1
|
Wang Y, Tu MJ, Yu AM. Efflux ABC transporters in drug disposition and their posttranscriptional gene regulation by microRNAs. Front Pharmacol 2024; 15:1423416. [PMID: 39114355 PMCID: PMC11303158 DOI: 10.3389/fphar.2024.1423416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane proteins expressed commonly in metabolic and excretory organs to control xenobiotic or endobiotic disposition and maintain their homeostasis. Changes in ABC transporter expression may directly affect the pharmacokinetics of relevant drugs involving absorption, distribution, metabolism, and excretion (ADME) processes. Indeed, overexpression of efflux ABC transporters in cancer cells or bacteria limits drug exposure and causes therapeutic failure that is known as multidrug resistance (MDR). With the discovery of functional noncoding microRNAs (miRNAs) produced from the genome, many miRNAs have been revealed to govern posttranscriptional gene regulation of ABC transporters, which shall improve our understanding of complex mechanism behind the overexpression of ABC transporters linked to MDR. In this article, we first overview the expression and localization of important ABC transporters in human tissues and their clinical importance regarding ADME as well as MDR. Further, we summarize miRNA-controlled posttranscriptional gene regulation of ABC transporters and effects on ADME and MDR. Additionally, we discuss the development and utilization of novel bioengineered miRNA agents to modulate ABC transporter gene expression and subsequent influence on cellular drug accumulation and chemosensitivity. Findings on posttranscriptional gene regulation of ABC transporters shall not only improve our understanding of mechanisms behind variable ADME but also provide insight into developing new means towards rational and more effective pharmacotherapies.
Collapse
Affiliation(s)
| | | | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
2
|
Ranjit S, Wang Y, Zhu J, Cheepala SB, Schuetz EG, Cho WJ, Xu B, Robinson CG, Wu G, Naren AP, Schuetz JD. ABCC4 impacts megakaryopoiesis and protects megakaryocytes against 6-mercaptopurine induced cytotoxicity. Drug Resist Updat 2024; 72:101017. [PMID: 37988981 PMCID: PMC10874622 DOI: 10.1016/j.drup.2023.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.
Collapse
Affiliation(s)
- Sabina Ranjit
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Yao Wang
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Jingwen Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Satish B Cheepala
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Erin G Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St Jude Children's Research Hospital, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, USA
| | | | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children's Research Hospital, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John D Schuetz
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Childres's Research Hospital, USA.
| |
Collapse
|
3
|
Chen Y, Wang L, Hou WT, Zha Z, Xu K, Zhou CZ, Li Q, Chen Y. Structural insights into human ABCC4-mediated transport of platelet agonist and antagonist. NATURE CARDIOVASCULAR RESEARCH 2023; 2:693-701. [PMID: 39195918 DOI: 10.1038/s44161-023-00289-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/19/2023] [Indexed: 08/29/2024]
Abstract
Human platelets contribute to hemostasis and thrombosis, the imbalance of which can cause cardiovascular diseases. The activation and accumulation of platelets can be induced by agonists or inhibited by antagonists. Thus, the human ABC transporter ABCC4, which pumps out platelet agonists and antagonists, might become a promising target for preventing cardiovascular diseases. Here we define five structures of human ABCC4: the apo and three complexed forms in the inward-facing conformation, in addition to an outward-facing occluded conformation upon ATP binding. Combined with biochemical assays, we structurally prove that U46619, a synthetic analog of the unstable agonist TXA2, and the antagonist aspirin are substrates of ABCC4. In addition, we found that the platelet antagonist dipyridamole is a strong competitive inhibitor against ABCC4. These complex structures also enable us to identify a transmembrane pocket in ABCC4 that provides a defined space for the rational design of specific platelet antagonists.
