified 358 genes that were regulated by MPL in response to both dosing regimens. Regulated genes were grouped into 13 categories, mainly on gene product function. The temporal profiles of these common genes were subjected to detailed scrutiny. Examination of temporal profiles demonstrates that current perspectives on the mechanism of glucocorticoid action cannot entirely explain the temporal profiles of these regulated genes.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA.
| | | | | |
Collapse
|
28
|
Smith C, Wilson NW, Louw A, Myburgh KH. Illuminating the interrelated immune and endocrine adaptations after multiple exposures to short immobilization stress by in vivo blocking of IL-6. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1439-47. [PMID: 17170234 DOI: 10.1152/ajpregu.00602.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermittent psychological stress was induced in adult rats by 2 h/day of immobilization stress for 4 days, with or without blocking the function of IL-6 by using an anti-IL-6 antibody. Basal concentrations of serum corticosterone, IL-1β, IL-6, and TNF-α were assessed 24 h after the last intervention, as were levels of glucocorticoid receptors (GR) and activities of glucocorticoid-inducible enzymes (tyrosine aminotransferase and glutamine synthetase) in muscle and liver. Whole blood cultures were used to assess both spontaneous and LPS-induced reactivity of peripheral blood mononuclear cells. Stress increased corticosterone concentration in a manner partially modulated by IL-6. Serum IL-1β concentration was downregulated during stress when IL-6 was blocked ( P < 0.01). LPS-induced IL-6 secretion by peripheral blood mononuclear cells in vitro correlated positively with serum IL-1β concentration in antibody-treated groups, independently of stress ( R = 0.70 in nonstressed and R = 0.78 in stressed rats; both P < 0.05), whereas serum corticosterone concentration correlated positively with LPS-induced secretion of IL-6 only in control rats ( R = 0.66; P < 0.05). Reductions in liver GR levels indicated independent effects of stress (34.5%) and anti-IL-6 antibody (16.7%) and additive effects for both (62.5%). Similar results are reported for vastus muscle. Conversely, stress increased tyrosine aminotransferase and glutamine synthetase activities in muscle and liver with a significant ( P < 0.05) effect of anti-IL-6 antibody only seen in stressed livers. In conclusion, IL-6 plays a role in maintaining circulating IL-1β concentration after multiple exposures to stress, thus promoting a continued elevation of corticosterone release; in peripheral tissues, IL-6 antagonizes the effects of glucocorticoids, especially at the level of GR concentration.
Collapse
Affiliation(s)
- C Smith
- Department of Physiological Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | |
Collapse
|
29
|
Yao Z, Zhao B, Hoffman EP, Ghimbovschi S, DuBois DC, Almon RR, Jusko WJ. Application of scaling factors in simultaneous modeling of microarray data from diverse chips. Pharm Res 2007; 24:643-9. [PMID: 17318415 PMCID: PMC4181592 DOI: 10.1007/s11095-006-9215-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Microarrays have been utilized in many biological, physiological and pharmacological studies as a high-throughput genomic technique. Several generations of Affymetrix GeneChip microarrays are widely used in gene expression studies. However, differences in intensities of signals for different probe sets that represent the same gene on various types of Affymetrix chips make comparison of datasets complicated. MATERIALS AND METHODS A power coefficient scaling factor was applied in the pharmacokinetic/pharmacodynamic (PK/PD) modeling to account for differences in probe set sensitivities (i.e., signal intensities). Microarray data from muscle and liver following methylprednisolone 50 mg/kg i.v. bolus and 0.3 mg/kg/h infusion regimens were taken as an exemplar. RESULTS The scaling factor applied to the pharmacodynamic output function was used to solve the problem of intensity differences between probe sets. This approach yielded consistent pharmacodynamic parameters for the applied models. CONCLUSIONS Modeling of pharmacodynamic/pharmacogenomic (PD/PG) data from diverse chips should be performed with caution due to differential probe set intensities. In such circumstances, a power scaling factor can be applied in the modeling.
