1
|
Pierce SR, Germann AL, Covey DF, Evers AS, Steinbach JH, Akk G. Inhibitory Actions of Potentiating Neuroactive Steroids in the Human α1β3γ2L γ-Aminobutyric Acid Type A Receptor. Mol Pharmacol 2024; 106:264-277. [PMID: 39214710 PMCID: PMC11493365 DOI: 10.1124/molpharm.124.000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The γ-aminobutyric acid type A (GABAA) receptor is modulated by a number of neuroactive steroids. Sulfated steroids and 3β-hydroxy steroids inhibit, while 3α-hydroxy steroids typically potentiate the receptor. Here, we have investigated inhibition of the α1β3γ2L GABAA receptor by the endogenous neurosteroid 3α-hydroxy-5β-pregnan-20-one (3α5βP) and the synthetic neuroactive steroid 3α-hydroxy-5α-androstane-17β-carbonitrile (ACN). The receptors were expressed in Xenopus oocytes. All experiments were done using two-electrode voltage-clamp electrophysiology. In the presence of low concentrations of GABA, 3α5βP and ACN potentiate the GABAA receptor. To reveal inhibition, we conducted the experiments on receptors activated by the combination of a saturating concentration of GABA and propofol to fully activate the receptors and mask potentiation, or on mutant receptors in which potentiation is ablated. Under these conditions, both steroids inhibited the receptor with IC50s of ∼13 μM and maximal inhibitory effects of 70-90%. Receptor inhibition by 3α5βP was sensitive to substitution of the α1 transmembrane domain (TM) 2-2' residue, previously shown to ablate inhibition by pregnenolone sulfate. However, results of coapplication studies and the apparent lack of state dependence suggest that pregnenolone sulfate and 3α5βP inhibit the GABAA receptor independently and through distinct mechanisms. Mutations to the neurosteroid binding sites in the α1 and β3 subunits statistically significantly, albeit weakly and incompletely, reduced inhibition by 3α5βP and ACN. SIGNIFICANCE STATEMENT: The heteromeric GABAA receptor is inhibited by sulfated steroids and 3β-hydroxy steroids, while 3α-hydroxy steroids are considered to potentiate the receptor. We show here that 3α-hydroxy steroids have inhibitory effects on the α1β3γ2L receptor, which are observed in specific experimental settings and are expected to manifest under different physiological conditions.
Collapse
Affiliation(s)
- Spencer R Pierce
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Allison L Germann
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Douglas F Covey
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Alex S Evers
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Joe Henry Steinbach
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| | - Gustav Akk
- Departments of Anesthesiology (S.R.P., A.L.G., D.F.C., A.S.E., J.H.S., G.A.), Developmental Biology (D.F.C., A.S.E.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., A.S.E., J.H.S., G.A.), Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
2
|
Oliveira DL, Cardoso VF, Britto-Júnior J, Fuguhara V, Frecentese F, Sparaco R, Santagada V, Caliendo G, Pupo AS, Antunes E, De Nucci G. The negative chronotropic effects of (±)-propranolol and (±)-4-NO 2-propranolol in the rat isolated right atrium are due to blockade of the 6-nitrodopamine receptor. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03463-3. [PMID: 39382679 DOI: 10.1007/s00210-024-03463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The positive chronotropic action induced by 6-nitrodopamine (6-ND) is selectively blocked by β1-adrenoceptor antagonists at concentrations that do not affect the positive chronotropic effect induced by dopamine, noradrenaline, and adrenaline. Here, the effects of ( ±)-propranolol, ( ±)-4-NO2-propranolol, and ( ±)-7-NO2-propranolol were investigated in the rat isolated right atrium. The atrium was mounted in glass chambers containing gassed (95%O2:5%CO2) and warmed (37 °C) Krebs-Henseleit's solution, and the isometric tension registered (PowerLab system). ( ±)-Propranolol, ( ±)-4-NO2-propranolol, and ( ±)-7-NO2-propranolol caused concentration-dependent falls in the spontaneous atrial frequency (pIC50: 4.80 ± 0.10, 4.64 ± 0.10, and 4.95 ± 0.10, respectively). The calculated pA2 values for ( ±)-propranolol, ( ±)-4-NO2-propranolol, and ( ±)-7-NO2-propranol on noradrenaline-induced positive chronotropism were 8.44 ± 0.08, 6.41 ± 0.07, and 9.21 ± 0.29, respectively. The positive chronotropism induced by 6-ND (10 pM) was blocked by ( ±)-propranolol (1 µM) and ( ±)-4-NO2-propranolol (30 nM), whereas ( ±)-7-NO2-propranolol (1 µM) had no effect on 6-ND-induced responses. The pIC50 of ( ±)-propranolol, ( ±)-4-NO2-propranolol, and ( ±)-7-NO2-propranolol were significantly shifted to the right in L-NAME-treated atria. The discrepancy between pA2 values of ( ±)-propranolol and its respective pIC50 indicates that the falls in atrial rate induced by ( ±)-propranolol should not be attributed to b-adrenergic antagonism. The reduced chronotropism by ( ±)-propranolol was unaffected by the sodium channel inhibitors tetrodotoxin and lidocaine but that was abolished in atria pre-treated with ( ±)-4-NO2-propranolol. The finding that ( ±)-propranolol reduces spontaneous atrial rate only in concentrations that affect 6-ND-induced positive chronotropism confirms the role of this catecholamine as an endogenous modulator of heart chronotropism. ( ±)-4-NO2-Propranolol behaves as a selective antagonist of 6-ND in the rat isolated atrium.
Collapse
Affiliation(s)
- Denis Lima Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo St, Campinas, São Paulo, 13083-887, Brazil
| | - Vinicius Francisco Cardoso
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo St, Campinas, São Paulo, 13083-887, Brazil
| | - Jose Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo St, Campinas, São Paulo, 13083-887, Brazil.
| | - Vivian Fuguhara
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo St, Campinas, São Paulo, 13083-887, Brazil
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo St, Campinas, São Paulo, 13083-887, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), 126 Tessália Vieira de Camargo St, Campinas, São Paulo, 13083-887, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (ICB-USP), São Paulo, Brazil
| |
Collapse
|
3
|
Hu S, Müderrisoglu AE, Ciotkowska A, Kale O, Keller P, Schott M, Tamalunas A, Waidelich R, Stief CG, Hennenberg M. Effects of carvedilol on human prostate tissue contractility and stromal cell growth pointing to potential clinical implications. Pharmacol Rep 2024; 76:807-822. [PMID: 38858312 PMCID: PMC11294394 DOI: 10.1007/s43440-024-00605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Apart from antagonizing ß-adrenoceptors, carvedilol antagonizes vascular α1-adrenoceptors and activates G protein-independent signaling. Even though it is a commonly used antihypertensive and α1-adrenoceptors are essential for the treatment of voiding symptoms in benign prostatic hyperplasia, its actions in the human prostate are still unknown. Here, we examined carvedilol effects on contractions of human prostate tissues, and on stromal cell growth. METHODS Contractions of prostate tissues from radical prostatectomy were induced by electric field stimulation (EFS) or α1-agonists. Growth-related functions were examined in cultured stromal cells. RESULTS Concentration-response curves for phenylephrine, methoxamine and noradrenaline were right shifted by carvedilol (0.1-10 µM), around half a magnitude with 100 nM, half to one magnitude with 1 µM, and two magnitudes with 10 µM. Right shifts were reflected by increased EC50 values for agonists, with unchanged Emax values. EFS-induced contractions were reduced by 21-54% with 0.01-1 µM carvedilol, and by 94% by 10 µM. Colony numbers of stromal cells were increased by 500 nM, but reduced by 1-10 µM carvedilol, while all concentrations reduced colony size. Decreases in viability were time-dependent with 0.1-0.3 µM, but complete with 10 µM. Proliferation was slightly increased by 0.1-0.5 µM, but reduced with 1-10 µM. CONCLUSIONS Carvedilol antagonizes α1-adrenoceptors in the human prostate, starting with concentrations in ranges of known plasma levels. In vitro, effect sizes resemble those of α1-blockers used for the treatment of voiding symptoms, which requires concentrations beyond plasma levels. Bidirectional and dynamic effects on the growth of stromal cells may be attributed to "biased agonism".
Collapse
Affiliation(s)
- Sheng Hu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Anna Ciotkowska
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Oluwafemi Kale
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Patrick Keller
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Melanie Schott
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Raphaela Waidelich
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany.
- Urologische Klinik und Poliklinik, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
4
|
Tamalunas A, Wendt A, Springer F, Vigodski V, Trieb M, Eitelberger N, Poth H, Ciotkowska A, Rutz B, Hu S, Schulz H, Ledderose S, Rogenhofer N, Kolben T, Nössner E, Stief CG, Hennenberg M. Immunomodulatory imide drugs inhibit human detrusor smooth muscle contraction and growth of human detrusor smooth muscle cells, and exhibit vaso-regulatory functions. Biomed Pharmacother 2024; 177:117066. [PMID: 38981242 DOI: 10.1016/j.biopha.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The immunomodulatory imide drugs (IMiDs) thalidomide, lenalidomide and pomalidomide may exhibit therapeutic efficacy in the prostate. In lower urinary tract symptoms (LUTS), voiding and storage disorders may arise from benign prostate hyperplasia, or overactive bladder. While current therapeutic options target smooth muscle contraction or cell proliferation, side effects are mostly cardiovascular. Therefore, we investigated effects of IMiDs on human detrusor and porcine artery smooth muscle contraction, and growth-related functions in detrusor smooth muscle cells (HBdSMC). METHODS Cell viability was assessed by CCK8, and apoptosis and cell death by flow cytometry in cultured HBdSMC. Contractions of human detrusor tissues and porcine interlobar and coronary arteries were induced by contractile agonists, or electric field stimulation (EFS) in the presence or absence of an IMID using an organ bath. Proliferation was assessed by EdU assay and colony formation, cytoskeletal organization by phalloidin staining, RESULTS: Depending on tissue type, IMiDs inhibited cholinergic contractions with varying degree, up to 50 %, while non-cholinergic contractions were inhibited up to 80 % and 60 % for U46619 and endothelin-1, respectively, and EFS-induced contractions up to 75 %. IMiDs reduced viable HBdSM cells in a time-dependent manner. Correspondingly, proliferation was reduced, without showing pro-apoptotic effects. In parallel, IMiDs induced cytoskeletal disorganization. CONCLUSIONS IMiDs exhibit regulatory functions in various smooth muscle-rich tissues, and of cell proliferation in the lower urinary tract. This points to a novel drug class effect for IMiDs, in which the molecular mechanisms of action of IMiDs merit further consideration for the application in LUTS.
Collapse
Affiliation(s)
- Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany; Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany.
| | - Amin Wendt
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Florian Springer
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Victor Vigodski
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Moritz Trieb
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | | | - Henrik Poth
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Beata Rutz
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Sheng Hu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Heiko Schulz
- Department of Pathology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Stephan Ledderose
- Department of Pathology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Nina Rogenhofer
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Elfriede Nössner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Muderrisoglu AE, Ciotkowska A, Rutz B, Hu S, Qian S, Tamalunas A, Stief CG, Hennenberg M. Dynamic phenotypic shifts and M2 receptor downregulation in bladder smooth muscle cells induced by mirabegron. Front Pharmacol 2024; 15:1446831. [PMID: 39114356 PMCID: PMC11303193 DOI: 10.3389/fphar.2024.1446831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Mirabegron is available for treatment of overactive bladder (OAB). However, mechanisms underlying symptom improvements and long-term effects on bladder smooth muscle cells are uncertain. Contractility and growth of bladder smooth muscle contribute to OAB, and depend on smooth muscle phenotypes, and on muscarinic receptor expression. Here, we examined prolonged exposure to mirabegron (20-48 h) on phenotype markers, muscarinic receptor expression, and phenotype-dependent functions in human bladder smooth muscle cells (hBSMC). Methods Expression of markers for contractile (calponin, MYH11) and proliferative (MYH10, vimentin) phenotypes, proliferation (Ki-67), and of muscarinic receptors were assessed by RT-PCR. Proliferation, viability, actin organization and contractions in cultured hBSMC were examined by EdU, CCK-8, phalloidin staining and matrix contraction assays. Results Calponin-1 mRNA decreased with 100 nM and 150 nM mirabegron applied for 20 h (0.56-0.6 fold of controls). Decreases were resistant to the β3-AR antagonist L-748,337 (0.34-0.55 fold, 100-150 nM, 20 h). After 40 h, decreases occured in the presence of L-748,337, but not without L-748,337. MYH11 mRNA increased with 150 nM mirabegron (40 h, 1.9 fold). This was partly preserved with L-748,337, but not observed after 20 h mirabegron exposure. Vimentin mRNA reduced with 150 nM mirabegron after 20 h, but not after 40 h, with and without L-748,337 (0.71-0.63 fold). MYH10 mRNA expression remained unaffected by mirabegron. Exposure to 150 nM mirabegron increased Ki-67 mRNA after 20 h in the presence of, but not without L-748,337, and after 40 h without, but not with L-748,337. Proliferation rates and actin organization were stable with 50-150 nM mirabegron (24 h, 48 h). Viability increased significantly after mirabegron exposure for 20 h, and by trend after 40 h, which was fully sensitive to L-748,337. M2 mRNA was reduced by 20 h mirabegron, which was resistant to L-748,337. Carbachol (3 µM) enhanced time-dependent contractions of hBSMC, which was inhibited by mirabegron (150 nM) in late phases (24 h), but not in early phases of contractions. Conclusion: Mirabegron induces dynamic phenotype alterations and M2 downregulation in hBSMC, which is paralleled by time-shifted anticontractile effects. Phenotype transitions may be involved in improvements of storage symptoms in OAB by mirabegron.