Collapse
Affiliation(s)
- Yu Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Liang Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wen-Tao Hou
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zhihui Zha
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Kang Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Qiong Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Liu W, Liu Y. Roles of Multidrug Resistance Protein 4 in Microbial Infections and Inflammatory Diseases. MICROBIAL DRUG RESISTANCE (LARCHMONT, N.Y.) 2021; 27:1535-1545. [PMID: 33999661 DOI: 10.1089/mdr.2020.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Numerous studies have reported the emergence of antimicrobial resistance during the treatment of common infections. Multidrug resistance (MDR) leads to failure of antimicrobial treatment, prolonged illness, and increased morbidity and mortality. Overexpression of multidrug resistance proteins (MRPs) as drug efflux pumps are one of the main contributions of MDR, especially multidrug resistance protein 4 (MRP4/ABCC4) in the development of antimicrobial resistance. The molecular mechanism of antimicrobial resistance is still under investigation. Various intervention strategies have been developed for overcoming MDR, but the effect is limited. Suppression of MRP4 may be an attractive therapeutic approach for addressing drug resistance. However, there are few reports on the involvement of MRP4 in antimicrobial resistance and inflammatory diseases. In this review, we introduced the function and regulation of MRP4, and then summarized the roles of MRP4 in microbial infections and inflammatory diseases as well as polymorphisms in the gene encoding this transporter. Further studies should be conducted on drug therapy targeting MRP4 to improve the efficacy of antimicrobial therapy. This review can provide useful information on MRP4 for overcoming antimicrobial resistance and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
De Vocht T, Buyck C, Deferm N, Qi B, Van Brantegem P, van Vlijmen H, Snoeys J, Hoeben E, Vermeulen A, Annaert P. Identification of novel inhibitors of rat Mrp3. Eur J Pharm Sci 2021; 162:105813. [PMID: 33753214 DOI: 10.1016/j.ejps.2021.105813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Multidrug resistance-associated protein (MRP; ABCC gene family) mediated efflux transport plays an important role in the systemic and tissue exposure profiles of many drugs and their metabolites, and also of endogenous compounds like bile acids and bilirubin conjugates. However, potent and isoform-selective inhibitors of the MRP subfamily are currently lacking. Therefore, the purpose of the present work was to identify novel rat Mrp3 inhibitors. Using 5(6)-carboxy-2',7'-dichlorofluorescein diacetate (CDFDA) as a model-(pro)substrate for Mrp3 in an oil-spin assay with primary rat hepatocytes, the extent of inhibition of CDF efflux was determined for 1584 compounds, yielding 59 hits (excluding the reference inhibitor) that were identified as new Mrp3 inhibitors. A naive Bayesian prediction model was constructed in Pipeline Pilot to elucidate physicochemical and structural features of compounds causing Mrp3 inhibition. The final Bayesian model generated common physicochemical properties of Mrp3 inhibitors. For instance, more than half of the hits contain a phenolic structure. The identified compounds have an AlogP between 2 and 4.5, between 5 to 8 hydrogen bond acceptor atoms, a molecular weight between 260 and 400, and 2 or more aromatic rings. Compared to the depleted dataset (i.e. 90% remaining compounds), the Mrp3 hit rate in the enriched set was 7.5-fold higher (i.e. 17.2% versus 2.3%). Several hits from this first screening approach were confirmed in an additional study using Mrp3 transfected inside-out membrane vesicles. In conclusion, several new and potent inhibitors of Mrp3 mediated efflux were identified in an optimized in vitro rat hepatocyte assay and confirmed using Mrp3 transfected inside-out membrane vesicles. A final naive Bayesian model was developed in an iterative way to reveal common physicochemical and structural features for Mrp3 inhibitors. The final Bayesian model will enable in silico screening of larger libraries and in vitro identification of more potent Mrp3 inhibitors.
Collapse
Affiliation(s)
- Tom De Vocht
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Christophe Buyck
- Discovery Sciences, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Bing Qi
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Pieter Van Brantegem
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Herman van Vlijmen
- Discovery Sciences, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics, Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Eef Hoeben
- Quantitative Sciences, Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium; BioNotus GCV, Wetenschapspark Universiteit Antwerpen, Galileilaan 15, B-2845 Niel, Belgium
| | - An Vermeulen
- Quantitative Sciences, Janssen Research and Development, a division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg, O&N2, Herestraat 49 box 921, B-3000 Leuven, Belgium; BioNotus GCV, Wetenschapspark Universiteit Antwerpen, Galileilaan 15, B-2845 Niel, Belgium.
