1
|
Dragan Z, Pollock CA, Huang C. Insight into a multifunctional potassium channel Kv1.3 and its novel implication in chronic kidney disease. Life Sci 2024; 362:123338. [PMID: 39730039 DOI: 10.1016/j.lfs.2024.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.3, a voltage-gated potassium ion channel, plays a crucial role in multiple biological processes, including cell proliferation, apoptosis, energy homeostasis, and migration. Inhibition of the Kv1.3 channels has shown beneficial effects in the therapy of a wide range of human diseases such as cancer, autoimmune and neuroinflammatory diseases. Increasing evidence reveals a close link between Kv1.3 and CKD. This review summarises the most recent insights into the physiological functions of the Kv1.3 channel and its pharmacological modulators. Furthermore, the therapeutic potential of targeting Kv1.3 for CKD is also discussed. Collectively, these studies suggested that Kv1.3 channels may serve as a novel target for CKD therapy.
Collapse
Affiliation(s)
- Zac Dragan
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| |
Collapse
|
2
|
Abbott GW, Manville RW. Discovery of a potent, Kv7.3-selective potassium channel opener from a Polynesian traditional botanical anticonvulsant. Commun Chem 2024; 7:233. [PMID: 39390220 PMCID: PMC11467302 DOI: 10.1038/s42004-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Plants remain an important source of biologically active small molecules with high therapeutic potential. The voltage-gated potassium (Kv) channel formed by Kv7.2/3 (KCNQ2/3) heteromers is a major target for anticonvulsant drug development. Here, we screened 1444 extracts primarily from plants collected in California and the US Virgin Islands, for their ability to activate Kv7.2/3 but not inhibit Kv1.3, to select against tannic acid being the active component. We validated the 7 strongest hits, identified Thespesia populnea (miro, milo, portia tree) as the most promising, then discovered its primary active metabolite to be gentisic acid (GA). GA highly potently activated Kv7.2/3 (EC50, 2.8 nM). GA is, uniquely to our knowledge, 100% selective for Kv7.3 versus other Kv7 homomers; it requires S5 residue Kv7.3-W265 for Kv7.2/3 activation, and it ameliorates pentylenetetrazole-induced seizures in mice. Structure-activity studies revealed that the FDA-approved vasoprotective drug calcium dobesilate, a GA analog, is a previously unrecognized Kv7.2/3 channel opener. Also an active aspirin metabolite, GA provides a molecular rationale for the use of T. populnea as an anticonvulsant in Polynesian indigenous medicine and presents novel pharmacological prospects for potent, isoform-selective, therapeutic Kv7 channel activation.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Zhou YS, Tao HB, Lv SS, Liang KQ, Shi WY, Liu KY, Li YY, Chen LY, Zhou L, Yin SJ, Zhao QR. Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice. Acta Pharmacol Sin 2024; 45:2045-2060. [PMID: 38862816 PMCID: PMC11420205 DOI: 10.1038/s41401-024-01275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/24/2024] [Indexed: 06/13/2024] Open
Abstract
Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hao-Bo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Si-Si Lv
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Qin Liang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wen-Yi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Yun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lv-Yi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ling Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shi-Jin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Qian-Ru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
4
|
Manville RW, Yoshimura RF, Yeromin AV, Hogenkamp D, van der Horst J, Zavala A, Chinedu S, Arena G, Lasky E, Fisher M, Tracy CR, Othy S, Jepps TA, Cahalan MD, Abbott GW. Polymodal K + channel modulation contributes to dual analgesic and anti-inflammatory actions of traditional botanical medicines. Commun Biol 2024; 7:1059. [PMID: 39198706 PMCID: PMC11358443 DOI: 10.1038/s42003-024-06752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Pain and inflammation contribute immeasurably to reduced quality of life, yet modern analgesic and anti-inflammatory therapeutics can cause dependence and side effects. Here, we screened 1444 plant extracts, prepared primarily from native species in California and the United States Virgin Islands, against two voltage-gated K+ channels - T-cell expressed Kv1.3 and nociceptive-neuron expressed Kv7.2/7.3. A subset of extracts both inhibits Kv1.3 and activates Kv7.2/7.3 at hyperpolarized potentials, effects predicted to be anti-inflammatory and analgesic, respectively. Among the top dual hits are witch hazel and fireweed; polymodal modulation of multiple K+ channel types by hydrolysable tannins contributes to their dual anti-inflammatory, analgesic actions. In silico docking and mutagenesis data suggest pore-proximal extracellular linker sequence divergence underlies opposite effects of hydrolysable tannins on different Kv1 isoforms. The findings provide molecular insights into the enduring, widespread medicinal use of witch hazel and fireweed and demonstrate a screening strategy for discovering dual anti-inflammatory, analgesic small molecules.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Ryan F Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jennifer van der Horst
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Angel Zavala
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Sonia Chinedu
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Grey Arena
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Emma Lasky
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Mark Fisher
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Christopher R Tracy
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Thomas A Jepps
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Cahalan
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Bowen CA, Nguyen HM, Lin Y, Bagchi P, Natu A, Espinosa-Garcia C, Werner E, Kumari R, Brandelli AD, Kumar P, Tobin BR, Wood L, Faundez V, Wulff H, Seyfried NT, Rangaraju S. Proximity Labeling Proteomics Reveals Kv1.3 Potassium Channel Immune Interactors in Microglia. Mol Cell Proteomics 2024; 23:100809. [PMID: 38936775 DOI: 10.1016/j.mcpro.2024.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Microglia are resident immune cells of the brain and regulate its inflammatory state. In neurodegenerative diseases, microglia transition from a homeostatic state to a state referred to as disease-associated microglia (DAM). DAM express higher levels of proinflammatory signaling molecules, like STAT1 and TLR2, and show transitions in mitochondrial activity toward a more glycolytic response. Inhibition of Kv1.3 decreases the proinflammatory signature of DAM, though how Kv1.3 influences the response is unknown. Our goal was to identify the potential proteins interacting with Kv1.3 during transition to DAM. We utilized TurboID, a biotin ligase, fused to Kv1.3 to evaluate potential interacting proteins with Kv1.3 via mass spectrometry in BV-2 microglia following TLR4-mediated activation. Electrophysiology, Western blotting, and flow cytometry were used to evaluate Kv1.3 channel presence and TurboID biotinylation activity. We hypothesized that Kv1.3 contains domain-specific interactors that vary during a TLR4-induced inflammatory response, some of which are dependent on the PDZ-binding domain on the C terminus. We determined that the N terminus of Kv1.3 is responsible for trafficking Kv1.3 to the cell surface and mitochondria (e.g., NUDC, TIMM50). Whereas, the C terminus interacts with immune signaling proteins in a lipopolysaccharide-induced inflammatory response (e.g., STAT1, TLR2, and C3). There are 70 proteins that rely on the C-terminal PDZ-binding domain to interact with Kv1.3 (e.g., ND3, Snx3, and Sun1). Furthermore, we used Kv1.3 blockade to verify functional coupling between Kv1.3 and interferon-mediated STAT1 activation. Overall, we highlight that the Kv1.3 potassium channel functions beyond conducting the outward flux of potassium ions in an inflammatory context and that Kv1.3 modulates the activity of key immune signaling proteins, such as STAT1 and C3.
Collapse
Affiliation(s)
- Christine A Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Hai M Nguyen
- Department of Pharmacology, University of California - Davis, Davis, California, USA
| | - Young Lin
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA; Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, USA
| | - Aditya Natu
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Rashmi Kumari
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Prateek Kumar
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Brendan R Tobin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Levi Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Enigneering, and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | - Heike Wulff
- Department of Pharmacology, University of California - Davis, Davis, California, USA
| | - Nicholas T Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Srikant Rangaraju
- Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; School of Medicine, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
6
|
Sastre D, Colomer-Molera M, de Benito-Bueno A, Valenzuela C, Fernández-Ballester G, Felipe A. KCNE4-dependent modulation of Kv1.3 pharmacology. Biochem Pharmacol 2024; 226:116368. [PMID: 38880360 DOI: 10.1016/j.bcp.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The voltage-dependent potassium channel Kv1.3 is a promising therapeutic target for the treatment of autoimmune and chronic inflammatory disorders. Kv1.3 blockers are effective in treating multiple sclerosis (fampridine) and psoriasis (dalazatide). However, most Kv1.3 pharmacological antagonists are not specific enough, triggering potential side effects and limiting their therapeutic use. Functional Kv are oligomeric complexes in which the presence of ancillary subunits shapes their function and pharmacology. In leukocytes, Kv1.3 associates with KCNE4, which reduces the surface abundance and enhances the inactivation of the channel. This mechanism exerts profound consequences on Kv1.3-related physiological responses. Because KCNE peptides alter the pharmacology of Kv channels, we studied the effects of KCNE4 on Kv1.3 pharmacology to gain insights into pharmacological approaches. To that end, we used margatoxin, which binds the channel pore from the extracellular space, and Psora-4, which blocks the channel from the intracellular side. While KCNE4 apparently did not alter the affinity of either margatoxin or Psora-4, it slowed the inhibition kinetics of the latter in a stoichiometry-dependent manner. The results suggested changes in the Kv1.3 architecture in the presence of KCNE4. The data indicated that while the outer part of the channel mouth remains unaffected, KCNE4 disturbs the intracellular architecture of the complex. Various leukocyte types expressing different Kv1.3/KCNE4 configurations participate in the immune response. Our data provide evidence that the presence of these variable architectures, which affect both the structure of the complex and their pharmacology, should be considered when developing putative therapeutic approaches.
Collapse
Affiliation(s)
- Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, 28029 Madrid, Spain
| | | | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Sun B, Shen K, Zhao R, Li Y, Lin J. Clarithromycin attenuates airway epithelial-mesenchymal transition in ovalbumin-induced asthmatic mice through modulation of Kv1.3 channels and PI3K/Akt signaling. Int Immunopharmacol 2024; 139:112624. [PMID: 39002519 DOI: 10.1016/j.intimp.2024.112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Airway epithelial-mesenchymal transition (EMT) is the important pathological feature of airway remodeling in asthma. While macrolides are not commonly used to treat asthma, they have been shown to have protective effects on the airways, in which mechanisms are not yet fully understood. This study aims to investigate the impact of clarithromycin on airway EMT in asthma and its potential mechanism. The results revealed an increase in Kv1.3 expression in the airways of ovalbumin (OVA)-induced asthmatic mice, with symptoms and pathological changes being alleviated after treatment with the Kv1.3 inhibitor 5-(4-phenoxybutoxy)psoralen (PAP-1). Clarithromycin was found to attenuate airway epithelial-mesenchymal transition through the inhibition of Kv1.3 and PI3K/Akt signaling. Further experiments in vitro confirmed that PAP-1 could mitigate EMT by modulating the PI3K/Akt signaling in airway epithelial cells undergoing transformation into mesenchymal cells. These findings confirmed that clarithromycin might have a certain protective effect on asthma-related airway remodeling and represent a promising treatment strategy.