Collapse
Affiliation(s)
- A. E. Muderrisoglu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Türkiye
| | - A. Ciotkowska
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - B. Rutz
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - S. Hu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - S. Qian
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - A. Tamalunas
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - C. G. Stief
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - M. Hennenberg
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Avila C, Sarter M. Cortico-striatal action control inherent of opponent cognitive-motivational styles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584623. [PMID: 38559086 PMCID: PMC10979997 DOI: 10.1101/2024.03.12.584623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Turning on cue or stopping at a red light requires the detection of such cues to select action sequences, or suppress action, in accordance with cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In conjunction with turn cue-evoked glutamate spike levels, the presence of a single spike rendered GTs to be almost twice as likely to turn than STs. In contrast, multiple glutamate spikes predicted GTs to be less likely to turn than STs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates, turn cue-evoked glutamate peaks, and increased the number of spikes. These findings suggest that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking.
Collapse
Affiliation(s)
- Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Hu DG, Marri S, Hulin JA, Ansaar R, Mackenzie PI, McKinnon RA, Meech R. Activation of Cryptic Donor Splice Sites within the UDP-Glucuronosyltransferase (UGT)1A First-Exon Region Generates Variant Transcripts That Encode UGT1A Proteins with Truncated Aglycone-Binding Domains. Drug Metab Dispos 2024; 52:526-538. [PMID: 38565302 DOI: 10.1124/dmd.123.001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The human UDP-glucuronosyltransferases (UGTs) have crucial roles in metabolizing and clearing numerous small lipophilic compounds. The UGT1A locus generates nine UGT1A mRNAs, 65 spliced transcripts, and 34 circular RNAs. In this study, our analysis of published UGT-RNA capture sequencing (CaptureSeq) datasets identified novel splice junctions that predict 24 variant UGT1A transcripts derived from ligation of exon 2 to unique sequences within the UGT1A first-exon region using cryptic donor splice sites. Of these variants, seven (1A1_n1, 1A3_n3, 1A4_n4, 1A5_n1, 1A8_n2, 1A9_n2, 1A10_n7) are predicted to encode UGT1A proteins with truncated aglycone-binding domains. We assessed their expression profiles and deregulation in cancer using four RNA sequencing (RNA-Seq) datasets of paired normal and cancerous drug-metabolizing tissues from large patient cohorts. Variants were generally coexpressed with their canonical counterparts with a higher relative abundance in tumor than in normal tissues. Variants showed tissue-specific expression with high interindividual variability but overall low abundance. However, 1A8_n2 showed high abundance in normal and cancerous colorectal tissues, with levels that approached or surpassed canonical 1A8 mRNA levels in many samples. We cloned 1A8_n2 and showed expression of the predicted protein (1A8_i3) in human embryonic kidney (HEK)293T cells. Glucuronidation assays with 4-methylumbelliferone (4MU) showed that 1A8_i3 had no activity and was unable to inhibit the activity of 1A8_i1 protein. In summary, the activation of cryptic donor splice sites within the UGT1A first-exon region expands the UGT1A transcriptome and proteome. The 1A8_n2 cryptic donor splice site is highly active in colorectal tissues, representing an important cis-regulatory element that negatively regulates the function of the UGT1A8 gene through pre-mRNA splicing. SIGNIFICANT STATEMENT: The UGT1A locus generates nine canonical mRNAs, 65 alternately spliced transcripts, and 34 different circular RNAs. The present study reports a series of novel UDP-glucuronosyltransferase (UGT)1A variants resulting from use of cryptic donor splice sites in both normal and cancerous tissues, several of which are predicted to encode variant UGT1A proteins with truncated aglycone-binding domains. Of these, 1A8_n2 shows exceptionally high abundance in colorectal tissues, highlighting its potential role in the first-pass metabolism in gut through the glucuronidation pathway.
Collapse
Affiliation(s)
- Dong Gui Hu
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Julie-Ann Hulin
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Radwan Ansaar
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Peter I Mackenzie
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Ross A McKinnon
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Robyn Meech
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| |
Collapse
|
8
|
Liu Y, Huang R, Wang R, Tamalunas A, Waidelich R, Stief CG, Hennenberg M. Isoform-independent promotion of contractility and proliferation, and suppression of survival by with no lysine/K kinases in prostate stromal cells. FASEB J 2024; 38:e23604. [PMID: 38591106 DOI: 10.1096/fj.202400362r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
With no lysine/K kinases (WNKs) promote vasocontraction and vascular smooth muscle cell proliferation. In the prostate, smooth muscle contraction and growth may be critical for the development and medical treatment of voiding symptoms in benign prostatic hyperplasia. Here, we examined the effects of isoform-specific WNK silencing and of the WNK inhibitor WNK463 on growth-related functions and contraction in prostate stromal cells, and in human prostate tissues. Impacts of WNK silencing by transfection of cultured stromal cells with isoform-specific siRNAs were qualitatively and quantitatively similar for each WNK isoform. Effects of silencing were largest on cell death (3-5 fold increase in annexin V-positive/7-AAD-positive cells), on proliferation rate, Ki-67 mRNA expression and actin organization (reduced around two-thirds). Contraction in matrix contraction assays and viability were reduced to a lower degree (approximately half), but again to a similar extent for each WNK isoform. Effects of silencing were quantitatively and qualitatively reproduced by 10 μM WNK463, while 1 μM still induced cell death and breakdown in actin organization, without affecting proliferation or viability. Using 500 nM and 10 μM, WNK463 partly inhibited neurogenic and U46619-induced contractions of human prostate tissues (around half), while inhibition of α1-adrenergic contractions (around half) was limited to 10 μM. All four WNK isoforms suppress cell death and promote proliferation in prostate stromal cells. WNK-driven contraction of stromal cells appears possible, even though to a limited extent. Outcomes of isoform-specific WNK silencing can be fully reproduced by WNK463, including inhibition of smooth muscle contraction in human prostate tissues, but require high concentrations.
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Raphaela Waidelich
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Ghezzi AC, Passos GR, de Oliveira MG, Oliveira AL, Assis-Mendonça GR, de Mello GC, Antunes E, Monica FZ. A 2-week treatment with 5-azacytidine improved the hypercontractility state in prostate from obese mice: Role of the nitric oxide-cyclic guanosine monophosphate signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13851. [PMID: 38452757 DOI: 10.1111/1440-1681.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Benign prostatic hyperplasia (BPH) is characterised by increases in prostate volume and contraction. Downregulation of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway contributes to prostate dysfunctions. Previous studies in cancer cells or vessels have shown that the epigenetic mechanisms control the gene and protein expression of the enzymes involved in the production of NO and cGMP. This study is aimed to evaluate the effect of a 2-week treatment of 5-azacytidine (5-AZA), a DNA-methyltransferase inhibitor, in the prostate function of mice fed with a high-fat diet. Functional, histological, biochemical and molecular assays were carried out. Obese mice presented greater prostate weight, α-actin expression and contractile response induced by the α-1adrenoceptors agonist. The relaxation induced by the NO-donor and the protein expression of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) were significantly decreased in the prostate of obese mice. The treatment with 5-AZA reverted the higher expression of α-actin, reduced the hypercontractility state of the prostate and increased the expression of eNOS and sGC and intraprostatic levels of cGMP. When prostates from obese mice treated with 5-AZA were incubated in vitro with inhibitors of the NOS or sGC, the inhibitory effect of 5-AZA was reverted, therefore, showing the involvement of NO and cGMP. In conclusion, our study paves the way to develop or repurpose therapies that recover the expression of eNOS and sGC and, hence, to improve prostate function in BPH.
Collapse
Affiliation(s)
- Ana Carolina Ghezzi
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Gabriela Reolon Passos
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Mariana Gonçalves de Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Akila Lara Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Guilherme Rossi Assis-Mendonça
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
- National Academy of Medicine, Young Leadership Physician Program, Rio de Janeiro, Brazil
| | - Glaucia Coelho de Mello
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Edson Antunes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Fabiola Zakia Monica
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
10
|
Sens-Albert C, Weisenburger S, König BC, Melcher SF, Scheyhing UAM, Rollet K, Lluel P, Koch E, Lehner MD, Michel MC. Effects of a proprietary mixture of extracts from Sabal serrulata fruits and Urtica dioica roots (WS ® 1541) on prostate hyperplasia and inflammation in rats and human cells. Front Pharmacol 2024; 15:1379456. [PMID: 38560358 PMCID: PMC10979176 DOI: 10.3389/fphar.2024.1379456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Phytotherapeutics, particularly extracts from Sabal serrulata (saw palmetto) fruit or Urtica dioica (stinging nettle) root, are popular for the treatment of male lower urinary symptoms in many countries, but their mechanism of action is poorly understood. We performed in vivo and in vitro studies to obtain deeper insight into the mechanism of action of WS® 1541, a proprietary combination of a Sabal serrulata fruit and an Urtica dioica root extract (WS® 1473 and WS® 1031, respectively) and its components. Methods: We used the sulpiride model of benign prostatic hyperplasia in rats and tested three doses of WS® 1541 in comparison to finasteride, evaluating weight of prostate and its individual lobes as well as aspects of inflammation, oxidative stress, growth and hyperplasia. In human BPH-1 cells, we studied the effect of WS® 1473, WS® 1031, WS® 1541 and finasteride on apoptosis, cell cycle progression and migrative capacity of the cells. Results: WS® 1541 did not reduce prostate size in sulpiride treated rats but attenuated the sulpiride-induced changes in expression of most analyzed genes and of oxidized proteins and abrogated the epithelial thickening. In vitro, WS® 1473 and WS® 1031 showed distinct profiles of favorable effects in BPH-1 cells including anti-oxidative, anti-proliferative and pro-apoptotic effects, as well as inhibiting epithelial-mesenchymal-transition. Conclusion: This data supports a beneficial effect of the clinically used WS® 1541 for the treatment of lower urinary tract symptoms associated with mild to moderate benign prostate syndrome and provides a scientific rationale for the combination of its components WS® 1473 and WS® 1031.
Collapse
Affiliation(s)
- Carla Sens-Albert
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | | | - Beatrix C. König
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | - Silas F. Melcher
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | | | - Karin Rollet
- Urosphere SAS, Parc Technologique Du Canal, Toulouse, France
| | - Philippe Lluel
- Urosphere SAS, Parc Technologique Du Canal, Toulouse, France
| | - Egon Koch
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | - Martin D. Lehner
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co., KG, Karlsruhe, Germany
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Hu S, Trieb M, Huang R, Tamalunas A, Keller P, Götz M, Waidelich R, Stief CG, Hennenberg M. Organ-specific off-target effects of Pim/ZIP kinase inhibitors suggest lack of contractile Pim kinase activity in prostate, bladder, and vascular smooth muscle. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1219-1231. [PMID: 37658212 PMCID: PMC10791718 DOI: 10.1007/s00210-023-02664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Smooth muscle contraction by Pim kinases and ZIPK has been suggested, but evidence for lower urinary tract organs or using Pim-selective inhibitor concentrations is not yet available. Here, we assessed effects of the Pim inhibitors AZD1208 and TCS PIM-1 and the dual ZIPK/Pim inhibitor HS38 on contractions of human prostate and bladder tissues and of porcine interlobar arteries. Human tissues were obtained from radical prostatectomy and radical cystectomy and renal interlobar arteries from pigs. Contractions were studied in an organ bath. Noradrenaline-, phenylephrine- and methoxamine-induced contractions were reduced (up to > 50%) with 500-nM AZD1208 in prostate tissues and to lesser degree and not consistently with all agonists in interlobar arteries. A total of 100-nM AZD1208 or 500-nM TCS PIM-1 did not affect agonist-induced contractions in prostate tissues. Decreases in agonist-induced contractions with 3-µM HS38 in prostate tissues and interlobar arteries were of small extent and did not occur with each agonist. Carbachol-induced contractions in detrusor tissues were unchanged with AZD1208 (500 nM) or HS38. Electric field stimulation-induced contractions were not affected with AZD1208 or HS38 in any tissue, but slightly reduced with 500-nM TCS PIM-1 in prostate tissues. Concentration-dependent effects of Pim inhibitors suggest lacking Pim-driven smooth muscle contraction in the prostate, bladder, and interlobar arteries but point to organ-specific functions of off-targets. Procontractile functions of ZIPK in the prostate and interlobar arteries may be limited and are lacking in the detrusor.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Moritz Trieb
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Patrick Keller
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Melanie Götz
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Raphaela Waidelich
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
- Urologische Klinik Und Poliklinik, Marchioninistr. 15, 81377, München, Germany.
| |
Collapse
|
12
|
Ekström C, Ortenlöf N, Kristiansson A, Holmqvist B, Jungner Å, Vallius S, Wang X, Hellström A, Barton N, Carey G, Ley D, Gram M. Evaluation of recombinant human IGF-1/IGFBP-3 on intraventricular hemorrhage prevention and survival in the preterm rabbit pup model. Sci Rep 2023; 13:19847. [PMID: 37963901 PMCID: PMC10645867 DOI: 10.1038/s41598-023-46611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is essential for normal brain development and regulates processes of vascular maturation. The pathogenesis of intraventricular hemorrhage (IVH) relates to the fragility of the immature capillaries in the germinal matrix, and its inability to resist fluctuations in cerebral blood flow. In this work, using different experimental setups, we aimed to (i) establish an optimal time-point for glycerol-induction of IVH in relation to time-point of recombinant human (rh) IGF-1/rhIGFBP-3 administration, and (ii) to evaluate the effects of a physiologic replacement dose of rhIGF-1/rhIGFBP-3 on prevention of IVH and survival in the preterm rabbit pup. The presence of IVH was evaluated using high-frequency ultrasound and post-mortem examinations. In the first part of the study, the highest incidence of IVH (> 60%), occurred when glycerol was administered at the earliest timepoint, e.g., 6 h after birth. At later time-points (18 and 24 h) the incidence decreased substantially. In the second part of the study, the incidence of IVH and mortality rate following rhIGF-1/rhIGFBP-3 administration was not statistically different compared to vehicle treated animals. To evaluate the importance of maintaining intrauterine serum levels of IGF-1 following preterm birth, as reported in human interventional studies, additional studies are needed to further characterize and establish the potential of rhIGF-1/rhIGFBP-3 in reducing the prevalence of IVH and improving survival in the preterm rabbit pup.