Collapse
Affiliation(s)
- Zhenling Yao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, New York 14260, USA
| | - Baiteng Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, New York 14260, USA
| | - Eric P. Hoffman
- Children's National Medical Center, Washington District of Columbia, USA
| | | | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, New York 14260, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, New York 14260, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, New York 14260, USA
- To whom correspondence should be addressed. ( )
| |
Collapse
|
30
|
Crown A, Lightman S. Why is the management of glucocorticoid deficiency still controversial: a review of the literature. Clin Endocrinol (Oxf) 2005; 63:483-92. [PMID: 16268798 DOI: 10.1111/j.1365-2265.2005.02320.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
All endocrinologists would like to make glucocorticoid replacement therapy for their hypoadrenal patients as physiological as possible. Many would like the reassurance of a method of monitoring such treatment to confirm that they are achieving this aim. Advances in our knowledge of the normal physiology are relevant to our attempts to do this. The cortisol production rate in normal subjects is lower than was previously believed. The normal pattern of glucocorticoid secretion includes both a diurnal rhythm and a pulsatile ultradian rhythm. Glucocorticoid access to nuclear receptors is 'gated' by the 11-beta-hydroxysteroid dehydrogenase enzymes, which interconvert active cortisol and inactive cortisone. Such complexities make the target of physiological glucocorticoid replacement therapy hard to achieve. The available evidence suggests that conventional treatment of hypoadrenal patients may result in adverse effects on some surrogate markers of disease risk, such as a lower bone mineral density than age-sex matched controls, and increases in postprandial glucose and insulin concentrations. Although the quality of life of hypoadrenal patients may be impaired, there is no evidence of an improvement on higher doses of steroids, although quality of life is better if the hydrocortisone dose is split up, with the highest dose taken in the morning. Thus the evidence suggests that most patients may safely be treated with a low dose of glucocorticoid (e.g. 15 mg hydrocortisone daily) in two or three divided doses, with education about the appropriate action to take in the event of intercurrent illnesses.
Collapse
Affiliation(s)
- Anna Crown
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, UK
| | | |
Collapse
|
31
|
Almon RR, Dubois DC, Jin JY, Jusko WJ. Pharmacogenomic responses of rat liver to methylprednisolone: an approach to mining a rich microarray time series. AAPS JOURNAL 2005; 7:E156-94. [PMID: 16146338 PMCID: PMC2607485 DOI: 10.1208/aapsj070117] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A data set was generated to examine global changes in gene expression in rat liver over time in response to a single bolus dose of methylprednisolone. Four control animals and 43 drug-treated animals were humanely killed at 16 different time points following drug administration. Total RNA preparations from the livers of these animals were hybridized to 47 individual Affymetrix RU34A gene chips, generating data for 8799 different probe sets for each chip. Data mining techniques that are applicable to gene array time series data sets in order to identify drug-regulated changes in gene expression were applied to this data set. A series of 4 sequentially applied filters were developed that were designed to eliminate probe sets that were not expressed in the tissue, were not regulated by the drug treatment, or did not meet defined quality control standards. These filters eliminated 7287 probe sets of the 8799 total (82%) from further consideration. Application of judiciously chosen filters is an effective tool for data mining of time series data sets. The remaining data can then be further analyzed by clustering and mathematical modeling techniques.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
The purpose of this study was to develop a stochastic version of corticosteriod fifth generation pharmacogenomic model. The Gillespie algorithm was used to generate the independent time courses of the receptor messenger RNA (mRNA). Initial parameters for the stochastic simulation were adapted from the study by Jin et al. The result obtained from the proposed stochastic model showed an overall agreement with the deterministic fifth generation model. This study suggested that because the stochastic model takes into account the "noise" nature of gene regulation, it would have potential application in pharmacogenomic modeling.
Collapse
Affiliation(s)
- Xiaohong Qi
- National Pharmaceutical Engineering Research Center, No. 1111 Zhongshanbeiyi Road, Shanghai 200437, China.
| |
Collapse
|
33
|
Almon RR, DuBois DC, Piel WH, Jusko WJ. The genomic response of skeletal muscle to methylprednisolone using microarrays: tailoring data mining to the structure of the pharmacogenomic time series. Pharmacogenomics 2004; 5:525-52. [PMID: 15212590 PMCID: PMC2607486 DOI: 10.1517/14622416.5.5.525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
High-throughput data collection using gene microarrays has great potential as a method for addressing the pharmacogenomics of complex biological systems. Similarly, mechanism-based pharmacokinetic/pharmacodynamic modeling provides a tool for formulating quantitative testable hypotheses concerning the responses of complex biological systems. As the response of such systems to drugs generally entails cascades of molecular events in time, a time series design provides the best approach to capturing the full scope of drug effects. A major problem in using microarrays for high-throughput data collection is sorting through the massive amount of data in order to identify probe sets and genes of interest. Due to its inherent redundancy, a rich time series containing many time points and multiple samples per time point allows for the use of less stringent criteria of expression, expression change and data quality for initial filtering of unwanted probe sets. The remaining probe sets can then become the focus of more intense scrutiny by other methods, including temporal clustering, functional clustering and pharmacokinetic/pharmacodynamic modeling, which provide additional ways of identifying the probes and genes of pharmacological interest.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA, Tel: +1 716 645 2363, ext. 114; Fax: +1 716 645 2975; E-mail:
