1
|
Domingos LB, Müller HK, da Silva NR, Filiou MD, Nielsen AL, Guimarães FS, Wegener G, Joca S. Repeated cannabidiol treatment affects neuroplasticity and endocannabinoid signaling in the prefrontal cortex of the Flinders Sensitive Line (FSL) rat model of depression. Neuropharmacology 2024; 248:109870. [PMID: 38401791 DOI: 10.1016/j.neuropharm.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.
Collapse
Affiliation(s)
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | | | | | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function. Nat Commun 2023; 14:244. [PMID: 36646691 PMCID: PMC9842668 DOI: 10.1038/s41467-022-35680-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
The unique perisynaptic distribution of postsynaptic metabotropic glutamate receptors (mGluRs) at excitatory synapses is predicted to directly shape synaptic function, but mechanistic insight into how this distribution is regulated and impacts synaptic signaling is lacking. We used live-cell and super-resolution imaging approaches, and developed molecular tools to resolve and acutely manipulate the dynamic nanoscale distribution of mGluR5. Here we show that mGluR5 is dynamically organized in perisynaptic nanodomains that localize close to, but not in the synapse. The C-terminal domain of mGluR5 critically controlled perisynaptic confinement and prevented synaptic entry. We developed an inducible interaction system to overcome synaptic exclusion of mGluR5 and investigate the impact on synaptic function. We found that mGluR5 recruitment to the synapse acutely increased synaptic calcium responses. Altogether, we propose that transient confinement of mGluR5 in perisynaptic nanodomains allows flexible modulation of synaptic function.
Collapse
|
3
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
4
|
Kim J, Kang S, Choi TY, Chang KA, Koo JW. Metabotropic Glutamate Receptor 5 in Amygdala Target Neurons Regulates Susceptibility to Chronic Social Stress. Biol Psychiatry 2022; 92:104-115. [PMID: 35314057 DOI: 10.1016/j.biopsych.2022.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metabotropic glutamate receptor 5 (mGluR5) has been implicated in stress-related psychiatric disorders, particularly major depressive disorder. Although growing evidence supports the proresilient role of mGluR5 in corticolimbic circuitry in the depressive-like behaviors following chronic stress exposure, the underlying neural mechanisms, including circuits and molecules, remain unknown. METHODS We measured the c-Fos expression and probability of neurotransmitter release in and from basolateral amygdala (BLA) neurons projecting to the medial prefrontal cortex (mPFC) and to the ventral hippocampus (vHPC) after chronic social defeat stress. The role of BLA projections in depressive-like behaviors was assessed using optogenetic manipulations, and the underlying molecular mechanisms of mGluR5 and downstream signaling were investigated by Western blotting, viral-mediated gene transfer, and pharmacological manipulations. RESULTS Chronic social defeat stress disrupted neural activity and glutamatergic transmission in both BLA projections. Optogenetic activation of BLA projections reversed the detrimental effects of chronic social defeat stress on depressive-like behaviors and mGluR5 expression in the mPFC and vHPC. Conversely, inhibition of BLA projections of mice undergoing subthreshold social defeat stress induced a susceptible phenotype and mGluR5 reduction. These two BLA circuits appeared to act in an independent way. We demonstrate that mGluR5 overexpression in the mPFC or vHPC was proresilient while the mGluR5 knockdown was prosusceptible and that the proresilient effects of mGluR5 are mediated through distinctive downstream signaling pathways in the mPFC and vHPC. CONCLUSIONS These findings identify mGluR5 in the mPFC and vHPC that receive BLA inputs as a critical mediator of stress resilience, highlighting circuit-specific signaling for depressive-like behaviors.