Collapse
Affiliation(s)
- Claes Ekström
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Niklas Ortenlöf
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Amanda Kristiansson
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Åsa Jungner
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Suvi Vallius
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
| | - Ann Hellström
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Norman Barton
- Scientific Advisory Board, Oak Hill Bio Ltd, WA14 2DT, UK
| | | | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
13
|
Ledesma-Corvi S, Jornet-Plaza J, García-Fuster MJ. Aromatase inhibition and ketamine in rats: sex-differences in antidepressant-like efficacy. Biol Sex Differ 2023; 14:73. [PMID: 37876000 PMCID: PMC10599051 DOI: 10.1186/s13293-023-00560-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Ketamine has been recently approved to treat resistant depression; however preclinical studies showed sex differences in its efficacy. Sex steroids, such as estrogens and testosterone, both in the periphery and locally in the brain, are regarded as important modulators of these sex differences. Therefore, the present study evaluated how inhibiting the biosynthesis of estrogens with letrozole (an aromatase inhibitor) could affect the observed sex differences in ketamine's antidepressant-like-response. METHODS We performed several consecutive studies in adult Sprague-Dawley rats to evaluate potential sex differences in the antidepressant-like effects of ketamine (5 mg/kg, 7 days, i.p.), letrozole (1 mg/kg, 8 days, i.p.) and their combination (letrozole pre-treatment 3 h before ketamine). Acute and repeated antidepressant-like responses were ascertained in a series of behavioral tests (forced-swim, novelty-suppressed feeding, two-bottle choice for sucrose preference). RESULTS The main results proved clear sex differences in the antidepressant-like response induced by ketamine, which was observed following a repeated paradigm in adult male rats, but rendered inefficacious in female rats. Moreover, decreasing estrogens production with letrozole induced on itself an antidepressant-like response in female rats, while also increased ketamine's response in male rats (i.e., quicker response observed after only a single dose). Interestingly, both the antidepressant-like effects induced by ketamine in male rats or letrozole in female rats persisted over time up to 65 days post-treatment, suggesting long-term sex-directed benefits for these drugs. CONCLUSIONS The present results demonstrated a sex-specific role for aromatase inhibition with letrozole in the antidepressant-like response induced by ketamine in male rats. Moreover, letrozole itself presented as a potential antidepressant for females with persistent effects over time. Clearly, the production of estrogens is key in modulating, in a sex-specific manner, affective-like responses and thus deserve further studies.
Collapse
Affiliation(s)
- Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jordi Jornet-Plaza
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa Km 7.5, 07122, Palma, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
- Department of Medicine, University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
14
|
Ledesma-Corvi S, García-Fuster MJ. Aromatase Inhibition and Electroconvulsive Seizures in Adolescent Rats: Antidepressant and Long-Term Cognitive Sex Differences. Int J Neuropsychopharmacol 2023; 26:607-615. [PMID: 37559395 PMCID: PMC10519810 DOI: 10.1093/ijnp/pyad047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND We recently showed sex differences in the antidepressant-like potential of electroconvulsive seizures (ECS) in adolescent rats; whereas it worked for male rats, it was inefficacious in females. Because sex steroids might be important modulators of these sex disparities, we evaluated the role of estrogens in the differential response induced by adolescent ECS. Moreover, given the literature suggesting certain cognitive sequelae from ECS exposure, we aimed at evaluating its long-term safety profile in adulthood. METHODS Adolescent Sprague-Dawley rats were pretreated with letrozole (1 mg/kg/day) or vehicle (1 mL/kg/day) for 8 days (i.p.) and treated during the last 5 days (3 hours later) with ECS (95 mA, 0.6 s, 100 Hz) or SHAM. Antidepressant-like responses were measured in the forced swim test, and long-term cognitive performance was assessed in the Barnes maze. RESULTS During adolescence, whereas ECS alone exerted an antidepressant-like response in male rats, its combination with letrozole permitted ECS to also induce efficacy in females. Moreover, adolescent ECS treatment improved cognitive performance in adulthood although exclusively in male rats. CONCLUSIONS Adolescent ECS demonstrated an antidepressant-like potential together with certain long-term beneficial cognitive effects but exclusively in male rats. For females, efficacy was restricted to a situation in which the biosynthesis of estrogens was reduced. Therefore, estrogens and/or testosterone levels play a crucial role in the sex disparities induced by ECS in Sprague-Dawley rats. Based on this study and on the literature supporting its safety, ECS should be encouraged for use in cases of treatment-resistant depression during adolescence, while adhering to sex-specific considerations.
Collapse
Affiliation(s)
- Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
15
|
Wang R, Huang R, Liu Y, Tamalunas A, Stief CG, Hennenberg M. Silencing of CDC42 inhibits contraction and growth-related functions in prostate stromal cells, which is mimicked by ML141. Life Sci 2023; 329:121928. [PMID: 37437651 DOI: 10.1016/j.lfs.2023.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Prostate smooth muscle contraction and stromal growth may contribute to lower urinary tract symptoms suggestive of benign prostatic hyperplasia, but are incompletely understood. A role of the monomeric GTPase CDC42 for smooth muscle contraction and proliferation appears possible, but is unknown for the prostate. Here, we silenced CDC42 expression in prostate stromal cells (WPMY-1), and examined contractility, growth-related functions and responses to the presumed CDC42 inhibitor, ML141. METHODS WPMY-1 cells were transfected with scrambled or CDC42-specific siRNA, and characterized for GTPase activities, contraction, proliferation, colony formation, apoptosis, cell death and viability. Effects of ML141 were examined in cells with and without silencing. RESULTS CDC42 silencing was confirmed by reduced mRNA and protein expression, and reduced CDC42 activity. Silencing impaired contraction (23-47 %), actin organization (25 %), proliferation (17-63 %), colony formation and viability (64-89 %), and increased the percentage of dead cells (2.6-fold). ML141 mimicked the phenotype of silencing in scrambled siRNA-transfected controls, and in non-transfected WPMY-1 cells, including inhibition of contraction, proliferation, colony formation and viability, breakdown of actin organization and increased cell death. In CDC42-silenced cells, ML141 still affected phalloiding organization, proliferation and cell death, with effect sizes resembling controls without silencing. ML141 inhibited RhoA activity in CDC42-silenced cells, but not in cells without silencing. CONCLUSIONS CDC42 promotes contraction of prostate stromal cells, and drives stromal growth by CDC42-mediated proliferation and suppression of apoptosis-independent cell death. ML141 mimicks all effects of CDC42 silencing, but its specificity may be limited and depends on GTPase phenotypes of cells.
Collapse
Affiliation(s)
- Ruixiao Wang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christan G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
16
|
Hu S, Huang R, Keller P, Götz M, Tamalunas A, Weinhold P, Waidelich R, Stief CG, Hennenberg M. Selective inhibition of neurogenic, but not agonist-induced contractions by phospholipase A 2 inhibitors points to presynaptic phospholipase A 2 functions in contractile neurotransmission to human prostate smooth muscle. Neurourol Urodyn 2023; 42:1522-1531. [PMID: 37583250 DOI: 10.1002/nau.25242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Phospholipases A2 (PLA2 ) may be involved in α1 -adrenergic contraction by formation of thromboxane A2 in different smooth muscle types. However, whether this mechanism occurs with α1 -adrenergic contractions of the prostate, is still unknown. While α1 -adrenoceptor antagonists are the first line option for medical treatment of voiding symptoms in benign prostatic hyperplasia (BPH), improvements are limited, probably by nonadrenergic contractions including thromboxane A2 . Here, we examined effects of PLA2 inhibitors on contractions of human prostate tissues. METHODS Prostate tissues were obtained from radical prostatectomy. Contractions were induced by electric field stimulation (EFS) and by α1 -adrenergic agonists in an organ bath, after application of the cytosolic PLA2 inhibitors ASB14780 and AACOCF3, the secretory PLA2 inhibitor YM26734, the leukotriene receptor antagonist montelukast, or of solvent to controls. RESULTS Frequency-dependent contractions of human prostate tissues induced by EFS were inhibited by 25% at 8 Hz, 38% at 16 Hz and 37% at 32 Hz by ASB14780 (1 µM), and by 32% at 16 Hz and 22% at 32 Hz by AACOCF3 (10 µM). None of both inhibitors affected contractions induced by noradrenaline, phenylephrine or methoxamine. YM26734 (3 µM) and montelukast (0.3 and 1 µM) neither affected EFS-induced contractions, nor contractions by α1 -adrenergic agonists, while all contractions were substantially inhibited by silodosin (100 nM). CONCLUSIONS Our findings suggest presynaptic PLA2 functions in prostate smooth muscle contraction, while contractions induced by α1 -adrenergic agonists occur PLA2 -independent. Lacking sensitivity to montelukast excludes an involvement of PLA2 -derived leukotrienes in promotion of contractile neurotransmission.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Patrick Keller
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Melanie Götz
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | - Philipp Weinhold
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
17
|
Sung DJ, Park S, Noh HJ, Golpasandi S, Eun SH, Lee H, Kim B, Wie J, Seo MS, Park SW, Bae YM. Receptor-specific contributions of caveolae, PKC, and Src tyrosine kinase to serotonergic and adrenergic regulation of Kv channels and vasoconstriction. Life Sci 2023; 328:121903. [PMID: 37394095 DOI: 10.1016/j.lfs.2023.121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
AIMS Caveolae are invaginated, Ω-shaped membrane structures. They are now recognized as portals for signal transduction of multiple chemical and mechanical stimuli. Notably, the contribution of caveolae has been reported to be receptor-specific. However, details of how they differentially contribute to receptor signaling remain unclear. MAIN METHODS Using isometric tension measurements, patch-clamping, and western blotting, we examined the contribution of caveolae and their related signaling pathways to serotonergic (5-HT2A receptor-mediated) and adrenergic (α1-adrenoceptor-mediated) signaling in rat mesenteric arteries. KEY FINDINGS Disruption of caveolae by methyl-β-cyclodextrin effectively blocked vasoconstriction mediated by the 5-HT2A receptor (5-HT2AR), but not by the α1-adrenoceptor. Caveolar disruption selectively impaired 5-HT2AR-mediated voltage-dependent K+ channel (Kv) inhibition, but not α1-adrenoceptor-mediated Kv inhibition. In contrast, both serotonergic and α1-adrenergic effects on vasoconstriction, as well as Kv currents, were similarly blocked by the Src tyrosine kinase inhibitor PP2. However, inhibition of protein kinase C (PKC) by either GO6976 or chelerythrine selectively attenuated the effects mediated by the α1-adrenoceptor, but not by 5-HT2AR. Disruption of caveolae decreased 5-HT2AR-mediated Src phosphorylation, but not α1-adrenoceptor-mediated Src phosphorylation. Finally, the PKC inhibitor GO6976 blocked Src phosphorylation by the α1-adrenoceptor, but not by 5-HT2AR. SIGNIFICANCE 5-HT2AR-mediated Kv inhibition and vasoconstriction are dependent on caveolar integrity and Src tyrosine kinase, but not on PKC. In contrast, α1-adrenoceptor-mediated Kv inhibition and vasoconstriction are not dependent on caveolar integrity, but rather on PKC and Src tyrosine kinase. Caveolae-independent PKC is upstream of Src activation for α1-adrenoceptor-mediated Kv inhibition and vasoconstriction.
