1
|
Wang S, Sun W, Ding C, Zhou W, Zhang M, Xu H. The role of serum α-Klotho levels in preventing hearing impairment among middle-aged and older adults: insights from a nationally representative sample. Front Aging Neurosci 2024; 16:1415494. [PMID: 39610715 PMCID: PMC11602472 DOI: 10.3389/fnagi.2024.1415494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
Background The Klotho gene is implicated in suppressing aging phenotypes and influencing age-related diseases. Previous studies have delved into its connection with different diseases, yet the association between Klotho and hearing loss has rarely been examined. A recent population study explored the relationship between serum Klotho and hearing loss, but it had certain limitations. This study aims to analyze the link between serum α-Klotho levels and hearing thresholds, as well as the risk of hearing loss. Methods A total of 1,762 adults aged 40-69 years were selected from the 2011-2012 National Health and Nutrition Examination Survey (NHANES). Data on audiometry, serum α-Klotho levels, and relevant covariates were gathered. Statistical analyses, including linear and logistic regression, assessed the relationships of serum α-Klotho levels with hearing outcomes. Results Increased serum α-Klotho levels were correlated with diminished hearing thresholds and a lower risk of hearing loss. Quartile analysis revealed a significant trend, where elevated α-Klotho levels were linked to better auditory outcomes. Adjusted models controlled for various covariates, affirming the robustness of the findings. Non-linear associations were not observed. Conclusion This study provided novel evidence of a negative association between serum α-Klotho and hearing impairment in adults aged 40-69. Our results suggested a protective role of serum α-Klotho on adults with hearing loss.
Collapse
Affiliation(s)
- Siyuan Wang
- School of Public Health, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wen Sun
- School of Public Health, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chan Ding
- School of Public Health, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenxin Zhou
- School of Public Health, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Min Zhang
- School of Medical Humanities and Management (School of General Practice Competency Education), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huadong Xu
- School of Public Health, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Grigore TV, Zuidscherwoude M, Olauson H, Hoenderop JG. Lessons from Klotho mouse models to understand mineral homeostasis. Acta Physiol (Oxf) 2024; 240:e14220. [PMID: 39176993 DOI: 10.1111/apha.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
AIM Klotho, a key component of the endocrine fibroblast growth factor receptor-fibroblast growth factor axis, is a multi-functional protein that impacts renal electrolyte handling. The physiological significance of Klotho will be highlighted in the regulation of calcium, phosphate, and potassium metabolism. METHODS In this review, we compare several murine models with different renal targeted deletions of Klotho and the insights into the molecular and physiological function that these models offer. RESULTS In vivo, Klotho deficiency is associated with severely impaired mineral metabolism, with consequences on growth, longevity and disease development. Additionally, we explore the perspectives of Klotho in renal pathology and vascular events, as well as potential Klotho treatment options. CONCLUSION This comprehensive review emphasizes the use of Klotho to shed light on deciphering the renal molecular in vivo mechanisms in electrolyte handling, as well as novel therapeutic interventions.
Collapse
Affiliation(s)
- Teodora V Grigore
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Malou Zuidscherwoude
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannes Olauson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Wang F, Colonnello E, Zhang H, Sansone A, Wang C, Dolci S, Guo J, Jannini EA. Comparing Western and traditional Chinese medicine for male sexual dysfunction: can Klotho represent a silk road? Andrology 2024; 12:1215-1223. [PMID: 38155398 DOI: 10.1111/andr.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Traditional Chinese medicine (TCM) and Western Medicine both have shown efficacy in treating male sexual dysfunction (MSD). The aim of this perspective paper is to discuss a possible link between Western medicine and TCM in the MSD field as represented by the entity of Klotho. Klotho is a recently discovered protein, mainly expressed in the kidney, encoded by the anti-aging gene klotho. Not only is Klotho significantly correlated with the development and progression of kidney diseases and their complications, but increasing evidence indicates that it is also closely related to MSD. A comprehensive search within PubMed database was performed to retrieve available evidence on Klotho's roles, particularly in kidney and in MSD. Indeed, in the TCM theory, the concept of the "kidney" is entirely different from the Western medicine: it is closely related to metabolism and to the reproductive, nervous, endocrine systems, being more than just a urinary organ. According to the "Kidney storing essence (jīng) and governing reproduction" (KSEGR) theory, a cornerstone in TCM, the treatment of MSD mainly consists of restoring the kidney's function. Signs of decreasing kidney essence show a consistent similarity to deficiencies of Klotho, also for what regards the male sexual function. Based on the current evidence, Klotho may represent a potential biological indicator for sexual desire and sexual function and a kind of new scientific Silk Road between TCM and Western medicine for MSD; nevertheless, there is a need to conduct further high-quality research to prove this hypothesis.
Collapse
Affiliation(s)
- Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Elena Colonnello
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Hui Zhang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Chunlin Wang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Chair of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Mohanty SK, Mohanty AK, Kumar MS, Suchiang K. Triiodothyronine enhances various forms of kidney-specific Klotho protein and suppresses the Wnt/β-catenin pathway: Insights from in-vitro, in-vivo and in-silico investigations. Cell Signal 2024; 120:111214. [PMID: 38729322 DOI: 10.1016/j.cellsig.2024.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Age-related diseases are intricately linked to the molecular processes underlying aging, with the decline of the antiaging protein Klotho being a key factor. Investigating these processes is crucial for developing therapeutic strategies. The age-associated reduction in Klotho expression, coupled with a decline in the endocrine hormone triiodothyronine (T3), prompted a detailed exploration of their potential interplay. Our research, conducted through both in-vitro and in-vivo studies on BALB/c mice, unveiled a significant capacity of T3 to upregulate various forms of Klotho via ATF-3/p-c-Jun transcription factor. This effect was particularly noteworthy in aged individuals, where Klotho expression had waned compared to their younger counterparts. Importantly, T3 demonstrated a promising therapeutic impact in rejuvenating Klotho expression in this context. Further investigations elucidated the molecular mechanisms underlying T3's impact on aging-related pathways. In-vitro and in-vivo experiments established T3's ability to downregulate the Wnt/β-Catenin pathway by enhancing Klotho expression. In-silico analyses provided insights into Klotho's intricate role, showing its capacity to inhibit Wnt ligands such as Wnt3 and Wnt8a, consequently disrupting their interaction with the Wnt receptor. Additionally, T3 was found to downregulate kidney-specific GSK-3β expression through the augmentation of Klotho expression. The study also highlighted T3's role in maintaining calcium and phosphate homeostasis via Klotho. This comprehensive investigation not only sheds light on the intricate mechanisms governing aging processes but also presents promising avenues for therapeutic interventions targeting the Wnt/β-Catenin pathway implicated in various age-associated diseases.
Collapse
Affiliation(s)
- Saswat Kumar Mohanty
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry 605 014, India.
| | | | | | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India.
| |
Collapse
|
5
|
Jung HJ, Pham TD, Su XT, Grigore TV, Hoenderop JG, Olauson H, Wall SM, Ellison DH, Welling PA, Al-Qusairi L. Klotho is highly expressed in the chief sites of regulated potassium secretion, and it is stimulated by potassium intake. Sci Rep 2024; 14:10740. [PMID: 38729987 PMCID: PMC11087591 DOI: 10.1038/s41598-024-61481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Klotho regulates many pathways in the aging process, but it remains unclear how it is physiologically regulated. Because Klotho is synthesized, cleaved, and released from the kidney; activates the chief urinary K+ secretion channel (ROMK) and stimulates urinary K+ secretion, we explored if Klotho protein is regulated by dietary K+ and the potassium-regulatory hormone, Aldosterone. Klotho protein along the nephron was evaluated in humans and in wild-type (WT) mice; and in mice lacking components of Aldosterone signaling, including the Aldosterone-Synthase KO (AS-KO) and the Mineralocorticoid-Receptor KO (MR-KO) mice. We found the specific cells of the distal nephron in humans and mice that are chief sites of regulated K+ secretion have the highest Klotho protein expression along the nephron. WT mice fed K+-rich diets increased Klotho expression in these cells. AS-KO mice exhibit normal Klotho under basal conditions but could not upregulate Klotho in response to high-K+ intake in the K+-secreting cells. Similarly, MR-KO mice exhibit decreased Klotho protein expression. Together, i) Klotho is highly expressed in the key sites of regulated K+ secretion in humans and mice, ii) In mice, K+-rich diets increase Klotho expression specifically in the potassium secretory cells of the distal nephron, iii) Aldosterone signaling is required for Klotho response to high K+ intake.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Truyen D Pham
- Department of Nephrology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - Teodora Veronica Grigore
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Medical BioSciences, Radboud Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Susan M Wall
- Department of Nephrology, Emory University School of Medicine, Atlanta, GA, USA
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - Paul A Welling
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lama Al-Qusairi
- Department of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, Ruiz-Torres MP, Gómez-Alonso C, Rodríguez-García M, Fernández-Martín JL, Alonso-Montes C, Panizo S, Cannata-Andía JB, Naves-Díaz M, Carrillo-López N. Soluble Klotho, a Potential Biomarker of Chronic Kidney Disease-Mineral Bone Disorders Involved in Healthy Ageing: Lights and Shadows. Int J Mol Sci 2024; 25:1843. [PMID: 38339121 PMCID: PMC10855561 DOI: 10.3390/ijms25031843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Shortly after the discovery of Klotho, interest grew in its potential role in chronic kidney disease (CKD). There are three isoforms of the Klotho protein: αKlotho, βKlotho and γKlotho. This review will focus on αKlotho due to its relevance as a biomarker in CKD. αKlotho is synthesized mainly in the kidneys, but it can be released into the bloodstream and urine as soluble Klotho (sKlotho), which undertakes systemic actions, independently or in combination with FGF23. It is usually accepted that sKlotho levels are reduced early in CKD and that lower levels of sKlotho might be associated with the main chronic kidney disease-mineral bone disorders (CKD-MBDs): cardiovascular and bone disease. However, as results are inconsistent, the applicability of sKlotho as a CKD-MBD biomarker is still a matter of controversy. Much of the inconsistency can be explained due to low sample numbers, the low quality of clinical studies, the lack of standardized assays to assess sKlotho and a lack of consensus on sample processing, especially in urine. In recent decades, because of our longer life expectancies, the prevalence of accelerated-ageing diseases, such as CKD, has increased. Exercise, social interaction and caloric restriction are considered key factors for healthy ageing. While exercise and social interaction seem to be related to higher serum sKlotho levels, it is not clear whether serum sKlotho might be influenced by caloric restriction. This review focuses on the possible role of sKlotho as a biomarker in CKD-MBD, highlighting the difference between solid knowledge and areas requiring further research, including the role of sKlotho in healthy ageing.