Collapse
Affiliation(s)
- Bingqing Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kunlu Shen
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruiheng Zhao
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yun Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Lin
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Ratano P, Cocozza G, Pinchera C, Busdraghi LM, Cantando I, Martinello K, Scioli M, Rosito M, Bezzi P, Fucile S, Wulff H, Limatola C, D’Alessandro G. Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3. Front Mol Neurosci 2024; 16:1333745. [PMID: 38292023 PMCID: PMC10824952 DOI: 10.3389/fnmol.2023.1333745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.
Collapse
Affiliation(s)
| | - Germana Cocozza
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | | | | | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Maria Rosito
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Health Sciences Drive, Davis, CA, United States
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur, Sapienza University, Rome, Italy
| | - Giuseppina D’Alessandro
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
9
|
Navarro-Pérez M, Capera J, Benavente-Garcia A, Cassinelli S, Colomer-Molera M, Felipe A. Kv1.3 in the spotlight for treating immune diseases. Expert Opin Ther Targets 2024; 28:67-82. [PMID: 38316438 DOI: 10.1080/14728222.2024.2315021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Pruenster M, Immler R, Roth J, Kuchler T, Bromberger T, Napoli M, Nussbaumer K, Rohwedder I, Wackerbarth LM, Piantoni C, Hennis K, Fink D, Kallabis S, Schroll T, Masgrau-Alsina S, Budke A, Liu W, Vestweber D, Wahl-Schott C, Roth J, Meissner F, Moser M, Vogl T, Hornung V, Broz P, Sperandio M. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat Immunol 2023; 24:2021-2031. [PMID: 37903858 PMCID: PMC10681899 DOI: 10.1038/s41590-023-01656-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
S100A8/S100A9 is a proinflammatory mediator released by myeloid cells during many acute and chronic inflammatory disorders. However, the precise mechanism of its release from the cytosolic compartment of neutrophils is unclear. Here, we show that E-selectin-induced rapid S100A8/S100A9 release during inflammation occurs in an NLRP3 inflammasome-dependent fashion. Mechanistically, E-selectin engagement triggers Bruton's tyrosine kinase-dependent tyrosine phosphorylation of NLRP3. Concomitant potassium efflux via the voltage-gated potassium channel KV1.3 mediates ASC oligomerization. This is followed by caspase 1 cleavage and downstream activation of pore-forming gasdermin D, enabling cytosolic release of S100A8/S100A9. Strikingly, E-selectin-mediated gasdermin D pore formation does not result in cell death but is a transient process involving activation of the ESCRT III membrane repair machinery. These data clarify molecular mechanisms of controlled S100A8/S100A9 release from neutrophils and identify the NLRP3/gasdermin D axis as a rapid and reversible activation system in neutrophils during inflammation.
Collapse
Affiliation(s)
- Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jonas Roth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tim Kuchler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Bromberger
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Matteo Napoli
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Katrin Nussbaumer
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lou Martha Wackerbarth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Chiara Piantoni
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Konstantin Hennis
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Diana Fink
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Kallabis
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Agnes Budke
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Wang Liu
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, Münster, Münster, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Felix Meissner
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
11
|
Gubič Š, Montalbano A, Sala C, Becchetti A, Hendrickx LA, Van Theemsche KM, Pinheiro-Junior EL, Altadonna GC, Peigneur S, Ilaš J, Labro AJ, Pardo LA, Tytgat J, Tomašič T, Arcangeli A, Peterlin Mašič L. Immunosuppressive effects of new thiophene-based K V1.3 inhibitors. Eur J Med Chem 2023; 259:115561. [PMID: 37454520 DOI: 10.1016/j.ejmech.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Voltage-gated potassium channel KV1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca2+ homeostasis. Here, we present the structure-activity relationship, KV1.3 inhibition, and immunosuppressive effects of new thiophene-based KV1.3 inhibitors with nanomolar potency on K+ current in T-lymphocytes and KV1.3 inhibition on Ltk- cells. The new KV1.3 inhibitor trans-18 inhibited KV1.3 -mediated current in phytohemagglutinin (PHA)-activated T-lymphocytes with an IC50 value of 26.1 nM and in mammalian Ltk- cells with an IC50 value of 230 nM. The KV1.3 inhibitor trans-18 also had nanomolar potency against KV1.3 in Xenopus laevis oocytes (IC50 = 136 nM). The novel thiophene-based KV1.3 inhibitors impaired intracellular Ca2+ signaling as well as T-cell activation, proliferation, and colony formation.
Collapse
Affiliation(s)
- Špela Gubič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Alberto Montalbano
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy
| | - Cesare Sala
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy
| | - Andrea Becchetti
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, I-20126, Milano, Italy
| | - Louise Antonia Hendrickx
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Kenny M Van Theemsche
- University of Antwerp, Department of Biomedical Sciences, Campus Drie Eiken, Universiteisplein 1, 2610, Wilrijk, Belgium; Ghent University, Department of Basic and Applied Medical Sciences, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ernesto Lopes Pinheiro-Junior
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | | | - Steve Peigneur
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Alain J Labro
- Ghent University, Department of Basic and Applied Medical Sciences, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Luis A Pardo
- Max-Planck Institute for Experimental Medicine, AG Oncophysiology, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Jan Tytgat
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Annarosa Arcangeli
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy.
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
13
|
Pan Y, Kagawa Y, Sun J, Lucas DSD, Takechi R, Mamo JCL, Wai DCC, Norton RS, Jin L, Nicolazzo JA. Peripheral Administration of the Kv1.3-Blocking Peptide HsTX1[R14A] Improves Cognitive Performance in Senescence Accelerated SAMP8 Mice. Neurotherapeutics 2023; 20:1198-1214. [PMID: 37226029 PMCID: PMC10457257 DOI: 10.1007/s13311-023-01387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
Increased expression of the voltage-gated potassium channel Kv1.3 in activated microglia, and the subsequent release of pro-inflammatory mediators, are closely associated with the progression of Alzheimer's disease (AD). Studies have shown that reducing neuroinflammation through the non-selective blockade of microglial Kv1.3 has the potential to improve cognitive function in mouse models of familial AD. We have previously demonstrated that a potent and highly-selective peptide blocker of Kv1.3, HsTX1[R14A], not only entered the brain parenchyma after peripheral administration in a lipopolysaccharide (LPS)-induced mouse model of inflammation, but also significantly reduced pro-inflammatory mediator release from activated microglia. In this study, we show that microglial expression of Kv1.3 is increased in senescence accelerated mice (SAMP8), an animal model of sporadic AD, and that subcutaneous dosing of HsTX1[R14A] (1 mg/kg) every other day for 8 weeks provided a robust improvement in cognitive deficits in SAMP8 mice. The effect of HsTX1[R14A] on the whole brain was assessed using transcriptomics, which revealed that the expression of genes associated with inflammation, neuron differentiation, synapse function, learning and memory were altered by HsTX1[R14A] treatment. Further study is required to investigate whether these changes are downstream effects of microglial Kv1.3 blockade or a result of alternative mechanisms, including any potential effect of Kv1.3 blockade on other brain cell types. Nonetheless, these results collectively demonstrate the cognitive benefits of Kv1.3 blockade with HsTX1[R14A] in a mouse model of sporadic AD, demonstrating its potential as a therapeutic candidate for this neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Deanna S Deveson Lucas
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ryusuke Takechi
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - John C L Mamo
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
14
|
Parrasia S, Rossa A, Roncaglia N, Mattarei A, Honisch C, Szabò I, Ruzza P, Biasutto L. DA7R: A 7-Letter Zip Code to Target PDAC. Pharmaceutics 2023; 15:pharmaceutics15051508. [PMID: 37242749 DOI: 10.3390/pharmaceutics15051508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and is among the most aggressive and still incurable cancers. Innovative and successful therapeutic strategies are extremely needed. Peptides represent a versatile and promising tool to achieve tumor targeting, thanks to their ability to recognize specific target proteins (over)expressed on the surface of cancer cells. A7R is one such peptide, binding neuropilin-1 (NRP-1) and VEGFR2. Since PDAC expresses these receptors, the aim of this study was to test if A7R-drug conjugates could represent a PDAC-targeting strategy. PAPTP, a promising mitochondria-targeted anticancer compound, was selected as the cargo for this proof-of-concept study. Derivatives were designed as prodrugs, using a bioreversible linker to connect PAPTP to the peptide. Both the retro-inverso (DA7R) and the head-to-tail cyclic (cA7R) protease-resistant analogs of A7R were tested, and a tetraethylene glycol chain was introduced to improve solubility. Uptake of a fluorescent DA7R conjugate, as well as of the PAPTP-DA7R derivative into PDAC cell lines was found to be related to the expression levels of NRP-1 and VEGFR2. Conjugation of DA7R to therapeutically active compounds or nanovehicles might allow PDAC-targeted drug delivery, improving the efficacy of the therapy and reducing off-target effects.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Nicola Roncaglia
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Claudia Honisch
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Paolo Ruzza
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Padua Unit, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
15
|
Wang Z, Sang M, Zhang Y, Chen S, Li S, Chen Y, Xu E, Zhou Q, Xu W, Zhao C, Wang D, Lu W, Cao P. BmKK2, a thermostable Kv1.3 blocker from Buthus martensii Karsch (BmK) scorpion, inhibits the activation of macrophages via Kv1.3-NF-κB- NLPR3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116624. [PMID: 37182676 DOI: 10.1016/j.jep.2023.116624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation plays pivotal role in the development of chronic diseases. Reducing chronic inflammation is an important strategy for preventing and managing many chronic diseases. In traditional Chinese medicine, the processed Buthus martensii Karsch (BmK) scorpion(also called "Quanxie") has been used to treat chronic inflammatory arthritis and spondylitis for hundreds of years suggests that "Quanxie" could potentially be utilized as a resource for identifying new anti-inflammatory compounds. However, the molecular basis and the underline mechanism for the anti-inflammatory effect of processed BmK scorpion are still unclear. AIM OF THE STUDY The study aims to determine the potential involvement of macrophage-expressed Kv1.3 in the anti-inflammatory effect of processed BmK scorpion venom, as well as to identify new Kv1.3 blockers derived from processed BmK scorpion. MATERIALS AND METHODS In this study, the in vivo and in vitro anti-inflammatory activities were determined using carrageenan-induced paw edema, LPS-induced sepsis mouse models and LPS-induced macrophage activation model respectively. The effect of processed BmK scorpion water extract, processed BmK venom and BmKK2 on different potassium channels were detected by whole-cell voltage-clamp recordings on transfected HEK293 cells or mouse BMDMs. The cytokines were detected using RT-PCR and competitive enzyme-linked immunosorbent assay. High performance liquid chromatography, SDS-PAGE and peptide Mass Spectrometry analysis were used to isolate and identify the BmKK2. SiRNA, western blotting and flow cytometry were used to analysis the anti-inflammatory mechanism of BmKK2. RESULTS Here we demonstrate that BmKK2, a thermostable toxin targeting Kv1.3 is the critical anti-inflammatory component in the processed BmK scorpion. BmKK2 inhibits inflammation by targeting and inhibiting the activity of macrophage Kv1.3, thereby inhibiting the activation of NF-kB-NLPR3 pathway and the subsequent release of inflammatory factors. CONCLUSIONS These findings provide new insights into the molecular basis of the anti-inflammatory effects of "Quanxie" and highlight the importance of targeting Kv1.3 expressed on macrophages as an anti-inflammatory approach.