Collapse
Affiliation(s)
- Dong Jun Sung
- Department of Sport and Health Studies, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea; Sports Convergence Institute, Konkuk University, Chungju 27478, Republic of Korea; Center for Metabolic Diseases, Konkuk University, Chungju 27478, Republic of Korea; Research Institute for Biomedical & Health Science, Chungju 27478, Republic of Korea
| | - Solah Park
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Hyun Ju Noh
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Shadi Golpasandi
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Seo Hyeon Eun
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Hyeryeong Lee
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Bokyung Kim
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Jinhong Wie
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Mi Seon Seo
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Sang Woong Park
- Department of Emergency Medical Services, Eulji University, Seongnam 13135, Republic of Korea.
| | - Young Min Bae
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea.
| |
Collapse
|
18
|
Arias HR, Pierce SR, Germann AL, Xu SQ, Ortells MO, Sakamoto S, Manetti D, Romanelli MN, Hamachi I, Akk G. Chemical, Pharmacological, and Structural Characterization of Novel Acrylamide-Derived Modulators of the GABA A Receptor. Mol Pharmacol 2023; 104:115-131. [PMID: 37316350 PMCID: PMC10441626 DOI: 10.1124/molpharm.123.000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Acrylamide-derived compounds have been previously shown to act as modulators of members of the Cys-loop transmitter-gated ion channel family, including the mammalian GABAA receptor. Here we have synthesized and functionally characterized the GABAergic effects of a series of novel compounds (termed "DM compounds") derived from the previously characterized GABAA and the nicotinic α7 receptor modulator (E)-3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2). Fluorescence imaging studies indicated that the DM compounds increase apparent affinity to the transmitter by up to 80-fold in the ternary αβγ GABAA receptor. Using electrophysiology, we show that the DM compounds, and the structurally related (E)-3-furan-2-yl-N-phenylacrylamide (PAM-4), have concurrent potentiating and inhibitory effects that can be isolated and observed under appropriate recording conditions. The potentiating efficacies of the DM compounds are similar to those of neurosteroids and benzodiazepines (ΔG ∼ -1.5 kcal/mol). Molecular docking, functionally confirmed by site-directed mutagenesis experiments, indicate that receptor potentiation is mediated by interactions with the classic anesthetic binding sites located in the transmembrane domain of the intersubunit interfaces. Inhibition by the DM compounds and PAM-4 was abolished in the receptor containing the α1(V256S) mutation, suggestive of similarities in the mechanism of action with that of inhibitory neurosteroids. Functional competition and mutagenesis experiments, however, indicate that the sites mediating inhibition by the DM compounds and PAM-4 differ from those mediating the action of the inhibitory steroid pregnenolone sulfate. SIGNIFICANCE STATEMENT: We have synthesized and characterized the actions of novel acrylamide-derived compounds on the mammalian GABAA receptor. We show that the compounds have concurrent potentiating effects mediated by the classic anesthetic binding sites, and inhibitory actions that bear mechanistic resemblance to but do not share binding sites with, the inhibitory steroid pregnenolone sulfate.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Spencer R Pierce
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Allison L Germann
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Sophia Q Xu
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Marcelo O Ortells
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Seiji Sakamoto
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Dina Manetti
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Maria Novella Romanelli
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Itaru Hamachi
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| | - Gustav Akk
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma (H.R.A.); Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri (S.R.P., A.L.G., S.Q.X., G.A.); Facultad de Medicina, Universidad de Morón, Morón, and CONICET, Argentina (M.O.O.); Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan (S.S., I.H.); Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy (D.M., M.N.R.); The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri (G.A.)
| |
Collapse
|
19
|
Passos GR, de Oliveira MG, Ghezzi AC, Mello GC, Levi D’Ancona CA, Teixeira SA, Muscará MN, Grespan Bottoli CB, Vilela de Melo L, de Oliveira E, Antunes E, Mónica FZ. Periprostatic adipose tissue (PPAT) supernatant from obese mice releases anticontractile substances and increases human prostate epithelial cell proliferation: the role of nitric oxide and adenosine. Front Pharmacol 2023; 14:1145860. [PMID: 37492091 PMCID: PMC10364323 DOI: 10.3389/fphar.2023.1145860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/12/2023] [Indexed: 07/27/2023] Open
Abstract
Background: The prostate gland is surrounded by periprostatic adipose tissue (PPAT) that can release mediators that interfere in prostate function. In this study, we examined the effect of periprostatic adipose tissue supernatant obtained from obese mice on prostate reactivity in vitro and on the viability of human prostatic epithelial cell lines. Methods: Male C57BL/6 mice were fed a standard or high-fat diet after which PPAT was isolated, incubated in Krebs-Henseleit solution for 30 min (without prostate) or 60 min (with prostate), and the supernatant was then collected and screened for biological activity. Total nitrate and nitrite (NOx-) and adenosine were quantified, and the supernatant was then collected and screened for biological activity. NOx- and adenosine were quantified. Concentration-response curves to phenylephrine (PE) were obtained in prostatic tissue from lean and obese mice incubated with or without periprostatic adipose tissue. In some experiments, periprostatic adipose tissue was co-incubated with inhibitors of the nitric oxide (NO)-cyclic guanosine monophosphate pathway (L-NAME, 1400W, ODQ), adenylate cyclase (SQ22536) or with adenosine A2A (ZM241385), and A2B (MRS1754) receptor antagonists. PNT1-A (normal) and BPH-1 (hyperplasic) human epithelial cells were cultured and incubated with supernatant from periprostatic adipose tissue for 24, 48, or 72 h in the absence or presence of these inhibitors/antagonists, after which cell viability and proliferation were assessed. Results: The levels of NOx- and adenosine were significantly higher in the periprostatic adipose tissue supernatant (30 min, without prostate) when compared to the vehicle. A trend toward an increase in the levels of NOX was observed after 60 min. PPAT supernatant from obese mice significantly reduced the PE-induced contractions only in prostate from obese mice. The co-incubation of periprostatic adipose tissue with L-NAME, 1400W, ODQ, or ZM241385 attenuated the anticontractile activity of the periprostatic adipose tissue supernatant. Incubation with the supernatant of periprostatic adipose tissue from obese mice significantly increased the viability of PNT1-A cells and attenuated expression of the apoptosis marker protein caspase-3 when compared to cells incubated with periprostatic adipose tissue from lean mice. Hyperplastic cells (BPH-1) incubated with periprostatic adipose tissue from obese mice showed greater proliferation after 24 h, 48 h, and 72 h compared to cells incubated with culture medium alone. BPH-1 cell proliferation in the presence of PPAT supernatant was attenuated by NO-signaling pathway inhibitors and by adenosine receptor antagonists after 72 h. Conclusion: NO and adenosine are involved in the anticontractile and pro-proliferative activities of periprostatic adipose tissue supernatant from obese mice. More studies are needed to determine whether the blockade of NO and/or adenosine derived from periprostatic adipose tissue can improve prostate function.
Collapse
Affiliation(s)
- Gabriela Reolon Passos
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana G. de Oliveira
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Carolina Ghezzi
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Glaucia C. Mello
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos Arturo Levi D’Ancona
- Division of Urology, Department of Surgery, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone Aparecida Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Marcelo Nicolas Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | | | | | | | - Edson Antunes
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabiola Zakia Mónica
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
20
|
Britto-Júnior J, Lima AT, Fuguhara V, Monica FZ, Antunes E, De Nucci G. Investigation on the positive chronotropic action of 6-nitrodopamine in the rat isolated atria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1279-1290. [PMID: 36719453 DOI: 10.1007/s00210-023-02394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
6-Nitrodopamine (6-ND) is released from rat isolated atria being 100 times more potent than noradrenaline and adrenaline, and 10,000 times more potent than dopamine as a positive chronotropic agent. The present study aimed to investigate the interactions of 6-ND with the classical catecholamines, phosphodiesterase (PDE)-3 and PDE4, and the protein kinase A in rat isolated atria. Atrial incubation with 1 pM of dopamine, noradrenaline, or adrenaline had no effect on atrial frequency. Similar results were observed when the atria were incubated with 0.01 pM of 6-ND. However, co-incubation of 6-ND (0.01 pM) with dopamine, noradrenaline, or adrenaline (1 pM each) resulted in significant increases in atrial rate, which persisted over 30 min after washout of the agonists. The increased atrial frequency induced by co-incubation of 6-ND with the catecholamines was significantly reduced by the voltage-gated sodium channel blocker tetrodotoxin (1 µM, 30 min), indicating that the positive chronotropic effect of 6-ND is due in part to activation of nerve terminals. Pre-treatment of the animals with reserpine had no effect on the positive chronotropic effect induced by dopamine, noradrenaline, or adrenaline; however, reserpine markedly reduced the 6-ND (1 pM)-induced positive chronotropic effect. Incubation of the rat isolated atria with the protein kinase A inhibitor H-89 (1 µM, 30 min) abolished the increased atrial frequency induced by dopamine, noradrenaline, and adrenaline, but only attenuated the increases induced by 6-ND. 6-ND induces catecholamine release from adrenergic terminals and increases atrial frequency independently of PKA activation.
Collapse
Affiliation(s)
- José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil.
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Vivian Fuguhara
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Fabiola Z Monica
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, São Leopoldo Mandic, Campinas, SP, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
21
|
Müderrisoglu AE, Sakul AA, Murgas S, de la Rosette JJMCH, Michel MC. Association of diabetes, hypertension, and their combination with basal symptoms and treatment responses in overactive bladder patients. Front Pharmacol 2023; 14:1144470. [PMID: 37063295 PMCID: PMC10097919 DOI: 10.3389/fphar.2023.1144470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Introduction: Pelvic hypoperfusion caused by atherosclerosis has been proposed as a cause of lower urinary tract dysfunction including overactive bladder syndrome (OAB). Limited data indicate that OAB patients with concomitant diabetes or hypertension, known risk factors of atherosclerosis, may exhibit greater baseline OAB symptoms and slightly smaller therapeutic responses to treatment, but the impact of a combined presence of diabetes and hypertension has not been reported. Therefore, we have explored whether the combined presence of both comorbidities is associated with greater baseline OAB symptoms than that of either comorbidity alone. Secondary questions were exploration of the impact of either comorbidity on baseline symptoms, and of the impact of either comorbidity alone and their combination on therapeutic responses.Methods: Data from two non-interventional studies applying treatment with propiverine ER 30 or 45 mg/d for 12 weeks were analyzed.Results: Number of urgency episodes in the combination group was greater than with each comorbidity alone. The impact of comorbidities on baseline intensity of incontinence, frequency or nocturia or Patient Perception of Bladder Condition was less consistent or absent. Either comorbidity alone was associated with a smaller % improvement of symptoms, and their combination had a greater effect than either alone. However, all attenuations associated with comorbidity were small relative to the overall improvement. Conclusions: We conclude that comorbidities of diabetes and hypertension have detectable effects on OAB symptoms and treatment responses, but the small magnitude of these alterations does not justify changing existing paradigms for the clinical management of OAB.
Collapse
Affiliation(s)
- A. Elif Müderrisoglu
- Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Türkiye
| | - Ayse A. Sakul
- Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Türkiye
| | | | | | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Martin C. Michel,
| |
Collapse
|
22
|
Carmon H, Haley EC, Parikh V, Tronson NC, Sarter M. Neuro-Immune Modulation of Cholinergic Signaling in an Addiction Vulnerability Trait. eNeuro 2023; 10:ENEURO.0023-23.2023. [PMID: 36810148 PMCID: PMC9997697 DOI: 10.1523/eneuro.0023-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Sign-tracking (ST) describes the propensity to approach and contact a Pavlovian reward cue. By contrast, goal-trackers (GTs) respond to such a cue by retrieving the reward. These behaviors index the presence of opponent cognitive-motivational traits, with STs exhibiting attentional control deficits, behavior dominated by incentive motivational processes, and vulnerability for addictive drug taking. Attentional control deficits in STs were previously attributed to attenuated cholinergic signaling, resulting from deficient translocation of intracellular choline transporters (CHTs) into synaptosomal plasma membrane. Here, we investigated a posttranslational modification of CHTs, poly-ubiquitination, and tested the hypothesis that elevated cytokine signaling in STs contributes to CHT modification. We demonstrated that intracellular CHTs, but not plasma membrane CHTs, are highly ubiquitinated in male and female sign-tracking rats when compared with GTs. Moreover, levels of cytokines measured in cortex and striatum, but not spleen, were higher in STs than in GTs. Activation of the innate immune system by systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) elevated ubiquitinated CHT levels in cortex and striatum of GTs only, suggesting ceiling effects in STs. In spleen, LPS increased levels of most cytokines in both phenotypes. In cortex, LPS particularly robustly increased levels of the chemokines CCL2 and CXCL10. Phenotype-specific increases were restricted to GTs, again suggesting ceiling effects in STs. These results indicate that interactions between elevated brain immune modulator signaling and CHT regulation are essential components of the neuronal underpinnings of the addiction vulnerability trait indexed by sign-tracking.