Collapse
Affiliation(s)
- Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - María Piedad Ruiz-Torres
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Área 5—Fisiología y Fisiopatología Renal y Vascular del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Physiology Unit, Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Carlos Gómez-Alonso
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Nephrology Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Jorge B. Cannata-Andía
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Department of Medicine, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| |
Collapse
|
7
|
Abboud M, Merenbakh-Lamin K, Volkov H, Ben-Neriah S, Ligumsky H, Bronfeld S, Keren-Khadmy N, Giladi M, Shomron N, Wolf I, Rubinek T. Revealing the tumor suppressive sequence within KL1 domain of the hormone Klotho. Oncogene 2024; 43:354-362. [PMID: 38040805 DOI: 10.1038/s41388-023-02904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Klotho, a 1012 amino acid transmembrane protein, is a potent tumor suppressor in different cancer types. Klotho is composed of two internal repeats KL1 and KL2, and the tumor suppressor activity is primarily attributed to the KL1 domain. Despite its significant role in regulating various cancer-related pathways, the precise mechanism underlying its tumor suppressor activity remains unresolved. In this study, we aimed to identify the sequence responsible for the tumor suppressor function of Klotho and gain insights into its mechanism of action. To accomplish this, we generated expression vectors of truncated KL1 at the C and N-terminal regions and evaluated their ability to inhibit the colony formation of several cancer cell lines. Our findings demonstrated that truncated KL1 1-340 (KL340) effectively inhibited colony formation similar to KL1, while truncated KL1 1-320 (KL320) lost this activity. Furthermore, this correlated with the inhibitory effect of KL1 and KL340 on the Wnt/β-catenin pathway, whereas KL320 had no effect. Transcriptomic analysis of MCF-7 cells expressing the constructs revealed enriched pathways associated with tumor suppressor activity in KL1 and KL340. Interestingly, the α-fold predictor tool highlighted distinct differences in the α and β sheets of the TIM barrel fold of the truncated Klotho constructs, adding to our understanding of their structural variations. In summary, this study identified the 340 N-terminal amino acids as the sequence that possesses Klotho's tumor suppressor activity and reveals a critical role in the 320-340 sequence for this function. It also provides a foundation for the development of Klotho-based therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Marana Abboud
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | - Hadas Volkov
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics at Tel-Aviv University, Tel Aviv, Israel
| | - Shira Ben-Neriah
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagai Ligumsky
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sarai Bronfeld
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Keren-Khadmy
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moshe Giladi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Internal Medicine Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics at Tel-Aviv University, Tel Aviv, Israel
| | - Ido Wolf
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tami Rubinek
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Chi PJ, Lee CJ, Hung SY, Tsai JP, Liou HH. Urinary Klotho Excretion: A Key Regulator of Sodium Homeostasis in Chronic Kidney Disease Stage 2-4. Med Sci Monit Basic Res 2023; 29:e942097. [PMID: 37987256 PMCID: PMC10637118 DOI: 10.12659/msmbr.942097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Soluble alpha-klotho (klotho) is considered an important regulator of mineral homeostasis in patients with chronic kidney disease (CKD). Since the mineral transport proteins are located on the apical membrane of renal tubular cells, we hypothesized that urine klotho may also be involved in their homeostasis. We aimed to investigate the associations between serum and urine klotho and their impacts on mineral homeostasis in patients with stage 2 to 4 CKD. MATERIAL AND METHODS Serum, spot urine, and 24-h urine of klotho were measured by using enzyme-linked immunosorbent assay. Fractional excretion of sodium, potassium, calcium, phosphate, magnesium, and klotho were calculated. RESULTS A total of 53 patients with CKD stages 2 to 4 were enrolled in this cross-sectional study. The mean age was 71.1±10.5 years, and 68% were men. Linear regression analysis showed that serum log-transformed klotho was negatively associated with log-transformed fractional excretion of klotho (log-FEKlotho) (ß=-0.085, P=0.02), showing that urinary klotho excretion could negatively regulate serum klotho levels. Moreover, our multivariate stepwise regression showed log-fractional excretion of sodium was positively associated with log-FEKlotho (ß=0.138, P=0.032). This implied urinary klotho excretion positively regulated urinary sodium excretion. CONCLUSIONS Our study showed that urine klotho excretion resulted in decreased serum klotho levels and enhanced urinary sodium excretion in patients with CKD stages 2 to 4. In addition to serum klotho, we found, for the first time, that urine klotho also played a significant role in sodium homeostasis.
Collapse
Affiliation(s)
- Po-Jui Chi
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Shih-Yuan Hung
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Sun F, Liang P, Wang B, Liu W. The fibroblast growth factor-Klotho axis at molecular level. Open Life Sci 2023; 18:20220655. [PMID: 37941788 PMCID: PMC10628560 DOI: 10.1515/biol-2022-0655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 11/10/2023] Open
Abstract
Klotho is a recently discovered protein that has positive effects on all systems of the body, for example, regulating calcium and phosphorus metabolism, protecting nerves, delaying aging and so on. Fibroblast growth factors (FGFs) are a group of polypeptides that function throughout the body by binding with cell surface FGF receptors (FGFRs). Endocrine FGFs require Klotho as a co-receptor for FGFRs. There is increasing evidence that Klotho participates in calcium and phosphorus regulation and metabolic regulation via the FGF-Klotho axis. Moreover, soluble Klotho can function as a separate hormone to regulate homeostasis on various ion channels and carrier channels on the cell surface. This review mainly explains the molecular basis of the membrane signaling mechanism of Klotho.
Collapse
Affiliation(s)
- Fuqiang Sun
- School of Anesthesiology, Weifang Medical University, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang261053, Shandong, China
| | - Panpan Liang
- School of Basic Medical Sciences, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Bo Wang
- School of Anesthesiology, Weifang Medical University, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang261053, Shandong, China
| | - Wenbo Liu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang261000, Shandong, China
| |
Collapse
|
10
|
Haussler MR, Haussler CA, Jurutka PW. Genomically anchored vitamin D receptor mediates an abundance of bioprotective actions elicited by its 1,25-dihydroxyvitamin D hormonal ligand. VITAMINS AND HORMONES 2023; 123:313-383. [PMID: 37717990 DOI: 10.1016/bs.vh.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States.
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| |
Collapse
|
11
|
Roig-Soriano J, Sánchez-de-Diego C, Esandi-Jauregui J, Verdés S, Abraham CR, Bosch A, Ventura F, Chillón M. Differential toxicity profile of secreted and processed α-Klotho expression over mineral metabolism and bone microstructure. Sci Rep 2023; 13:4211. [PMID: 36918615 PMCID: PMC10014869 DOI: 10.1038/s41598-023-31117-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
The aging-protective gene α-Klotho (KL) produces two main transcripts. The full-length mRNA generates a transmembrane protein that after proteolytic ectodomain shedding can be detected in serum as processed Klotho (p-KL), and a shorter transcript which codes for a putatively secreted protein (s-KL). Both isoforms exhibit potent pleiotropic beneficial properties, although previous reports showed negative side effects on mineral homeostasis after increasing p-KL concentration exogenously. Here, we expressed independently both isoforms using gene transfer vectors, to assess s-KL effects on mineral metabolism. While mice treated with p-KL presented altered expression of several kidney ion channels, as well as altered levels of Pi and Ca2+ in blood, s-KL treated mice had levels comparable to Null-treated control mice. Besides, bone gene expression of Fgf23 showed a fourfold increase after p-KL treatment, effects not observed with the s-KL isoform. Similarly, bone microstructure parameters of p-KL-treated mice were significantly worse than in control animals, while this was not observed for s-KL, which showed an unexpected increase in trabecular thickness and cortical mineral density. As a conclusion, s-KL (but not p-KL) is a safe therapeutic strategy to exploit KL anti-aging protective effects, presenting no apparent negative effects over mineral metabolism and bone microstructure.
Collapse
Affiliation(s)
- Joan Roig-Soriano
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Jon Esandi-Jauregui
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Sergi Verdés
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
| | - Carmela R Abraham
- Departments of Biochemistry and Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Assumpció Bosch
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology, Institut de Neurociènces (INc), Universitat Autònoma Barcelona, Bellaterra, Spain.
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Unitat Producció de Vectors (UPV), Universitat Autònoma Barcelona, Bellaterra, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
12
|
Aczel D, Torma F, Jokai M, McGreevy K, Boros A, Seki Y, Boldogh I, Horvath S, Radak Z. The Circulating Level of Klotho Is Not Dependent upon Physical Fitness and Age-Associated Methylation Increases at the Promoter Region of the Klotho Gene. Genes (Basel) 2023; 14:525. [PMID: 36833453 PMCID: PMC9957177 DOI: 10.3390/genes14020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
(1) Background: Higher levels of physical fitness are believed to increase the physiological quality of life and impact the aging process with a wide range of adaptive mechanisms, including the regulation of the expression of the age-associated klotho (KL) gene and protein levels. (2) Methods: Here, we tested the relationship between the DNA methylation-based epigenetic biomarkers PhenoAge and GrimAge and methylation of the promoter region of the KL gene, the circulating level of KL, and the stage of physical fitness and grip force in two groups of volunteer subjects, trained (TRND) and sedentary (SED), aged between 37 and 85 years old. (3) Results: The circulating KL level is negatively associated with chronological age in the TRND group (r = -0.19; p = 0.0295) but not in the SED group (r = -0.065; p = 0.5925). The age-associated decrease in circulating KL is partly due to the increased methylation of the KL gene. In addition, higher plasma KL is significantly related to epigenetic age-deceleration in the TRND group, assessed by the biomarker of PhenoAge (r = -0.21; p = 0.0192). (4) Conclusions: The level of physical fitness, on the other hand, does not relate to circulating KL levels, nor to the rate of the methylation of the promoter region of the KL gene, only in males.
Collapse
Affiliation(s)
- Dora Aczel
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
- Sports Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| | - Matyas Jokai
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
| | - Kristen McGreevy
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anita Boros
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
| | - Yasuhiro Seki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, 1123 Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan
| |
Collapse
|
13
|
Grigore TV, Zuidscherwoude M, Witasp A, Barany P, Wernerson A, Bruchfeld A, Xu H, Olauson H, Hoenderop J. Fibroblast growth factor 23 is independently associated with renal magnesium handling in patients with chronic kidney disease. Front Endocrinol (Lausanne) 2022; 13:1046392. [PMID: 36699036 PMCID: PMC9869122 DOI: 10.3389/fendo.2022.1046392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Disturbances in magnesium homeostasis are common in patients with chronic kidney disease (CKD) and are associated with increased mortality. The kidney is a key organ in maintaining normal serum magnesium concentrations. To this end, fractional excretion of magnesium (FEMg) increases as renal function declines. Despite recent progress, the hormonal regulation of renal magnesium handling is incompletely understood. Fibroblast Growth Factor 23 (FGF23) is a phosphaturic hormone that has been linked to renal magnesium handling. However, it has not yet been reported whether FGF23 is associated with renal magnesium handling in CKD patients. METHODS The associations between plasma FGF23 levels, plasma and urine magnesium concentrations and FEMg was investigated in a cross-sectional cohort of 198 non-dialysis CKD patients undergoing renal biopsy. RESULTS FGF23 was significantly correlated with FEMg (Pearson's correlation coefficient = 0.37, p<0.001) and urinary magnesium (-0.14, p=0.04), but not with plasma magnesium. The association between FGF23 and FEMg remained significant after adjusting for potential confounders, including estimated glomerular filtration rate (eGFR), parathyroid hormone and 25-hydroxyvitamin D. CONCLUSIONS We report that plasma FGF23 is independently associated with measures of renal magnesium handling in a cohort of non-dialysis CKD patients. A potential causal relationship should be investigated in future studies.