| |
Collapse
|
6
|
The Anti-Cancer Properties of the HIV Protease Inhibitor Nelfinavir. Cancers (Basel) 2020; 12:cancers12113437. [PMID: 33228205 PMCID: PMC7699465 DOI: 10.3390/cancers12113437] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary To this day, cancer remains a medical challenge despite the development of cutting-edge diagnostic methods and therapeutics. Thus, there is a continual demand for improved therapeutic options for managing cancer patients. However, novel drug development requires decade-long time commitment and financial investments. Repurposing approved and market-available drugs for cancer therapy is a way to reduce cost and the timeframe for developing new therapies. Nelfinavir is an anti-infective agent that has extensively been used to treat acquired immunodeficiency syndrome (AIDS) in adult and pediatric patients. In addition to its anti-infective properties, nelfinavir has demonstrated potent off-target anti-cancer effects, suggesting that it could be a suitable candidate for drug repurposing for cancer. In this review, we systematically compiled the therapeutic benefits of nelfinavir against cancer as a single drug or in combination with chemoradiotherapy, and outlined the possible underlying mechanistic pathways contributing to the anti-cancer effects. Abstract Traditional cancer treatments may lose efficacy following the emergence of novel mutations or the development of chemoradiotherapy resistance. Late diagnosis, high-cost of treatment, and the requirement of highly efficient infrastructure to dispense cancer therapies hinder the availability of adequate treatment in low-income and resource-limited settings. Repositioning approved drugs as cancer therapeutics may reduce the cost and timeline for novel drug development and expedite the availability of newer, efficacious options for patients in need. Nelfinavir is a human immunodeficiency virus (HIV) protease inhibitor that has been approved and is extensively used as an anti-infective agent to treat acquired immunodeficiency syndrome (AIDS). Yet nelfinavir has also shown anti-cancer effects in in vitro and in vivo studies. The anti-cancer mechanism of nelfinavir includes modulation of different cellular conditions, such as unfolded protein response, cell cycle, apoptosis, autophagy, the proteasome pathway, oxidative stress, the tumor microenvironment, and multidrug efflux pumps. Multiple clinical trials indicated tolerable and reversible toxicities during nelfinavir treatment in cancer patients, either as a monotherapy or in combination with chemo- or radiotherapy. Since orally available nelfinavir has been a safe drug of choice for both adult and pediatric HIV-infected patients for over two decades, exploiting its anti-cancer off-target effects will enable fast-tracking this newer option into the existing repertoire of cancer chemotherapeutics.
Collapse
|
7
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Huang L, Li L, Tien C, LaBarbera DV, Chen C. Targeting HIV-1 Protease Autoprocessing for High-throughput Drug Discovery and Drug Resistance Assessment. Sci Rep 2019; 9:301. [PMID: 30670786 PMCID: PMC6343032 DOI: 10.1038/s41598-018-36730-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/23/2018] [Indexed: 01/28/2023] Open
Abstract
HIV-1 protease autoprocessing liberates the free mature protease from its Gag-Pol polyprotein precursor through a series of highly regulated autoproteolysis reactions. Herein, we report the development and validation (Z' ≥ 0.50) of a cell-based functional assay for high-throughput screening (HTS) of autoprocessing inhibitors using fusion precursors in combination with AlphaLISA (amplified luminescent proximity homogeneous assay ELISA). Through pilot screening of a collection of 130 known protease inhibitors, the AlphaLISA assay confirmed all 11 HIV protease inhibitors in the library capable of suppressing precursor autoprocessing at low micromolar concentrations. Meanwhile, other protease inhibitors had no impact on precursor autoprocessing. We next conducted HTS of ~23,000 compounds but found no positive hits. Such high selectivity is advantageous for large-scale HTS campaigns and as anticipated based on assay design because a positive hit needs simultaneously to be nontoxic, cell permeable, and inhibiting precursor autoprocessing. Furthermore, AlphaLISA quantification of fusion precursors carrying mutations known to cause resistance to HIV protease inhibitors faithfully recapitulated the reported resistance, suggesting that precursor autoprocessing is a critical step contributing to drug resistance. Taken together, this reported AlphaLISA platform will provide a useful tool for drug discovery targeting HIV-1 protease autoprocessing and for quantification of PI resistance.
Collapse
Affiliation(s)
- Liangqun Huang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - ChihFeng Tien
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chaoping Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
9
|
A Human ABC Transporter ABCC4 Gene SNP (rs11568658, 559 G > T, G187W) Reduces ABCC4-Dependent Drug Resistance. Cells 2019; 8:cells8010039. [PMID: 30634695 PMCID: PMC6356542 DOI: 10.3390/cells8010039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023] Open
Abstract
Broad-spectrum drug resistance is a major obstacle in cancer treatment, which is often caused by overexpression of ABC transporters the levels of which vary between individuals due to single-nucleotide polymorphisms (SNPs) in their genes. In the present study, we focused on the human ABC transporter ABCC4 and one major non-synonymous SNP variant of the ABCC4 gene in the Japanese population (rs11568658, 559 G > T, G187W) whose allele frequency is 12.5%. Cells expressing ABCC4 (G187W) were established using the Flp-In™ system based on Flp recombinase-mediated transfection to quantitatively evaluate the impacts of this non-synonymous SNP on drug resistance profiles of the cells. Cells expressing ABCC4 (WT) or (G187W) showed comparable ABCC4 mRNA levels. 3-(4,5-Dimethyl-2-thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay indicated that the EC50 value of the anticancer drug, SN-38, against cells expressing ABCC4 (G187W) was 1.84-fold lower than that against cells expressing ABCC4 (WT). Both azathioprine and 6-mercaptopurine showed comparable EC50 values against cells expressing ABCC4 (G187W) and those expressing ABCC4 (WT). These results indicate that the substitution of Gly at position 187 of ABCC4 to Trp resulted in reduced SN-38 resistance.