Collapse
Affiliation(s)
- Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Chang HA, Dai W, Hu SSJ. Sex differences in cocaine-associated memory: The interplay between CB 1, mGluR5, and estradiol. Psychoneuroendocrinology 2021; 133:105366. [PMID: 34419761 DOI: 10.1016/j.psyneuen.2021.105366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
We know surprisingly little about the sex differences in the neurobiology of cocaine addiction, except females are more susceptible to the rewarding effects of cocaine than their male counterparts. Only a handful of recent studies have examined the neurobiology of cocaine-induced conditioned place preference (CPP) memory among female rodents. We contribute to this emerging line of research by documenting sex differences in cocaine-associated memory and illustrating the underlying signaling pathways in five experiments. Rimonabant (Rim), a cannabinoid CB1 antagonist and inverse agonist, exerted a facilitating effect for low-dose cocaine and an impairing effect for high-dose cocaine CPP memory in male mice, as in our previous study, but not in female mice. Nor did we observe the effect exist among CB1 knockout male mice, which indicated that the CB1 receptors played a mediating role. We also found that the metabotropic glutamate receptor 5 (mGluR5) was located in the same signaling pathway as CB1 in male mice. To clarify the mechanisms behind the sex differences, we used ovariectomized (OVX) female mice with estradiol benzoate (EB) replacement. In the OVX female mice, we showed that Rim-alone and EB-alone, but not Rim-and-EB-combined, facilitated the low-dose cocaine CPP memory. Moreover, 4-hydroxytamoxifen (4-OHT), an estrogen receptor (ER) antagonist, blocked Rim's and EB's facilitating effect. Finally, 2-methyl-6-(phenylethynyl)pyridine (MPEP), an mGluR5 antagonist, partially blocked EB's facilitating effect. In sum, we identified sex-specific effects of Rim on cocaine-induced CPP memory and the respective signaling pathways: mGluR5-CB1 for male mice and ER-mGluR5-CB1 for female mice. These findings may have merits for the development of sex-specific treatment for cocaine addiction.
Collapse
Affiliation(s)
- Heng-Ai Chang
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen Dai
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
6
|
Ahmed I, Rehman SU, Shahmohamadnejad S, Zia MA, Ahmad M, Saeed MM, Akram Z, Iqbal HMN, Liu Q. Therapeutic Attributes of Endocannabinoid System against Neuro-Inflammatory Autoimmune Disorders. Molecules 2021; 26:3389. [PMID: 34205169 PMCID: PMC8199938 DOI: 10.3390/molecules26113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer-both in vivo and in vitro clinical trials-has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Shiva Shahmohamadnejad
- Department of Clinical Biochemistry, School of medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran;
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan;
| | - Muhammad Muzammal Saeed
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Zain Akram
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| |
Collapse
|
7
|
Breton VL, Dufour S, Chinvarun Y, Del Campo JM, Bardakjian BL, Carlen PL. Transitions between neocortical seizure and non-seizure-like states and their association with presynaptic glutamate release. Neurobiol Dis 2020; 146:105124. [PMID: 33010482 DOI: 10.1016/j.nbd.2020.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
The transition between seizure and non-seizure states in neocortical epileptic networks is governed by distinct underlying dynamical processes. Based on the gamma distribution of seizure and inter-seizure durations, over time, seizures are highly likely to self-terminate; whereas, inter-seizure durations have a low chance of transitioning back into a seizure state. Yet, the chance of a state transition could be formed by multiple overlapping, unknown synaptic mechanisms. To identify the relationship between the underlying synaptic mechanisms and the chance of seizure-state transitions, we analyzed the skewed histograms of seizure durations in human intracranial EEG and seizure-like events (SLEs) in local field potential activity from mouse neocortical slices, using an objective method for seizure state classification. While seizures and SLE durations were demonstrated to have a unimodal distribution (gamma distribution shape parameter >1), suggesting a high likelihood of terminating, inter-SLE intervals were shown to have an asymptotic exponential distribution (gamma distribution shape parameter <1), suggesting lower probability of cessation. Then, to test cellular mechanisms for these distributions, we studied the modulation of synaptic neurotransmission during, and between, the in vitro SLEs. Using simultaneous local field potential and whole-cell voltage clamp recordings, we found a suppression of presynaptic glutamate release at SLE termination, as demonstrated by electrically- and optogenetically-evoked excitatory postsynaptic currents (EPSCs), and focal hypertonic sucrose application. Adenosine A1 receptor blockade interfered with the suppression of this release, changing the inter-SLE shape parameter from asymptotic exponential to unimodal, altering the chance of state transition occurrence with time. These findings reveal a critical role for presynaptic glutamate release in determining the chance of neocortical seizure state transitions.
Collapse
Affiliation(s)
- Vanessa L Breton
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada.