Collapse
Affiliation(s)
- Zhiheng Wang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Ming Sang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Yuxin Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | | | - Song Li
- Tianjiang Phamarceutical Co., Ltd, China
| | - Yonggen Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Erjin Xu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Qian Zhou
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Wenhao Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chenglei Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Dawei Wang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Wuguang Lu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
16
|
Szabo I, Szewczyk A. Mitochondrial Ion Channels. Annu Rev Biophys 2023; 52:229-254. [PMID: 37159294 DOI: 10.1146/annurev-biophys-092622-094853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
17
|
Lee RD, Chen YJ, Singh L, Nguyen HM, Wulff H. Immunocytoprotection after reperfusion with Kv1.3 inhibitors has an extended treatment window for ischemic stroke. Front Pharmacol 2023; 14:1190476. [PMID: 37180699 PMCID: PMC10166874 DOI: 10.3389/fphar.2023.1190476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: Mechanical thrombectomy has improved treatment options and outcomes for acute ischemic stroke with large artery occlusion. However, as the time window of endovascular thrombectomy is extended there is an increasing need to develop immunocytoprotective therapies that can reduce inflammation in the penumbra and prevent reperfusion injury. We previously demonstrated, that by reducing neuroinflammation, KV1.3 inhibitors can improve outcomes not only in young male rodents but also in female and aged animals. To further explore the therapeutic potential of KV1.3 inhibitors for stroke therapy, we here directly compared a peptidic and a small molecule KV1.3 blocker and asked whether KV1.3 inhibition would still be beneficial when started at 72 hours after reperfusion. Methods: Transient middle cerebral artery occlusion (tMCAO, 90-min) was induced in male Wistar rats and neurological deficit assessed daily. On day-8 infarction was determined by T2-weighted MRI and inflammatory marker expression in the brain by quantitative PCR. Potential interactions with tissue plasminogen activator (tPA) were evaluated in-vitro with a chromogenic assay. Results: In a direct comparison with administration started at 2 hours after reperfusion, the small molecule PAP-1 significantly improved outcomes on day-8, while the peptide ShK-223 failed to reduce infarction and neurological deficits despite reducing inflammatory marker expression. PAP-1 still provided benefits when started 72 hours after reperfusion. PAP-1 does not reduce the proteolytic activity of tPA. Discussion: Our studies suggest that KV1.3 inhibition for immunocytoprotection after ischemic stroke has a wide therapeutic window for salvaging the inflammatory penumbra and requires brain-penetrant small molecules.
Collapse
Affiliation(s)
- Ruth D. Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yi-Je Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
- Animal Models Core, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hai M. Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
18
|
Zhang S, Liu Y, Javeed A, Jian C, Sun J, Wu S, Han B. Treatment of allergy: Overview of synthetic anti-allergy small molecules in medicinal chemistry. Eur J Med Chem 2023; 249:115151. [PMID: 36731273 DOI: 10.1016/j.ejmech.2023.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
The prevalence of allergic diseases has been continuously increasing over the past few decades, affecting approximately 20-30% of the global population. Allergic reactions to infection of respiratory tract, digestive tract, and skin system involve multiple different targets. The main difficulty of anti-allergy research is how to develop drugs with good curative effect and less side effects by adopting new multi-targets and mechanisms according to the clinical characteristics of different allergic populations and different allergens. This review focuses on information concerning potential therapeutic targets as well as the synthetic anti-allergy small molecules with respect to their medicinal chemistry. The structure-activity relationship and the mechanism of compound-target interaction were highlighted with perspective to histamine-1/4 receptor antagonists, leukotriene biosynthesis, Th2 cytokines inhibitors, and calcium channel blockers. We hope that the study of chemical scaffold modification and optimization for different lead compounds summarized in this review not only lays the foundation for improvement of success rate and efficiency of virtual screening of antiallergic drugs, but also can provide valuable reference for the drug design of related promising research such as allergy, inflammation, and cancer.
Collapse
Affiliation(s)
- Shanshan Zhang
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Ansar Javeed
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cuiqin Jian
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinlyu Sun
- Department of Allergy, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Bingnan Han
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
19
|
Zayas-Arrabal J, Alquiza A, Rodríguez-de-Yurre A, Echeazarra L, Fernández-López V, Gallego M, Casis O. Kv1.3 Channel Blockade Improves Inflammatory Profile, Reduces Cardiac Electrical Remodeling, and Prevents Arrhythmia in Type 2 Diabetic Rats. Cardiovasc Drugs Ther 2023; 37:63-73. [PMID: 34623540 PMCID: PMC9834174 DOI: 10.1007/s10557-021-07264-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE Kv1.3 channel regulates the activity of lymphocytes, macrophages, or adipose tissue and its blockade reduces inflammatory cytokine secretion and improves insulin sensitivity in animals with metabolic syndrome and in genetically obese mice. Thus, Kv1.3 blockade could be a strategy for the treatment of type 2 diabetes. Elevated circulating levels of TNFα and IL-1b mediate the higher susceptibility to cardiac arrhythmia in type 2 diabetic rats. We hypothesized that Kv1.3 channel blockade with the psoralen PAP1 could have immunomodulatory properties that prevent QTc prolongation and reduce the risk of arrhythmia in type 2 diabetic rats. METHODS Type 2 diabetes was induced to Sprague-Dawley rats by high-fat diet and streptozotocin injection. Diabetic animals were untreated, treated with metformin, or treated with PAP1 for 4 weeks. Plasma glucose, insulin, cholesterol, triglycerides, and cytokine levels were measured using commercial kits. ECG were recorded weekly, and an arrhythmia-inducing protocol was performed at the end of the experimental period. Action potentials were recorded in isolated ventricular cardiomyocytes. RESULTS In diabetic animals, PAP1 normalized glycaemia, insulin resistance, adiposity, and lipid profile. In addition, PAP1 prevented the diabetes-induced repolarization defects through reducing the secretion of the inflammatory cytokines IL-10, IL-12p70, GM-CSF, IFNγ, and TNFα. Moreover, compared to diabetic untreated and metformin-treated animals, those treated with PAP1 had the lowest risk of developing the life-threatening arrhythmia Torsade de Pointes under cardiac challenge. CONCLUSION Kv1.3 inhibition improves diabetes and diabetes-associated low-grade inflammation and cardiac electrical remodeling, resulting in more protection against cardiac arrhythmia compared to metformin.
Collapse
Affiliation(s)
- Julián Zayas-Arrabal
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Amaia Alquiza
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Ainhoa Rodríguez-de-Yurre
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Leyre Echeazarra
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Víctor Fernández-López
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Mónica Gallego
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Oscar Casis
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
20
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
21
|
Wai DCC, Naseem MU, Mocsár G, Babu Reddiar S, Pan Y, Csoti A, Hajdu P, Nowell C, Nicolazzo JA, Panyi G, Norton RS. Fluorescent Peptide Toxin for Selective Visualization of the Voltage-Gated Potassium Channel K V1.3. Bioconjug Chem 2022; 33:2197-2212. [DOI: 10.1021/acs.bioconjchem.2c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dorothy C. C. Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
- Damjanovich Cell Analysis Core Facility, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen, Debrecen4032, Hungary
| | - Cameron Nowell
- Imaging, FACS and Analysis Core, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria3052, Australia
| |
Collapse
|
22
|
Gao S, Zou X, Wang Z, Shu X, Cao X, Xia S, Shao P, Bao X, Yang H, Xu Y, Liu P. Bergapten attenuates microglia-mediated neuroinflammation and ischemic brain injury by targeting Kv1.3 and Carbonyl reductase 1. Eur J Pharmacol 2022; 933:175242. [PMID: 36058290 DOI: 10.1016/j.ejphar.2022.175242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Microglia-mediated neuroinflammation plays a vital role in the pathogenesis of ischemic stroke, which serves as a prime target for developing novel therapeutic agent. However, feasible and effective agents for controlling neuroinflammation are scarce. Bergapten were acknowledged to hold therapeutic potential in restricting inflammation in multiple diseases, including peripheral neuropathy, migraine headaches and osteoarthritis. Here, we aimed to investigate the impact of bergapten on microglia-mediated neuroinflammation and its therapeutic potential in ischemic stroke. Our study demonstrated that bergapten significantly reduced the expression of pro-inflammatory cytokines and the activation of NF-κB signaling pathway in LPS-stimulated primary microglia. Mechanistically, bergapten suppressed cellular potassium ion efflux by inhibiting Kv1.3 channel and inhibits the degradation of Carbonyl reductase 1 induced by LPS, which might contribute to the anti-inflammatory effect of bergapten. Furthermore, bergapten suppressed microglial activation and post-stroke neuroinflammation in an experimental stroke model, leading to reduced infarct size and improved functional recovery. Thus, our study identified that bergapten might be a potential therapeutic compound for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xinxin Zou
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zibu Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Pengfei Shao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China; Nanjing Neurology Medical Center, Nanjing, 210008, China.