Collapse
|
10
|
Deferm N, Richert L, Van Brantegem P, De Vocht T, Qi B, de Witte P, Bouillon T, Annaert P. Detection of Drug-Induced Cholestasis Potential in Sandwich-Cultured Human Hepatocytes. Methods Mol Biol 2019; 1981:335-350. [PMID: 31016665 DOI: 10.1007/978-1-4939-9420-5_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drug-induced cholestasis poses a major hurdle for the pharmaceutical industry as it is one the primary mechanisms of drug-induced liver injury. Hence, detection of drug-induced cholestasis during the early stages of drug development is of utmost importance. The most commonly used in vitro models rely on the extent of inhibition of bile salt export pump-mediated taurocholic acid transport, thereby assuming that drug-induced cholestasis mechanisms are merely restricted to the interaction with this sole hepatic transporter. Sandwich-cultured human hepatocytes represent a more holistic in vitro tool to investigate drug-induced cholestasis as they preserve all relevant disposition pathways and cellular functions involved in bile acid homeostasis. We developed and validated a sandwich-cultured human hepatocytes-based in vitro assay which is able to identify compounds causing cholestasis by altering bile acid disposition. The in vitro cholestatic potential is expressed by calculating a drug-induced cholestasis index value, which reflects the relative residual urea formation of sandwich-cultured human hepatocytes co-incubated with bile acids and test compound as compared to sandwich-cultured human hepatocytes treated with test compound alone. In addition, a safety margin can be calculated to determine the in vivo risk for cholestasis based on the determination of the drug-induced cholestasis index at various concentrations and the peak plasma concentration of the drug candidate. This chapter outlines the various steps involved in performing our sandwich-cultured human hepatocytes-based in vitro assay.
Collapse
Affiliation(s)
- Neel Deferm
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Pieter Van Brantegem
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Xie A, Robles RJ, Mukherjee S, Zhang H, Feldbrügge L, Csizmadia E, Wu Y, Enjyoji K, Moss AC, Otterbein LE, Quintana FJ, Robson SC, Longhi MS. HIF-1α-induced xenobiotic transporters promote Th17 responses in Crohn's disease. J Autoimmun 2018; 94:122-133. [PMID: 30098863 PMCID: PMC6193817 DOI: 10.1016/j.jaut.2018.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
In Crohn's disease, pathogenic Th17-cells express low levels of CD39 ectonucleotidase and are refractory to the immunosuppressive effects of unconjugated bilirubin (UCB), an endogenous ligand for aryl-hydrocarbon-receptor (AhR). This resistance to AhR ligation might be associated with alterations in responses to hypoxia. Limited exposure to hypoxia appears beneficial in acute tissue injury. However, in protracted inflammation, hypoxemia may paradoxically result in Th17-cell activation. We report here that in vitro exposure of Th17-cells from Crohn's disease patients to hypoxia limits responsiveness to AhR stimulation by UCB, as reflected by lower CD39 levels. Blockade of hypoxia-inducible-factor-1alpha (HIF-1α) upregulates CD39 and favors Th17-cell regulatory responses. Resistance of Th17-cells to AhR signaling results, in part, from HIF-1α-dependent induction of ATP-binding cassette (ABC) transporters: multidrug-resistance-protein-1 (MDR1) and multidrug-resistance-associated-protein-4 (MRP4). Increased ABC transporters promote efflux of suppressive AhR ligands, such as UCB, from Th17-cells. Inhibition of MDR1, MRP4 and/or HIF-1α with ritonavir (RTV) reconstitutes AhR function in Th17-cells, enhancing therapeutic effects of UCB in dextran-sulfate-sodium-induced experimental colitis. Deleterious effects of hypoxia on Th17-cells in Crohn's disease can be ameliorated either by inhibiting HIF-1α or by suppressing ABC transporters to increase UCB availability as an AhR substrate. Targeting HIF-1α-ABC transporters could provide innovative therapeutic pathways for IBD.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/immunology
- Animals
- Anti-Inflammatory Agents/immunology
- Anti-Inflammatory Agents/pharmacology
- Apyrase/genetics
- Apyrase/immunology
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Bilirubin/immunology
- Bilirubin/pharmacology
- Cell Hypoxia
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/genetics
- Colitis/immunology
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/pathology
- Dextran Sulfate/administration & dosage
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mucous Membrane/immunology
- Mucous Membrane/pathology
- Multidrug Resistance-Associated Proteins/antagonists & inhibitors
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/immunology
- Primary Cell Culture
- Protein Binding
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/immunology
- Ritonavir/pharmacology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
Collapse
Affiliation(s)
- Anyan Xie
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - René J Robles
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Samiran Mukherjee
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Haohai Zhang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Linda Feldbrügge
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Eva Csizmadia
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Yan Wu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Keiichi Enjyoji
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Alan C Moss
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Leo E Otterbein
- Division of Transplantation, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, 02115, Boston, USA.