| | - Suzie Dufour
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; National Optics Institute, Biophotonics, Quebec, Canada G1P 4S4
| | - Yotin Chinvarun
- Comprehensive Epilepsy Program and Neurology Unit, Phramongkutklao Hospital, Bangkok, Thailand
| | - Jose Martin Del Campo
- Department of Medicine (Neurology), University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Berj L Bardakjian
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Peter L Carlen
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Department of Medicine (Neurology), University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
8
|
Cox SML, Tippler M, Jaworska N, Smart K, Castellanos-Ryan N, Durand F, Allard D, Benkelfat C, Parent S, Dagher A, Vitaro F, Boivin M, Pihl RO, Côté S, Tremblay RE, Séguin JR, Leyton M. mGlu5 receptor availability in youth at risk for addictions: effects of vulnerability traits and cannabis use. Neuropsychopharmacology 2020; 45:1817-1825. [PMID: 32413893 PMCID: PMC7608187 DOI: 10.1038/s41386-020-0708-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The excitatory neurotransmitter glutamate has been implicated in experience-dependent neuroplasticity and drug-seeking behaviors. Type 5 metabotropic glutamate (mGlu5) receptors might be particularly important. They are critically involved in synaptic plasticity and their availability has been reported to be lower in people with alcohol, tobacco, and cocaine use disorders. Since these reductions could reflect effects of drug use or pre-existing traits, we used positron emission tomography to measure mGlu5 receptor availability in young adults at elevated risk for addictions. Fifty-nine participants (age 18.5 ± 0.6) were recruited from a longitudinal study that has followed them since birth. Based on externalizing traits that predict future substance use problems, half were at low risk, half were at high risk. Cannabis use histories varied markedly and participants were divided into three subgroups: zero, low, and high use. Compared to low risk volunteers, those at elevated risk had lower [11C]ABP688 binding potential (BPND) values in the striatum, amygdala, insula, and orbitofrontal cortex (OFC). Cannabis use by risk group interactions were observed in the striatum and OFC. In these regions, low [11C]ABP688 BPND values were only seen in the high risk group that used high quantities of cannabis. When these high risk, high cannabis use individuals were compared to all other participants, [11C]ABP688 BPND values were lower in the striatum, OFC, and insula. Together, these results provide evidence that mGlu5 receptor availability is low in youth at elevated risk for addictions, particularly those who frequently use cannabis.
Collapse
Affiliation(s)
- Sylvia M L Cox
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Maria Tippler
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Natalia Jaworska
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - Kelly Smart
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Yale PET Center, Yale University, New Haven, CT, USA
| | - Natalie Castellanos-Ryan
- School of Psychoeducation, Université de Montréal, Montreal, QC, Canada
- CHU Ste-Justine Research Center, Montreal, QC, Canada
| | - France Durand
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Dominique Allard
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sophie Parent
- School of Psychoeducation, Université de Montréal, Montreal, QC, Canada
| | - Alain Dagher
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Frank Vitaro
- School of Psychoeducation, Université de Montréal, Montreal, QC, Canada
- CHU Ste-Justine Research Center, Montreal, QC, Canada
| | - Michel Boivin
- Department of Psychology, Université Laval, Quebec, QC, Canada
| | - Robert O Pihl
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Sylvana Côté
- CHU Ste-Justine Research Center, Montreal, QC, Canada
- Department of Social and Preventative Medicine, Université de Montréal, Montreal, QC, Canada
| | - Richard E Tremblay
- CHU Ste-Justine Research Center, Montreal, QC, Canada
- Department of Pediatrics and Psychology, Université de Montréal, Montreal, QC, Canada
- School of Public Health, University College Dublin, Belfield, Dublin, Ireland
| | - Jean R Séguin
- CHU Ste-Justine Research Center, Montreal, QC, Canada
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- Department of Psychology, McGill University, Montreal, QC, Canada.
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Tyler RE, Weinberg BZS, Lovelock DF, Ornelas LC, Besheer J. Exposure to the predator odor TMT induces early and late differential gene expression related to stress and excitatory synaptic function throughout the brain in male rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12684. [PMID: 32666635 DOI: 10.1111/gbb.12684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Persistent changes in brain stress and glutamatergic function are associated with post-traumatic stress disorder (PTSD). Rodent exposure to the predator odor trimethylthiazoline (TMT) is an innate stressor that produces lasting behavioral consequences relevant to PTSD. As such, the goal of the present study was to assess early (6 hours and 2 days-Experiment 1) and late (4 weeks-Experiment 2) changes to gene expression (RT-PCR) related to stress and excitatory function following TMT exposure in male, Long-Evans rats. During TMT exposure, rats engaged in stress reactive behaviors, including digging and immobility. Further, the TMT group displayed enhanced exploration and mobility in the TMT-paired context 1 week after exposure, suggesting a lasting contextual reactivity. Gene expression analyses revealed upregulated FKBP5 6 hours post-TMT in the hypothalamus and dorsal hippocampus. Two days after TMT, GRM3 was downregulated in the prelimbic cortex and dorsal hippocampus, but upregulated in the nucleus accumbens. This may reflect an early stress response (FKBP5) that resulted in later glutamatergic adaptation (GRM3). Finally, another experiment 4 weeks after TMT exposure showed several differentially expressed genes known to mediate excitatory tripartite synaptic function in the prelimbic cortex (GRM5, DLG4 and SLC1A3 upregulated), infralimbic cortex (GRM2 downregulated, Homer1 upregulated), nucleus accumbens (GRM7 and SLC1A3 downregulated), dorsal hippocampus (FKBP5 and NR3C2 upregulated, SHANK3 downregulated) and ventral hippocampus (CNR1, GRM7, GRM5, SHANK3 and Homer1 downregulated). These data show that TMT exposure induces stress and excitatory molecular adaptations, which could help us understand the persistent glutamatergic dysfunction observed in PTSD.