Collapse
Affiliation(s)
- Teodora V. Grigore
- Radboud Institute for Molecular Life Sciences, Department of Physiology, Radboudumc, Nijmegen, Netherlands
| | - Malou Zuidscherwoude
- Radboud Institute for Molecular Life Sciences, Department of Physiology, Radboudumc, Nijmegen, Netherlands
| | - Anna Witasp
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Peter Barany
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Annika Wernerson
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Annette Bruchfeld
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
- Linköpings universitet Hälsouniversitetet, Department of Health, Medicine and Caring Sciences, Linköping, Sweden
| | - Hong Xu
- Karolinska Institutet, Division of Clinical Geriatrics, Department of Neurobiology, Department of Care Sciences and Society, Stockholm, Sweden
| | - Hannes Olauson
- Karolinska Institutet, Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Stockholm, Sweden
| | - Joost Hoenderop
- Radboud Institute for Molecular Life Sciences, Department of Physiology, Radboudumc, Nijmegen, Netherlands
- *Correspondence: Joost Hoenderop,
| |
Collapse
|
14
|
Oishi H, Doi S, Nakashima A, Ike T, Maeoka Y, Sasaki K, Doi T, Masaki T. Klotho overexpression protects against renal aging along with suppression of transforming growth factor-β1 signaling pathways. Am J Physiol Renal Physiol 2021; 321:F799-F811. [PMID: 34779262 DOI: 10.1152/ajprenal.00609.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Klotho is an antiaging protein reported to suppress transforming growth factor-β1 (TGF-β1) signaling. Aging kidneys are characterized by interstitial fibrosis, accumulation of cell cycle-arrested cells, and increased levels of oxidative stress. TGF-β1 signaling is involved in these processes. In this study, we investigated whether klotho overexpression improves these features in the kidneys of aging mice and examined the inhibitory effect of klotho on signaling molecules related to transforming growth of TGF-β1. Klotho transgenic (KLTG) and wild-type (WT) mice were used, and 8-wk-old and 24-mo-old mice were defined as young and aging, respectively. We found that klotho expression was decreased in aging WT mice, but it was maintained in aging KLTG mice. Klotho overexpression improved the survival of 24-mo-old mice. Although the serum Ca2+ level was significantly lower in aging KLTG mice than in aging WT mice, the serum phosphate level did not differ between these mice. Klotho overexpression attenuated the increases in blood pressure, serum blood urea nitrogen level, and serum creatinine level in aging mice. Interstitial fibrosis, accumulation of cell cycle-arrested cells, and oxidative stress did not differ between young KLTG and WT mice, but they were significantly suppressed in aging KLTG mice compared with aging WT mice. Furthermore, the expression of TGF-β1-related signaling molecules was increased in aging WT mice, whereas it was inhibited in aging KLTG mice. These data suggest that klotho overexpression protects against kidney aging along with suppression of TGF-β1 signaling pathways.NEW & NOTEWORTHY Klotho is considered as an antiaging protein, and its overexpression may be a candidate therapy for protection against kidney damage with advanced aging. Although multiple factors are involved in the aging process, we showed that klotho overexpression inhibited interstitial fibrosis, accumulation of cell cycle-arrested cells, and increased levels of oxidative stress in the kidneys of aging mice, suppressing transforming growth factor-β1-related signaling pathways. The present data showed that klotho overexpression protects against age-associated kidney damage.
Collapse
Affiliation(s)
- Hiroaki Oishi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
15
|
Ectodomain shedding by ADAM proteases as a central regulator in kidney physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119165. [PMID: 34699872 DOI: 10.1016/j.bbamcr.2021.119165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
Besides its involvement in blood and bone physiology, the kidney's main function is to filter substances and thereby regulate the electrolyte composition of body fluids, acid-base balance and toxin removal. Depending on underlying conditions, the nephron must undergo remodeling and cellular adaptations. The proteolytic removal of cell surface proteins via ectodomain shedding by A Disintegrin and Metalloproteases (ADAMs) is of importance for the regulation of cell-cell and cell-matrix adhesion of renal cells. ADAM10 controls glomerular and tubule development in a Notch1 signaling-dependent manner and regulates brush border composition. ADAM17 regulates the renin angiotensin system and is together with ADAM10 involved in calcium phosphate homeostasis. In kidney disease ADAMs, especially ADAM17 contribute to inflammation through their involvement in IL-6 trans-signaling, Notch-, epithelial growth factor receptor-, and tumor necrosis factor α signaling. ADAMs are interesting drug targets to reduce the inflammatory burden, defective cell adhesion and impaired signaling pathways in kidney diseases.
Collapse
|
16
|
Freundlich M, Gamba G, Rodriguez-Iturbe B. Fibroblast growth factor 23-Klotho and hypertension: experimental and clinical mechanisms. Pediatr Nephrol 2021; 36:3007-3022. [PMID: 33230698 PMCID: PMC7682775 DOI: 10.1007/s00467-020-04843-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) and chronic kidney disease (CKD) are increasingly recognized in pediatric patients and represent risk factors for cardiovascular morbidity and mortality later in life. In CKD, enhanced tubular sodium reabsorption is a leading cause of HTN due to augmented extracellular fluid volume expansion. The renin-angiotensin-aldosterone system (RAAS) upregulates various tubular sodium cotransporters that are also targets of the hormone fibroblast growth factor 23 (FGF23) and its co-receptor Klotho. FGF23 inhibits the activation of 1,25-dihydroxyvitamin D that is a potent suppressor of renin biosynthesis. Here we review the complex interactions and disturbances of the FGF23-Klotho axis, vitamin D, and the RAAS relevant to blood pressure regulation and discuss the therapeutic strategies aimed at mitigating their pathophysiologic contributions to HTN.
Collapse
Affiliation(s)
- Michael Freundlich
- Department of Pediatrics, Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
17
|
Mohanty SK, Suchiang K. Triiodothyronine (T3) enhances lifespan and protects against oxidative stress via activation of Klotho in Caenorhabditis elegans. Biogerontology 2021; 22:397-413. [PMID: 33851304 DOI: 10.1007/s10522-021-09923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Age predisposes individuals to significant diseases, and the biological processes contributing to aging are currently under intense investigation. Klotho is an anti-aging protein with multifaceted roles and is an essential component of the endocrine fibroblast growth factor. In Caenorhabditis elegans (C. elegans), there are two prospective orthologs of α-Klotho, C50F7.10, and E02H9.5, identified. The two orthologs' products are homologous to the highly conserved KL1 domain of human and mouse Klotho protein. Considering the endocrine system's major involvement in an organism's homeostasis and that thyroid disorders increase with advancing age, the molecular mechanisms underlying its impact on different endocrine components during the aging process remain poorly characterized. In this study, we sought to determine the regulatory role of Triiodothyronine (T3) on homologs genes of klotho and its impact on different parameters of aging in the C. elegans model organism. We showed that T3 could increase the mRNA expressions of the klotho homologous genes in C. elegans. Moreover, T3 could also extend a worm lifespan and modulate oxidative stress resistance and aging biomarkers significantly and positively. Further investigations employing different mutant and transgenic strains reveal that these observed effects are mediated through the EGL-17/EGL-15 pathway via Klotho activation along with the involvement of transcription factor DAF-16. In conclusion, these findings have revealed an unexpected link between T3 and Klotho and how this link can modulate the aging process in C. elegans via activation of klotho. This study will help understand the crosstalk and regulations of different endocrine components and their consequences on the aging process in multiple species.
Collapse
Affiliation(s)
- Saswat Kumar Mohanty
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014, India.
| |
Collapse
|
18
|
Lee J, Ju KD, Kim HJ, Tsogbadrakh B, Ryu H, Kang E, Kang M, Yang J, Kang HG, Ahn C, Oh KH. Soluble α-klotho anchors TRPV5 to the distal tubular cell membrane independent of FGFR1 by binding TRPV5 and galectin-1 simultaneously. Am J Physiol Renal Physiol 2021; 320:F559-F568. [PMID: 33615893 DOI: 10.1152/ajprenal.00044.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypercalciuria is one of the early manifestations of diabetic nephropathy (DN). This is partially due to a decrease in the expression of renal transient receptor potential vanilloid type 5 (TRPV5), which is responsible for renal Ca2+ reabsorption. Soluble klotho has been previously determined to increase TRPV5 by cleaving sialic acid, causing TRPV5 to bind to membrane protein galectin-1. However, a recent study showed that soluble klotho binds to α2-3-sialyllactose, where sialic acid is located, on TRPV5, rather than cleave it. Here, we report that soluble klotho tethers TRPV5 on the membrane by binding both TRPV5 and galectin-1, thereby protecting membrane TRPV5 from diabetes-induced endocytosis. In the present study, we injected recombinant soluble α-klotho protein (rKL) into db/db and db/m mice for 8 wk and collected urine and kidneys. We administered rKL, AZD4547 [fibroblast growth factor (FGF) receptor type 1 inhibitor], and OTX008 (galectin-1 inhibitor) to cultured mouse distal tubular cells with or without 30 mM high-glucose (HG) exposure. db/db mice showed increased renal Ca2+ excretion and decreased renal TRPV5 expression. rKL treatment reversed this change. In vitro, TRPV5 expression in distal tubular cells decreased under HG conditions, and rKL successfully upregulated TRPV5 with or without FGF23. Also, immunofluorescence showed colocalization of klotho, TRPV5, and galectin-1 in distal tubule cells, suggesting that klotho binds to both TRPV5 and galectin-1. Moreover, when both FGF receptor type 1 and galectin-1 were inhibited, rKL failed to increase TRPV5 under HG conditions. Our results indicate that soluble klotho prevents TRPV5 from degradation and subsequent diabetes-induced endocytosis by anchoring TRPV5 through binding with both TRPV5 and galectin-1.NEW & NOTEWORTHY Soluble α-klotho anchors transient receptor potential vanilloid type 5 (TRPV5) on the apical membrane of the distal tubule by binding both TRPV5 and a membrane-abundant protein, galectin-1. This newly discovered mechanism works even when fibroblast growth factor (FGF)23 signaling is inhibited by treatment with FGF receptor type 1 inhibitor. Therefore, we identified how soluble α-klotho increases TRPV5 without FGF23. We confirmed this mechanism by observing that soluble α-klotho fails to enhance TRPV5 when both FGF receptor type 1 and galectin-1 are inhibited.