- Department of Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA
| | - Debra C DuBois
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA, Tel: +1 716 645 2363, ext. 114; Fax: +1 716 645 2975; E-mail:
- Department of Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA
| | - William H Piel
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA, Tel: +1 716 645 2363, ext. 114; Fax: +1 716 645 2975; E-mail:
| | - William J Jusko
- Department of Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
34
|
Verheul AJ, Mantilla CB, Zhan WZ, Bernal M, Dekhuijzen PNR, Sieck GC. Influence of corticosteroids on myonuclear domain size in the rat diaphragm muscle. J Appl Physiol (1985) 2004; 97:1715-22. [PMID: 15234958 DOI: 10.1152/japplphysiol.00625.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle fibers are multinucleated. Each myonucleus regulates gene products and protein expression in only a restricted portion of the muscle fiber, the myonuclear domain (MND). In the rat diaphragm muscle (DIAm), corticosteroid (CoS) treatment causes atrophy of fibers containing myosin heavy chain (MHC): MHC2X and/or MHC2B. We hypothesized that DIAm fiber MND size is maintained during CoS-induced atrophy. Adult male rats received methylprednisolone for 11 days at 1 (CoS-Low, n = 8) or 8 mg·kg−1·day−1 (CoS-High, n = 8). Age-matched (CTL-AgeM, n = 8), sham-operated (SHAM-AgeM, n = 8), and weight-matched (CTL-WtM, n = 8) animals served as controls. In single DIAm fibers, cross-sectional area (CSA), MND size, and MHC expression were determined. Fiber CSA and MND size were similar in CTL-AgeM and SHAM-AgeM groups. Only fibers containing MHCslow or MHC2A displayed smaller CSA in CTL-WtM than in CTL-AgeM and SHAM-AgeM groups, and MND size was reduced in all fibers. Thus fibers containing MHCslow and MHC2A maintain the number of myonuclei, whereas MHC2X or MHC2B fibers show loss of myonuclei during normal muscle growth. Both CoS groups displayed smaller CSA and MND size than CTL-AgeM and SHAM-AgeM groups. However, compared with CTL-WtM DIAm fibers, only fibers containing MHC2X or MHC2B displayed reduced CSA and MND size after CoS treatment. Thus little, if any, loss of myonuclei was associated with CoS-induced atrophy of MHC2X or MHC2B DIAm fibers. In summary, MND size does not appear to be regulated during CoS-induced DIAm atrophy.
Collapse
Affiliation(s)
- A Jeroen Verheul
- Department of Pulmonary Diseases, University Medical Center Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Jin JY, DuBois DC, Almon RR, Jusko WJ. Receptor/gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J Pharmacol Exp Ther 2004; 309:328-39. [PMID: 14722324 DOI: 10.1124/jpet.103.061515] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting enzyme for gluconeogenesis. To investigate underlying mechanisms of corticosteroid (CS) action in regulating glucose, temporal patterns of hepatic PEPCK gene expression, enzyme activity, and cAMP content were examined in adrenalectomized rats receiving acute and chronic methylprednisolone (MPL) treatments. After single MPL intravenous doses, PEPCK mRNA showed a fast increase, reaching a maximum at around 0.75 h, which was followed by an immediate decline to below baseline after 4 h, an apparent acute tolerance/rebound phenomenon. However, PEPCK enzyme showed continuous hyperactivity for over 72 h. This may be the result of generation of cAMP, an important inducer of PEPCK activity, which peaked at around 6 h. During 7-day subcutaneous infusion of MPL, PEPCK mRNA showed profiles consistent with single-dose results, whereas PEPCK activity increased to a comparable maximum followed by a slow decline. However, the extent of cAMP induction was markedly higher during infusion, which could be attributed to amplification of cAMP synthesis and/or a stabilizing effect of MPL on cAMP degradation. A pharmacokinetic/pharmacodynamic model was developed based on receptor/gene mechanisms of CS action. It successfully described the dual effects of MPL on regulating PEPCK message and the post-transcriptional control by cAMP. Our results exemplify the importance of the extent and duration of steroid exposure in mediating pharmacological effects. The model provides quantitation of multiple controlling factors regulating PEPCK and presents insights into its function in glucose metabolism.
Collapse
Affiliation(s)
- Jin Y Jin
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
36
|
Almon RR, DuBois DC, Pearson KE, Stephan DA, Jusko WJ. Gene arrays and temporal patterns of drug response: corticosteroid effects on rat liver. Funct Integr Genomics 2003; 3:171-9. [PMID: 12928814 PMCID: PMC4207265 DOI: 10.1007/s10142-003-0090-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Revised: 06/11/2003] [Accepted: 06/14/2003] [Indexed: 10/26/2022]
Abstract
It was hypothesized that expression profiling using gene arrays can be used to distinguish temporal patterns of changes in gene expression in response to a drug in vivo, and that these patterns can be used to identify groups of genes regulated by common mechanisms. A corticosteroid, methylprednisolone (MPL), was administered intravenously to a group of 47 rats ( Rattus rattus) that were sacrificed at 17 timepoints over 72 h after MPL administration. Plasma drug concentrations and hepatic glucocorticoid receptors were measured from each animal. In addition, RNAs prepared from individual livers were used to query Affymetrix genechips for mRNA expression patterns. Statistical analyses using Affymetrix and GeneSpring software were applied to the results. Cluster analysis revealed six major temporal patterns containing 196 corticosteroid-responsive probe sets representing 153 different genes. Four clusters showed increased expression with differences in lag-time, onset rate, and/or duration of transcriptional effect. A fifth cluster showed rapid reduction persisting for 18 h. The final cluster identified showed decreased expression followed by an extended period of increased expression. These results lend new insights into the diverse hepatic genes involved in the physiologic, therapeutic, and adverse effects of corticosteroids and suggest that a limited array of control processes account for the dynamics of their pharmacogenomic effects.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, SUNY at Buffalo, 107 Hochstetter Hall, Buffalo, NY 14260, USA.