Collapse
Affiliation(s)
- Ryan E Tyler
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA.,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Benjamin Z S Weinberg
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis F Lovelock
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura C Ornelas
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joyce Besheer
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA.,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Akkus F, Terbeck S, Haggarty CJ, Treyer V, Dietrich JJ, Hornschuh S, Hasler G. The role of the metabotropic glutamate receptor 5 in nicotine addiction. CNS Spectr 2020; 26:1-6. [PMID: 32713396 DOI: 10.1017/s1092852920001704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review summarizes the evidence for the potential involvement of metabotropic glutamate receptor 5 (mGluR5) in the development of nicotine addiction. Nicotine is consumed worldwide and is highly addictive. Previous research has extensively investigated the role of dopamine in association with reward learning and addiction, which has provided strong evidence for the involvement of dopaminergic neuronal circuitry in nicotine addiction. More recently, researchers focused on glutamatergic transmission after nicotine abuse, and its involvement in the reinforcing and rewarding effects of nicotine addiction. A number of robust preclinical and clinical studies have shown mGluR5 signaling as a facilitating mechanism of nicotine addiction and nicotine withdrawal. Specifically, clinical studies have illustrated lower cortical mGluR5 density in smokers compared to nonsmokers in the human brain. In addition, mGluR5 might selectively regulate craving and withdrawal. This suggests that mGluR5 could be a key receptor in the development of nicotine addiction and therefore clinical trials to examine the therapeutic potential of mGluR5 agents could help to contribute to reduce nicotine addiction in society.
Collapse
Affiliation(s)
- Funda Akkus
- Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
- Psychiatrie St. Gallen Nord, Wil, Switzerland
| | - Sylvia Terbeck
- School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
| | - Connor J Haggarty
- School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Janan J Dietrich
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefanie Hornschuh
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gregor Hasler
- Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Stensson N, Grimby-Ekman A. Altered relationship between anandamide and glutamate in circulation after 30 min of arm cycling: A comparison of chronic pain subject with healthy controls. Mol Pain 2020; 15:1744806919898360. [PMID: 31838922 PMCID: PMC6964246 DOI: 10.1177/1744806919898360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The insufficient knowledge of biochemical mechanisms behind the emergence and
maintenance of chronic musculoskeletal pain conditions constrains the
development of diagnostic and therapeutic tools for clinical use. However,
physical activity and exercise may improve pain severity and physical function
during chronic pain conditions. Nevertheless, the biochemical consequences of
physical activity and exercise in chronic pain need to be elucidated to increase
the precision of this therapeutic tool in chronic pain treatment. The
endocannabinoid system has been suggested to play an important role in
exercise-induced reward and pain inhibition. Moreover, glutamatergic signalling
has been suggested as an important factor for sensation and transmission of
pain. In addition, a link has been established between the endocannabinoid
system and glutamatergic pathways. This study examines the effect of dynamic
load arm cycling (30 min) on levels of lipid mediators related to the
endocannabinoid system and glutamate in plasma of chronic pain subjects and
pain-free controls. Pain assessments and plasma levels of
arachidonoylethanolamide (anandamide), 2-aracidonoylglycerol,
oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide and glutamate
from 21 subjects with chronic neck pain (chronic pain group) and 11 healthy
controls were analysed pre and post intervention of dynamic load arm cycling.
Pain intensity was significantly different between groups pre and post exercise.
Post exercise, anandamide levels were significantly decreased in health controls
but not in the chronic pain group. A strong positive correlation existed between
anandamide and glutamate in the control group post exercise but not in the
chronic pain group. Moreover, the glutamate/anandamide ratio increased
significantly in the control group and differed significantly with the chronic
pain group post exercise. The altered relationship between anandamide and
glutamate after the intervention in the chronic pain group might reflect
alterations in the endocannabinoid-glutamate mechanistic links in the chronic
pain group compared to the pain-free control group.