Collapse
Affiliation(s)
- Jinho Lee
- Center of Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Kyung Don Ju
- Center of Medical Innovation, Seoul National University Hospital, Seoul, Korea
| | - Hyo Jin Kim
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | | | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eunjeong Kang
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Minjung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea.,Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Haussler MR, Livingston S, Sabir ZL, Haussler CA, Jurutka PW. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2021; 5:e10432. [PMID: 33553988 PMCID: PMC7839824 DOI: 10.1002/jbm4.10432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
The hormonal vitamin D metabolite, 1,25‐dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand‐controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D‐regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D‐hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor‐23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR–RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D‐liganded VDR–RXR functions in osteoblasts/osteocytes by augmenting RANK‐ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR‐mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR–RXR on a VDRE at −35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c‐ets1‐P, binds to an enhancer element centered at −263 bp in the promoter‐proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D‐induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Sarah Livingston
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Carol A Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Peter W Jurutka
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ.,School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| |
Collapse
|
20
|
Russell DL, Oates JC, Markiewicz M. Association Between the Anti-Aging Gene Klotho and Selected Rheumatologic Autoimmune Diseases. Am J Med Sci 2021; 361:169-175. [PMID: 33349438 PMCID: PMC9741923 DOI: 10.1016/j.amjms.2020.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Klotho long recognized for its role in anti-aging, is potentially implicated in the pathogenesis of rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. Aging of the immune system coincides with the inability of the body to recognize self-antigens, which often leads to autoimmune responses. The role of Klotho in these autoimmune diseases should be of high interest; however, few articles have been published exploring the role of Klotho in the pathogenesis, organ involvement, or clinical manifestation of rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis. Herein, we discuss information gathered from peer-reviewed publications to describe the emerging role of Kl in these select rheumatologic autoimmune diseases.
Collapse
Affiliation(s)
| | - Jim C Oates
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina;,Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Margaret Markiewicz
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
21
|
Could α-Klotho Unlock the Key Between Depression and Dementia in the Elderly: from Animal to Human Studies. Mol Neurobiol 2021; 58:2874-2885. [PMID: 33527303 DOI: 10.1007/s12035-021-02313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
α-Klotho is known for its aging-related functions and is associated with neurodegenerative diseases, accelerated aging, premature morbidity, and mortality. Recent literature suggests that α-Klotho is also involved in the regulation of mental functions, such as cognition and psychosis. While most of studies of α-Klotho are focusing on its anti-aging functions and protective role in dementia, increasing evidence showed many shared symptoms between depression and dementia, while depression has been proposed as the preclinical stage of dementia such as Alzheimer's disease (AD). To see whether and how α-Klotho can be a key biological link between depression and dementia, in this review, we first gathered the evidence on biological distribution and function of α-Klotho in psychiatric functions from animal studies to human clinical investigations with a focus on the regulation of cognition and mood. Then, we discussed and highlighted the potential common underlying mechanisms of α-Klotho between psychiatric diseases and cognitive impairment. Finally, we hypothesized that α-Klotho might serve as a neurobiological link between depression and dementia through the regulation of oxidative stress and inflammation.
Collapse
|
22
|
Ewendt F, Feger M, Föller M. Role of Fibroblast Growth Factor 23 (FGF23) and αKlotho in Cancer. Front Cell Dev Biol 2021; 8:601006. [PMID: 33520985 PMCID: PMC7841205 DOI: 10.3389/fcell.2020.601006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Together with fibroblast growth factors (FGFs) 19 and 21, FGF23 is an endocrine member of the family of FGFs. Mainly secreted by bone cells, FGF23 acts as a hormone on the kidney, stimulating phosphate excretion and suppressing formation of 1,25(OH)2D3, active vitamin D. These effects are dependent on transmembrane protein αKlotho, which enhances the binding affinity of FGF23 for FGF receptors (FGFR). Locally produced FGF23 in other tissues including liver or heart exerts further paracrine effects without involvement of αKlotho. Soluble Klotho (sKL) is an endocrine factor that is cleaved off of transmembrane Klotho or generated by alternative splicing and regulates membrane channels, transporters, and intracellular signaling including insulin growth factor 1 (IGF-1) and Wnt pathways, signaling cascades highly relevant for tumor progression. In mice, lack of FGF23 or αKlotho results in derangement of phosphate metabolism and a syndrome of rapid aging with abnormalities affecting most organs and a very short life span. Conversely, overexpression of anti-aging factor αKlotho results in a profound elongation of life span. Accumulating evidence suggests a major role of αKlotho as a tumor suppressor, at least in part by inhibiting IGF-1 and Wnt/β-catenin signaling. Hence, in many malignancies, higher αKlotho expression or activity is associated with a more favorable outcome. Moreover, also FGF23 and phosphate have been revealed to be factors relevant in cancer. FGF23 is particularly significant for those forms of cancer primarily affecting bone (e.g., multiple myeloma) or characterized by bone metastasis. This review summarizes the current knowledge of the significance of FGF23 and αKlotho for tumor cell signaling, biology, and clinically relevant parameters in different forms of cancer.
Collapse
Affiliation(s)
- Franz Ewendt
- Department of Nutritional Physiology, Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
23
|
Kim JH, Park EY, Hwang KH, Park KS, Choi SJ, Cha SK. Soluble αKlotho downregulates Orai1-mediated store-operated Ca 2+ entry via PI3K-dependent signaling. Pflugers Arch 2021; 473:647-658. [PMID: 33386992 PMCID: PMC8049930 DOI: 10.1007/s00424-020-02510-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
αKlotho is a type 1 transmembrane anti-aging protein. αKlotho-deficient mice have premature aging phenotypes and an imbalance of ion homeostasis including Ca2+ and phosphate. Soluble αKlotho is known to regulate multiple ion channels and growth factor-mediated phosphoinositide-3-kinase (PI3K) signaling. Store-operated Ca2+ entry (SOCE) mediated by pore-forming subunit Orai1 and ER Ca2+ sensor STIM1 is a ubiquitous Ca2+ influx mechanism and has been implicated in multiple diseases. However, it is currently unknown whether soluble αKlotho regulates Orai1-mediated SOCE via PI3K-dependent signaling. Among the Klotho family, αKlotho downregulates SOCE while βKlotho or γKlotho does not affect SOCE. Soluble αKlotho suppresses serum-stimulated SOCE and Ca2+ release-activated Ca2+ (CRAC) channel currents. Serum increases the cell-surface abundance of Orai1 via stimulating vesicular exocytosis of the channel. The serum-stimulated SOCE and cell-surface abundance of Orai1 are inhibited by the preincubation of αKlotho protein or PI3K inhibitors. Moreover, the inhibition of SOCE and cell-surface abundance of Orai1 by pretreatment of brefeldin A or tetanus toxin or PI3K inhibitors prevents further inhibition by αKlotho. Functionally, we further show that soluble αKlotho ameliorates serum-stimulated SOCE and cell migration in breast and lung cancer cells. These results demonstrate that soluble αKlotho downregulates SOCE by inhibiting PI3K-driven vesicular exocytosis of the Orai1 channel and contributes to the suppression of SOCE-mediated tumor cell migration.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Institute of Mitochondrial Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Young Park
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Obstetrics and Gynecology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea
| | - Kyu-Hee Hwang
- Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Institute of Mitochondrial Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Institute of Mitochondrial Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Jin Choi
- Department of Obstetrics and Gynecology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea.
| | - Seung-Kuy Cha
- Department of Physiology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwondo, 26426, Republic of Korea.
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
- Institute of Mitochondrial Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
24
|
Gao X, Sun Z, Ma G, Li Y, Liu M, Zhang G, Xu H, Gao Y, Zhou J, Deng Q, Li R. Reduced Plasma Levels of α-Klotho and Their Correlation With Klotho Polymorphisms in Elderly Patients With Major Depressive Disorders. Front Psychiatry 2021; 12:682691. [PMID: 34721095 PMCID: PMC8548667 DOI: 10.3389/fpsyt.2021.682691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Recent literature suggests that α-Klotho, a widely recognized anti-aging protein, is involved in longevity as well as in many diseases, including Alzheimer's disease, and depression. Although the Klotho gene encodes α-Klotho, a single transmembrane protein with intracellular and extracellular domains, the relationship between Klotho gene polymorphism and circulating α-Klotho levels in patients with major depressive disorder (MDD) is not clear. Methods: A total of 144 MDD patients and 112 age-matched healthy controls were included in this study. The Klotho genetic polymorphisms (rs9536314, rs9527025, and rs9315202) and plasma α-Klotho levels were measured by PCR and ELISA, respectively. The severity of depressive symptoms was estimated using the Hamilton Depression Scale (HAMD). Results: We found a significantly lower level of plasma α-Klotho in the MDD patients than in controls. Among them, only elderly MDD patients (first episode) showed significantly lower α-Klotho levels than the age-matched controls, while elderly recurrent and young MDD patients showed no difference in plasma α-Klotho levels from age-matched controls. The young MDD group showed a significantly earlier onset age, higher plasma α-Klotho levels, and lower HAMD scores than those in the elderly MDD group. While the plasma α-Klotho levels were higher in rs9315202 T alleles carrier regardless age or sex, the rs9315202 T allele was negatively correlated with disease severity only in the elderly MDD patients. Conclusion: The results of our study showed that only elderly MDD patients showed a decrease in plasma α-Klotho levels along with an increase in disease severity as well as an association with the number of rs9315202 T alleles, and not young MDD patients compared to age-matched controls. Our data suggest that circulating α-Klotho levels combined with Klotho genetic polymorphisms are important in elderly MDD patients, particularly carriers of the Klotho gene rs9315202 T allele.
Collapse
Affiliation(s)
- Xiang Gao
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Guangwei Ma
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuhong Li
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Hong Xu
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yane Gao
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jixuan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Qi Deng
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Rena Li
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Lanzani C, Citterio L, Vezzoli G. Klotho: a link between cardiovascular and non-cardiovascular mortality. Clin Kidney J 2020; 13:926-932. [PMID: 33391735 PMCID: PMC7769552 DOI: 10.1093/ckj/sfaa100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
Klotho is a membrane-bound protein acting as an obligatory coreceptor for fibroblast growth factor 23 (FGF23) in the kidney and parathyroid glands. The extracellular portion of its molecule may be cleaved and released into the blood and produces multiple endocrine effects. Klotho exerts anti-inflammatory and antioxidative activities that may explain its ageing suppression effects evidenced in mice; it also modulates mineral metabolism and FGF23 activities and limits their negative impact on cardiovascular system. Clinical studies have found that circulating Klotho is associated with myocardial hypertrophy, coronary artery disease and stroke and may also be involved in the pathogenesis of salt-sensitive hypertension with a mechanism sustained by inflammatory cytokines. As a consequence, patients maintaining high serum levels of Klotho not only show decreased cardiovascular mortality but also non-cardiovascular mortality. Klotho genetic polymorphisms may influence these clinical relationships and predict cardiovascular risk; rs9536314 was the polymorphism most frequently involved in these associations. These findings suggest that Klotho and its genetic polymorphisms may represent a bridge between inflammation, salt sensitivity, hypertension and mortality. This may be particularly relevant in patients with chronic kidney disease who have decreased Klotho levels in tissues and blood.