Collapse
Affiliation(s)
- Hanna Carmon
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Evan C Haley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
23
|
Erdogan BR, Michel MB, Matthes J, Castañeda TR, Christen U, Arioglu-Inan E, Michel MC, Pautz A. A comparison of urinary bladder weight in male and female mice across five models of diabetes and obesity. Front Pharmacol 2023; 14:1118730. [PMID: 36891264 PMCID: PMC9986474 DOI: 10.3389/fphar.2023.1118730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Diabetes often leads to lower urinary tract dysfunction. The most frequently assessed parameter of urinary bladder dysfunction in animal models of diabetes is an enlargement of the bladder, which is consistently observed in type 1 and less consistently in type 2 diabetes. The vast majority of studies on bladder weight in animal models of diabetes and obesity has been performed in males, and no studies have directly compared this outcome parameter between sexes. Methods: Therefore, we have compared bladder weight and bladder/body weight ratio in five mouse models of obesity and diabetes (RIP-LCMV, db/db, ob/ob (two studies), insulin receptor substrate 2 (IRS2) knock-out mice and mice on a high-fat diet; pre-specified secondary analysis of a previously reported study). Results: In a pooled analysis of the control groups of all studies, females exhibited slightly lower glucose levels, lower body weight, and lower bladder weight, but bladder/body weight ratio was similar in both sexes (0.957 vs. 0.986 mg/g, mean difference 0.029 [-0.06; 0.118]). Among the six diabetic/obese groups, bladder/body weight ratio was similar in both sexes in three but smaller in female mice in three other groups. The mRNA expression of a panel of genes implied in the pathophysiology of bladder enlargement and/or fibrosis and inflammation did not differ systematically between sexes. Conclusions: We conclude that sex differences in diabetes/obesity-associated bladder enlargement may be model dependent.
Collapse
Affiliation(s)
- Betül R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Martina B. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Jan Matthes
- Centre of Pharmacology, University Medical Center, University of Cologne, Cologne, Germany
| | | | - Urs Christen
- Pharmazentrum, Goethe University, Frankfurt, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
24
|
Hernández-Hernández E, Ledesma-Corvi S, Yáñez-Gómez F, Garau C, Gálvez-Melero L, Bagán A, Escolano C, García-Fuster MJ. Sex differences in the antidepressant-like response and molecular events induced by the imidazoline-2 receptor agonist CR4056 in rats. Pharmacol Biochem Behav 2023; 223:173527. [PMID: 36781025 DOI: 10.1016/j.pbb.2023.173527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
In searching for novel targets to design antidepressants, among the characterized imidazoline receptors (IR), I2 receptors are an innovative therapeutical approach since they are dysregulated in major depressive disorder and by classical antidepressant treatments. In fact, several I2 agonists have been characterized for their antidepressant-like potential, but the results in terms of efficacy were mixed and exclusively reported in male rodents. Since there are well-known sex differences in antidepressant-like efficacy, this study characterized the potential effects induced by two I2 drugs, CR4056 (i.e., most promising drug already in phase II clinical trial for its analgesic properties) and B06 (a compound from a new family of bicyclic α-iminophosphonates) under the stress of the forced-swim test in male and female rats exposed to early-life stress. Moreover, some hippocampal neuroplasticity markers related to the potential effects observed were also evaluated (i.e., FADD, p-ERK/ERK, mBDNF, cell proliferation: Ki-67 + cells). The main results replicated the only prior study reporting the efficacy of CR4056 in male rats, while providing new data on its efficacy in females, which was clearly dependent on prior early-life stress exposure. Moreover, B06 showed no antidepressant-like effects in male or female rats. Finally, CR4056 increased FADD content and decreased cell proliferation in hippocampus, without affecting p-ERK/t-ERK ratio and/or mBDNF content. Interestingly, these effects were exclusively observed in female rats, and independently of early-life conditions, suggesting some distinctive molecular underpinnings participating in the therapeutic response of CR4056 for both sexes. In conjunction, these results present CR4056 with an antidepressant-like potential, especially in female rats exposed to stress early in life, together with some neuronal correlates described in the context of these behavioral changes in females.
Collapse
Affiliation(s)
- Elena Hernández-Hernández
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Fernando Yáñez-Gómez
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Celia Garau
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Laura Gálvez-Melero
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Andrea Bagán
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
25
|
Chiba Y, Adachi Y, Ando Y, Fujii S, Suto W, Sakai H. A lncRNA MALAT1 is a positive regulator of RhoA protein expression in bronchial smooth muscle cells. Life Sci 2023; 313:121289. [PMID: 36529281 DOI: 10.1016/j.lfs.2022.121289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS Augmented smooth muscle contractility of the airways associated with an increased expression of RhoA, a monomeric GTPase responsible for Ca2+ sensitization of contraction, is one of the causes of airway hyperresponsiveness. However, the mechanism of the altered properties of airway smooth muscle cells, including the RhoA upregulation, is not fully understood. This study aims to define functional role of a long non-coding RNA MALAT1 in the RhoA expression and development of bronchial smooth muscle (BSM) hyper-contractility. MAIN METHODS Cultured human BSM cells were transfected with MALAT1 antisense oligonucleotide (AS), miR-133a-3p mimic, and/or inhibitor, and then stimulated with interleukin-13 (IL-13). In animal experiments, the ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. KEY FINDINGS Treatment of the cells with IL-13 induced an increase in RhoA protein. Either MALAT1 AS or miR-133a-3p mimic transfection inhibited the IL-13-induced upregulation of RhoA. The inhibitory effect of MALAT1 AS was abolished by co-transfection with miR-133a-3p inhibitor. In BSMs of the murine asthma model, upregulations of Malat1 and RhoA protein were observed concomitantly with downregulation of miR-133a-3p. SIGNIFICANCE These findings suggest that MALAT1 positively regulates RhoA protein expression by inhibiting miR-133a-3p in BSM cells, and that its upregulation causes the RhoA upregulation, resulting in an augmented BSM contractility.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan.
| | - Yukika Adachi
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Yusuke Ando
- Laboratory of Clinical Pathology, Faculty of Pharmacy, Josai University, Saitama, Japan
| | - Shigeki Fujii
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Hoshi University School of Pharmacy, Tokyo, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
26
|
Michel MC, Heemann U, de la Rosette JJMCH. Weak association between arterial hypertension and overactive bladder baseline symptoms and treatment responses. Front Pharmacol 2022; 13:1081074. [PMID: 36582525 PMCID: PMC9792767 DOI: 10.3389/fphar.2022.1081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
While animal studies have suggested an association between the presence of hypertension and the presence and/or severity of overactive bladder syndrome (OAB) symptoms, little clinical data is available. We have conducted a pre-specified secondary analysis of a non-interventional study involving 4450 OAB patients being treated with solifenacin to explore the existence of an association between OAB and hypertension using three parallel and overlapping definitions of hypertension to enhance robustness of analysis. Regardless of definition, patients with hypertension were older and had greater OAB symptom severity in univariate analyses. In multiple regression models including age as explanatory covariate, most relationships held up but effect sizes of concomitant hypertension on OAB severity were small (odds ratios <1.35 in all cases) and were deemed to be unlikely of clinical relevance. % Changes in symptom severity were somewhat smaller in univariate analysis, but effect sizes were small. We conclude that OAB and arterial hypertension are associated but effect sizes are too small to justify adaptation of clinical practice for OAB patients with concomitant hypertension.
Collapse
Affiliation(s)
- Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany,*Correspondence: Martin C. Michel,
| | - Uwe Heemann
- Department of Medicine, University Medical Center, Munich, Germany
| | | |
Collapse
|
27
|
Inhibition of α 1-Adrenergic, Non-Adrenergic and Neurogenic Human Prostate Smooth Muscle Contraction and of Stromal Cell Growth by the Isoflavones Genistein and Daidzein. Nutrients 2022; 14:nu14234943. [PMID: 36500973 PMCID: PMC9735664 DOI: 10.3390/nu14234943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Isoflavone-rich legumes, including soy, are used for food production, as dietary supplements and in traditional medicine. Soy consumption correlates negatively with benign prostatic hyperplasia (BPH) and voiding symptoms. However, isoflavone effects on the prostate are hardly known. Here, we examined the effects on human prostate smooth muscle contractions and stromal cell growth, which are driving factors of voiding symptoms in BPH. Smooth muscle contractions were induced in prostate tissues from radical prostatectomy. Growth-related functions were studied in cultured stromal cells (WPMY-1). Neurogenic, α1-adrenergic and non-adrenergic contractions were strongly inhibited with 50 µM and by around 50% with 10 µM genistein. Daidzein inhibited neurogenic contractions using 10 and 100 µM. Agonist-induced contractions were inhibited by 100 µM but not 10 µM daidzein. A combination of 6 µM genistein with 5 µM daidzein still inhibited neurogenic and agonist-induced contractions. Proliferation of WPMY-1 cells was inhibited by genistein (>50%) and daidzein (<50%). Genistein induced apoptosis and cell death (by seven-fold relative to controls), while daidzein induced cell death (6.4-fold) without apoptosis. Viability was reduced by genistein (maximum: 87%) and daidzein (62%). In conclusion, soy isoflavones exert sustained effects on prostate smooth muscle contractions and stromal cell growth, which may explain the inverse relationships between soy-rich nutrition, BPH and voiding symptoms.
Collapse
|
28
|
Tips and traps for behavioural animal experimentation. Acta Neuropsychiatr 2022; 34:240-252. [PMID: 35109961 DOI: 10.1017/neu.2022.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Behavioural animal experimentation is an inseparable part of research trying to understand the biological underpinnings of human behaviour, diseases and disorders. Working with animals comes with great responsibility to achieve reliable and reproducible results of highest scientific quality. In a simple step-by-step fashion, we highlight some common issues that may occur along the path to conducting behavioural animal experimentations and posit some solutions and grounds to ensure the excellence of work done in this research area while aspiring to improve conditions for laboratory animals. It entails topics of study design, animal and experimenter welfare, experimental considerations and frequentist biostatistics. At the end, we direct to some guidelines and manuals that may prove valuable to researchers in this field. Our ten simple tips and traps are meant for students who are learning about important concepts for the first time; graduates whose statistics training all too often has neglected the concept of power in experimental design; and researches who would like a light-hearted refresher on these topics. With this perspective, we hope that you will avoid falling into traps and find answers to what you always wanted to know about conducting behavioural animal experimentation.
Collapse
|
29
|
Permixon®, hexane-extracted Serenoa repens, inhibits human prostate and bladder smooth muscle contraction and exerts growth-related functions in human prostate stromal cells. Life Sci 2022; 308:120931. [PMID: 36084760 DOI: 10.1016/j.lfs.2022.120931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
AIMS Recently, the European Association of Urology recommended hexane-extracted fruit of Serenoa repens (HESr) in their guidelines on management of non-neurogenic male lower urinary tracts symptoms (LUTS). Despite previously lacking recommendations, Permixon® is the most investigated HESr in clinical trials, where it proved effective for male LUTS. In contrast, underlying mechanisms were rarely addressed and are only marginally understood. We therefore investigated effects of Permixon® on human prostate and detrusor smooth muscle contraction and on growth-related functions in prostate stromal cells. MAIN METHODS Permixon® capsules were dissolved using n-hexane. Contractions of human prostate and detrusor tissues were induced in organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1). KEY FINDINGS Permixon® inhibited α1-adrenergic and thromboxane-induced contractions in prostate tissues, and methacholine-and thromboxane-induced contractions in detrusor tissues. Endothelin-1-induced contractions were not inhibited. Neurogenic contractions were inhibited in both tissues in a concentration-dependent manner. In WPMY-1 cells, Permixon® caused concentration-dependent breakdown of actin polymerization, inhibited colony formation, reduced cell viability, and proliferation, without showing cytotoxic or pro-apoptotic effects. SIGNIFICANCE Our results provide a novel basis that allows, for the first time, to fully explain the ubiquitous beneficial effects of HESr in clinical trials. HESr may inhibit at least neurogenic, α1-adrenergic and thromboxane-induced smooth muscle contraction in the prostate and detrusor, and in parallel, prostate stromal cell growth. Together, this may explain symptom improvements by Permixon® in previous clinical trials.
Collapse
|
30
|
Yu W, MacIver B, Zhang L, Bien EM, Ahmed N, Chen H, Hanif SZ, de Oliveira MG, Zeidel ML, Hill WG. Deletion of Mechanosensory β1-integrin From Bladder Smooth Muscle Results in Voiding Dysfunction and Tissue Remodeling. FUNCTION 2022; 3:zqac042. [PMID: 38989038 PMCID: PMC11234651 DOI: 10.1093/function/zqac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 07/12/2024] Open
Abstract
The bladder undergoes large shape changes as it fills and empties and experiences complex mechanical forces. These forces become abnormal in diseases of the lower urinary tract such as overactive bladder, neurogenic bladder, and urinary retention. As the primary mechanosensors linking the actin cytoskeleton to the extracellular matrix (ECM), integrins are likely to play vital roles in maintaining bladder smooth muscle (BSM) homeostasis. In a tamoxifen-inducible smooth muscle conditional knockout of β1-integrin, there was concomitant loss of α1- and α3-integrins from BSM and upregulation of αV- and β3-integrins. Masson's staining showed a reduction in smooth muscle with an increase in collagenous ECM. Functionally, mice exhibited a changing pattern of urination by voiding spot assay up to 8 wk after tamoxifen. By 8 wk, there was increased frequency with reductions in voided volume, consistent with overactivity. Cystometrograms confirmed that there was a significant reduction in intercontractile interval with reduced maximal bladder pressure. Muscle strip myography revealed a loss of contraction force in response to electrical field stimulation, that was entirely due to the loss of muscarinic contractility. Quantitative western blotting showed a loss of M3 receptor and no change in P2X1. qPCR on ECM and interstitial genes revealed loss of Ntpd2, a marker of an interstitial cell subpopulation; and an upregulation of S100A4, which is often associated with fibroblasts. Collectively, the data show that the loss of appropriate mechanosensation through integrins results in cellular and extracellular remodeling, and concomitant bladder dysfunction that resembles lower urinary tract symptoms seen in older people.