Collapse
Affiliation(s)
- Niclas Stensson
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Anna Grimby-Ekman
- Health Metrics, Department of Medicine, School of Public Health and Community Medicine, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
12
|
Caruana DA, Dudek SM. Adenosine A 1 Receptor-Mediated Synaptic Depression in the Developing Hippocampal Area CA2. Front Synaptic Neurosci 2020; 12:21. [PMID: 32612520 PMCID: PMC7307308 DOI: 10.3389/fnsyn.2020.00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Immunolabeling for adenosine A1 receptors (A1Rs) is high in hippocampal area CA2 in adult rats, and the potentiating effects of caffeine or other A1R-selective antagonists on synaptic responses are particularly robust at Schaffer collateral synapses in CA2. Interestingly, the pronounced staining for A1Rs in CA2 is not apparent until rats are 4 weeks old, suggesting that developmental changes other than receptor distribution underlie the sensitivity of CA2 synapses to A1R antagonists in young animals. To evaluate the role of A1R-mediated postsynaptic signals at these synapses, we tested whether A1R agonists regulate synaptic transmission at Schaffer collateral inputs to CA2 and CA1. We found that the selective A1R agonist CCPA caused a lasting depression of synaptic responses in both CA2 and CA1 neurons in slices obtained from juvenile rats (P14), but that the effect was observed only in CA2 in slices prepared from adult animals (~P70). Interestingly, blocking phosphodiesterase activity with rolipram inhibited the CCPA-induced depression in CA1, but not in CA2, indicative of robust phosphodiesterase activity in CA1 neurons. Likewise, synaptic responses in CA2 and CA1 differed in their sensitivity to the adenylyl cyclase activator, forskolin, in that it increased synaptic transmission in CA2, but had little effect in CA1. These findings suggest that the A1R-mediated synaptic depression tracks the postnatal development of immunolabeling for A1Rs and that the enhanced sensitivity to antagonists in CA2 at young ages is likely due to robust adenylyl cyclase activity and weak phosphodiesterase activity rather than to enrichment of A1Rs.
Collapse
Affiliation(s)
- Douglas A. Caruana
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
13
|
Morano A, Fanella M, Albini M, Cifelli P, Palma E, Giallonardo AT, Di Bonaventura C. Cannabinoids in the Treatment of Epilepsy: Current Status and Future Prospects. Neuropsychiatr Dis Treat 2020; 16:381-396. [PMID: 32103958 PMCID: PMC7012327 DOI: 10.2147/ndt.s203782] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/18/2020] [Indexed: 01/05/2023] Open
Abstract
Cannabidiol (CBD) is one of the prominent phytocannabinoids found in Cannabis sativa, differentiating from Δ9-tetrahydrocannabinol (THC) for its non-intoxicating profile and its antianxiety/antipsychotic effects. CBD is a multi-target drug whose anti-convulsant properties are supposed to be independent of endocannabinoid receptor CB1 and might be related to several underlying mechanisms, such as antagonism on the orphan GPR55 receptor, regulation of adenosine tone, activation of 5HT1A receptors and modulation of calcium intracellular levels. CBD is a lipophilic compound with low oral bioavailability (6%) due to poor intestinal absorption and high first-pass metabolism. Its exposure parameters are greatly influenced by feeding status (ie, high fat-containing meals). It is mainly metabolized by cytochrome P 450 (CYP) 3A4 and 2C19, which it strongly inhibits. A proprietary formulation of highly purified, plant-derived CBD has been recently licensed as an adjunctive treatment for Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS), while it is being currently investigated in tuberous sclerosis complex. The regulatory agencies' approval was granted based on four pivotal double-blind, placebo-controlled, randomized clinical trials (RCTs) on overall 154 DS patients and 396 LGS ones, receiving CBD 10 or 20 mg/kg/day BID as active treatment. The primary endpoint (reduction in monthly seizure frequency) was met by both CBD doses. Most patients reported adverse events (AEs), generally from mild to moderate and transient, which mainly consisted of somnolence, sedation, decreased appetite, diarrhea and elevation in aminotransferase levels, the last being documented only in subjects on concomitant valproate therapy. The interaction between CBD and clobazam, likely due to CYP2C19 inhibition, might contribute to some AEs, especially somnolence, but also to CBD clinical effectiveness. Cannabidivarin (CBDV), the propyl analogue of CBD, showed anti-convulsant properties in pre-clinical studies, but a plant-derived, purified proprietary formulation of CBDV recently failed the Phase II RCT in patients with uncontrolled focal seizures.