Collapse
Affiliation(s)
- Chiara Lanzani
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Citterio
- Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Vezzoli
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
26
|
Dittmer KE, Heathcott RW, Marshall JC, Azarpeykan S. Expression of Phosphatonin-Related Genes in Sheep, Dog and Horse Kidneys Using Quantitative Reverse Transcriptase PCR. Animals (Basel) 2020; 10:ani10101806. [PMID: 33027890 PMCID: PMC7601102 DOI: 10.3390/ani10101806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Traditionally, it has been thought that control of body phosphorus was secondary to the tighter control of calcium. However, over the last 20 years, an extensive system for control of body phosphorus by proteins called phosphatonins has been shown to exist. Most research on phosphatonins has been done in rat or mouse models. This paper looks at whether important proteins and phosphorus channels in the phosphatonin pathways are present in the kidneys of dogs, horses and sheep. The results showed that all of the components of the phosphatonin system are present in these species, but that there are species differences in which protein or channel is most common, and in the relationships between the proteins and channels. This research is important because the phosphatonin system is involved in the progression of chronic kidney disease in humans and animals, and differences in the systems between animal species may affect treatment of chronic kidney disease. Abstract The aim of this preliminary study was to determine the relative expression of phosphatonin pathway-related genes in normal dog, sheep and horse kidneys and to explore the relationships between the different genes. Kidneys were collected post-mortem from 10 sheep, 10 horses and 8 dogs. RNA was extracted, followed by reverse transcriptase quantitative polymerase chain reaction for fibroblast growth factor receptor 1 IIIc (FGFR1IIIC), sodium-phosphate co-transporter (NPT) 1 (SLC17A1), NPT2a (SLC34A1), NPT2c (SLC34A3), parathyroid hormone 1 receptor (PTH1R), klotho (KL), vitamin D receptor (VDR), 1a-hydroxylase (CYP27B1) and 24-hydroxylase (CYP24A1). NPT2a was highly expressed in the dog kidneys, compared with those of the horses and sheep. NPT1 had greatest expression in horses and sheep, although the three different NPTs all had relatively similar expression in sheep. There was little variability in FGFR1IIIc expression, particularly in the dogs and horses. FGFR1IIIc expression was negatively correlated with NPT genes (except NPT2a in sheep), while NPT genes were all positively correlated with each other. Unexpectedly, klotho was positively correlated with NPT genes in all three species. These results provide the basis for further research into this important regulatory system. In particular, species differences in phosphatonin gene expression should be considered when considering the pathogenesis of chronic kidney disease.
Collapse
Affiliation(s)
- Keren E. Dittmer
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (R.W.H.); (S.A.)
- Correspondence:
| | - Rosemary W. Heathcott
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (R.W.H.); (S.A.)
| | - Jonathan C. Marshall
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - Sara Azarpeykan
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (R.W.H.); (S.A.)
| |
Collapse
|
27
|
Bi X, Yang K, Zhang B, Zhao J. The Protective Role of Klotho in CKD-Associated Cardiovascular Disease. KIDNEY DISEASES 2020; 6:395-406. [PMID: 33313060 DOI: 10.1159/000509369] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in advanced CKD. The major pathological changes of CKD-associated CVD are severe vascular media calcification, aberrant cardiac remodeling such as hypertrophy and fibrosis, as well as accelerated atherosclerosis. α-Klotho is proposed as an anti-aging gene, which is primarily expressed in the kidney. Recent studies reveal that α-Klotho deficiency is associated with profound cardiovascular dysfunction. Of note, CKD represents extremely declined α-Klotho levels, hinting that α-Klotho deficiency may be implicated in the pathogenesis of CKD-associated CVD. Summary Based on the pathogenic mechanism of α-Klotho deficiency and decreased Klotho levels in the circulation even early in stage 1 of CKD, α-Klotho serves as a sensitive biomarker for renal insufficiency and also a novel predictor of risk of overall mortality of CVD events in CKD. Meanwhile, loss of Klotho resulted from kidney dysfunction markedly contributes to the progressive development of CKD and CVD. By contrast, prevention of Klotho decline using exogenous supplementation or genetically activated ways by several mechanisms can dramatically mitigate cardiac dysfunction, prevent vascular calcification, and retard the progression of CKD-accelerated atherosclerosis. Key Messages Klotho deficiency is proposed as a novel predictive biomarker as well as a pathogenic contributor to CVD events in CKD. In the future, Klotho may be a crucial potential therapeutic strategy to decrease the burden of CVD comorbidity with CKD in clinics.
Collapse
Affiliation(s)
- Xianjin Bi
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
28
|
Shardell M, Drew DA, Semba RD, Harris TB, Cawthon PM, Simonsick EM, Kalyani RR, Schwartz AV, Kritchevsky SB, Newman AB. Plasma Soluble αKlotho, Serum Fibroblast Growth Factor 23, and Mobility Disability in Community-Dwelling Older Adults. J Endocr Soc 2020; 4:bvz032. [PMID: 32405607 PMCID: PMC7209777 DOI: 10.1210/jendso/bvz032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
CONTEXT αKlotho is a hormone and co-receptor for fibroblast growth factor 23 (FGF23), a hormone that downregulates active vitamin D synthesis and promotes phosphate excretion. Low αKlotho and high FGF23 occur in chronic kidney disease (CKD). OBJECTIVE We aimed to assess the relationships of αKlotho and FGF23 with mobility disability in community-dwelling older adults. DESIGN AND SETTING We estimated associations of plasma-soluble αKlotho and serum FGF23 concentrations with mobility disability over 6 years. Additional analyses was stratified by CKD. PARTICIPANTS Participants included 2751 adults (25.0% with CKD), aged 71 to 80 years, from the 1998 to 1999 Health, Aging, and Body Composition Study visit. MAIN OUTCOME MEASURES Walking disability and stair climb disability were defined as self-reported "a lot of difficulty" or an inability to walk a quarter mile and climb 10 stairs, respectively. RESULTS Median (interquartile range [IQR]) serum FGF23 and plasma soluble αKlotho concentrations were 46.6 (36.7, 60.2) pg/mL and 630.4 (478.4, 816.0) pg/mL, respectively. After adjustment, higher αKlotho concentrations were associated with lower walking disability rates (Rate Ratio [RR] highest vs. lowest tertile = 0.74; 95% confidence interval l [CI] = 0.62, 0.89; P = 0.003). Higher FGF23 concentrations were associated with higher walking disability rates (RR highest vs. lowest tertile = 1.24; 95%CI = 1.03, 1.50; P = 0.005). Overall, higher αKlotho combined with lower FGF23 was associated with the lowest walking disability rates (P for interaction = 0.023). Stair climb disability findings were inconsistent. No interactions with CKD were statistically significant (P for interaction > 0.10). CONCLUSIONS Higher plasma soluble αKlotho and lower serum FGF23 concentrations were associated with lower walking disability rates in community-dwelling older adults, particularly those without CKD.
Collapse
Affiliation(s)
- Michelle Shardell
- Institute for Genome Sciences, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - David A Drew
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Richard D Semba
- Department of Ophthalmology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, Bethesda, Maryland
| | - Peggy M Cawthon
- Research Institute, California Pacific Medical Center, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Eleanor M Simonsick
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, Maryland
| | - Rita R Kalyani
- Department of Endocrinology, Metabolism, and Diabetes, Johns Hopkins Medical Institutions, Baltimore Maryland
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University, Winston-Salem, North Carolina
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Zhong X, Jagarlapudi S, Weng Y, Ly M, Rouse JC, McClure K, Ishino T, Zhang Y, Sousa E, Cohen J, Tzvetkova B, Cote K, Scarcelli JJ, Johnson K, Palandra J, Apgar JR, Yaddanapudi S, Gonzalez-Villalobos RA, Opsahl AC, Lam K, Yao Q, Duan W, Sievers A, Zhou J, Ferguson D, D'Antona A, Zollner R, Zhu HL, Kriz R, Lin L, Clerin V. Structure-function relationships of the soluble form of the antiaging protein Klotho have therapeutic implications for managing kidney disease. J Biol Chem 2020; 295:3115-3133. [PMID: 32005658 DOI: 10.1074/jbc.ra119.012144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/20/2020] [Indexed: 01/28/2023] Open
Abstract
The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and β-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139.
| | - Srinath Jagarlapudi
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Yan Weng
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Mellisa Ly
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Jason C Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Kim McClure
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Tetsuya Ishino
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Yan Zhang
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Eric Sousa
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Justin Cohen
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Boriana Tzvetkova
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Kaffa Cote
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Keith Johnson
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810
| | - Joe Palandra
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - James R Apgar
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Suma Yaddanapudi
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | | | - Alan C Opsahl
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Khetemenee Lam
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Qing Yao
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Weili Duan
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Annette Sievers
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Jing Zhou
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Darren Ferguson
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Aaron D'Antona
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Richard Zollner
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Hongli L Zhu
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Ron Kriz
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Laura Lin
- BioMedicine Design, Pfizer Worldwide Research, Cambridge, Massachusetts 02139
| | - Valerie Clerin
- Internal Medicine, Pfizer Worldwide Research, Cambridge, Massachusetts 02139.
| |
Collapse
|
30
|
Identification of the cleavage sites leading to the shed forms of human and mouse anti-aging and cognition-enhancing protein Klotho. PLoS One 2020; 15:e0226382. [PMID: 31929539 PMCID: PMC6957300 DOI: 10.1371/journal.pone.0226382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/25/2019] [Indexed: 12/02/2022] Open
Abstract
Klotho is an age-extending, cognition-enhancing protein found to be down-regulated in aged mammals when age-related diseases start to appear. Low levels of Klotho occur in neurodegenerative diseases, kidney disease and many cancers. Many normal and pathologic processes involve the proteolytic shedding of membrane proteins. Transmembrane (TM) Klotho contains two homologous domains, KL1 and KL2 with homology to glycosidases. After shedding by ADAM 10 and 17, a shed Klotho isoform is released into serum and urine by the kidney, and into the CSF by the choroid plexus. We previously reported that human Klotho contains two major cleavage sites. However, the exact cleavage site responsible for the cleavage between the KL1 and KL2 domains remains unknown for the human Klotho, and both sites are unknown for mouse Klotho. In this study, we aimed to identify the cleavage sites leading to the shed forms of human and mouse Klotho. Mutations in the region close to the TM domain of mouse Klotho result in the reduced shedding of the 130 kD (KL1+KL2) and 70 kD (KL1) fragments, suggesting that the cleavage site lies within the mutated region. We further identified the cleavage sites responsible for the cleavage between KL1 and KL2 of human and mouse Klotho. Moreover, mutated Klotho proteins have similar subcellular localization patterns as wild type Klotho. Finally, in an FGF23 functional assay, all Klotho mutants with a nine amino acid deletion can also function as an FGFR1 co-receptor for FGF23 signaling, however, the signaling activity was greatly reduced. The study provides new and important information on Klotho shedding, and paves the way for studies aimed to distinguish between the distinct roles of the various isoforms of Klotho.