| | | | | | | | | |
Collapse
|
37
|
Jin JY, Almon RR, DuBois DC, Jusko WJ. Modeling of corticosteroid pharmacogenomics in rat liver using gene microarrays. J Pharmacol Exp Ther 2003; 307:93-109. [PMID: 12808002 DOI: 10.1124/jpet.103.053256] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid (CS) pharmacogenomics was studied using gene microarrays in rat liver. Methylprednisolone (MPL) was administered intravenously at 50 mg/kg. Rats were sacrificed and liver excised at 17 time points over 72 h. RNAs from individual livers were used to query Affymetrix GeneChips that contain sequences for 8000 genes. Cluster analysis revealed six temporal patterns consisting of 197 CS-responsive probes representing 143 genes. Based on our fifth-generation model of CS pharmacokinetics/pharmacodynamics (PK/PD), mechanistic models were developed to describe the time pattern for each CS-responsive gene. Two clusters showed increased expression with different effect duration. PK/PD models assuming CS stimulation of mRNA synthesis were applied. Another two clusters showed an initial decline followed by delayed increase, suggesting two mechanisms might be involved jointly. The initial suppression was captured by CS inhibition of mRNA synthesis or stimulation of degradation. CS may also stimulate the production of a biosignal (transcription factors or other hormones), which can cause secondary induction of the target mRNA. One cluster showed a very abrupt increase in message followed by rapid decrease. These genes were lymphocytic in origin and were modeled combining the fast gene induction effect of CS in lymphoid cells and its direct lymphocyte trafficking effect. Another cluster showed reduction persisting for 18 h, which was described by CS inhibition of mRNA synthesis. Our results reveal the marked diversity of genes regulated by CS via a limited array of mechanisms. These PK/PD models provide quantitation of CS pharmacogenomics and new hypotheses regarding understanding of diverse mechanisms of CS receptor-gene mediated action.
Collapse
Affiliation(s)
- Jin Y Jin
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 565 Hochstetter Hall, State University of New York at Buffalo, 14260, USA
| | | | | | | |
Collapse
|
38
|
Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ. Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn 2002; 29:1-24. [PMID: 12194533 PMCID: PMC4207287 DOI: 10.1023/a:1015765201129] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A fifth-generation model for receptor/gene-mediated corticosteroid effects was proposed based on results from a 50 mg/kg i.v. bolus dose of methylprednisolone (MPL) in male adrenalectomized rats, and confirmed using data from other acute dosage regimens. Steady-state equations for receptor down-regulation and tyrosine aminotransferase (TAT) enzyme induction patterns were derived. Five groups of male Wistar rats (n = 5/group) were subcutaneously implanted with Alzet mini-pumps primed to release saline or 0.05, 0.1, 0.2, and 0.3 mg/kg/hr of MPL for 7 days. Rats were sacrificed at the end of the infusion. Plasma MPL concentrations, blood lymphocyte counts, and hepatic cytosolic free receptor density, receptor mRNA, TAT mRNA, and TAT enzyme levels were quantitated. The pronounced steroid effects were evidenced by marked losses in body weights and changes in organ weights. All four treatments caused a dose-dependent reduction in hepatic receptor levels, which correlated with the induction of TAT mRNA and TAT enzyme levels. The 7 day receptor mRNA and free receptor density correlated well with the model predicted steady-state levels. However, the extent of enzyme induction was markedly higher than that predicted by the model suggesting that the usual receptor/gene-mediated effects observed upon single/intermittent dosing of MPL may be countered by alterations in other aspects of the system. A mean IC50 of 6.1 ng/mL was estimated for the immunosuppressive effects of methylprednisolone on blood lymphocytes. The extent and duration of steroid exposure play a critical role in mediating steroid effects and advanced PK/PD models provide unique insights into controlling factors.
Collapse
Affiliation(s)
- Rohini Ramakrishnan
- Department of Pharmaceutical Sciences, 565 Hochstetter Hall, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|