Collapse
Affiliation(s)
- Alessandra Morano
- Epilepsy Unit, Department of Human Neurosciences, “Sapienza” University of Rome, Rome, Italy
| | - Martina Fanella
- Epilepsy Unit, Department of Human Neurosciences, “Sapienza” University of Rome, Rome, Italy
| | - Mariarita Albini
- Epilepsy Unit, Department of Human Neurosciences, “Sapienza” University of Rome, Rome, Italy
| | - Pierangelo Cifelli
- Department of Physiology and Pharmacology, Pasteur Institute-Cenci Bolognetti Foundation, University of Rome Sapienza, Rome, Italy
- IRCCS “Neuromed”, Pozzilli, IS, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Pasteur Institute-Cenci Bolognetti Foundation, University of Rome Sapienza, Rome, Italy
| | - Anna Teresa Giallonardo
- Epilepsy Unit, Department of Human Neurosciences, “Sapienza” University of Rome, Rome, Italy
| | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Human Neurosciences, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
14
|
Short B, Kozek L, Harmsen H, Zhang B, Wong M, Ess KC, Fu C, Naftel R, Pearson MM, Carson RP. Cerebral aquaporin-4 expression is independent of seizures in tuberous sclerosis complex. Neurobiol Dis 2019; 129:93-101. [PMID: 31078684 DOI: 10.1016/j.nbd.2019.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022] Open
Abstract
Astrocytes serve many functions in the human brain, many of which focus on maintenance of homeostasis. Astrocyte dysfunction in Tuberous Sclerosis Complex (TSC) has long been appreciated with activation of the mTORC1 signaling pathway resulting in gliosis and possibly contributing to the very frequent phenotype of epilepsy. We hypothesized that aberrant expression of the astrocyte protein aquaporin-4 (AQP4) may be present in TSC and contribute to disease pathology. Characterization of AQP4 expression in epileptic cortex from TSC patients demonstrated a diffuse increase in AQP4. To determine if this was due to exposure to seizures, we examined Aqp4 expression in mouse models of TSC in which Tsc1 or Tsc2 inactivation was targeted to astrocytes or glial progenitors, respectively. Loss of either Tsc1 or Tsc2 from astrocytes resulted in a marked increase in Aqp4 expression which was sensitive to mTORC1 inhibition with rapamycin. Our findings in both TSC epileptogenic cortex and in a variety of astrocyte culture models demonstrate for the first time that AQP4 expression is dysregulated in TSC. The extent to which AQP4 contributes to epilepsy in TSC is not known, though the similarities in AQP4 expression between TSC and temporal lobe epilepsy supports further studies targeting AQP4 in TSC.
Collapse
Affiliation(s)
- Brittany Short
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, United States
| | - Lindsay Kozek
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, United States; Vanderbilt Brain Institute, Vanderbilt University, United States
| | - Hannah Harmsen
- Department of Pathology, Vanderbilt University Medical Center, United States
| | - Bo Zhang
- Departments of Neurology, Pediatrics, and Neuroscience, Washington University School of Medicine, United States
| | - Michael Wong
- Departments of Neurology, Pediatrics, and Neuroscience, Washington University School of Medicine, United States
| | - Kevin C Ess
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, United States; Vanderbilt Brain Institute, Vanderbilt University, United States
| | - Cary Fu
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, United States
| | - Robert Naftel
- Department of Neurosurgery, Vanderbilt University Medical Center, United States
| | | | - Robert P Carson
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, United States; Vanderbilt Brain Institute, Vanderbilt University, United States; Department of Pharmacology, Vanderbilt University Medical Center, United States.