| | - Simon C Robson
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| | - Maria Serena Longhi
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, 02215, Boston, USA.
| |
Collapse
|
13
|
Liu YT, Liu W, Zhu GY, Wang FL, Chen Q. Involvement of multidrug resistance protein 4 in the hepatocyte efflux of lamivudine and entecavir. Mol Med Rep 2018; 17:7113-7121. [PMID: 29568871 PMCID: PMC5928661 DOI: 10.3892/mmr.2018.8779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4) is capable of transporting acyclic nucleotide phosphonates, but little is known about its role in lamivudine (LAM) and entecavir (ETV) transport. In the present study, the involvement of MRP4 in the transport of LAM and ETV was investigated through in vitro experiments. The cytotoxicity of three antiviral drugs and their activities against HBV as characterized in HepG2.4D14 [wild‑type hepatitis B virus (HBV)] and HepG2.A64 (ETV‑resistant HBV) cells. LAM, ETV and tenofovir (TFV) demonstrated a 50% effective concentration against HBV of 4.14±0.03, 0.13±0.02 and 3.24±0.01 µM in HepG2.4D14 cells and of 5.94±0.20, 6.28±0.07 and 11.43±0.09 µM in HepG2.A64 cells, respectively. After administering 3-([(3-(2-[7-chloro-2-quinolinyl]ethyl)phenyl]-[(3-dimethylamino-3-oxoporphyl)-thio)-methyl]-thio) propanoic acid (MK571), the intracellular concentrations of all three drugs were much lower than the extracellular drug concentrations in these two cell types, whereas the intracellular drug concentrations in wild‑type cells were higher than those in ETV‑resistant cells. Furthermore, the intracellular levels of LAM, ETV and TFV were enhanced and the extracellular concentrations were reduced by addition of MK571. Thus, MRP4 is mainly responsible for the efflux of LAM and ETV in hepatocyte cultures. These results may contribute to enhancing antiviral efficacy.
Collapse
Affiliation(s)
- Yu-Tian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gang-Yan Zhu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fu-Liang Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
14
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
15
|
Maksimovic-Ivanic D, Fagone P, McCubrey J, Bendtzen K, Mijatovic S, Nicoletti F. HIV-protease inhibitors for the treatment of cancer: Repositioning HIV protease inhibitors while developing more potent NO-hybridized derivatives? Int J Cancer 2017; 140:1713-1726. [PMID: 27870005 DOI: 10.1002/ijc.30529] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/24/2022]
Abstract
The possible use of HIV protease inhibitors (HIV-PI) as new therapeutic option for the treatment of cancer primarily originated from their success in treating HIV-related Kaposi's sarcoma (KS). While these findings were initially attributed to immune reconstitution and better control of oncogenic viral infections, the number of reports on solid tumors, KS, lymphoma, fibrosarcoma, multiple myeloma and prostate cancer suggest other mechanisms for the anti-neoplastic activity of PIs. However, a major drawback for the possible adoption of HIV-PIs in the therapy of cancer relies on their relatively weak anticancer potency and important side effects. This has propelled several groups to generate derivatives of HIV-PIs for anticancer use, through modifications such as attachment of different moieties, ligands and transporters, including saquinavir-loaded folic acid conjugated nanoparticles and nitric oxide (NO) derivatives of HIV-PIs. In this article, we discuss the current preclinical and clinical evidences for the potential use of HIV-PIs, and of novel derivatives, such as saquinavir-NO in the treatment of cancer.