Collapse
Affiliation(s)
- Weiqun Yu
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Bryce MacIver
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Lanlan Zhang
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Erica M Bien
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Nazaakat Ahmed
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Huan Chen
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sarah Z Hanif
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Mark L Zeidel
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Warren G Hill
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
31
|
Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Melchor-Eixea I, Miquel M. Role of Perineuronal nets in the cerebellar cortex in cocaine-induced conditioned preference, extinction, and reinstatement. Neuropharmacology 2022; 218:109210. [PMID: 35985392 DOI: 10.1016/j.neuropharm.2022.109210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
Abstract
Perineuronal nets (PNNs) are cartilage-like structures of extracellular matrix molecules that enwrap in a net-like manner the cell-body and proximal dendrites of special subsets of neurons. PNNs stabilize their incoming connections and restrict plasticity. Consequently, they have been proposed as a candidate mechanism for drug-induced learning and memory. In the cerebellum, PNNs surround Golgi inhibitory interneurons and both inhibitory and excitatory neurons in the deep cerebellar nuclei (DCN). Previous studies from the lab showed that cocaine-induced conditioned memory increased PNN expression in the granule cell layer of the posterior vermis. The present research aimed to investigate the role of cerebellar PNNs in cocaine-induced conditioned preference. For this purpose, we use the enzyme chondroitinase ABC (ChABC) to digest PNNs at different time points of the learning process to ascertain whether their removal can affect drug-induced memory. Our results show that PNN digestion using ChABC in the posterior vermis (Lobule VIII) did not affect the acquisition of cocaine-induced conditioned preference. However, the removal of PNNs in Lobule VIII -but not in the DCN- disrupted short-term memory of conditioned preference. Moreover, although PNN digestion facilitated the formation of extinction, reinstatement of cocaine-induced conditioned preference was encouraged under PNN digestion. The present findings suggests that PNNs around Golgi interneurons are needed to maintain cocaine-induced Pavlovian memory but also to stabilize extinction memory. Conversely, PNN degradation within the DCN did not affect stability of cocaine-induced memories. Therefore, degradation of PNNs in the vermis might be used as a promising tool to manipulate drug-induced memory.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Patricia Ibáñez-Marín
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
32
|
Yesilyurt ZE, Matthes J, Hintermann E, Castañeda TR, Elvert R, Beltran-Ornelas JH, Silva-Velasco DL, Xia N, Kannt A, Christen U, Centurión D, Li H, Pautz A, Arioglu-Inan E, Michel MC. Analysis of 16 studies in nine rodent models does not support the hypothesis that diabetic polyuria is a main reason of urinary bladder enlargement. Front Physiol 2022; 13:923555. [PMID: 36003651 PMCID: PMC9393211 DOI: 10.3389/fphys.2022.923555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The urinary bladder is markedly enlarged in the type 1 diabetes mellitus model of streptozotocin-injected rats, which may contribute to the frequent diabetic uropathy. Much less data exists for models of type 2 diabetes. Diabetic polyuria has been proposed as the pathophysiological mechanism behind bladder enlargement. Therefore, we explored such a relationship across nine distinct rodent models of diabetes including seven models of type 2 diabetes/obesity by collecting data on bladder weight and blood glucose from 16 studies with 2–8 arms each; some studies included arms with various diets and/or pharmacological treatments. Data were analysed for bladder enlargement and for correlations between bladder weight on the one and glucose levels on the other hand. Our data confirm major bladder enlargement in streptozotocin rats and minor if any enlargement in fructose-fed rats, db/db mice and mice on a high-fat diet; enlargement was present in some of five not reported previously models. Bladder weight was correlated with blood glucose as a proxy for diabetic polyuria within some but not other models, but correlations were moderate to weak except for RIP-LCMV mice (r2 of pooled data from all studies 0.0621). Insulin levels also failed to correlate to a meaningful extent. Various diets and medications (elafibranor, empagliflozin, linagliptin, semaglutide) had heterogeneous effects on bladder weight that often did not match their effects on glucose levels. We conclude that the presence and extent of bladder enlargement vary markedly across diabetes models, particularly type 2 diabetes models; our data do not support the idea that bladder enlargement is primarily driven by glucose levels/glucosuria.
Collapse
Affiliation(s)
- Zeynep E. Yesilyurt
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | - Jan Matthes
- Department of Pharmacology, University of Cologne, Cologne, Germany
| | | | | | - Ralf Elvert
- Sanofi Research and Development, Frankfurt, Germany
| | | | | | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Aimo Kannt
- Sanofi Research and Development, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Urs Christen
- Pharmazentrum, Goethe University, Frankfurt, Germany
| | - David Centurión
- Department of Pharmacobiology, Cinvestav IPN, Mexico City, Mexico
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Martin C. Michelm,
| |
Collapse
|
33
|
Abstract
Null hypothesis significance testing is a commonly used tool for making statistical inferences in empirical studies, but its use has always been controversial. In this manuscript, I argue that even more problematic is that significance testing, and other abstract statistical benchmarks, often are used as tools for interpreting study data. This is problematic because interpreting data requires domain knowledge of the scientific topic and sensitivity to the study context, something that significance testing and other purely statistical approaches are not. By using simple examples, I demonstrate that researchers must first use their domain knowledge—professional expertise, clinical experience, practical insight—to interpret the data in their study and then use inferential statistics to provide some reasonable estimates about what can be generalized from the study data. Moving beyond the current focus on abstract statistical benchmarks will encourage researchers to measure their phenomena in more meaningful ways, transparently convey their data, and communicate their intellectual reasons for interpreting the data as they do, a shift that will better foster a scientific forum for cumulative science.
Collapse
|
34
|
Lima AT, Amorim AC, Britto-Júnior J, Campitelli RR, Fregonesi A, Mónica FZ, Antunes E, De Nucci G. β 1- and β 1/β 2-adrenergic receptor antagonists block 6-nitrodopamine-induced contractions of the rat isolated epididymal vas deferens. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1257-1268. [PMID: 35798982 DOI: 10.1007/s00210-022-02268-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
6-Nitrodopamine (6-ND) is an endogenous modulator of the contractility in the rat isolated epididymal vas deferens (RIEVD) and considered to be the main peripheral mediator of the emission process. Use of selective and unselective β-adrenergic receptor antagonists has been associated with ejaculatory failure. Here, the effects of selective β1- and β1/β2-adrenergic receptor antagonists on RIEVD contractions induced by 6-ND, dopamine, noradrenaline, adrenaline, and electric-field stimulation (EFS) were investigated. The selective β1-adrenergic receptor antagonists atenolol (0.1 and 1 µM), betaxolol (1 µM), and metoprolol (1 µM) and the unselective β1/β2-adrenergic receptor antagonists propranolol (1 and 10 µM) and pindolol (10 µM) caused significant rightward shifts of the concentration-response curve to 6-ND (pA2 6.41, 6.91, 6.75, 6.47, and 5.74; for atenolol, betaxolol, metoprolol, propranolol, and pindolol), but had no effect on dopamine-, noradrenaline-, and adrenaline-induced contractions. The effects of selective β1- and β1/β2-adrenergic receptor antagonists at a higher concentration (atenolol 1 µM, betaxolol 1 µM, metoprolol 1 µM, propranolol 10 µM, and pindolol 10 µM) also reduced the EFS-induced RIEVD contractions in control, but not in RIEVD obtained from L-NAME-treated animals. The selective β1-adrenoceptor agonist RO-363, the selective β2-adrenoceptor agonist salbutamol, and the selective β3-adrenoceptor agonist mirabegron, up to 300 µM, had no effect on the RIEVD tone. The results demonstrate that β1- and β1-/β2-adrenoceptor receptor antagonists act as 6-ND receptor antagonists in RIEVD, further confirming the main role of 6-ND in the RIEVD contractility.
Collapse
Affiliation(s)
- Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126 - Cidade Universitária, Campinas, SP, 13083-887, Brazil
| | - Amanda Consulin Amorim
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126 - Cidade Universitária, Campinas, SP, 13083-887, Brazil
| | - José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126 - Cidade Universitária, Campinas, SP, 13083-887, Brazil.
| | - Raquel Rios Campitelli
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126 - Cidade Universitária, Campinas, SP, 13083-887, Brazil
| | - Adriano Fregonesi
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126 - Cidade Universitária, Campinas, SP, 13083-887, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126 - Cidade Universitária, Campinas, SP, 13083-887, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126 - Cidade Universitária, Campinas, SP, 13083-887, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126 - Cidade Universitária, Campinas, SP, 13083-887, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Faculty of Medical Sciences, Universidade Do Brasil, Fernandópolis, São Paulo, Brazil
| |
Collapse
|
35
|
Wilson BS, Peiser-Oliver J, Gillis A, Evans S, Alamein C, Mostyn SN, Shimmon S, Rawling T, Christie MJ, Vandenberg RJ, Mohammadi SA. Peripheral administration of selective GlyT2 inhibitor, oleoyl-D-lysine, reverses chronic neuropathic pain but not acute or inflammatory pain in mice. J Pharmacol Exp Ther 2022; 382:246-255. [PMID: 35779948 DOI: 10.1124/jpet.122.001265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Aberrations in spinal glycinergic signalling are a feature of pain chronification. Normalising these changes by inhibiting glycine transporter-2 (GlyT2) is a promising treatment strategy. However, existing GlyT2 inhibitors e.g. ORG25543 are limited by narrow therapeutic windows and severe dose-limiting side effects such as convulsions, and are therefore poor candidates for clinical development. Here, intraperitoneally administered oleoyl-D-lysine, a lipid-based GlyT2 inhibitor, was characterised in mouse models of acute (hotplate), inflammatory (CFA) and chronic neuropathic (CCI) pain. Side effects were also assessed on a numerical rating score, convulsions score, for motor incoordination (rotarod) and for respiratory depression (whole body plethysmography). Oleoyl-D-lysine produced near complete anti-allodynia for chronic neuropathic pain but no anti-allodynia/analgesia in inflammatory or acute pain. No side effects were seen at the peak analgesic dose, 30 mg/kg. Mild side effects were observed at the highest dose, 100 mg/kg, on the numerical rating score, but no convulsions. These results contrasted markedly with ORG25543, which reached less than 50% reduction in allodynia score only at the lethal/near-lethal dose of 50 mg/kg. At this dose, ORG25543 caused maximal side effects on the numerical rating score and severe convulsions. Oleoyl-D-lysine (30 mg/kg) did not cause any respiratory depression, a problematic side effect of opiates. These results show the safe and effective reversal of neuropathic pain in mice by oleoyl-D-lysine and provide evidence for a distinct role of glycine in chronic pain over acute or short-term pain conditions. Significance Statement Partially inhibiting GlyT2 can alleviate chronic pain by restoring lost glycinergic function. Novel lipid-based GlyT2 inhibitor, ol-D-lys, is safe and effective in alleviating neuropathic pain, but not inflammatory or acute pain. Clinical application of GlyT2 inhibitors may be better suited to chronic neuropathic pain over other pain aetiologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sarasa A Mohammadi
- Discipline of Pharmacology, Sydney Pharmacy School, The University of Sydney, Australia
| |
Collapse
|
36
|
Huang R, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Antagonism of α 1-adrenoceptors by β 3-adrenergic agonists: Structure-function relations of different agonists in prostate smooth muscle contraction. Biochem Pharmacol 2022; 202:115148. [PMID: 35716783 DOI: 10.1016/j.bcp.2022.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Effects of β3-adrenergic agonists on prostate smooth muscle contraction are poorly characterized, although mirabegron is used for treatment of lower urinary tract symptoms. Off-target effects of several β3-adrenergic agonists include antagonism of α1-adrenoceptors. Proposed, but unconfirmed explanations include phenylethanolamine backbones, found in some β3-adrenergic agonists and imparting interaction with catecholamine binding pockets of adrenoceptors. Here, we examined effects of β3-adrenergic agonists on contractions of human prostate tissues, including ZD7114 (without phenylethanolamine moiety), ZD2079 (phenylethanolamine backbone), BRL37344 and CL316243 (chloride-substituted phenylethanolamine deriatives). Prostate tissues were obtained from radical prostatectomy. Contractions by α1-adrenergic agonists and electric field stimulation (EFS) were studied in an organ bath. ZD7114 (10 µM) right-shifted concentration responses curves for α1-adrenergic agonists, resulting in increased EC50 values for phenylephrine, methoxamine and noradrenaline up to one magnitude, without affecting Emax values. ZD7114 (10 µM) inhibited EFS-induced contractions, resulting in reduced Emax values. All effects of ZD7114 were resistant to the β3-adrenergic antagonist L-748337, including increases in EC50 values for α1-adrenergic agonists, up to more than two magnitudes. Using 10 µM, neither ZD2079, BRL37344 or CL316243 affected α1-adrenergic or EFS-induced contractions. At escalated concentrations, BRL37344 (200 µM) right-shifted concentration response curves for phenylephrine, increased EC50 values for phenylephrine, and inhibited EFS-induced contractions, while CL316243 (300 µM) did not affect phenylephrine- or EFS-induced contractions. In conclusion, phenylethanolamine backbones are not decisive to impart α1-adrenoceptor antagonism to β3-agonists. Effects of β3-adrenergic agonists on prostate smooth muscle contraction are limited to off-target effects, including α1-adrenoceptor antagonism by ZD7114 and BRL37344.