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
23
|
Drinkall S, Lawrence CB, Ossola B, Russell S, Bender C, Brice NB, Dawson LA, Harte M, Brough D. The two pore potassium channel THIK-1 regulates NLRP3 inflammasome activation. Glia 2022; 70:1301-1316. [PMID: 35353387 PMCID: PMC9314991 DOI: 10.1002/glia.24174] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
The NLRP3 (NLR family, pyrin domain containing 3) inflammasome is a multi-protein complex responsible for the activation of caspase-1 and the subsequent cleavage and activation of the potent proinflammatory cytokines IL-1β and IL-18, and pyroptotic cell death. NLRP3 is implicated as a driver of inflammation in a range of disorders including neurodegenerative diseases, type 2 diabetes, and atherosclerosis. A commonly reported mechanism contributing to NLRP3 inflammasome activation is potassium ion (K+ ) efflux across the plasma membrane. Identification of K+ channels involved in NLRP3 activation remains incomplete. Here, we investigated the role of the K+ channel THIK-1 in NLRP3 activation. Both pharmacological inhibitors and cells from THIK-1 knockout (KO) mice were used to assess THIK-1 contribution to macrophage NLRP3 activation in vitro. Pharmacological inhibition of THIK-1 inhibited caspase-1 activation and IL-1β release from mouse bone-marrow-derived macrophages (BMDMs), mixed glia, and microglia in response to NLRP3 agonists. Similarly, BMDMs and microglia from THIK-1 KO mice had reduced NLRP3-dependent IL-1β release in response to P2X7 receptor activation with ATP. Overall, these data suggest that THIK-1 is a regulator of NLRP3 inflammasome activation in response to ATP and identify THIK-1 as a potential therapeutic target for inflammatory disease.
Collapse
Affiliation(s)
- Samuel Drinkall
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Catherine B. Lawrence
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | | | | | | | | | | | - Michael Harte
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
- The Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
- The Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
| |
Collapse
|
24
|
Design of New Potent and Selective Thiophene-Based K V1.3 Inhibitors and Their Potential for Anticancer Activity. Cancers (Basel) 2022; 14:cancers14112595. [PMID: 35681571 PMCID: PMC9179341 DOI: 10.3390/cancers14112595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In this article, we describe the discovery of a new class of potent and selective thiophene-based inhibitors of the voltage-gated potassium channel KV1.3 and their potential to induce apoptosis and inhibit proliferation. The KV1.3 channel has only recently emerged as a molecular target in cancer therapy. The most potent KV1.3 inhibitor 44 had an IC50 KV1.3 value of 470 nM (oocytes) and 950 nM (Ltk− cells) and appropriate selectivity for other KV channels. New KV1.3 inhibitors significantly inhibited proliferation of Panc-1 cells and KV1.3 inhibitor 4 induced significant apoptosis in tumor spheroids of Colo-357 cells. Abstract The voltage-gated potassium channel KV1.3 has been recognized as a tumor marker and represents a promising new target for the discovery of new anticancer drugs. We designed a novel structural class of KV1.3 inhibitors through structural optimization of benzamide-based hit compounds and structure-activity relationship studies. The potency and selectivity of the new KV1.3 inhibitors were investigated using whole-cell patch- and voltage-clamp experiments. 2D and 3D cell models were used to determine antiproliferative activity. Structural optimization resulted in the most potent and selective KV1.3 inhibitor 44 in the series with an IC50 value of 470 nM in oocytes and 950 nM in Ltk− cells. KV1.3 inhibitor 4 induced significant apoptosis in Colo-357 spheroids, while 14, 37, 43, and 44 significantly inhibited Panc-1 proliferation.
Collapse
|
25
|
Immler R, Nadolni W, Bertsch A, Morikis V, Rohwedder I, Masgrau-Alsina S, Schroll T, Yevtushenko A, Soehnlein O, Moser M, Gudermann T, Barnea ER, Rehberg M, Simon SI, Zierler S, Pruenster M, Sperandio M. The voltage-gated potassium channel KV1.3 regulates neutrophil recruitment during inflammation. Cardiovasc Res 2022; 118:1289-1302. [PMID: 33881519 PMCID: PMC8953450 DOI: 10.1093/cvr/cvab133] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Neutrophil trafficking within the vasculature strongly relies on intracellular calcium signalling. Sustained Ca2+ influx into the cell requires a compensatory efflux of potassium to maintain membrane potential. Here, we aimed to investigate whether the voltage-gated potassium channel KV1.3 regulates neutrophil function during the acute inflammatory process by affecting sustained Ca2+ signalling. METHODS AND RESULTS Using in vitro assays and electrophysiological techniques, we show that KV1.3 is functionally expressed in human neutrophils regulating sustained store-operated Ca2+ entry through membrane potential stabilizing K+ efflux. Inhibition of KV1.3 on neutrophils by the specific inhibitor 5-(4-Phenoxybutoxy)psoralen (PAP-1) impaired intracellular Ca2+ signalling, thereby preventing cellular spreading, adhesion strengthening, and appropriate crawling under flow conditions in vitro. Using intravital microscopy, we show that pharmacological blockade or genetic deletion of KV1.3 in mice decreased neutrophil adhesion in a blood flow dependent fashion in inflamed cremaster muscle venules. Furthermore, we identified KV1.3 as a critical component for neutrophil extravasation into the inflamed peritoneal cavity. Finally, we also revealed impaired phagocytosis of Escherichia coli particles by neutrophils in the absence of KV1.3. CONCLUSION We show that the voltage-gated potassium channel KV1.3 is critical for Ca2+ signalling and neutrophil trafficking during acute inflammatory processes. Our findings do not only provide evidence for a role of KV1.3 for sustained calcium signalling in neutrophils affecting key functions of these cells, they also open up new therapeutic approaches to treat inflammatory disorders characterized by overwhelming neutrophil infiltration.
Collapse
Affiliation(s)
- Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Wiebke Nadolni
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Annika Bertsch
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Vasilios Morikis
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Anna Yevtushenko
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Pettenkofer Straße 8a, 80336 Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Solnavägen 1, 17177 Stockholm, Sweden
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Enmarch-Straße 56, 48149 Münster, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Einsteinstraße 25, 81675 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Eytan R Barnea
- BioIncept LLC, New York, 140 East 40th Street #11E, NY 10016, USA
| | - Markus Rehberg
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Scott I Simon
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Severin F, Urbani A, Varanita T, Bachmann M, Azzolini M, Martini V, Pizzi M, Tos APD, Frezzato F, Mattarei A, Ghia P, Bertilaccio MTS, Gulbins E, Paradisi C, Zoratti M, Semenzato GC, Leanza L, Trentin L, Szabò I. Pharmacological modulation of Kv1.3 potassium channel selectively triggers pathological B lymphocyte apoptosis in vivo in a genetic CLL model. J Exp Clin Cancer Res 2022; 41:64. [PMID: 35172855 PMCID: PMC8848658 DOI: 10.1186/s13046-022-02249-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ion channels are emerging as promising oncological targets. The potassium channels Kv1.3 and IKCa are highly expressed in the plasma membrane and mitochondria of human chronic lymphocytic leukemia (CLL) cells, compared to healthy lymphocytes. In vitro, inhibition of mitoKv1.3 by PAPTP was shown to kill ex vivo primary human CLL cells, while targeting IKCa with TRAM-34 decreased CLL cell proliferation. METHODS Here we evaluated the effect of the above drugs in CLL cells from ibrutinib-resistant patients and in combination with Venetoclax, two drugs used in the clinical practice. The effects of the drugs were tested also in the Eμ-TCL1 genetic CLL murine model, characterized by a lympho-proliferative disease reminiscent of aggressive human CLL. Eμ-TCL1 mice showing overt disease state were treated with intraperitoneal injections of non-toxic 5 nmol/g PAPTP or 10 nmol/g TRAM-34 once a day and the number and percentage of pathological B cells (CD19+CD5+) in different, pathologically relevant body districts were determined. RESULTS We show that Kv1.3 expression correlates with sensitivity of the human and mouse neoplastic cells to PAPTP. Primary CLL cells from ibrutinib-resistant patients could be killed with PAPTP and this drug enhanced the effect of Venetoclax, by acting on mitoKv1.3 of the inner mitochondrial membrane and triggering rapid mitochondrial changes and cytochrome c release. In vivo, after 2 week- therapy of Eμ-TCL1 mice harboring distinct CLL clones, leukemia burden was reduced by more than 85%: the number and percentage of CLL B cells fall in the spleen and peritoneal cavity and in the peripheral blood, without signs of toxicity. Notably, CLL infiltration into liver and spleen and splenomegaly were also drastically reduced upon PAPTP treatment. In contrast, TRAM-34 did not exert any beneficial effect when administered in vivo to Eμ-TCL1 mice at non-toxic concentration. CONCLUSION Altogether, by comparing vehicle versus compound effect in different Eμ-TCL1 animals bearing unique clones similarly to CLL patients, we conclude that PAPTP significantly reduced leukemia burden in CLL-relevant districts, even in animals with advanced stage of the disease. Our results thus identify PAPTP as a very promising drug for CLL treatment, even for the chemoresistant forms of the disease.