Collapse
Affiliation(s)
- Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic," Belgrade University, Serbia
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - James McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC
| | - Klaus Bendtzen
- Institute for Inflammation Research (IIR), Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic," Belgrade University, Serbia
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| |
Collapse
|
16
|
Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, Richert L. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes. Toxicol In Vitro 2016; 34:179-186. [DOI: 10.1016/j.tiv.2016.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/09/2016] [Accepted: 03/11/2016] [Indexed: 12/19/2022]
|
17
|
De Bruyn T, Stieger B, Augustijns PF, Annaert PP. Clearance Prediction of HIV Protease Inhibitors in Man: Role of Hepatic Uptake. J Pharm Sci 2016. [DOI: 10.1002/jps.24564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
The ABCC4 membrane transporter modulates platelet aggregation. Blood 2015; 126:2307-19. [PMID: 26405223 DOI: 10.1182/blood-2014-08-595942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/17/2015] [Indexed: 01/13/2023] Open
Abstract
Controlling the activation of platelets is a key strategy to mitigate cardiovascular disease. Previous studies have suggested that the ATP-binding cassette (ABC) transporter, ABCC4, functions in platelet-dense granules. Using plasma membrane biotinylation and super-resolution microscopy, we demonstrate that ABCC4 is primarily expressed on the plasma membrane of both mouse and human platelets. Platelets lacking ABCC4 have unchanged dense-granule function, number, and volume, but harbor a selective impairment in collagen-induced aggregation. Accordingly, Abcc4 knockout (KO) platelet attachment to a collagen substratum was also faulty and associated with elevated intracellular cyclic AMP (cAMP) and reduced plasma membrane localization of the major collagen receptor, GPVI. In the ferric-chloride vasculature injury model, Abcc4 KO mice exhibited markedly impaired thrombus formation. The attenuation of platelet aggregation by the phosphodiesterase inhibitor EHNA (a non-ABCC4 substrate), when combined with Abcc4 deficiency, illustrated a crucial functional interaction between phosphodiesterases and ABCC4. This was extended in vivo where EHNA dramatically prolonged the bleeding time, but only in Abcc4 KO mice. Further, we demonstrated in human platelets that ABCC4 inhibition, when coupled with phosphodiesterase inhibition, strongly impaired platelet aggregation. These findings have important clinical implications because they directly highlight an important relationship between ABCC4 transporter function and phosphodiesterases in accounting for the cAMP-directed activity of antithrombotic agents.
Collapse
|
19
|
Wen J, Luo J, Huang W, Tang J, Zhou H, Zhang W. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4. J Pharmacol Exp Ther 2015; 354:358-75. [PMID: 26148856 DOI: 10.1124/jpet.115.225656] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target.
Collapse
Affiliation(s)
- Jiagen Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jianquan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, ChangSha, P.R. China; Institute of Clinical Pharmacology, Central South University, ChangSha, P.R. China; and Hunan Key Laboratory of Pharmacogenetics, ChangSha, P.R. China
| |
Collapse
|
20
|
Ai N, Fan X, Ekins S. In silico methods for predicting drug-drug interactions with cytochrome P-450s, transporters and beyond. Adv Drug Deliv Rev 2015; 86:46-60. [PMID: 25796619 DOI: 10.1016/j.addr.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/05/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-drug interactions (DDIs) are associated with severe adverse effects that may lead to the patient requiring alternative therapeutics and could ultimately lead to drug withdrawal from the market if they are severe. To prevent the occurrence of DDI in the clinic, experimental systems to evaluate drug interaction have been integrated into the various stages of the drug discovery and development process. A large body of knowledge about DDI has also accumulated through these studies and pharmacovigillence systems. Much of this work to date has focused on the drug metabolizing enzymes such as cytochrome P-450s as well as drug transporters, ion channels and occasionally other proteins. This combined knowledge provides a foundation for a hypothesis-driven in silico approach, using either cheminformatics or physiologically based pharmacokinetics (PK) modeling methods to assess DDI potential. Here we review recent advances in these approaches with emphasis on hypothesis-driven mechanistic models for important protein targets involved in PK-based DDI. Recent efforts with other informatics approaches to detect DDI are highlighted. Besides DDI, we also briefly introduce drug interactions with other substances, such as Traditional Chinese Medicines to illustrate how in silico modeling can be useful in this domain. We also summarize valuable data sources and web-based tools that are available for DDI prediction. We finally explore the challenges we see faced by in silico approaches for predicting DDI and propose future directions to make these computational models more reliable, accurate, and publically accessible.
Collapse
Affiliation(s)
- Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| |
Collapse
|
21
|
Tenofovir: What We Have Learnt After 7.5 Million Person-Years of Use. Infect Dis Ther 2015; 4:145-57. [PMID: 26032649 PMCID: PMC4471058 DOI: 10.1007/s40121-015-0070-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 01/09/2023] Open
Abstract
Tenofovir was licensed for use in patients with HIV in 2001 and since then has become a firmly established anti-retroviral in both guidelines and routine practice. Data have been presented from many pivotal studies—informing on its efficacy, use, and adverse features—and there are also over 7.5 million patient-years of experience to date. We explore the data on this nucleotide reverse transcriptase inhibitor in HIV presented since 2008—focusing on efficacy, side effects, and utility.
Collapse
|
22
|
Welch MA, Köck K, Urban TJ, Brouwer KLR, Swaan PW. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab Dispos 2015; 43:725-34. [PMID: 25735837 DOI: 10.1124/dmd.114.062539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability.