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Raphaela Waidelich
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Frank Strittmatter
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christan G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
37
|
Müderrisoglu AE, Oelke M, Schneider T, Murgas S, de la Rosette JJMCH, Michel MC. What Are Realistic Expectations to Become Free of Overactive Bladder Symptoms? Experience from Non-interventional Studies with Propiverine. Adv Ther 2022; 39:2489-2501. [PMID: 35325367 PMCID: PMC9123021 DOI: 10.1007/s12325-022-02114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Unmet expectations are a major cause of perceived treatment failure and discontinuation of treatment. To enable evidence-based counselling of patients on realistic expectations, we determined the chance of patients with overactive bladder becoming free of a given symptom upon treatment with a muscarinic antagonist in a non-interventional setting. METHODS Two non-interventional studies included 1335 and 745 patients, respectively, who received 30 or 45 mg q.d. propiverine ER for 12 weeks. They were monitored for becoming free of urgency, urinary incontinence, frequency, or nocturia. Analyses were also performed in subgroups defined by basal symptom severity, age, and gender. Categorical data are shown as a percentage of the respective population. Continuous data are expressed as means or as median depending on whether the variability was considered to exhibit a normal distribution. RESULTS The probability of becoming symptom-free was largest for incontinence and frequency (about 50%), but lesser for urgency (about 20%) and nocturia (about 10%). Greater basal severity of a symptom reduced the chance to become free of that symptom upon treatment, but the chance to become free of incontinence and frequency was still considerable. Age and gender had only minor if any effects on the chance of becoming symptom-free. These findings are in line with those of a limited number of randomized controlled trials. CONCLUSION These data provide an evidence base for the counselling of patients with overactive bladder on realistic expectations of treatment outcomes. We propose that realistic expectations can lead to greater long-term adherence.
Collapse
Affiliation(s)
- A Elif Müderrisoglu
- Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Turkey
| | - Matthias Oelke
- Department of Urology, St. Antonius-Hospital, Gronau, Germany
| | - Tim Schneider
- Clinic for Urology Rhein Ruhr (PUR/R), Mülheim, Germany
| | | | | | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
38
|
Tamalunas A, Wendt A, Springer F, Ciotkowska A, Rutz B, Wang R, Huang R, Liu Y, Schulz H, Ledderose S, Magistro G, Stief CG, Hennenberg M. Inhibition of Human Prostate and Bladder Smooth Muscle Contraction, Vasoconstriction of Porcine Renal and Coronary Arteries, and Growth-Related Functions of Prostate Stromal Cells by Presumed Small Molecule Gαq/11 Inhibitor, YM-254890. Front Physiol 2022; 13:884057. [PMID: 35677088 PMCID: PMC9168773 DOI: 10.3389/fphys.2022.884057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Lower urinary tract symptoms (LUTS) involve benign prostatic hyperplasia (BPH) and overactive bladder (OAB). Standard-of-care medical treatment includes α1-blockers and antimuscarinics for reduction of prostate and detrusor smooth muscle tone, respectively, and 5α-reductase inhibitors (5-ARI) to prevent prostate growth. Current medications are marked by high discontinuation rates due to unfavourable balance between efficacy and treatment-limiting side effects, ranging from dry mouth for antimuscarinics to cardiovascular dysregulation and a tendency to fall for α1-blockers, which results from hypotension, due to vasorelaxation. Agonist-induced smooth muscle contractions are caused by activation of receptor-coupled G-proteins. However, little is known about receptor- and organ-specific differences in coupling to G-proteins. With YM-254890, a small molecule inhibitor with presumed specificity for Gαq/11 became recently available. Here, we investigated effects of YM-254890 on prostate, bladder and vascular smooth muscle contraction, and on growth-related functions in prostate stromal cells.Methods: Contractions of human prostate and detrusor tissues, porcine renal and coronary arteries were induced in an organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1).Results: Contractions by α1-adrenergic agonists, U46619, endothelin-1, and neurogenic contractions were nearly completely inhibited by YM-254890 (30 nM) in prostate tissues. Contractions by cholinergic agonists, U46619, endothelin-1, and neurogenic contractions were only partly inhibited in detrusor tissues. Contractions by α1-adrenergic agonists, U46619, endothelin-1, and neurogenic contractions were strongly, but not fully inhibited in renal arteries. Contractions by cholinergic agonists were completely, but by U46619 and endothelin-1 only strongly inhibited, and neurogenic contractions reduced by half in coronary arteries. YM-254890 had no effect on agonist-independent contractions induced by highmolar (80 mM) potassium chloride (KCl). Neurogenic detrusor contractions were fully sensitive to tetrodotoxin. In WPMY-1 cells, YM-254890 caused breakdown of actin polymerization and organization, and obvious, but clearly limited decreases of proliferation rate, colony formation and viability, and slightly increased apoptosis.Conclusion: Intracellular post-receptor signaling pathways are shared by Gαq-coupled contractile receptors in multiple smooth muscle-rich organs, but to different extent. While inhibition of Gαq/11 causes actin breakdown, anti-proliferative effects were detectable but clearly limited. Together this may aid in developing future pharmaceutical targets for LUTS and antihypertensive medication.
Collapse
Affiliation(s)
- Alexander Tamalunas
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
- *Correspondence: Alexander Tamalunas,
| | - Amin Wendt
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Florian Springer
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Beata Rutz
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Heiko Schulz
- Department of Pathology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Stephan Ledderose
- Department of Pathology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Giuseppe Magistro
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
39
|
Berner D, Amrhein V. Why and how we should join the shift from significance testing to estimation. J Evol Biol 2022; 35:777-787. [PMID: 35582935 PMCID: PMC9322409 DOI: 10.1111/jeb.14009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
A paradigm shift away from null hypothesis significance testing seems in progress. Based on simulations, we illustrate some of the underlying motivations. First, p-values vary strongly from study to study, hence dichotomous inference using significance thresholds is usually unjustified. Second, 'statistically significant' results have overestimated effect sizes, a bias declining with increasing statistical power. Third, 'statistically non-significant' results have underestimated effect sizes, and this bias gets stronger with higher statistical power. Fourth, the tested statistical hypotheses usually lack biological justification and are often uninformative. Despite these problems, a screen of 48 papers from the 2020 volume of the Journal of Evolutionary Biology exemplifies that significance testing is still used almost universally in evolutionary biology. All screened studies tested default null hypotheses of zero effect with the default significance threshold of p = 0.05, none presented a pre-specified alternative hypothesis, pre-study power calculation and the probability of 'false negatives' (beta error rate). The results sections of the papers presented 49 significance tests on average (median 23, range 0-390). Of 41 studies that contained verbal descriptions of a 'statistically non-significant' result, 26 (63%) falsely claimed the absence of an effect. We conclude that studies in ecology and evolutionary biology are mostly exploratory and descriptive. We should thus shift from claiming to 'test' specific hypotheses statistically to describing and discussing many hypotheses (possible true effect sizes) that are most compatible with our data, given our statistical model. We already have the means for doing so, because we routinely present compatibility ('confidence') intervals covering these hypotheses.
Collapse
Affiliation(s)
- Daniel Berner
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Valentin Amrhein
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
41
|
Inhibition of neurogenic contractions in renal arteries and of cholinergic contractions in coronary arteries by the presumed inhibitor of ADP-ribosylation factor 6, NAV2729. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:471-485. [PMID: 35141760 PMCID: PMC8873054 DOI: 10.1007/s00210-022-02218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
NAV2729 is a presumed inhibitor of the monomeric GTPase ADP ribosylation factor 6 (ARF6) and inhibits smooth muscle contraction outside the cardiovascular system. Its effects on vascular smooth muscle contraction or a possible role of ARF6 in vasocontraction have not yet been examined. Here, we report effects of NAV2729 on neurogenic and agonist-induced contractions in renal interlobar and coronary arteries. Contractions of pig interlobar and coronary arteries were induced in an organ bath by agonists or by electric field stimulation (EFS). Owing to divergent characteristics of both vessel types, EFS-induced contractions were only examined in interlobar arteries, and contractions by agonists acting on muscarinic receptors only in coronary arteries. NAV2729 inhibited frequency-dependent EFS-induced contractions of interlobar arteries. The degree of inhibition was similar using 5 µM and 10 µM NAV2729. Inhibition of EFS-induced contractions was resistant to a nitric oxide synthase inhibitor and to diclofenac. The neurogenic and adrenergic character of EFS-induced contractions was confirmed by inhibition by tetrodotoxin and prazosin. In coronary arteries, NAV2729 (5 µM) inhibited concentration-dependent contractions induced by carbachol and methacholine. Contractions induced by α1-adrenergic agonists, endothelin-1, the thromboxane receptor agonist U46619, or serotonin remained unchanged by NAV2729 in both vessel types. NAV2729 inhibits neurogenic contractions in interlobar arteries and contractions induced by cholinergic agonists in coronary arteries. In both vessel types, NAV2729 does not inhibit contractions induced by receptor agonists other than those acting on muscarinic receptors. Addressing effects in other vessels and in other smooth muscle–rich organs merits further attention.
Collapse
|
42
|
Pierce SR, Germann AL, Steinbach JH, Akk G. The Sulfated Steroids Pregnenolone Sulfate and Dehydroepiandrosterone Sulfate Inhibit the α1 β3 γ2L GABA A Receptor by Stabilizing a Novel Nonconducting State. Mol Pharmacol 2022; 101:68-77. [PMID: 34853153 PMCID: PMC8969134 DOI: 10.1124/molpharm.121.000385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/21/2021] [Indexed: 02/03/2023] Open
Abstract
The GABAA receptor is inhibited by the endogenous sulfated steroids pregnenolone sulfate (PS) and dehydroepiandrosterone sulfate (DHEAS). It has been proposed in previous work that these steroids act by enhancing desensitization of the receptor. Here, we have investigated the modulatory effects of the steroids on the human α1β3γ2L GABAA receptor. Using electrophysiology and quantitative model-based data analysis, we show that exposure to the steroid promotes occupancy of a nonconducting state that retains high affinity to the transmitter but whose properties differ from those of the classic, transmitter-induced desensitized state. From the analysis of the inhibitory actions of two combined steroids, we infer that PS and DHEAS act through shared or overlapping binding sites. SIGNIFICANCE STATEMENT: Previous work has proposed that sulfated neurosteroids inhibit the GABAA receptor by enhancing the rate of entry into the desensitized state. This study shows that the inhibitory steroids pregnenolone sulfate and dehydroepiandrosterone sulfate act through a common interaction site by stabilizing a distinct nonconducting state.
Collapse
Affiliation(s)
- Spencer R Pierce
- Department of Anesthesiology (S.R.P., A.L.G., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Allison L Germann
- Department of Anesthesiology (S.R.P., A.L.G., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Department of Anesthesiology (S.R.P., A.L.G., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology (S.R.P., A.L.G., J.H.S., G.A.) and the Taylor Family Institute for Innovative Psychiatric Research (J.H.S., G.A.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
43
|
Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022; 13:504. [PMID: 35082287 PMCID: PMC8791953 DOI: 10.1038/s41467-022-28075-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a locomotor command area containing glutamatergic neurons that control locomotor initiation and maintenance. These motor actions are deficient in Parkinson’s disease (PD), where dopaminergic neurodegeneration alters basal ganglia activity. Being downstream of the basal ganglia, the PPN may be a suitable target for ameliorating parkinsonian motor symptoms. Here, we use in vivo cell-type specific PPN activation to restore motor function in two mouse models of parkinsonism made by acute pharmacological blockage of dopamine transmission. With a combination of chemo- and opto-genetics, we show that excitation of caudal glutamatergic PPN neurons can normalize the otherwise severe locomotor deficit in PD, whereas targeting the local GABAergic population only leads to recovery of slow locomotion. The motor rescue driven by glutamatergic PPN activation is independent of activity in nearby locomotor promoting glutamatergic Cuneiform neurons. Our observations point to caudal glutamatergic PPN neurons as a potential target for neuromodulatory restoration of locomotor function in PD. Here, the authors use cell-type specific stimulation of brainstem neurons within the caudal pedunculopontine nucleus to show that activation of excitatory neurons can normalize severe locomotor deficit in mouse models of parkinsonism. The study defines a potential target for neuromodulatory restoration of locomotor function in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora Masini
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark. .,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
44
|
Gintant G. Assessing the Fidelity of Translation of Nonclinical Assays: A Pharma Perspective. Br J Pharmacol 2022; 179:2564-2576. [PMID: 35032025 DOI: 10.1111/bph.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Advances in nonclinical in vitro models, higher throughput approaches and the promise of human-derived preparations require methods to reliably assess the fidelity of translation of assays compared to in vivo models and clinical studies. This review discusses general principles and parameters useful to evaluate the value of nonclinical assays typically used to guide compound progression. I first consider the biological characteristics (including sensitivity and ability to recapitulate relevant responses) of models that form the foundation of an assay based on the questions posed. I then discuss the quantitative assessment of diagnostic performance and assay utility, including sensitivity and specificity, receiver-operator characteristic curves, positive and negative predictive values, likelihood ratios, along with advantages of combining two independent assays. Understanding the strengths and limitations of the biological model employed along with assay performance and context of use is essential to selecting the best assays supporting the best drug candidates.