| |
Collapse
|
15
|
Metabotropic Glutamate Receptor 5 and 8 Modulate the Ameliorative Effect of Ultramicronized Palmitoylethanolamide on Cognitive Decline Associated with Neuropathic Pain. Int J Mol Sci 2019; 20:ijms20071757. [PMID: 30970677 PMCID: PMC6480075 DOI: 10.3390/ijms20071757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
This study investigated whether metabotropic glutamate receptor (mGluR) 5 and 8 are involved in the effect of ultramicronizedpalmitoylethanolamide (um-PEA) on the cognitive behavior and long term potentiation (LTP) at entorhinal cortex (LEC)-dentate gyrus (DG) pathway in mice rendered neuropathic by the spare nerve injury (SNI). SNI reduced discriminative memory and LTP. Um-PEA treatment started after the development of neuropathic pain had no effects in sham mice, whereas it restored cognitive behavior and LTP in SNI mice. 2-Methyl-6-(phenylethynyl) pyridine (MPEP), a selective mGluR5 antagonist, improved cognition in SNI mice and produced a chemical long term depression of the field excitatory postsynaptic potentials (fEPSPs) in sham and SNI mice. After theta burst stimulation (TBS) MPEP restored LTP in SNI mice. In combination with PEA, MPEP antagonized the PEA effect on discriminative memory and decreased LTP in SNI mice. The (RS)-4-(1-amino-1-carboxyethyl)phthalic acid (MDCPG), a selective mGluR8 antagonist, did not affect discriminative memory, but it induced a chemical LTP and prevented the enhancement of fEPSPs after TBS in SNI mice which were treated or not treated with PEA. The effect of PEA on LTP and cognitive behavior was modulated by mGluR5 and mGluR8. In particular in the SNI conditions, the mGluR5 blockade facilitated memory and LTP, but prevented the beneficial effects of PEA on discriminative memory while the mGluR8 blockade, which was ineffective in itself, prevented the favorable action of the PEA on LTP. Thus, although their opposite roles (excitatory/inhibitory of the two receptor subtypes on the glutamatergic system), they appeared to be required for the neuroprotective effect of PEA in conditions of neuropathic pain.
Collapse
|
16
|
Abstract
The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.
Collapse
Affiliation(s)
- Yuh-Jiin I. Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
17
|
Marshall JJ, Xu J, Contractor A. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons. J Neurosci 2018; 38:3901-3910. [PMID: 29540547 PMCID: PMC5907053 DOI: 10.1523/jneurosci.1788-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 01/28/2023] Open
Abstract
Kainate receptors are members of the glutamate receptor family that function by both generating ionotropic currents through an integral ion channel pore and coupling to downstream metabotropic signaling pathways. They are highly expressed in the striatum, yet their roles in regulating striatal synapses are not known. Using mice of both sexes, we demonstrate that GluK2-containing kainate receptors expressed in direct pathway spiny projection neurons (dSPNs) inhibit glutamate release at corticostriatal synapses in the dorsolateral striatum. This inhibition requires postsynaptic kainate-receptor-mediated mobilization of a retrograde endocannabinoid (eCB) signal and activation of presynaptic CB1 receptors. This pathway can be activated during repetitive 25 Hz trains of synaptic stimulation, causing short-term depression of corticostriatal synapses. This is the first study to demonstrate a role for kainate receptors in regulating eCB-mediated plasticity at the corticostriatal synapse and demonstrates an important role for these receptors in regulating basal ganglia circuits.SIGNIFICANCE STATEMENT The GRIK2 gene, encoding the GluK2 subunit of the kainate receptor, has been linked to several neuropsychiatric and neurodevelopmental disorders including obsessive compulsive disorder (OCD). Perseverative behaviors associated with OCD are known to result from pathophysiological changes in the striatum and kainate receptor knock-out mice have striatal-dependent phenotypes. However, the role of kainate receptors in striatal synapses is not known. We demonstrate that GluK2-containing kainate receptors regulate corticostriatal synapses by mobilizing endocannabinoids from direct pathway spiny projection neurons. Synaptic activation of GluK2 receptors during trains of synaptic input causes short-term synaptic depression, demonstrating a novel role for these receptors in regulating striatal circuits.
Collapse
Affiliation(s)
- John J Marshall
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Jian Xu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Anis Contractor
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
18
|
O'Riordan KJ, Hu NW, Rowan MJ. Physiological activation of mGlu5 receptors supports the ion channel function of NMDA receptors in hippocampal LTD induction in vivo. Sci Rep 2018. [PMID: 29535352 PMCID: PMC5849730 DOI: 10.1038/s41598-018-22768-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synaptic long-term depression (LTD) is believed to underlie critical mnemonic processes in the adult hippocampus. The roles of the metabotropic and ionotropic actions of glutamate in the induction of synaptic LTD by electrical low-frequency stimulation (LFS) in the living adult animal is poorly understood. Here we examined the requirement for metabotropic glutamate (mGlu) and NMDA receptors in LTD induction in anaesthetized adult rats. LTD induction was primarily dependent on NMDA receptors and required the involvement of both the ion channel function and GluN2B subunit of the receptor. Endogenous mGlu5 receptor activation necessitated the local application of relatively high doses of either competitive or non-competitive NMDA receptor antagonists to block LTD induction. Moreover, boosting endogenous glutamate activation of mGlu5 receptors with a positive allosteric modulator lowered the threshold for NMDA receptor-dependent LTD induction by weak LFS. The present data provide support in the living animal that NMDA receptor-dependent LTD is boosted by endogenously released glutamate activation of mGlu5 receptors. Given the predominant perisynaptic location of mGlu5 receptors, the present findings emphasize the need to further evaluate the contribution and mechanisms of these receptors in NMDA receptor-dependent synaptic plasticity in the adult hippocampus in vivo.