Collapse
Affiliation(s)
- Filippo Severin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Andrea Urbani
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Department of Biology, University of Padua, Padua, Italy
| | | | | | - Michele Azzolini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Veronica Martini
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Marco Pizzi
- Department of Medicine, Pathology Branch, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine, Pathology Branch, University of Padua School of Medicine, Padua, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCC Ospedale San Raffaele, Milan, Italy
| | | | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Mario Zoratti
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,CNR Institute of Neurosciences, University of Padua, Padua, Italy
| | - Gianpietro Carlo Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padua School of Medicine, Padua, Italy and Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.
| | - Ildiko Szabò
- Department of Biology, University of Padua, Padua, Italy. .,CNR Institute of Neurosciences, University of Padua, Padua, Italy.
| |
Collapse
|
27
|
Zhang X, Lin X, Luo H, Zhi Y, Yi X, Wu X, Duan W, Cao Y, Pang J, Liu S, Zhou P. Pharmacological inhibition of K v1.3 channel impairs TLR3/4 activation and type I IFN response and confers protection against Listeria monocytogenes infection. Pharmacol Res 2022; 177:106112. [PMID: 35122955 DOI: 10.1016/j.phrs.2022.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Emerging data have demonstrated the critical roles of potassium efflux in the innate immune system. However, the role of potassium efflux in TLR3/4 activation and type I interferon (IFN) responses are not well elucidated. In the present study, we found potassium efflux is essential for TLR3/4 signaling, which mediates the expression of IFN and its inducible gene Cxcl10 and proinflammatory cytokine gene TNF-α. Furthermore, pharmacological inhibition of Kv1.3 channel (PAP-1), but not Kir2.1, KCa3.1 or TWIK2, attenuated TLR3/4 receptor activation in macrophages. Mechanistically, PAP-1 suppressed LPS-induced inflammatory function through marked suppressing the activation of JNK mitogen-activated protein kinase (MAPK) and p65 subunit of nuclear factor-kB (NF-kB). Notably, PAP-1 effectively protected mice against Listeria monocytogenes induced infection. Our findings reveal that potassium efflux mediated by the Kv1.3 channel is essential for TLR3/4 activation and suggest that pharmacological inhibition of Kv1.3 may help to treat type I IFN related autoimmune diseases and bacterial infections.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Xiulin Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Hui Luo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Yuanxing Zhi
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Xin Yi
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Wendi Duan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou (310024), China
| | - Ying Cao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Jianxin Pang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China
| | - Pingzheng Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou (510515), China.
| |
Collapse
|
28
|
Borrego J, Feher A, Jost N, Panyi G, Varga Z, Papp F. Peptide Inhibitors of Kv1.5: An Option for the Treatment of Atrial Fibrillation. Pharmaceuticals (Basel) 2021; 14:1303. [PMID: 34959701 PMCID: PMC8704205 DOI: 10.3390/ph14121303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The human voltage gated potassium channel Kv1.5 that conducts the IKur current is a key determinant of the atrial action potential. Its mutations have been linked to hereditary forms of atrial fibrillation (AF), and the channel is an attractive target for the management of AF. The development of IKur blockers to treat AF resulted in small molecule Kv1.5 inhibitors. The selectivity of the blocker for the target channel plays an important role in the potential therapeutic application of the drug candidate: the higher the selectivity, the lower the risk of side effects. In this respect, small molecule inhibitors of Kv1.5 are compromised due to their limited selectivity. A wide range of peptide toxins from venomous animals are targeting ion channels, including mammalian channels. These peptides usually have a much larger interacting surface with the ion channel compared to small molecule inhibitors and thus, generally confer higher selectivity to the peptide blockers. We found two peptides in the literature, which inhibited IKur: Ts6 and Osu1. Their affinity and selectivity for Kv1.5 can be improved by rational drug design in which their amino acid sequences could be modified in a targeted way guided by in silico docking experiments.
Collapse
Affiliation(s)
- Jesús Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary;
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; (J.B.); (A.F.); (G.P.); (Z.V.)
| |
Collapse
|
29
|
Nicolazzo JA, Pan Y, Di Stefano I, Choy KHC, Reddiar SB, Low YL, Wai DCC, Norton RS, Jin L. Blockade of Microglial Kv1.3 Potassium Channels by the Peptide HsTX1[R14A] Attenuates Lipopolysaccharide-mediated Neuroinflammation. J Pharm Sci 2021; 111:638-647. [PMID: 34767826 DOI: 10.1016/j.xphs.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
The expression of voltage-gated potassium Kv1.3 channels is increased in activated microglia, with non-selective blockade reported to attenuate microglial-mediated neuroinflammation. In this study, we evaluated the impact of a potent and selective peptidic blocker of Kv1.3 channels, HsTX1[R14A], on microglial-mediated neuroinflammation in vitro and in vivo. Treatment with both 0.1 and 1 µg/mL lipopolysaccharide (LPS) significantly (p < 0.05) increased Kv1.3 abundance on the surface of BV-2 microglia in association with increased levels of mRNA for tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The increased transcription of TNF-α and IL-6 was significantly attenuated (by 24.9 and 20.2%, respectively) by HsTX1[R14A] (100 nM). The concomitant increase in TNF-α and IL-6 release from BV-2 microglia was significantly attenuated by HsTX1[R14A] by 10.7 and 12.6%, respectively. In LPS-treated primary mouse microglia, the levels of TNF-α and nitric oxide were also attenuated by HsTX1[R14A] (26.1 and 20.4%, respectively). In an LPS-induced mouse model of neuroinflammation, both an immediate and delayed subcutaneous dose of HsTX1[R14A] (2 mg/kg) significantly reduced plasma and brain levels of the pro-inflammatory mediators TNF-α, IL-1β and IL-6, with no impact on the anti-inflammatory IL-10. These results demonstrate that HsTX1[R14A] is a promising therapeutic candidate for the treatment of diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ilenia Di Stefano
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kwok H C Choy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yi Ling Low
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
30
|
Chen Y, Cui Y, Singh L, Wulff H. The potassium channel Kv1.3 as a therapeutic target for immunocytoprotection after reperfusion. Ann Clin Transl Neurol 2021; 8:2070-2082. [PMID: 34617690 PMCID: PMC8528456 DOI: 10.1002/acn3.51456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The voltage-gated potassium channel Kv1.3, which is expressed on activated, disease-associated microglia and memory T cells, constitutes an attractive target for immunocytoprotection after endovascular thrombectomy (EVT). Using young male mice and rats we previously demonstrated that the Kv1.3 blocker PAP-1 when started 12 h after reperfusion dose-dependently reduces infarction and improves neurological deficit on day 8. However, these proof-of-concept findings are of limited translational value because the majority of strokes occur in patients over 65 and, when considering overall lifetime risk, in females. Here, we therefore tested whether Kv1.3 deletion or delayed pharmacological therapy would be beneficial in females and aged animals. METHODS Transient middle cerebral artery occlusion (tMCAO, 60 min) was induced in 16-week-old and 80-week-old male and female wild-type C57BL/6J and Kv1.3-/- mice. Stroke outcomes were assessed daily with the 14-score tactile and proprioceptive limp placing test and on day 8 before sacrifice by T2-weighted MRI. Young and old female mice were treated twice daily with 40 mg/kg PAP-1 starting 12 h after reperfusion. Microglia/macrophage activation and T-cell infiltration were evaluated in whole slide scans. RESULTS Kv1.3 deletion provided no significant benefit in young females but improved outcomes in young males, old males, and old females compared with wild-type controls of the same sex. Delayed PAP-1 treatment improved outcomes in both young and old females. In old females, Kv1.3 deletion and PAP-1 treatment significantly reduced Iba-1 and CD3 staining intensity in the ipsilateral hemisphere. INTERPRETATION Our preclinical studies using aged and female mice further validate Kv1.3 inhibitors as potential adjunctive treatments for reperfusion therapy in stroke by providing both genetic and pharmacological verification.
Collapse
Affiliation(s)
- Yi‐Je Chen
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
- Animal Models CoreDepartment of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Yanjun Cui
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Latika Singh
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Heike Wulff
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| |
Collapse
|
31
|
Gubič Š, Hendrickx LA, Toplak Ž, Sterle M, Peigneur S, Tomašič T, Pardo LA, Tytgat J, Zega A, Mašič LP. Discovery of K V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med Res Rev 2021; 41:2423-2473. [PMID: 33932253 PMCID: PMC8252768 DOI: 10.1002/med.21800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The KV 1.3 voltage-gated potassium ion channel is involved in many physiological processes both at the plasma membrane and in the mitochondria, chiefly in the immune and nervous systems. Therapeutic targeting KV 1.3 with specific peptides and small molecule inhibitors shows great potential for treating cancers and autoimmune diseases, such as multiple sclerosis, type I diabetes mellitus, psoriasis, contact dermatitis, rheumatoid arthritis, and myasthenia gravis. However, no KV 1.3-targeted compounds have been approved for therapeutic use to date. This review focuses on the presentation of approaches for discovering new KV 1.3 peptide and small-molecule inhibitors, and strategies to improve the selectivity of active compounds toward KV 1.3. Selectivity of dalatazide (ShK-186), a synthetic derivate of the sea anemone toxin ShK, was achieved by chemical modification and has successfully reached clinical trials as a potential therapeutic for treating autoimmune diseases. Other peptides and small-molecule inhibitors are critically evaluated for their lead-like characteristics and potential for progression into clinical development. Some small-molecule inhibitors with well-defined structure-activity relationships have been optimized for selective delivery to mitochondria, and these offer therapeutic potential for the treatment of cancers. This overview of KV 1.3 inhibitors and methodologies is designed to provide a good starting point for drug discovery to identify novel effective KV 1.3 modulators against this target in the future.
Collapse
Affiliation(s)
- Špela Gubič
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Louise A. Hendrickx
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Žan Toplak
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Maša Sterle
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Steve Peigneur
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | | - Luis A. Pardo
- AG OncophysiologyMax‐Planck Institute for Experimental MedicineGöttingenGermany
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Anamarija Zega
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
32
|
Liu H, Yang X, Yang J, Yuan Y, Wang Y, Zhang R, Xiong H, Xu Y. IL-17 Inhibits Oligodendrocyte Progenitor Cell Proliferation and Differentiation by Increasing K + Channel Kv1.3. Front Cell Neurosci 2021; 15:679413. [PMID: 34239419 PMCID: PMC8258110 DOI: 10.3389/fncel.2021.679413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. IL-17 level is significantly increased in inflammatory conditions of the CNS, including but not limited to post-stroke and multiple sclerosis. IL-17 has been detected direct toxicity on oligodendrocyte (Ol) lineage cells and inhibition on oligodendrocyte progenitor cell (OPC) differentiation, and thus promotes myelin damage. The cellular mechanism of IL-17 in CNS inflammatory diseases remains obscure. Voltage-gated K+ (Kv) channel 1.3 is the predominant Kv channel in Ol and potentially involved in Ol function and cell cycle regulation. Kv1.3 of T cells involves in immunomodulation of inflammatory progression, but the role of Ol Kv1.3 in inflammation-related pathogenesis has not been fully investigated. We hypothesized that IL-17 induces myelin injury through Kv1.3 activation. To test the hypothesis, we studied the involvement of OPC/Ol Kv1.3 in IL-17-induced Ol/myelin injury in vitro and in vivo. Kv1.3 currents and channel expression gradually decreased during the OPC development. Application of IL-17 to OPC culture increased Kv1.3 expression, leading to a decrease of AKT activation, inhibition of proliferation and myelin basic protein reduction, which were prevented by a specific Kv1.3 blocker 5-(4-phenoxybutoxy) psoralen. IL-17-caused myelin injury was validated in LPC-induced demyelination mouse model, particularly in corpus callosum, which was also mitigated by aforementioned Kv1.3 antagonist. IL-17 altered Kv1.3 expression and resultant inhibitory effects on OPC proliferation and differentiation may by interrupting AKT phosphorylating activation. Taken together, our results suggested that IL-17 impairs remyelination and promotes myelin damage by Kv1.3-mediated Ol/myelin injury. Thus, blockade of Kv1.3 as a potential therapeutic strategy for inflammatory CNS disease may partially attribute to the direct protection on OPC proliferation and differentiation other than immunomodulation.