Collapse
Affiliation(s)
- Gary Gintant
- Dept Integrative Pharmacology (ZR-13, Dept. AP-9A), AbbVie, North Chicago, IL, USA
| |
Collapse
|
45
|
Guarque-Chabrera J, Gil-Miravet I, Olucha-Bordonau F, Melchor-Eixea I, Miquel M. When the front fails, the rear wins. Cerebellar correlates of prefrontal dysfunction in cocaine-induced memory in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110429. [PMID: 34416354 DOI: 10.1016/j.pnpbp.2021.110429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023]
Abstract
Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological and functional substrate to modulate cognitive functions. Dysfunction of both medial prefrontal cortex (mPFC) and cerebellum underlie the phenotypes of several neuropsychiatric disorders that exhibit comorbidity with substance use disorder (SUD). In people with SUD, cue-action-reward associations appears to be particularly strong and salient, acting as powerful motivational triggers for craving and relapse. Studies of cue reactivity in human with SUD have shown cerebellar activations when drug-related cues are presented. Our preclinical research showed that cocaine-induced conditioned preference increases neural activity and upregulates perineuronal nets (PNNs) around Golgi interneurons in the posterior cerebellar cortex. In the present investigation, we aimed at evaluating cerebellar signatures of conditioned preference for cocaine when drug learning is established under mPFC impairment. We used lidocaine to temporarily inactivate in male rats either the Prelimbic (PL) or the Infralimbic (IL) cortices during cocaine-induced conditioning. The inactivation of the IL, but not the PL, encouraged the acquisition of preference for cocaine-related cues, increased posterior cerebellar cortex activity, and upregulated the expression of PNNs around Golgi interneurons. Moreover, IL impairment not only increased vGluT2- and vGAT-related activity around Golgi cells but also regulated PNNs differently on subpopulations of Golgi cells, increasing the number of neurogranin+ PNN-expressing Golgi cells. Our findings suggest that IL dysfunction may facilitate the acquisition of cocaine-induced memory and cerebellar drug-related learning hallmarks. Overall, IL perturbation during cocaine-induced Pavlovian learning increased cerebellar activity and drug effects. Importantly, cerebellum involvement requires a contingent experience with the drug, and it is not the effect of a mere inactivation of IL cortex.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | | | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| |
Collapse
|
46
|
Huang R, Liu Y, Li B, Wang R, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Inhibition of human prostate smooth muscle contraction by the inhibitors of protein kinase C, GF109203X, and Go6983. Prostate 2022; 82:59-77. [PMID: 34633103 DOI: 10.1002/pros.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/09/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Prostate smooth muscle contraction is promoted by receptor-induced activation of intracellular signaling pathways. The presumed involvement in etiology and medical treatment of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) imparts a high clinical relevance to prostate smooth muscle contraction, which is contrasted by incomplete understanding at the molecular level. Involvement of protein kinase C (PKC) has been commonly assumed, but available studies were limited to nonhuman prostate smooth muscle or cell cultures. Here, we examined the effects of the PKC inhibitors Go6983 and GF109203x on contractions of human prostate tissues. METHODS Prostate tissues were obtained from radical prostatectomy. Contractions were induced by electric field stimulation (EFS), α1 -adrenergic agonists (noradrenaline, phenylephrine, methoxamine), thromboxane A2 analog U46619, endothelin-1, or calcium chloride in an organ bath. RESULTS GF109203X (500 nM) and Go6983 (300 nM) reduced EFS-, noradrenaline-, phenylephrine-, methoxamine-, and U46619-induced contractions of human prostate tissues, with maximum inhibitions approaching up to 55%. Using concentrations of 3 µM, GF109203X and Go6983 inhibited EFS- and noradrenaline-induced contractions, with similar effect sizes as 500 and 300 nM, respectively. Endothelin-1-induced contractions were not inhibited by GF109203X, and to neglectable extent by Go6983. After depolarization in calcium-free solution, calcium chloride-induced concentration-dependent contractions, which were inhibited by GF109203X and Go6983. CONCLUSIONS GF109203X and Go6983 inhibit neurogenic, α1 -adrenergic, and thromboxane A2 -induced smooth muscle contractions in the human prostate, suggesting a role of PKC for human prostate smooth muscle contraction. The inhibition may by be imparted by inhibition of calcium sensitivity.
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Bingsheng Li
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Raphaela Waidelich
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Frank Strittmatter
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| |
Collapse
|
47
|
Patil NY, Tang H, Rus I, Zhang K, Joshi AD. Decoding Cinnabarinic Acid-Specific Stanniocalcin 2 Induction by Aryl Hydrocarbon Receptor. Mol Pharmacol 2022; 101:45-55. [PMID: 34764210 PMCID: PMC8969126 DOI: 10.1124/molpharm.121.000376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-mediated transcription factor known for regulating response to xenobiotics, including prototypical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the activation of CYP1A1 expression. Upon ligand-binding, AhR translocates to the nucleus, interacts with the AhR nuclear translocator, and binds to xenobiotic response elements (XREs; GCGTG) present in the promoter region of AhR-regulated genes. Recently, we identified a novel tryptophan catabolite, cinnabarinic acid (CA), as an endogenous AhR agonist capable of activating expression of AhR target gene stanniocalcin 2 (stc2). The CA-driven stc2 induction bestowed cytoprotection against hepatotoxicity in an AhR-dependent manner. Interestingly, only CA but not TCDD was able to induce stc2 expression in liver, and CA was unable to upregulate the TCDD responsive cyp1a1 gene. In this report, we identified CA-specific histone H4 lysine 5 acetylation and H3 lysine 79 methylation at the AhR-bound stc2 promoter. Moreover, histone H4 lysine 5 acetylation writer, activating transcription factor 2 (Atf2), and H3 lysine 79 methylation writer, disruptor of telomeric silencing 1-like histone lysine methyltransferase (Dot1l), were interacting with the AhR complex at the stc2 promoter exclusively in response to CA treatment concurrent with the histone epigenetic marks. Suppressing Atf2 and Dot1l expression using RNA interference confirmed their role in stc2 expression. CRISPR/Cas9-assisted replacement of cyp1a1 promoter-encompassing XREs with stc2 promoter XREs resulted in CA-dependent induction of cyp1a1, underlining a fundamental role of quaternary structure of XRE sequence in agonist-specific gene regulation. In conclusion, CA-driven recruitment of specific chromatin regulators to the AhR complex and resulting histone epigenetic modifications may serve as a molecular basis for agonist-specific stc2 regulation by AhR. SIGNIFICANCE STATEMENT: Results reported here provide a mechanistic explanation for the agonist-specific differential gene regulation by identifying interaction of aryl hydrogen receptor with specific chromatin regulators concomitant with unique histone epigenetic marks. This study also demonstrated that the agonist-specific target-gene expression can be transferred with the gene-specific promoter xenobiotic response element-sequence in the context of chromatin architecture.
Collapse
Affiliation(s)
- Nikhil Y Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Hui Tang
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Iulia Rus
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Kangling Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| | - Aditya D Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (N.Y.P., I.R., A.D.J.); and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (H.T., K.Z.)
| |
Collapse
|
48
|
Erdogan BR, Yesilyurt ZE, Arioglu-Inan E, Michel MC. Validation of Fenoterol to Study β2-Adrenoceptor Function in the Rat Urinary Bladder. Pharmacology 2021; 107:116-121. [PMID: 34781292 DOI: 10.1159/000519720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022]
Abstract
Fenoterol is a β2-adrenoceptor (AR)-selective agonist that is commonly used to investigate relaxation responses mediated by β2-AR in smooth muscle preparations. Some data have questioned this because fenoterol had low potency in the rat urinary bladder when a muscarinic agonist was used as a pre-contraction agent and because some investigators proposed that fenoterol may act in part via β3-AR. We designed the present study to investigate whether fenoterol is a proper pharmacological tool to study β2-AR-mediated relaxation responses in the rat urinary bladder. Firstly, we have compared the effect of pre-contraction agents on fenoterol potency and found that fenoterol potency was about 1.5 log units greater against KCl than carbachol (pEC50 7.19 ± 0.66 and 5.62 ± 1.09 of KCl and of carbachol, respectively). To test the selectivity of fenoterol, we have determined the effects of the β2-AR antagonist ICI 118,551 and the β3-AR antagonist L 748,337 on relaxation responses to fenoterol. While 300 nM L 748,337 had little effect on the potency of fenoterol (pEC50 6.56 ± 0.25 and 6.33 ± 0.61 in the absence and presence of L 748,337, respectively), the relaxation curve for fenoterol was right-shifted in the presence 300 nM ICI 118,551 (pEC50 5.03 ± 0.18). Thus, we conclude that fenoterol is a proper pharmacological tool to assess β2-AR-mediated responses in the rat urinary bladder and most likely in other smooth-muscle preparations containing multiple subtypes of the β-AR.
Collapse
Affiliation(s)
- Betül Rabia Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | |
Collapse
|
49
|
Impact of guideline awareness on the counseling of patients with acute cough among general practitioners and pharmacy personnel. PLoS One 2021; 16:e0254086. [PMID: 34351926 PMCID: PMC8341580 DOI: 10.1371/journal.pone.0254086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Objective To explore the awareness and knowledge of applicable guidelines on acute cough among general practitioners, pharmacists and pharmacy technicians and to compare their recommendation behavior and clinical decision making to the evidence-based recommendation in the applicable guidelines. Methods An anonymous online survey was performed among 303 members of an existing panel of healthcare professionals (HCPs). They were presented with a hypothetical case vignette representative of their daily practice and asked for their treatment recommendations. After being shown an excerpt from the applicable guidelines, these questions were repeated. Results Forty-six % of participants reported to seek information on cough and respiratory conditions very often or often. Among 12 non-prescription treatments-commonly used over-the-counter-products for acute cough, HCPs most often recommended various plant extract-based products (phytotherapeutic remedies) for the acute cough case, whereas chemically defined options such as ambroxol or N-acetyl-cysteine were recommended less often. Following presentation of the guidelines excerpt, recommendations of the phytotherapeutic remedies decreased moderately whereas that of the guideline-recommended ambroxol more than doubled. Among stated reasons for the recommendation guideline conformity increased from 5% to 35% among the top-3 reasons. Conclusions The recommendations for the treatment of acute cough by professionals involved in primary healthcare deviated considerably from the applicable guideline recommendation but changed after presentation of a guidelines excerpt and knowledge thereof. We conclude that dissemination of applicable guideline knowledge is relevant to improve evidence-based healthcare and clinical decision making.
Collapse
|
50
|
Wang R, Schneider S, Keppler OT, Li B, Rutz B, Ciotkowska A, Stief CG, Hennenberg M. ADP ribosylation factor 6 promotes contraction and proliferation, suppresses apoptosis and is specifically inhibited by NAV2729 in prostate stromal cells. Mol Pharmacol 2021; 100:356-371. [PMID: 34349027 DOI: 10.1124/molpharm.121.000304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
The presumed ARF6 inhibitor NAV2729 inhibits human prostate smooth muscle contraction and proliferation of stromal cells, which are driving factors of voiding symptoms in benign prostatic hyperplasia (BPH). However, its specificity and a confirmed role of ARF6 for smooth muscle contraction are still pending. Here, we generated monoclonal ARF6 knockouts in human prostate stromal cells (WPMY-1), and characterized phenotypes of contractility, growth-related functions, and susceptibility to NAV2729 in knockout and control clones. ARF6 knockout was verified by Western blot. Knockout clones showed impaired contraction and actin organization, reduced proliferation and viability, and increased apoptosis and cell death. In ARF6-expressing control clones, NAV2729 (5µM) strongly inhibited contraction (67% inhibition accross all three control clones), actin organization (72%), proliferation (97%) and viability (up to 82%), and increased apoptosis (5-fold) and cell death (6-fold). In ARF6 knockouts, effects of NAV2729 (5µM) were widely reduced, including lacking or minor effects on contractions (0% inhibition accross all three knockout clones), actin (18%) and proliferation (13%), and lacking increases of apoptosis and cell death. Viability was reduced by NAV2729 with an IC50 of 3.3µM across all three ARF6 control clones, but of 4.5-8.2µM in ARF6 knockouts. In conclusion, ARF6 promotes prostate smooth muscle contraction and proliferation of stromal cells. Both are inhibited by NAV2729, which showed high specificity for ARF6 up to 5µM and represents an attractive compound in the context of BPH. Considering the relevance of smooth muscle-based diseases, shared roles of ARF6 in other smooth muscle types merit further investigation. Significance Statement By knockout of ARF6 in prostate stromal cells, we demonstrate an involvement of ARF6 in promotion of prostate smooth muscle contraction and stromal growth, and define concentration ranges for their ARF6-specific inhibition by NAV2729. Besides the context of benign prostatic hyperplasia and lower urinary tract symptoms, analog ARF6 functions in contraction and growth appear possible in other smooth muscle-rich organs, which merits further attention considering the high clinical relevance of smooth muscle-based diseases.
Collapse
Affiliation(s)
- Ruixiao Wang
- Urology, University Hospital, LMU Munich, Germany
| | - Stephanie Schneider
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU Munich, Germany
| | - Bingsheng Li
- Urology, University Hospital, LMU Munich, Germany
| | - Beata Rutz
- Urology, University Hospital, LMU Munich, Germany
| | | | | | | |
Collapse
|