Collapse
Affiliation(s)
- Matthew A Welch
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Kathleen Köck
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Thomas J Urban
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Kim L R Brouwer
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| |
Collapse
|
23
|
Cheung L, Yu DM, Neiron Z, Failes TW, Arndt GM, Fletcher JI. Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen. Biochem Pharmacol 2015; 93:380-8. [DOI: 10.1016/j.bcp.2014.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/24/2022]
|
24
|
Yu DMT, Huynh T, Truong AM, Haber M, Norris MD. ABC transporters and neuroblastoma. Adv Cancer Res 2015; 125:139-70. [PMID: 25640269 DOI: 10.1016/bs.acr.2014.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuroblastoma is the most common cancer of infancy and accounts for 15% of all pediatric oncology deaths. Survival rates of high-risk neuroblastoma remain less than 50%, with amplification of the MYCN oncogene the most important aberration associated with poor outcome. Direct transcriptional targets of MYCN include a number of ATP-binding cassette (ABC) transporters, of which ABCC1 (MRP1), ABCC3 (MRP3), and ABCC4 (MRP4) are the best characterized. These three transporter genes have been shown to be strongly prognostic of neuroblastoma outcome in primary untreated neuroblastoma. In addition to their ability to efflux a number of chemotherapeutic drugs, evidence suggests that these transporters also contribute to neuroblastoma outcome independent of any role in cytotoxic drug efflux. Endogenous substrates of ABCC1 and ABCC4 that may be potential candidates affecting neuroblastoma biology include molecules such as prostaglandins and leukotrienes. These bioactive lipid mediators have the ability to influence biological processes contributing to cancer initiation and progression, such as angiogenesis, cell signaling, inflammation, proliferation, and migration and invasion. ABCC1 and ABCC4 are thus potential targets for therapeutic suppression in high-risk neuroblastoma, and recently developed small-molecule inhibitors may be an effective strategy in treating aggressive forms of this cancer, as well as other cancers that express high levels of these transporters.
Collapse
Affiliation(s)
- Denise M T Yu
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Huynh
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Alan M Truong
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Michelle Haber
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray D Norris
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Zhou T, Hu M, Pearlman A, Patton D, Rohan L. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque. AIDS Res Hum Retroviruses 2014; 30:1106-16. [PMID: 24803409 PMCID: PMC4212939 DOI: 10.1089/aid.2013.0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.
Collapse
Affiliation(s)
- Tian Zhou
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
26
|
Doak B, Over B, Giordanetto F, Kihlberg J. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. ACTA ACUST UNITED AC 2014; 21:1115-42. [DOI: 10.1016/j.chembiol.2014.08.013] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport. Nat Cell Biol 2014; 16:841-51. [PMID: 25173977 PMCID: PMC4154319 DOI: 10.1038/ncb3029] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/16/2014] [Indexed: 12/16/2022]
Abstract
Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signaling cascades that regulate cilia formation remain incompletely understood. Here we report that prostaglandin signaling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants display ciliogenesis defects, and lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme Cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates cAMP-mediated signaling cascade, are required for cilia formation and elongation. Importantly, PGE2 signaling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signaling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis.
Collapse
|
28
|
Cheung L, Flemming CL, Watt F, Masada N, Yu DMT, Huynh T, Conseil G, Tivnan A, Polinsky A, Gudkov AV, Munoz MA, Vishvanath A, Cooper DMF, Henderson MJ, Cole SPC, Fletcher JI, Haber M, Norris MD. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4). Biochem Pharmacol 2014; 91:97-108. [PMID: 24973542 DOI: 10.1016/j.bcp.2014.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022]
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application.