Collapse
|
31
|
Abstract
The Klotho proteins, αKlotho and βKlotho, are essential components of endocrine fibroblast growth factor (FGF) receptor complexes, as they are required for the high-affinity binding of FGF19, FGF21 and FGF23 to their cognate FGF receptors (FGFRs). Collectively, these proteins form a unique endocrine system that governs multiple metabolic processes in mammals. FGF19 is a satiety hormone that is secreted from the intestine on ingestion of food and binds the βKlotho-FGFR4 complex in hepatocytes to promote metabolic responses to feeding. By contrast, under fasting conditions, the liver secretes the starvation hormone FGF21, which induces metabolic responses to fasting and stress responses through the activation of the hypothalamus-pituitary-adrenal axis and the sympathetic nervous system following binding to the βKlotho-FGFR1c complex in adipocytes and the suprachiasmatic nucleus, respectively. Finally, FGF23 is secreted by osteocytes in response to phosphate intake and binds to αKlotho-FGFR complexes, which are expressed most abundantly in renal tubules, to regulate mineral metabolism. Growing evidence suggests that the FGF-Klotho endocrine system also has a crucial role in the pathophysiology of ageing-related disorders, including diabetes, cancer, arteriosclerosis and chronic kidney disease. Therefore, targeting the FGF-Klotho endocrine axes might have therapeutic benefit in multiple systems; investigation of the crystal structures of FGF-Klotho-FGFR complexes is paving the way for the development of drugs that can regulate these axes.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
Smith ER, Holt SG, Hewitson TD. αKlotho-FGF23 interactions and their role in kidney disease: a molecular insight. Cell Mol Life Sci 2019; 76:4705-4724. [PMID: 31350618 PMCID: PMC11105488 DOI: 10.1007/s00018-019-03241-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Following the serendipitous discovery of the ageing suppressor, αKlotho (αKl), several decades ago, a growing body of evidence has defined a pivotal role for its various forms in multiple aspects of vertebrate physiology and pathology. The transmembrane form of αKl serves as a co-receptor for the osteocyte-derived mineral regulator, fibroblast growth factor (FGF)23, principally in the renal tubules. However, compelling data also suggest that circulating soluble forms of αKl, derived from the same source, may have independent homeostatic functions either as a hormone, glycan-cleaving enzyme or lectin. Chronic kidney disease (CKD) is of particular interest as disruption of the FGF23-αKl axis is an early and common feature of disease manifesting in markedly deficient αKl expression, but FGF23 excess. Here we critically discuss recent findings in αKl biology that conflict with the view that soluble αKl has substantive functions independent of FGF23 signalling. Although the issue of whether soluble αKl can act without FGF23 has yet to be resolved, we explore the potential significance of these contrary findings in the context of CKD and highlight how this endocrine pathway represents a promising target for novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia.
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| |
Collapse
|
33
|
Zhang J, Cao K, Pastor JV, Li L, Moe OW, Hsia CCW. Alpha-Klotho, a critical protein for lung health, is not expressed in normal lung. FASEB Bioadv 2019; 1:675-687. [PMID: 32123814 PMCID: PMC6996373 DOI: 10.1096/fba.2019-00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 02/25/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Alpha-Klotho (αKlotho), produced by the kidney and selected organs, is essential for tissue maintenance and protection. Homozygous αKlotho-deficiency leads to premature multi-organ degeneration and death; heterozygous insufficiency leads to apoptosis, oxidative stress, and increased injury susceptibility. There is inconsistent data in the literature regarding whether αKlotho is produced locally in the lung or derived from circulation. We probed murine and human lung by immunohistochemistry (IHC) and immunoblot (IB) using two monoclonal (anti-αKlotho Kl1 and Kl2 domains) and three other common commercial antibodies. Monoclonal anti-Kl1 and anti-Kl2 yielded no labeling in lung on IHC or IB; specific labeling was observed in kidney (positive control) and also murine lungs following tracheal delivery of αKlotho cDNA, demonstrating specificity and ability to detect artificial pulmonary expression. Other commercial antibodies labeled numerous lung structures (IHC) and multiple bands (IB) incompatible with known αKlotho mobility; labeling was not abolished by blocking with purified αKlotho or using lungs from hypomorphic αKlotho-deficient mice, indicating nonspecificity. Results highlight the need for rigorous validation of reagents. The lung lacks native αKlotho expression and derives full-length αKlotho from circulation; findings could explain susceptibility to lung injury in extrapulmonary pathology associated with reduced circulating αKlotho levels, for example, renal failure. Conversely, αKlotho may be artificially expressed in the lung, suggesting therapeutic opportunities.
Collapse
Affiliation(s)
- Jianning Zhang
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Khoa Cao
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Johanne V. Pastor
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Liping Li
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Orson W. Moe
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Charles and Jane Pak Center of Mineral Metabolism and Clinical ResearchUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Departments of PhysiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Connie C. W. Hsia
- Departments of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
34
|
Role of Klotho in Chronic Calcineurin Inhibitor Nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1825018. [PMID: 31772699 PMCID: PMC6854173 DOI: 10.1155/2019/1825018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Calcineurin inhibitors (CNIs) are the most popular immunosuppressants in organ transplantation, but nephrotoxicity is a major concern. The common mechanism underlying chronic CNI nephropathy is oxidative stress, and the process of chronic CNI nephropathy is similar to that of aging. Current studies provide evidence that antiaging Klotho protein plays an important role in protecting against oxidative stress, and its signaling is a target for preventing oxidative stress-induced aging process. In this review, we focus on the association between Klotho and oxidative stress and the protective mechanism of action of Klotho against oxidative stress in chronic CNI nephropathy. In addition, we discuss the delivery strategy for Klotho in CNI-induced nephropathy.
Collapse
|
35
|
Ma Z, Qu B, Zhong S, Yao L, Gao Z, Zhang S. Subtle Difference Generates Big Dissimilarity: Comparison of Enzymatic Activity in KL1 and KL2 Domains of Lancelet Klotho. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:448-462. [PMID: 31053952 DOI: 10.1007/s10126-019-09891-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Klotho, a putative aging suppressor, shares sequence similarity with members of the glycosidase family 1. It has been identified in several vertebrate species, but only mouse Klotho has so far been proven to exhibit β-glucuronidase activity. Thus, the argument that Klotho from animals other than mouse has glycosidase activity remains open. Moreover, little information is available regarding the structure-activity relationship of Klotho. Here, we demonstrate the presence of a single klotho gene in the amphioxus Branchiostoma japonicum, Bjklotho, which possesses two tandem domains named BjKL1 and BjKL2, and each of them has two glutamic acid residues that have been shown to be involved in the catalytic activity of family 1 glycosidase. Enzymatic activity assays of the recombinant proteins BjKL1 and BjKL2 revealed that only BjKL2 displayed β-glucosidase activity, but BjKL1 did not. Structural analysis showed that there existed nine consecutive but not conserved residues in the β6α6 loop, which affects the conformational form in the entrance to the catalytic pocket of BjKL1 and BjKL2, thereby leading to a subtle difference in the enzyme-substrate binding and interaction. Furthermore, the substitution of the nine residues 354QNRVDPNDT362 in BjKL1 by the residues 884EDNVVVGAA892 in BjKL2 resulted in significant increase in β-glucosidase activity in the BjKL1 mutant. Our results indicate that BjKL2 possesses β-glucosidase, the first data as such in invertebrates. We also identify, for the first time, the residues 884EDNVVVGAA892 in BjKL2 a sequence critical and indispensable for glucosidase.
Collapse
Affiliation(s)
- Zengyu Ma
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Baozhen Qu
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Shenjie Zhong
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Lan Yao
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Zhan Gao
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
- Ocean University of China, Room 213, Darwin Building, 5 Yushan Road, Qingdao, 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution and Development, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
- Ocean University of China, Room 205, Ke Xue Guan, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
36
|
Mazucanti CH, Kawamoto EM, Mattson MP, Scavone C, Camandola S. Activity-dependent neuronal Klotho enhances astrocytic aerobic glycolysis. J Cereb Blood Flow Metab 2019; 39:1544-1556. [PMID: 29493420 PMCID: PMC6681535 DOI: 10.1177/0271678x18762700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations of the β-glucuronidase protein α-Klotho have been associated with premature aging, and altered cognitive function. Although highly expressed in specific areas of the brain, Klotho functions in the central nervous system remain unknown. Here, we show that cultured hippocampal neurons respond to insulin and glutamate stimulation by elevating Klotho protein levels. Conversely, AMPA and NMDA antagonism suppress neuronal Klotho expression. We also provide evidence that soluble Klotho enhances astrocytic aerobic glycolysis by hindering pyruvate metabolism through the mitochondria, and stimulating its processing by lactate dehydrogenase. Pharmacological inhibition of FGFR1, Erk phosphorylation, and monocarboxylic acid transporters prevents Klotho-induced lactate release from astrocytes. Taken together, these data suggest Klotho is a potential new player in the metabolic coupling between neurons and astrocytes. Neuronal glutamatergic activity and insulin modulation elicit Klotho release, which in turn stimulates astrocytic lactate formation and release. Lactate can then be used by neurons and other cells types as a metabolic substrate.
Collapse
Affiliation(s)
- Caio H Mazucanti
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisa M Kawamoto
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mark P Mattson
- 2 Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.,3 Department of Neurosciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristoforo Scavone
- 1 Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simonetta Camandola
- 2 Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
37
|
Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens 2019; 28:16-25. [PMID: 30451736 DOI: 10.1097/mnh.0000000000000467] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The current review examines what is known about the FGF-23/α-Klotho co-dependent and independent pathophysiological effects, and whether FGF-23 and/or α-Klotho are potential therapeutic targets. RECENT FINDINGS FGF-23 is a hormone derived mainly from bone, and α-Klotho is a transmembrane protein. Together they form a trimeric signaling complex with FGFRs in target tissues to mediate the physiological functions of FGF-23. Local and systemic factors control FGF-23 release from osteoblast/osteocytes in bone, and circulating FGF-23 activates FGFR/α-Klotho complexes in kidney proximal and distal renal tubules to regulate renal phosphate excretion, 1,25 (OH)2D metabolism, sodium and calcium reabsorption, and ACE2 and α-Klotho expression. The resulting bone-renal-cardiac-immune networks provide a new understanding of bone and mineral homeostasis, as well as identify other biological effects FGF-23. Direct FGF-23 activation of FGFRs in the absence of α-Klotho is proposed to mediate cardiotoxic and adverse innate immune effects of excess FGF-23, particularly in chronic kidney disease, but this FGF-23, α-Klotho-independent signaling is controversial. In addition, circulating soluble Klotho (sKl) released from the distal tubule by ectodomain shedding is proposed to have beneficial health effects independent of FGF-23. SUMMARY Separation of FGF-23 and α-Klotho independent functions has been difficult in mammalian systems and understanding FGF-23/α-Klotho co-dependent and independent effects are incomplete. Antagonism of FGF-23 is important in treatment of hypophosphatemic disorders caused by excess FGF-23, but its role in chronic kidney disease is uncertain. Administration of recombinant sKl is an unproven therapeutic strategy that theoretically could improve the healt span and lifespan of patients with α-Klotho deficiency.