Collapse
Affiliation(s)
- Kenneth J O'Riordan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland. .,Department of Gerontology, Yijishan Hospital, Wannan Medical College, Wuhu, China. .,Department of Physiology and Neurobiology, Zhengzhou University School of Medicine, Zhengzhou, 450001, China.
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics and Institute of Neuroscience, Watts Building, Trinity College, Dublin, 2, Ireland.
| |
Collapse
|
19
|
Zhang Y, Liu Y, Wu L, Fan C, Wang Z, Zhang X, Alachkar A, Liang X, Civelli O. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3. FASEB J 2018; 32:3184-3192. [PMID: 29401613 DOI: 10.1096/fj.201700337rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bombesin receptor subtype 3 (BRS-3) is a GPCR that is expressed in the CNS, peripheral tissues, and tumors. Our understanding of BRS-3's role in physiology and pathophysiology is limited because its natural ligand is unknown. In an attempt to identify this ligand, we screened toad skin ( Bufo bufo gargarizans Cantor) extracts and identified prostaglandins as putative ligands. In BRS-3-transfected human embryonic kidney (HEK) cells, we found that prostaglandins, with prostaglandin E2 (PGE2) being the most potent, fulfill the pharmacologic criteria of affinity, selectivity, and specificity to be considered as agonists to the BRS-3 receptor. However, PGE2 is unable to activate BRS-3 in different cellular environments. We speculated that EP receptors might be the cause of this cellular selectivity, and we found that EP3 is the receptor primarily responsible for the differential PGE2 effect. Consequently, we reconstituted the HEK environment in Chinese hamster ovary (CHO) cells and found that BRS-3 and EP3 interact to potentiate PGE2 signaling. This potentiating effect is receptor specific, and it occurs only when BRS-3 is paired to EP3. Our study represents an example of functional crosstalk between two distantly related GPCRs and may be of clinical importance for BRS-3-targeted therapies.-Zhang, Y., Liu, Y., Wu, L., Fan, C., Wang, Z., Zhang, X., Alachkar, A., Liang, X., Civelli, O. Receptor-specific crosstalk between prostanoid E receptor 3 and bombesin receptor subtype 3.
Collapse
Affiliation(s)
- Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lehao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Fan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Wang
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| | - Xiuli Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Amal Alachkar
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
20
|
Correa AMB, Guimarães JDS, Dos Santos E Alhadas E, Kushmerick C. Control of neuronal excitability by Group I metabotropic glutamate receptors. Biophys Rev 2017; 9:835-845. [PMID: 28836161 PMCID: PMC5662043 DOI: 10.1007/s12551-017-0301-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu1 and mGlu5. Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gαq, which can activate PLCβ, leading initially to the formation of IP3 and diacylglycerol. IP3 can release Ca2+ from cellular stores resulting in activation of Ca2+-dependent ion channels. Intracellular Ca2+, together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Ana Maria Bernal Correa
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Christopher Kushmerick
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Departamento de Fisiologia e Biofísica - ICB, UFMG, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
21
|
Pupo AS, García-Sáinz JA. A Latin American Perspective on G Protein-Coupled Receptors. Mol Pharmacol 2016; 90:570-572. [PMID: 27754900 DOI: 10.1124/mol.116.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors are sensors that interact with a large variety of elements, including photons, ions, and large proteins. Not surprisingly, these receptors participate in the numerous normal physiologic processes that we refer to as health and in its perturbations that constitute disease. It has been estimated that a large percentage of drugs currently used in therapeutics target these proteins, and this percentage is larger when illegal drugs are included. The state of the art in this field can be defined with the oxymoron "constant change," and enormous progress has been made in recent years. A group of scientists working in Latin America were invited to contribute minireviews for this special section to present some of the work performed in this geographical region and foster further international collaboration.
Collapse
Affiliation(s)
- André S Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil (A.S.P.); and Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (J.A.G.-S.)
| | - J Adolfo García-Sáinz
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil (A.S.P.); and Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico (J.A.G.-S.)
| |
Collapse
|