Collapse
Affiliation(s)
- Leanna Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Claudia L Flemming
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Fujiko Watt
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Nanako Masada
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Denise M T Yu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Tony Huynh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Gwenaëlle Conseil
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Amanda Tivnan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Andrei V Gudkov
- Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Marcia A Munoz
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Anasuya Vishvanath
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Michelle J Henderson
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Susan P C Cole
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Jamie I Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| |
Collapse
|
29
|
Ferslew BC, Köck K, Bridges AS, Brouwer KLR. Role of multidrug resistance-associated protein 4 in the basolateral efflux of hepatically derived enalaprilat. Drug Metab Dispos 2014; 42:1567-74. [PMID: 24958844 DOI: 10.1124/dmd.114.057554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatic uptake and efflux transporters govern the systemic and hepatic exposure of many drugs and metabolites. Enalapril is a pharmacologically inactive prodrug of enalaprilat. Following oral administration, enalapril is converted to enalaprilat in hepatocytes and undergoes translocation into the systemic circulation to exert its pharmacologic effect by inhibiting angiotensin-converting enzyme. Although the transport proteins governing hepatic uptake of enalapril and the biliary excretion of enalapril and enalaprilat are well established, it remains unknown how hepatically derived enalaprilat translocates across the basolateral membrane into the systemic circulation. In this study, the role of ATP-binding cassette transporters in the hepatic basolateral efflux of enalaprilat was investigated using membrane vesicles. ATP-dependent uptake of enalaprilat into vesicles expressing multidrug resistance-associated protein (MRP) 4 was significantly greater (∼3.8-fold) than in control vesicles. In contrast, enalaprilat was not transported to a significant extent by MRP3, and enalapril was not transported by either MRP3 or MRP4. The functional importance of MRP4 in the basolateral excretion of derived enalaprilat was evaluated using a novel basolateral efflux protocol developed in human sandwich-cultured hepatocytes. Under normal culture conditions, the mean intrinsic basolateral efflux clearance (CLint ,basolateral) of enalaprilat was 0.026 ± 0.012 µl/min; enalaprilat CLint,basolateral was significantly reduced to 0.009 ± 0.009 µl/min by pretreatment with the pan-MRP inhibitor MK-571. Results suggest that hepatically derived enalaprilat is excreted across the hepatic basolateral membrane by MRP4. Changes in MRP4-mediated basolateral efflux may alter the systemic concentrations of this active metabolite, and potentially the efficacy of enalapril.
Collapse
Affiliation(s)
- Brian C Ferslew
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kathleen Köck
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Arlene S Bridges
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (B.C.F., K.K., K.L.R.B.) and Department of Pathology, UNC School of Medicine (A.S.B.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Kushchayeva Y, Jensen K, Recupero A, Costello J, Patel A, Klubo-Gwiezdzinska J, Boyle L, Burman K, Vasko V. The HIV protease inhibitor nelfinavir down-regulates RET signaling and induces apoptosis in medullary thyroid cancer cells. J Clin Endocrinol Metab 2014; 99:E734-45. [PMID: 24483157 DOI: 10.1210/jc.2013-3369] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Mutations of RET tyrosine kinase are associated with the development of medullary thyroid cancer (MTC). The heat shock protein (HSP) 90 chaperone is required for folding and stability of RET mutants. HSP90 is a molecular target for the HIV protease inhibitor nelfinavir (NFV). OBJECTIVE We hypothesized that treatment with NFV may lead to the inhibition of RET signaling and induction of apoptosis in MTC cells. DESIGN Two human MTC cell lines, TT and MZ-CRC-1, which harbor endogenous C634W or M918T RET mutations, respectively, were exposed to clinically achievable concentrations of NFV. JC-1 staining and caspase-3 cleavage assays were performed to measure mitochondrial membrane potential and apoptosis. Activation of RET signaling was examined by Western blot. Autophagy was monitored by the detection of the light-chain 3BII. Expression of HSP90 and LC3B were examined in 36 human MTCs. RESULTS At a therapeutic serum concentration (10 μM), NFV inhibited the viability of TT and MZ-CRC-1 cells by 55% and 10%, respectively. In a dose-dependent manner, NFV inhibited cyclin D1 and caused caspase-3 cleavage. NFV decreased the level of RET protein and blocked the activation of RET downstream targets (phosphorylated ERK, phosphorylated AKT, and p70S6K/pS6). NFV induced metabolic stress, activated AMP-activated protein kinase and increased autophagic flux. Pharmacological inhibition of autophagy (chloroquine) augmented NFV-inducible cytotoxicity, suggesting that autophagy was protective in NFV-treated cells. NFV led to mitochondrial membrane depolarization and induced both oxidative stress and DNA damage. An antioxidant (n-acetylcysteine) attenuated DNA damage and prevented NFV-inducible apoptosis. HSP90 overexpression was found in 17 of 36 human MTCs and correlated with metastases and RET mutations. LC3B was detected in 20 of 36 human MTCs. CONCLUSIONS NFV has a wide spectrum of activity against MTC cells, and its cytotoxicity can be augmented by inhibiting autophagy. Expression of NFV molecular targets in metastatic MTC suggests that NFV has a potential to become a thyroid cancer therapeutic agent.
Collapse
Affiliation(s)
- Yevgeniya Kushchayeva
- Department of Pediatrics (K.J., A.R., J.C., A.P., V.V.), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814; Department of Medicine (Y.K., J.K.-G., K.B.), Division of Endocrinology, Washington Hospital Center, and Department of Surgery (L.B.), Medstar Georgetown University Hospital, Washington, DC 20010
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hepatocyte-based in vitro model for assessment of drug-induced cholestasis. Toxicol Appl Pharmacol 2014; 274:124-36. [DOI: 10.1016/j.taap.2013.10.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022]
|