Collapse
Affiliation(s)
- Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueke Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Li M, Yu H. Identification of WP1066, an inhibitor of JAK2 and STAT3, as a K V 1.3 potassium channel blocker. Br J Pharmacol 2021; 178:2617-2631. [PMID: 33689167 DOI: 10.1111/bph.15441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE KV 1.3 potassium channels play a predominant role in regulating calcium signalling that is essential for the activation and proliferation of effector memory T (TEM ) cells. This ion channel has been recognized as a promising therapeutic target against various autoimmune diseases. EXPERIMENTAL APPROACH In a high-throughput screening programme, WP1066 was identified as a KV 1.3 channel inhibitor. Using molecular biology and electrophysiological methods, the mechanism(s) underlying WP1066 blockade of Kv1.3 channels was investigated. Using TEM cell proliferation assay and mouse delayed-type hypersensitivity (DTH) model, the effects of WP1066 were examined. KEY RESULTS WP1066 blocked KV 1.3 channels in a dose-dependent manner with an IC50 of 3.2 μM and induced a hyperpolarizing shift of the steady-state inactivation curve. This blockade was use-dependent, as WP1066 interacted preferentially with channels in their open state, rather than the closed state or inactivated state. When the residues located in the S6 domain scaffolding the inner vestibule, were sequentially mutated, the potency of WP1066 was significantly impaired, especially by mutations A413C and I420C, indicating a higher affinity of interacting sites for WP1066. Moreover, WP1066 effectively suppressed mouse TEM cell proliferation in vitro and mouse DTH reaction in vivo. CONCLUSIONS AND IMPLICATIONS The results presented here have identified WP1066 as a KV 1.3 channel blocker with an open-state-dependent property, providing fundamental evidence for the application of WP1066 in further immunomodulatory studies targeting KV 1.3 channels.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Therapeutic Antibodies Targeting Potassium Ion Channels. Handb Exp Pharmacol 2021; 267:507-545. [PMID: 33963460 DOI: 10.1007/164_2021_464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Monoclonal antibodies combine specificity and high affinity binding with excellent pharmacokinetic properties and are rapidly being developed for a wide range of drug targets including clinically important potassium ion channels. Nonetheless, while therapeutic antibodies come with great promise, K+ channels represent particularly difficult targets for biologics development for a variety of reasons that include their dynamic structures and relatively small extracellular loops, their high degree of sequence conservation (leading to immune tolerance), and their generally low-level expression in vivo. The process is made all the more difficult when large numbers of antibody candidates must be screened for a given target, or when lead candidates fail to cross-react with orthologous channels in animal disease models due to their highly selective binding properties. While the number of antibodies targeting potassium channels in preclinical or clinical development is still modest, significant advances in the areas of protein expression and antibody screening are converging to open the field to an avalanche of new drugs. Here, the opportunities and constraints associated with the discovery of antibodies against K+ channels are discussed, with an emphasis on novel technologies that are opening the field to exciting new possibilities for biologics development.
Collapse
|
35
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
36
|
Bischof H, Burgstaller S, Springer A, Matt L, Rauter T, Bachkönig OA, Schmidt T, Groschner K, Schindl R, Madl T, Plesnila N, Lukowski R, Graier WF, Malli R. Potassium ions promote hexokinase-II dependent glycolysis. iScience 2021; 24:102346. [PMID: 33870140 PMCID: PMC8047173 DOI: 10.1016/j.isci.2021.102346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
High expression levels of mitochondria-associated hexokinase-II (HKII) represent a hallmark of metabolically highly active cells such as fast proliferating cancer cells. Typically, the enzyme provides a crucial metabolic switch towards aerobic glycolysis. By imaging metabolic activities on the single-cell level with genetically encoded fluorescent biosensors, we here demonstrate that HKII activity requires intracellular K+. The K+ dependency of glycolysis in cells expressing HKII was confirmed in cell populations using extracellular flux analysis and nuclear magnetic resonance-based metabolomics. Reductions of intracellular K+ by gramicidin acutely disrupted HKII-dependent glycolysis and triggered energy stress pathways, while K+ re-addition promptly restored glycolysis-dependent adenosine-5'-triphosphate generation. Moreover, expression and activation of KV1.3, a voltage-gated K+ channel, lowered cellular K+ content and the glycolytic activity of HEK293 cells. Our findings unveil K+ as an essential cofactor of HKII and provide a mechanistic link between activities of distinct K+ channels and cell metabolism.
Collapse
Affiliation(s)
- Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Anna Springer
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Thomas Rauter
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Olaf A. Bachkönig
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Klaus Groschner
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research, University of Munich Medical Center, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
37
|
Unterweger AL, Jensen MØ, Giordanetto F, Jogini V, Rüschher A, Seuß M, Winkelmann P, Koletzko L, Shaw DE, Siebeck M, Gropp R, Beigel F, Aszodi A. Suppressing Kv1.3 Ion Channel Activity with a Novel Small Molecule Inhibitor Ameliorates Inflammation in a Humanised Mouse Model of Ulcerative Colitis. J Crohns Colitis 2021; 15:1943-1958. [PMID: 33891001 PMCID: PMC8575044 DOI: 10.1093/ecco-jcc/jjab078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS The potassium channel Kv1.3 is a potentially attractive therapeutic target in T cell-mediated inflammatory diseases, as the activity of antigen-activated T cells is selectively impeded by Kv1.3 inhibition. In this study, we examined Kv1.3 as a potential therapeutic intervention point for ulcerative colitis [UC], and studied the efficacy of DES1, a small-molecule inhibitor of Kv1.3, in vitro and in vivo. METHODS Kv1.3 expression on T cells in peripheral blood mononuclear cells [PBMCs] isolated from donors with and without UC was examined by flow cytometry. In biopsies from UC patients, Kv1.3-expressing CD4+ T cells were detected by flow cytometry and immunohistochemistry. In vitro, we determined the ability of DES1 to inhibit anti-CD3-driven activation of T cells. In vivo, the efficacy of DES1 was determined in a humanised mouse model of UC and compared with infliximab and tofacitinib in head-to-head studies. RESULTS Kv1.3 expression was elevated in PBMCs from UC patients and correlated with the prevalence of TH1 and TH2 T cells. Kv1.3 expression was also detected on T cells from biopsies of UC patients. In vitro, DES1 suppressed anti-CD3-driven activation of T cells in a concentration-dependent manner. In vivo, DES1 significantly ameliorated inflammation in the UC model and most effectively so when PBMCs from donors with higher levels of activated T cells were selected for reconstitution. The efficacy of DES1 was comparable to that of either infliximab or tofacitinib. CONCLUSION Inhibition of Kv1.3 [by DES1, for instance] appears to be a potential therapeutic intervention strategy for UC patients.
Collapse
Affiliation(s)
- Anna-Lena Unterweger
- Department of General, Visceral und Transplantation Surgery, University Hospital, LMU, Munich, Germany
| | | | | | | | - Alena Rüschher
- Department of General, Visceral und Transplantation Surgery, University Hospital, LMU, Munich, Germany
| | - Marietta Seuß
- Department of General, Visceral und Transplantation Surgery, University Hospital, LMU, Munich, Germany
| | - Paula Winkelmann
- Department of General, Visceral und Transplantation Surgery, University Hospital, LMU, Munich, Germany
| | - Leandra Koletzko
- Department of Medicine II, University Hospital, LMUMunich, Germany
| | - David E Shaw
- D. E. Shaw Research, New York, NY, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matthias Siebeck
- Department of General, Visceral und Transplantation Surgery, University Hospital, LMU, Munich, Germany
| | - Roswitha Gropp
- Department of General, Visceral und Transplantation Surgery, University Hospital, LMU, Munich, Germany,Corresponding author: Roswitha Gropp, Department of General, Visceral and Transplantation Surgery, Hospital of the Ludwig-Maximilian University Munich, Nussbaumstr. 20, 80336 Munich, Germany.
| | - Florian Beigel
- Department of Medicine II, University Hospital, LMUMunich, Germany
| | - Attila Aszodi
- Department of General, Trauma and Reconstructive Surgery, University Hospital, LMU Munich, Germany’
| |
Collapse
|
38
|
Reddiar SB, Jin L, Wai DCC, Csoti A, Panyi G, Norton RS, Nicolazzo JA. Lipopolysaccharide influences the plasma and brain pharmacokinetics of subcutaneously-administered HsTX1[R14A], a K V1.3-blocking peptide. Toxicon 2021; 195:29-36. [PMID: 33689790 DOI: 10.1016/j.toxicon.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/01/2022]
Abstract
KV1.3 is a voltage-gated potassium channel that is upregulated in neuroinflammatory conditions, such as Alzheimer's disease and Parkinson's disease. HsTX1[R14A] is a potent and selective peptide blocker of KV1.3 with the potential to block microglial KV1.3, but its brain uptake is expected to be limited owing to the restrictive nature of the blood-brain barrier. To assess its peripheral and brain exposure, a LC-MS/MS assay was developed to quantify HsTX1[R14A] concentrations in mouse plasma and brain homogenate that was reliable and reproducible in the range of 6.7-66.7 nM (r2 = 0.9765) and 15-150 pmol/g (r2 = 0.9984), respectively. To assess if neuroinflammation affected HsTX1[R14A] disposition, C57BL/6 mice were administered HsTX1[R14A] subcutaneously (2 mg/kg) 24 h after an intraperitoneal dose of Escherichia coli lipopolysaccharide (LPS), which is commonly used to induce neuroinflammation; brain and plasma concentrations of HsTX1[R14A] were then quantified over 120 min. LPS treatment significantly retarded the decline in HsTX1[R14A] plasma concentrations, presumably as a result of reducing renal clearance, and led to substantial brain uptake of HsTX1[R14A], presumably through disruption of brain inter-endothelial tight junctions. This study suggests that HsTX1[R14A] may reach microglia in sufficient concentrations to block KV1.3 in neuroinflammatory conditions, and therefore has the potential to reduce neurodegenerative diseases.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
39
|
Parrasia S, Rossa A, Varanita T, Checchetto V, De Lorenzi R, Zoratti M, Paradisi C, Ruzza P, Mattarei A, Szabò I, Biasutto L. An Angiopep2-PAPTP Construct Overcomes the Blood-Brain Barrier. New Perspectives against Brain Tumors. Pharmaceuticals (Basel) 2021; 14:ph14020129. [PMID: 33562146 PMCID: PMC7914648 DOI: 10.3390/ph14020129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
A developing family of chemotherapeutics—derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)—target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48–61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48–61 and Angiopep-2 allowed the delivery of 0.3–0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
| | - Tatiana Varanita
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Riccardo De Lorenzi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
- CNR Institute of Biomolecular Chemistry, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
| | - Paolo Ruzza
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (A.R.); (R.D.L.); (C.P.); (P.R.)