Collapse
|
38
|
Serum Klotho as a marker for early diagnosis of acute kidney injury after cardiac surgery. J Med Biochem 2019; 39:133-139. [PMID: 33033444 DOI: 10.2478/jomb-2019-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Early diagnosis of acute kidney injury (AKI) after cardiac surgery is based on serum creatinine which is neither a specific nor a sensitive biomarker. In our study, we investigated the role of serum Klotho in early prediction of AKI after cardiac surgery using cardiopulmonary bypass (CPB). Methods The included patients were classified into three groups according to AKI stages using KDIGO criteria. The measurements of creatinine and Klotho levels in serum were performed before surgery, at the end of CPB, 2 hours after the end of CPB, 24 hours and 48 hours postoperatively. Results Seventy-eight patients were included in the study. A significant increase of creatinine levels (p<0.001) was measured on the first day after the surgery in both AKI groups compared to the non-AKI group. However, a significant difference between AKI-2 and AKI-1 groups (p=0.006) was not measured until the second day after the operation. Using decision trees for classification of patients with a higher or lower risk of AKI we found out that Klotho discriminated between the patients at low risk of developing more severe kidney injury in the first hours after surgery and the patients at high risk better than creatinine. Adding also the early measurements of creatinine in the decision tree model further improved the prediction of AKI. Conclusions Serum Klotho may be useful to discriminate between the patients at lower and the patients at higher risk of developing severe kidney injury after cardiac surgery using CPB already in the first hours after surgery.
Collapse
|
39
|
Reduced hybrid/complex N-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy. J Mol Cell Cardiol 2019; 132:13-23. [PMID: 31071333 DOI: 10.1016/j.yjmcc.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure, with ~70% of DCM cases considered idiopathic. We showed recently, through genetic ablation of the MGAT1 gene, which encodes an essential glycosyltransferase (GlcNAcT1), that prevention of cardiomyocyte hybrid/complex N-glycosylation was sufficient to cause DCM that led to heart failure and early death. Our findings are consistent with increasing evidence suggesting a link between aberrant glycosylation and heart diseases of acquired and congenital etiologies. However, the mechanisms by which changes in glycosylation contribute to disease onset and progression remain largely unknown. Activity and gating of voltage-gated Na+ and K+ channels (Nav and Kv respectively) play pivotal roles in the initiation, shaping and conduction of cardiomyocyte action potentials (APs) and aberrant channel activity was shown to contribute to cardiac disease. We and others showed that glycosylation can impact Nav and Kv function; therefore, here, we investigated the effects of reduced cardiomyocyte hybrid/complex N-glycosylation on channel activity to investigate whether chronic aberrant channel function can contribute to DCM. Ventricular cardiomyocytes from MGAT1 deficient (MGAT1KO) mice display prolonged APs and pacing-induced aberrant early re-activation that can be attributed to, at least in part, a significant reduction in Kv expression and activity that worsens over time suggesting heart disease-related remodeling. MGAT1KO Nav demonstrate no change in expression or maximal conductance but show depolarizing shifts in voltage-dependent gating. Together, the changes in MGAT1KO Nav and Kv function likely contribute to observed anomalous electrocardiograms and Ca2+ handling. These findings provide insight into mechanisms by which altered glycosylation contributes to DCM through changes in Nav and Kv activity that impact conduction, Ca2+ handling and contraction. The MGAT1KO can also serve as a useful model to study the effects of aberrant electrical signaling on cardiac function and the remodeling events that can occur with heart disease progression.
Collapse
|
40
|
Martín-González C, González-Reimers E, Quintero-Platt G, Martínez-Riera A, Santolaria-Fernández F. Soluble α-Klotho in Liver Cirrhosis and Alcoholism. Alcohol Alcohol 2019; 54:204-208. [PMID: 30860544 DOI: 10.1093/alcalc/agz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS AND BACKGROUND Alpha Klotho is a transmembrane protein that serves as co-receptor for FGF23. Ectodomain of membrane bound α Klotho may be shed by membrane bound proteases (activated, among other factors, by tumor necrosis factor (TNF)-α) generating the soluble form of the protein (sKl) that functions as a hormone by itself. It modulates calcium influx into cells, blunts IGF-1/Insulin signaling, promotes synthesis of antioxidants, generally slows down tumor progression, delays cell senescence, is neuroprotective and promotes oligodendrocyte maturation and myelin synthesis, and muscle rejuvenation. It may be involved in inflammation and exerts antifibrogenic effects. Some of these pathways may become altered in alcoholism or liver cirrhosis, but data are scattered and scarce and an update is required. METHOD Literature survey. RESULTS AND CONCLUSIONS Alcohol consumption in non-alcoholics is inversely related to sKl, but alcoholic cirrhotics showed higher-than-normal sKl values in association with liver function derangement. In hepatoma cells, the intensity of Klotho staining was related to faster tumor progression and a shortened life span. Among severe alcoholic cirrhotics sKl is directly related to serum TNF-α levels, and, inversely, to brain atrophy. Given the antioxidant, anti-inflammatory, and antifibrogenic effects of Klotho, perhaps the increase in cirrhosis (and in other inflammatory conditions, such as sepsis or cancer) reflects an attempt to regulate increased inflammation, but clinical and experimental research is urgently needed in this field.
Collapse
Affiliation(s)
- C Martín-González
- Servicio de Medicina Interna. Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - E González-Reimers
- Servicio de Medicina Interna. Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - G Quintero-Platt
- Servicio de Medicina Interna. Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - A Martínez-Riera
- Servicio de Medicina Interna. Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| | - F Santolaria-Fernández
- Servicio de Medicina Interna. Hospital Universitario de Canarias. Universidad de La Laguna. Tenerife, Canary Islands, Spain
| |
Collapse
|
41
|
Abstract
Purpose of review α-Klotho (Klotho) occurs in three isoforms, a membrane-bound form acting as a coreceptor for fibroblast growth factor-23 (FGF23) signalling, a shed soluble form consisting of Klotho's large ectodomain thought to act as an enzyme or a hormone, and a secreted truncated form generated by alternative splicing of the Klotho mRNA with unknown function. The purpose of this review is to highlight the recent advances in our understanding of Klotho's function in mineral homeostasis. Recent findings A number of seminal discoveries have recently been made in this area, shifting existing paradigms. The crystal structure of the ternary FGF receptor (FGFR)-1c/Klotho/FGF23 complex has been uncovered, revealing how the ligand FGF23 interacts with FGFR1c and the coreceptor Klotho at atomic resolution. Furthermore, it was shown that soluble Klotho lacks any glycosidase activity and serves as a bona fide coreceptor for FGF23 signalling. Experiments with a combination of Klotho and Fgf23-deficient mouse models demonstrated that all isoforms of Klotho lack any physiologically relevant, FGF23-independent functions in mineral homeostasis or ageing. Finally, it was demonstrated that the alternatively spliced Klotho mRNA is degraded and is not translated into a secreted Klotho protein isoform in humans. Summary Taken together, there is now overwhelming evidence that the main physiological function of transmembrane and soluble Klotho for mineral homeostasis is their role as coreceptors mediating FGF23 actions. In light of these findings, the main pathophysiological consequence of the downregulation of Klotho observed in acute and chronic renal failure may be the induction of renal FGF23 resistance.
Collapse
|
42
|
|
43
|
Olejnik A, Franczak A, Krzywonos-Zawadzka A, Kałużna-Oleksy M, Bil-Lula I. The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5171945. [PMID: 30671457 PMCID: PMC6323445 DOI: 10.1155/2018/5171945] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022]
Abstract
Klotho is a membrane-bound or soluble antiaging protein, whose protective activity is essential for a proper function of many organs. In 1997, an accidental insertion of a transgene led to creation of transgenic mice with several age-related disorders. In Klotho-deficient mice, the inherited phenotypes closely resemble human aging, while in an animal model of Klotho overexpression, the lifespan is extended. Klotho protein is detected mainly in the kidneys and brain. It is a coreceptor for fibroblast growth factor and hence is involved in maintaining endocrine system homeostasis. Furthermore, an inhibition of insulin/insulin-like growth factor-1 signaling pathway by Klotho regulates oxidative stress and reduces cell death. The association between serum Klotho and the classic risk factors, as well as the clinical history of cardiovascular disease, was also shown. There are a lot of evidences that Klotho deficiency correlates with the occurrence and development of coronary artery disease, atherosclerosis, myocardial infarction, and left ventricular hypertrophy. Therefore, an involvement of Klotho in the signaling pathways and in regulation of a proper cell metabolism could be a crucial factor in the cardiac and vascular protection. It is also well established that Klotho protein enhances the antioxidative response via augmented production of superoxide dismutase and reduced generation of reactive oxygen species. Recent studies have proven an expression of Klotho in cardiomyocytes and its increased expression in stress-related heart injury. Thus, the antioxidative and antiapoptotic activity of Klotho could be considered as the novel protective factor in cardiovascular disease and heart injury.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Aleksandra Franczak
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marta Kałużna-Oleksy
- Department of Cardiology, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
44
|
Hu MC, Shi M, Moe OW. Role of αKlotho and FGF23 in regulation of type II Na-dependent phosphate co-transporters. Pflugers Arch 2018; 471:99-108. [PMID: 30506274 DOI: 10.1007/s00424-018-2238-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/26/2022]
Abstract
Alpha-Klotho is a member of the Klotho family consisting of two other single-pass transmembrane proteins: βKlotho and γKlotho; αKlotho has been shown to circulate in the blood. Fibroblast growth factor (FGF)23 is a member of the FGF superfamily of 22 genes/proteins. αKlotho serves as a co-receptor with FGF receptors (FGFRs) to provide a receptacle for physiological FGF23 signaling including regulation of phosphate metabolism. The extracellular domain of transmembrane αKlotho is shed by secretases and released into blood circulation (soluble αKlotho). Soluble αKlotho has both FGF23-independent and FGF23-dependent roles in phosphate homeostasis by modulating intestinal phosphate absorption, urinary phosphate excretion, and phosphate distribution into bone in concerted interaction with other calciophosphotropic hormones such as PTH and 1,25-(OH)2D. The direct role of αKlotho and FGF23 in the maintenance of phosphate homeostasis is partly mediated by modulation of type II Na+-dependent phosphate co-transporters in target organs. αKlotho and FGF23 are principal phosphotropic hormones, and the manipulation of the αKlotho-FGF23 axis is a novel therapeutic strategy for genetic and acquired phosphate disorders and for conditions with FGF23 excess and αKlotho deficiency such as chronic kidney disease.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Nie M, Bal MS, Liu J, Yang Z, Rivera C, Wu XR, Hoenderop JGJ, Bindels RJM, Marciano DK, Wolf MTF. Uromodulin regulates renal magnesium homeostasis through the ion channel transient receptor potential melastatin 6 (TRPM6). J Biol Chem 2018; 293:16488-16502. [PMID: 30139743 DOI: 10.1074/jbc.ra118.003950] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
Up to 15% of the population have mild to moderate chronic hypomagnesemia, which is associated with type 2 diabetes mellitus, hypertension, metabolic syndrome, and chronic kidney disease. The kidney is the key organ for magnesium homeostasis, but our understanding of renal magnesium regulation is very limited. Uromodulin (UMOD) is the most abundant urinary protein in humans, and here we report that UMOD has a role in renal magnesium homeostasis. Umod-knockout (Umod -/-) mice excreted more urinary magnesium than WT mice and displayed up-regulation of genes promoting magnesium absorption. The majority of magnesium is absorbed in the thick ascending limb. However, both mouse strains responded similarly to the diuretic agent furosemide, indicating appropriate function of the thick ascending limb in the Umod -/- mice. Magnesium absorption is fine-tuned in the distal convoluted tubule (DCT) via the apical magnesium channel transient receptor potential melastatin 6 (TRPM6). We observed decreased apical Trpm6 staining in the DCT of Umod -/- mice. Applying biotinylation assays and whole-cell patch-clamp recordings, we found that UMOD enhances TRPM6 cell-surface abundance and current density from the extracellular space. UMOD physically interacted with TRPM6 and thereby impaired dynamin-dependent TRPM6 endocytosis. WT mice fed a low-magnesium diet had an increased urinary UMOD secretion compared with the same mice on a regular diet. Our results suggest that increased urinary UMOD secretion in low-magnesium states reduces TRPM6 endocytosis and thereby up-regulates TRPM6 cell-surface abundance to defend against further urinary magnesium losses.