- CNR Institute of Biomolecular Chemistry, Via F. Marzolo 1, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (T.V.); (V.C.); (I.S.)
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (S.P.); (M.Z.)
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
40
|
Wang H, Qin Z, Yan A. Classification models and SAR analysis on CysLT1 receptor antagonists using machine learning algorithms. Mol Divers 2021; 25:1597-1616. [PMID: 33534023 DOI: 10.1007/s11030-020-10165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
Cysteinyl leukotrienes 1 (CysLT1) receptor is a promising drug target for rhinitis or other allergic diseases. In our study, we built classification models to predict bioactivities of CysLT1 receptor antagonists. We built a dataset with 503 CysLT1 receptor antagonists which were divided into two groups: highly active molecules (IC50 < 1000 nM) and weakly active molecules (IC50 ≥ 1000 nM). The molecules were characterized by several descriptors including CORINA descriptors, MACCS fingerprints, Morgan fingerprint and molecular SMILES. For CORINA descriptors and two types of fingerprints, we used the random forests (RF) and deep neural networks (DNN) to build models. For molecular SMILES, we used recurrent neural networks (RNN) with the self-attention to build models. The accuracies of test sets for all models reached 85%, and the accuracy of the best model (Model 2C) was 93%. In addition, we made structure-activity relationship (SAR) analyses on CysLT1 receptor antagonists, which were based on the output from the random forest models and RNN model. It was found that highly active antagonists usually contained the common substructures such as tetrazoles, indoles and quinolines. These substructures may improve the bioactivity of the CysLT1 receptor antagonists.
Collapse
Affiliation(s)
- Hongzhao Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China
| | - Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
41
|
Sarkar S, Nguyen HM, Malovic E, Luo J, Langley M, Palanisamy BN, Singh N, Manne S, Neal M, Gabrielle M, Abdalla A, Anantharam P, Rokad D, Panicker N, Singh V, Ay M, Charli A, Harischandra D, Jin LW, Jin H, Rangaraju S, Anantharam V, Wulff H, Kanthasamy AG. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. J Clin Invest 2021; 130:4195-4212. [PMID: 32597830 DOI: 10.1172/jci136174] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Characterization of the key cellular targets contributing to sustained microglial activation in neurodegenerative diseases, including Parkinson's disease (PD), and optimal modulation of these targets can provide potential treatments to halt disease progression. Here, we demonstrated that microglial Kv1.3, a voltage-gated potassium channel, was transcriptionally upregulated in response to aggregated α-synuclein (αSynAgg) stimulation in primary microglial cultures and animal models of PD, as well as in postmortem human PD brains. Patch-clamp electrophysiological studies confirmed that the observed Kv1.3 upregulation translated to increased Kv1.3 channel activity. The kinase Fyn, a risk factor for PD, modulated transcriptional upregulation and posttranslational modification of microglial Kv1.3. Multiple state-of-the-art analyses, including Duolink proximity ligation assay imaging, revealed that Fyn directly bound to Kv1.3 and posttranslationally modified its channel activity. Furthermore, we demonstrated the functional relevance of Kv1.3 in augmenting the neuroinflammatory response by using Kv1.3-KO primary microglia and the Kv1.3-specific small-molecule inhibitor PAP-1, thus highlighting the importance of Kv1.3 in neuroinflammation. Administration of PAP-1 significantly inhibited neurodegeneration and neuroinflammation in multiple animal models of PD. Collectively, our results imply that Fyn-dependent regulation of Kv1.3 channels plays an obligatory role in accentuating the neuroinflammatory response in PD and identify Kv1.3 as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Hai M Nguyen
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Jie Luo
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Monica Langley
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Neeraj Singh
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Sireesha Manne
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Matthew Neal
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Michelle Gabrielle
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Ahmed Abdalla
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Poojya Anantharam
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Medicine Building, ISU, Ames, Iowa, USA
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Nikhil Panicker
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Muhammet Ay
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Adhithiya Charli
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Dilshan Harischandra
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Lee-Way Jin
- M.I.N.D. Institute, Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, UCD, Davis, California, USA
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| |
Collapse
|
42
|
Ragonese F, Monarca L, De Luca A, Mancinelli L, Mariani M, Corbucci C, Gerli S, Iannitti RG, Leonardi L, Fioretti B. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil Steril 2021; 115:1063-1073. [PMID: 33487442 DOI: 10.1016/j.fertnstert.2020.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To study the biological effects of resveratrol on the growth, electrophysiology, and mitochondrial function of human granulosa cells (h-GCs). DESIGN Preclinical study. SETTING Electrophysiology laboratory and in vitro fertilization unit. PATIENT(S) This study included h-GCs from seven infertile women undergoing assisted reproductive techniques. INTERVENTION(S) Human ovarian Granulosa Cell Tumor (GCT) cell line COV434 and h-GCs obtained after oocyte retrieval were cultured in the absence or presence of resveratrol. MAIN OUTCOME MEASURE(S) Granulosa cells were evaluated for cell viability and mitochondrial activity. Electrophysiological recordings and evaluation of potassium current (IKur) and Ca2+ concentration were also performed. RESULT(S) Resveratrol induced mitochondrial activity in a bell-shaped, dose-effect-dependent manner. Specifically, resveratrol treatment (3 μM, 48 hours) increased ATP production and cell viability and promoted the induction of cellular differentiation. These biological changes were associated with mitochondrial biogenesis. Electrophysiological recordings showed that resveratrol reduced the functional expression of an ultra rapid activating, slow inactivating, delayed rectifier potassium current (IKur) that is associated with a plasma membrane depolarization and that promotes an increase in intracellular Ca2+. CONCLUSION(S): The effects of resveratrol on potassium current and mitochondrial biogenesis in h-GCs could explain the beneficial effects of this polyphenol on the physiology of the female reproductive system. These findings suggest there are therapeutic implications of resveratrol in a clinical setting.
Collapse
Affiliation(s)
- Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy; Department of Experimental Medicine, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Antonella De Luca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Loretta Mancinelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Monica Mariani
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Cristina Corbucci
- Centre of Assisted Reproductive Technologies, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Sandro Gerli
- Department of Surgical and Biomedical Sciences, Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | | | | | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy.
| |
Collapse
|
43
|
Cazaña-Pérez V, Cidad P, Navarro-González JF, Rojo-Mencía J, Jaisser F, López-López JR, Alvarez de la Rosa D, Giraldez T, Pérez-García M. Kv1.3 Channel Inhibition Limits Uremia-Induced Calcification in Mouse and Human Vascular Smooth Muscle. FUNCTION 2020; 2:zqaa036. [PMID: 35330975 PMCID: PMC8788811 DOI: 10.1093/function/zqaa036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/06/2023] Open
Abstract
Chronic kidney disease (CKD) significantly increases cardiovascular risk. In advanced CKD stages, accumulation of toxic circulating metabolites and mineral metabolism alterations triggers vascular calcification, characterized by vascular smooth muscle cell (VSMC) transdifferentiation and loss of the contractile phenotype. Phenotypic modulation of VSMC occurs with significant changes in gene expression. Even though ion channels are an integral component of VSMC function, the effects of uremia on ion channel remodeling has not been explored. We used an in vitro model of uremia-induced calcification of human aorta smooth muscle cells (HASMCs) to study the expression of 92 ion channel subunit genes. Uremic serum-induced extensive remodeling of ion channel expression consistent with loss of excitability but different from the one previously associated with transition from contractile to proliferative phenotypes. Among the ion channels tested, we found increased abundance and activity of voltage-dependent K+ channel Kv1.3. Enhanced Kv1.3 expression was also detected in aorta from a mouse model of CKD. Pharmacological inhibition or genetic ablation of Kv1.3 decreased the amount of calcium phosphate deposition induced by uremia, supporting an important role for this channel on uremia-induced VSMC calcification.
Collapse
Affiliation(s)
- Violeta Cazaña-Pérez
- Departamento de Ciencias Médicas Básicas (Fisiología), Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Spain
- Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Juan F Navarro-González
- Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
| | - Jorge Rojo-Mencía
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Frederic Jaisser
- Unité Mixte de Recherche Scientifique 1138, Team 1, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, La Laguna, Paris, France
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas (Fisiología), Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Spain
| | - Teresa Giraldez
- Departamento de Ciencias Médicas Básicas (Fisiología), Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Spain
| | - Maria Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
44
|
Cidad P, Alonso E, Arévalo-Martínez M, Calvo E, de la Fuente MA, Pérez-García MT, López-López JR. Voltage-dependent conformational changes of Kv1.3 channels activate cell proliferation. J Cell Physiol 2020; 236:4330-4347. [PMID: 33230847 DOI: 10.1002/jcp.30170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
The voltage-dependent potassium channel Kv1.3 has been implicated in proliferation in many cell types, based on the observation that Kv1.3 blockers inhibited proliferation. By modulating membrane potential, cell volume, and/or Ca2+ influx, K+ channels can influence cell cycle progression. Also, noncanonical channel functions could contribute to modulate cell proliferation independent of K+ efflux. The specificity of the requirement of Kv1.3 channels for proliferation suggests the involvement of molecule-specific interactions, but the underlying mechanisms are poorly identified. Heterologous expression of Kv1.3 channels in HEK cells has been shown to increase proliferation independently of K+ fluxes. Likewise, some of the molecular determinants of Kv1.3-induced proliferation have been located in the C-terminus region, where individual point mutations of putative phosphorylation sites (Y447A and S459A) abolished Kv1.3-induced proliferation. Here, we investigated the mechanisms linking Kv1.3 channels to proliferation exploring the correlation between Kv1.3 voltage-dependent molecular dynamics and cell cycle progression. Using transfected HEK cells, we analyzed both the effect of changes in resting membrane potential on Kv1.3-induced proliferation and the effect of mutated Kv1.3 channels with altered voltage dependence of gating. We conclude that voltage-dependent transitions of Kv1.3 channels enable the activation of proliferative pathways. We also found that Kv1.3 associated with IQGAP3, a scaffold protein involved in proliferation, and that membrane depolarization facilitates their interaction. The functional contribution of Kv1.3-IQGAP3 interplay to cell proliferation was demonstrated both in HEK cells and in vascular smooth muscle cells. Our data indicate that voltage-dependent conformational changes of Kv1.3 are an essential element in Kv1.3-induced proliferation.
Collapse
Affiliation(s)
- Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| | - Esperanza Alonso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| | - Marycarmen Arévalo-Martínez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares, Unidad de Proteómica, CNIC, Madrid, Spain
| | - Miguel A de la Fuente
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain.,Departamento de Biología Celular, Universidad de Valladolid, Valladolid, Spain
| | - M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y CSIC, Valladolid, Spain
| |
Collapse
|
45
|
Xie Z, Zhao Y, Yang W, Li W, Wu Y, Chen Z. Methotrexate, a small molecular scaffold targeting Kv1.3 channel extracellular pore region. Biochem Biophys Res Commun 2020; 532:265-270. [PMID: 32863001 DOI: 10.1016/j.bbrc.2020.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
Methotrexate (MTX) has been widely used for the treatment of many types of autoimmune diseases, such as rheumatoid arthritis, psoriasis and dermatomyositis. However, its pharmacological mechanism is still unclear completely. In this study, we found that MTX is a potent and selective inhibitor of the Kv1.3 channel, a class of potassium channels highly associated with autoimmune diseases. Electrophysiological experiments showed that MTX inhibited human Kv1.3 channel with an IC50 of 41.5 ± 24.9 nM, and 1 μM MTX inhibited 32.6 ± 1.3% and 25.6 ± 2.2% of human Kv1.1 and Kv1.2 channel currents, respectively. These data implied the unique selectivity of MTX towards the Kv1.3 channel. Excitingly, using channel activation and chimeric experiments, we found that MTX bound to the outer pore region of Kv1.3 channel. Mutagenesis experiments in the Kv.3 channel extracellular pore region further showed that the Dsp371, Thr373 and His399 residues of outer pore region of Kv1.3 channel played important roles in MTX inhibiting activities. In conclusion, MTX inhibited Kv1.3 channel by targeting extracellular pore region, which is different form all the report small molecules, such as PAP-1 and 4-AP, but similar with many natural animal toxin peptides, such as ChTX, ShK and BmKTX. To the best of our knowledge, MTX is the first small molecular scaffold targeting the Kv1.3 channel extracellular pore region, suggesting its potential applications for designing novel Kv1.3 lead drugs and treating Kv1.3 channel-associated autoimmune diseases.
Collapse
Affiliation(s)
- Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China.
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
46
|
Prolonged Plasma Exposure of the Kv1.3-Inhibitory Peptide HsTX1[R14A] by Subcutaneous Administration of a Poly(Lactic-co-Glycolic Acid) (PLGA) Microsphere Formulation. J Pharm Sci 2020; 110:1182-1188. [PMID: 33065128 DOI: 10.1016/j.xphs.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
This study evaluated the impact of poly(lactic-co-glycolic acid) (PLGA) microsphere formulations on in vitro release and in vivo plasma exposure of HsTX1[R14A], a potent inhibitor of the voltage-gated potassium channel Kv1.3, with potential to treat autoimmune conditions. Microspheres containing HsTX1[R14A] were prepared using different PLGA materials, including Resomer® RG502H, RG503H and PURASORB® PDLG 5004 (Purac). After assessing encapsulation efficiency and in vitro release, plasma concentrations of HsTX1[R14A] were quantified by LCMS/MS following subcutaneous administration of HsTX1[R14A]-loaded RG503H microspheres (15 mg/kg) or HsTX1[R14A] solution (4 mg/kg) to Sprague-Dawley rats. Microspheres prepared with Purac exhibited the greatest encapsulation efficiency (45.5 ± 2.4% (mean ± SD)) and RG502H the lowest (22.0 ± 6.4%). Release of HsTX1[R14A] was fastest in vitro for RG502H microspheres (maximum release at 31 days) and slowest for Purac (82 days). With a relatively rapid burst release of 20.0 ± 0.4% and a controlled release profile of up to 41 days, HsTX1[R14A]-loaded RG503H microspheres were selected for subcutaneous administration, resulting in detectable plasma concentrations for 11 days relative to 8 h following subcutaneous administration of HsTX1[R14A] solution. Therefore, subcutaneous administration of RG503H PLGA microspheres is a promising approach to be exploited for delivery of this immune modulator.
Collapse
|
47
|
Moreno-Estar S, Serrano S, Arévalo-Martínez M, Cidad P, López-López JR, Santos M, Pérez-Garcia MT, Arias FJ. Elastin-like recombinamer-based devices releasing Kv1.3 blockers for the prevention of intimal hyperplasia: An in vitro and in vivo study. Acta Biomater 2020; 115:264-274. [PMID: 32771595 DOI: 10.1016/j.actbio.2020.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disorder. Vascular surgery strategies for coronary revascularization (either percutaneous or open) show a high rate of failure because of restenosis of the vessel, due to phenotypic switch of vascular smooth muscle cells (VSMCs) leading to proliferation and migration. We have previously reported that the inhibition of Kv1.3 channel function with selective blockers represents an effective strategy for the prevention of restenosis in human vessels used for coronary angioplasty procedures. However, delivery systems for controlled release of these drugs have not been investigated. Here we tested the efficacy of several formulations of elastin like recombinamers (ELRs) hydrogels to deliver the Kv1.3 blocker PAP-1 in various restenosis models. The dose and time course of PAP-1 release from ELRs click hydrogels was able to inhibit human VSMC proliferation in vitro as well as remodeling of human vessels in organ culture and restenosis in in vivo models. We conclude that this combination of active compound and advanced delivery method could improve the outcomes of vascular surgery in patients. STATEMENT OF SIGNIFICANCE: Vascular surgery strategies for coronary revascularization show a high rate of failure, because of occlusion (restenosis) of the vessel, due to vascular smooth muscle cells proliferation and migration. We have previously reported that blockers of Kv1.3 channels represent an effective anti-restenosis therapy, but delivery systems for their controlled release have not being explored. Here we tested the efficacy of several formulations of elastin like recombinamers (ELRs) hydrogels to deliver the Kv1.3 blocker PAP-1 in various restenosis models, both in vivo and in vitro, and also in human vessels. We demonstrated that combination of active compound and advanced delivery method could improve the outcomes of vascular surgery in patients.
Collapse
|
48
|
Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol 2020; 183:103-133. [PMID: 32894333 DOI: 10.1007/112_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
Collapse
|
49
|
Peruzzo R, Mattarei A, Azzolini M, Becker-Flegler KA, Romio M, Rigoni G, Carrer A, Biasutto L, Parrasia S, Kadow S, Managò A, Urbani A, Rossa A, Semenzato G, Soriano ME, Trentin L, Ahmad S, Edwards M, Gulbins E, Paradisi C, Zoratti M, Leanza L, Szabò I. Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. Redox Biol 2020; 37:101705. [PMID: 33007503 PMCID: PMC7527709 DOI: 10.1016/j.redox.2020.101705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool. The mitochondrial channel mitoKv1.3 is a promising pharmacological target. MitoKv1.3 interacts with Complex I of the respiratory chain. Psoralenic inhibitors of Kv1.3 facilitate the diversion of e− from complex I to O2. A novel psoralenic Kv1.3 inhibitor with increased solubility reduces melanoma volume.
Collapse
Affiliation(s)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | | | | | - Matteo Romio
- Department of Chemical Sciences, University of Padua, Italy
| | | | - Andrea Carrer
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Sofia Parrasia
- Department of Biomedical Sciences, University of Padua, Italy
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Andrea Urbani
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padua, Italy
| | | | | | | | - Syed Ahmad
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Michael Edwards
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Mario Zoratti
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy.
| |
Collapse
|
50
|
Tajti G, Wai DCC, Panyi G, Norton RS. The voltage-gated potassium channel K V1.3 as a therapeutic target for venom-derived peptides. Biochem Pharmacol 2020; 181:114146. [PMID: 32653588 DOI: 10.1016/j.bcp.2020.114146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
The voltage-gated potassium channel KV1.3 is a well-established therapeutic target for a range of autoimmune diseases, in addition to being the site of action of many venom-derived peptides. Numerous studies have documented the efficacy of venom peptides that target KV1.3, in particular from sea anemones and scorpions, in animal models of autoimmune diseases such as rheumatoid arthritis, psoriasis and multiple sclerosis. Moreover, an analogue of the sea anemone peptide ShK (known as dalazatide) has successfully completed Phase 1 clinical trials in mild-to-moderate plaque psoriasis. In this article we consider other potential therapeutic applications of inhibitors of KV1.3, including in inflammatory bowel disease and neuroinflammatory conditions such as Alzheimer's and Parkinson's diseases, as well as fibrotic diseases. We also summarise strategies for facilitating the entry of peptides to the central nervous system, given that this will be a pre-requisite for the treatment of most neuroinflammatory diseases. Venom-derived peptides that have been reported recently to target KV1.3 are also described. The increasing number of autoimmune and other conditions in which KV1.3 is upregulated and is therefore a potential therapeutic target, combined with the fact that many venom-derived peptides are potent inhibitors of KV1.3, suggests that venoms are likely to continue to serve as a rich source of new pharmacological tools and therapeutic leads targeting this channel.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|