Collapse
Affiliation(s)
| | | | - Jie Liu
- From the Departments of Pediatrics and
| | - Zhufeng Yang
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | - Xue-Ru Wu
- the Departments of Urology and Pathology, New York University School of Medicine, New York, New York 10016, and
| | - Joost G J Hoenderop
- the Department of Physiology, Radboud Center for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - René J M Bindels
- the Department of Physiology, Radboud Center for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Denise K Marciano
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
46
|
Tan SJ, Chu MM, Toussaint ND, Cai MM, Hewitson TD, Holt SG. High-intensity physical exercise increases serum α-klotho levels in healthy volunteers. J Circ Biomark 2018; 7:1849454418794582. [PMID: 30147756 PMCID: PMC6100126 DOI: 10.1177/1849454418794582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/02/2018] [Indexed: 01/16/2023] Open
Abstract
The recently discovered klotho proteins have roles in a diverse range of metabolic processes with the oldest protein, α-klotho, implicated in various cellular pathways in energy, glucose, and phosphate metabolism. Circulating soluble klotho (sKl), derived from membrane α-klotho cleavage, not only has effects on ion channels and insulin signaling pathways, but is inversely associated with mortality. Effects of physical exercise on sKl have not been well studied. The effect of a single high-intensity standardized exercise on sKl and serum phosphate (sPi) levels in healthy adults was investigated. A standard Bruce protocol treadmill exercise was undertaken by 10 fasting healthy volunteers. sKl, sPi, and blood glucose levels were measured in samples collected 1-week prior, immediately pre (Tpre), 0 (Tpost), 30 (T30), 240 (T240) min, and 1-week after exercise. Median (interquartile range) age of participants was 47.5 (44-51) years; five (50%) were male. All study participants achieved at least 90% predicted maximum heart rate (MHR). sKl increased acutely after exercise (Tpre median 448 pg/mL vs. Tpost median 576 pg/mL; p < 0.01). There was a nonsignificant sPi decline at T30 (Tpre 0.94 ± 0.12 mmol/L vs. T30 0.83 ± 0.22 mmol/L). Exercise led to a reduction in blood glucose by T240 with median glucose levels at Tpre, Tpost, T30, and T240 of 6.0, 6.5, 6.3, and 5.7 mmol/L, respectively. In conclusion, a single high-intensity exercise session is associated with a transient increase in sKl, a delayed reduction in blood glucose, and a nonsignificant decrease in sPi levels in healthy adults. The evaluation of long-term effects of cardiovascular fitness programs on sKl and sPi in healthy individuals and disease cohorts are required to identify potential lifestyle modifications to help improve chronic disease management and long-term outcomes.
Collapse
Affiliation(s)
- Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa M Chu
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Michael Mx Cai
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
47
|
Amaro-Gahete FJ, De-la-O A, Jurado-Fasoli L, Espuch-Oliver A, Robles-Gonzalez L, Navarro-Lomas G, de Haro T, Femia P, Castillo MJ, Gutierrez A. Exercise training as S-Klotho protein stimulator in sedentary healthy adults: Rationale, design, and methodology. Contemp Clin Trials Commun 2018; 11:10-19. [PMID: 30023455 PMCID: PMC6022251 DOI: 10.1016/j.conctc.2018.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/02/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Aims The secreted form of the α-Klotho gene (S-Klotho), which is considered a powerful biomarker of longevity, makes it an attractive target as an anti-ageing therapy against functional decline, sarcopenic obesity, metabolic and cardiovascular diseases, osteoporosis, and neurodegenerative disorders. The S-Klotho plasma levels could be related to physical exercise inasmuch physical exercise is involved in physiological pathways that regulate the S-Klotho plasma levels. FIT-AGEING will determine the effect of different training modalities on the S-Klotho plasma levels (primary outcome) in sedentary healthy adults. FIT-AGEING will also investigate the physiological consequences of activating the klotho gene (secondary outcomes). Methods FIT-AGEING will recruit 80 sedentary, healthy adults (50% women) aged 45–65 years old. Eligible participants will be randomly assigned to a non-exercise group, i.e. the control group, (n = 20), a physical activity recommendation from World Health Organization group (n = 20), a high intensity interval training group (n = 20), and a whole-body electromyostimulation group (n = 20). The laboratory measurements will be taken at the baseline and 12 weeks later including the S-Klotho plasma levels, physical fitness (cardiorespiratory fitness, muscular strength), body composition, basal metabolic rate, heart rate variability, maximal fat oxidation, health blood biomarkers, free-living physical activity, sleep habits, reaction time, cognitive variables, and health-related questionnaires. We will also obtain dietary habits data and cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- Department of Medical Physiology, School of Medicine, University of Granada, Spain.,PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Alejandro De-la-O
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Lucas Jurado-Fasoli
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Andrea Espuch-Oliver
- Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital, H.U. Virgen de Las Nieves, Ibs.Granada, Complejo Hospitalario de Granada, 18016, Granada, Spain
| | | | - Ginés Navarro-Lomas
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Tomás de Haro
- Unidad de Gestión Clínica de Laboratorios Clínicos, H.U San Cecilio, Ibs.Granada, Complejo Hospitalario de Granada, 18016, Granada, Spain
| | - Pedro Femia
- Department of Statistics, Faculty of Medicine at the University of Granada, Granada, Spain
| | - Manuel J Castillo
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| | - Angel Gutierrez
- Department of Medical Physiology, School of Medicine, University of Granada, Spain
| |
Collapse
|
48
|
Klotho preservation by Rhein promotes toll-like receptor 4 proteolysis and attenuates lipopolysaccharide-induced acute kidney injury. J Mol Med (Berl) 2018; 96:915-927. [PMID: 29730698 DOI: 10.1007/s00109-018-1644-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 04/09/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
Renal anti-aging protein Klotho exhibits impressive properties of anti-inflammation and renal protection, however is suppressed early after renal injury, making Klotho restoration an attractive strategy of treating renal inflammatory disorders. Here, we reported that Klotho is enriched in macrophages and Klotho preservation by Rhein, an anthraquinone derived from medicinal plant rhubarb, attenuates lipopolysaccharide (LPS)-induced acute inflammation essentially via promoting toll-like receptor 4 (TLR4) degradation. LPS-induced pro-inflammatory NF-κB signaling and cytokine expressions coincided with Klotho repression and toll-like receptor 4 (TLR4) elevation in macrophages, renal epithelial cells, and acutely- inflamed kidney. Intriguingly, Rhein treatment effectively corrected the inverted alterations of Klotho and TLR4 and mitigated the TLR4 downstream inflammatory response in a Klotho restoration and TLR4 repression-dependent manner. Klotho inducibly associated with TLR4 after LPS stimulation and suppressed TLR4 protein abundance mainly via a proteolytic process sensitive to the inhibition of Klotho's putative β-glucuronidase activity. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and renal protective effects of Rhein in a mouse model of acute kidney injury incurred by LPS. Thus, Klotho suppression of TLR4 via deglycosylation negatively controls TLR-associated inflammatory signaling and the endogenous Klotho preservation by Rhein or possibly other natural or synthetic compounds possesses promising potentials in the clinical treatment of renal inflammatory disorders. KEY MESSAGES • Klotho is highly expressed in macrophages and repressed by LPS in vitro and in vivo. • Klotho inhibits LPS-induced TLR4 accumulation and the downstream signaling. • Klotho decreases TLR4 via a deglycosylation-associated proteolytic process. • Rhein effectively prevents acute inflammation-incurred Klotho suppression. • Rhein reversal of Klotho attenuates LPS-induced acute inflammation and kidney injury.
Collapse
|
49
|
Cho NJ, Han DJ, Lee JH, Jang SH, Kang JS, Gil HW, Park S, Lee EY. Soluble klotho as a marker of renal fibrosis and podocyte injuries in human kidneys. PLoS One 2018; 13:e0194617. [PMID: 29590173 PMCID: PMC5874023 DOI: 10.1371/journal.pone.0194617] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 11/26/2022] Open
Abstract
Klotho deficiency is relevant to renal fibrosis and podocyte injury in vivo and in vitro. We examined whether histological findings of renal biopsy specimens were associated with the levels of soluble klotho in humans. We investigated renal biopsy specimens of 67 patients and detailed microscopic findings were reviewed. Soluble serum/urinary klotho and urinary angiotensinogen were assessed by enzyme-linked immunosorbent assays, and tissue klotho expression was assessed by immunohistochemical staining. The median age of the study participants was 35.6 years. High serum klotho levels (≥14 pg/mL) were associated with decreased odds ratios (ORs) of interstitial fibrosis (OR = 0.019, P = 0.003) and segmental sclerosis (OR = 0.190, P = 0.022) in multivariable logistic regression analysis. Patients with a lower urinary klotho-to-creatinine ratio (UKCR) were significantly more likely to have diffuse foot process effacement (OR = 0.450, P = 0.010). The area under the receiver-operating characteristic curve (AUC) of serum klotho for predicting interstitial fibrosis was 0.920 (95% CI, 0.844–0.996), and the best cut-off value of serum klotho was 138.1 pg/mL. The AUC of UKCR for predicting diffuse foot process effacement was 0.754 (95% CI, 0.636–0.872), and the best cut-off value of UKCR was 96.7 pg/mgCr. Urinary angiotensinogen-to-creatinine ratio was not associated with serum klotho, UKCR, or any pathological finding. Our data suggested that soluble serum and urinary klotho levels represent a potential biomarker to predict renal fibrosis and podocyte injury in humans.
Collapse
Affiliation(s)
- Nam-Jun Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Dong-Jae Han
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Si-Hyong Jang
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- * E-mail:
| |
Collapse
|
50
|
Tan SJ, Cai MM. Is there a role for newer biomarkers in chronic kidney disease-mineral and bone disorder management? Nephrology (Carlton) 2018; 22 Suppl 2:14-18. [PMID: 28429560 DOI: 10.1111/nep.13015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The current management of Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD) relies largely on clinical judgement and assessment of biochemical parameters including serum calcium, phosphate and intact parathyroid hormone concentrations. In the past two decades, there has been a leap in the understanding of the pathophysiology of CKD-MBD, leading to the discovery of novel biomarkers. The potential utility of these markers in this clinical setting is an area of intense investigation. In the absence of any guidelines aiding the clinician's understanding and application of these markers, we summarise the current available literature surrounding fibroblast growth factor-23, α-Klotho, sclerostin and serum calcification propensity testing and their respective assays in the context of CKD-MBD management.
Collapse
Affiliation(s)
- Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Mx Cai
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|